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Abstract

Benchmark configurations for quantitative validation and comparison
of incompressible interfacial flow codes, which model two-dimensional
bubbles rising in liquid columns, are proposed. The benchmark quan-
tities: circularity, center of mass, and mean rise velocity are defined and
measured to monitor convergence towards a reference solution. Initial
studies are undertaken by three independent research groups, two repre-
senting Eulerian level set finite element codes, and one representing an
ALE moving grid approach.

The first benchmark test case considers a bubble with small density
and viscosity ratios which undergoes moderate shape deformation. The
results from all codes agree very well allowing for target reference values to
be established. For the second test case, a bubble with a very low density
compared to that of the surrounding fluid, the results for all groups are in
good agreement up to the point of break up, after which all three codes
predict different bubble shapes.

All benchmark definitions and results are accessible via the FeatFlow
benchmark repository: www.featflow.de/indexcfdbenchmark.html, where
other groups are encouraged to download the presented data or participate
by submitting their own results.
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1 Introduction

Numerical simulation of incompressible interfacial flows, such as two-phase flows
with immiscible fluids, is maturing at a rapid rate. Numerous improved schemes
and methods for numerically simulating mixtures of immiscible fluids undergo-
ing complex topological changes are published every year, and thus it is perhaps
somewhat surprising that no rigorous, that is quantitative, numerical benchmark
configuration has been proposed for validation and comparison of interfacial flow
codes to this date. This is in stark contrast to other fields of computational fluid
dynamics for which dedicated benchmarks have been presented and accepted by
the general CFD community [6, 13, 16, 19, 32, 33].

The most common approach to validate an interfacial flow code is to examine
the “picture norm”, that is qualitatively comparing the interface shape to other
numerical experiments or simply being satisfied that the bubble shape is in
the correct region with respect to the experimentally established Clift, Grace,
and Weber diagrams [7]. This approach to validation is however not sufficient
to determine if the obtained numerical solution is the correct solution to the
Navier-Stokes equations. To illustrate this, consider the bubble shapes shown
in Figure 1. These shapes are calculated by five different codes with identical
problem formulations. They should thus ideally give five identical solutions.
Sadly this is clearly not the case. The shapes are quite similar but we cannot
say which solutions, if any, are really correct. In order to be able to do this
we must leave the “picture norm” behind and establish some rigid metrics with
which we directly can measure convergence.

TP2D Femlab CFX FreeLIFE MooNMD

Figure 1: Simulation of a rising bubble with five different codes.

With this in mind we propose two benchmark configurations and define
relevant benchmark quantities to directly measure topological parameters, such
as interface deformation, and also indirect ones, such as velocity measures. The
task of the proposed benchmarks is to track the evolution of a two-dimensional
bubble rising in a liquid column. This configuration is simple enough to compute
accurately yet also allows for very complex topology change, giving the interface
tracking techniques of today an adequate challenge.
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The outline of the paper is as follows. In Section 2 we define the test cases.
The algorithms used in the different codes of the three participating groups
are described in Section 3. The results for the two test cases computed by
these groups are presented and compared in Sections 4 and 5. We conclude,
in Section 6, by summarizing the preliminary benchmark studies and shortly
discuss their implications on future research.

2 Definition of Test Cases

This section describes the governing equations, and defines the test cases and
benchmark quantities to be used for validation of interfacial flow codes.

2.1 Governing equations

We will consider isothermal, incompressible flows of immiscible fluids. The
conservation of momentum and mass is described by the Navier-Stokes equations

ρ(x)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ ·

(
µ(x)(∇u + (∇u)T )

)
+ ρ(x)g,

∇ · u = 0

in a fixed space-time domain Ω × [0, T ], where Ω ⊂ R2. These benchmarks are
initially restricted to two dimensions since both computational complexity and
time is greatly reduced. Here, ρ(·) and µ(·) denote the density and viscosity of
the fluids, u the velocity, p the pressure, and g the external gravitational force
field. It is assumed that fluid 1 occupies the domain Ω1 and that it completely
surrounds fluid 2 in Ω2, in particular Γ := ∂Ω1 ∩ ∂Ω2, Ω = Ω1 ∪ Γ ∪ Ω2, and
∂Ω2 ∩ ∂Ω = ∅.

We allow surface tension effects and take into consideration the surface ten-
sion force in the force balance at the interface Γ:

[u]|
Γ

= 0, [−pI + µ(∇u + (∇u)T )]
∣∣
Γ
· n̂ = σκn̂

where n̂ is the unit normal at the interface pointing into Ω1, [A]|
Γ

= A|Ω1∩Γ −
A|Ω2∩Γ denotes the jump of a quantity A across the interface, σ is the surface
tension coefficient, and κ is the curvature of the interface Γ. The first condi-
tion implies continuity of the velocity across the interface, whereas the second
describes the force balance on Γ. Two strategies are often used to handle the
curvature term, either to rewrite it as a volume force

fst = σκn̂δ(Γ,x)

where δ(Γ,x) is the Dirac delta function localizing the surface tension forces
to the interface, or to introduce the Laplace-Beltrami operator applied to the
identity id : R2 → R2

κ n̂ = ∆Γ id

and integrating the corresponding term in the weak formulation of the problem
by parts [3, 10].
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2.2 Initial configuration

The initial configuration, see Figure 2, is identical for both test cases and con-
sists of a circular bubble of radius r0 = 0.25 centered at [0.5, 0.5] in a [1 × 2]
rectangular domain. The density of the bubble is smaller than that of the sur-
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Figure 2: Initial configuration and boundary conditions for the test cases.

rounding fluid (ρ2 < ρ1). The no-slip boundary condition (u = 0) is used at
the top and bottom boundaries, whereas the free slip condition (u · n = 0,
τ · (∇u + (∇u)T ) · n = 0, τ - the tangential vector) is imposed on the vertical
walls.

2.3 Test case classification

Dimensionless numbers help to classify the different simulations. In this paper
we use the Reynolds number and the Eötvös number defined as

Re =
ρ1

√
g(2r0)

3/2

µ1

, Eo =
4ρ1gr2

0

σ

which relate inertial effects to viscous effects and gravitational forces to surface
tension effects. Here, the subscript 1 refers to the surrounding heavier fluid and
the subscript 2 to the lighter fluid of the bubble. Moreover, r0 is the initial
radius of the bubble, and g is the gravitational constant. The density ratio
ρ1/ρ2 and viscosity ratio µ1/µ2 finally help to fully classify the test cases.

2.4 The test cases

Table 1 lists the fluid and physical parameters completely specifying the test
cases which should be tracked for 3 time units. The first test case models a
rising bubble with Re = 35, Eo = 10, and both density and viscosity ratios
equal to 10. According to the experimental studies by Clift et al. [7] such a
bubble will end up in the ellipsoidal regime. Assuming that this also is true for
a two-dimensional bubble, it would mean that surface tension effects are strong
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Table 1: Physical parameters and dimensionless numbers defining the test cases.

Test Case ρ1 ρ2 µ1 µ2 g σ Re Eo ρ1/ρ2 µ1/µ2

1 1000 100 10 1 0.98 24.5 35 10 10 10
2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

enough to hold the bubble together and thus we do not expect any break up in
this test case.

The second and more challenging test case models a rising bubble with Re =
35, Eo = 125, and with large density and viscosity ratios (1000 and 100). This
bubble lies somewhere between the skirted and dimpled ellipsoidal-cap regimes
which means that break up can possibly occur [7], which will present additional
challenges to the different interface tracking algorithms.

2.5 Benchmark quantities

Visual comparison of the results, and in particular visualization of the bubble
interface, is one obvious way to compare simulations. However, this does not
allow us to rigorously determine how accurate our simulations really are and,
perhaps more interestingly, how much numerical effort is required to attain a
certain accuracy? We therefore introduce the following quantities which will be
used to assist in describing the temporal evolution of the bubbles quantitatively.

Point Quantities. Positions of various points can be used to track the translation
of bubbles. It is common to use the centroid or center of mass [4, 5, 20, 27],
defined by

Xc = (xc, yc) =

∫
Ω2

x dx
∫
Ω2

1 dx

where Ω2 denotes the region that the bubble occupies. Other points could be
the absolute top or bottom of a bubble [4].

Circularity. The ”degree of circularity”, introduced by Wadell [34], can in two
dimensions be defined as

/c =
Pa

Pb
=

perimeter of area-equivalent circle

perimeter of bubble
=

πda

Pb
.

Here, Pa denotes the perimeter or circumference of a circle with diameter da

which has an area equal to that of a bubble with perimeter Pb. Obviously, for
a perfect circular bubble the circularity will be equal to unity and decrease as
the bubble is deformed.

Rise Velocity. The mean velocity with which a bubble is rising or moving is a
particularly interesting quantity since it does not only measure how the interface
tracking algorithm behaves but also the quality of the overall solution. We define
the mean bubble velocity as

Uc =

∫
Ω2

u dx
∫
Ω2

1 dx
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where Ω2 again denotes the region that the bubble occupies. A variant of this
is simply to use the velocity at the centroid of the bubble u(Xc). The velocity
component in the direction opposite to the gravity vector is usually denoted as
rise velocity Vc, for which the stationary limit is called terminal velocity. Both
rise and terminal velocities are used, for example, in references [5, 28].

2.6 Error quantification

The temporal evolution of the computed benchmark quantities can be measured
against suitable reference solutions to establish the following relative error norms

l1 error : ||e||1 =

∑NTS
t=1

|qt,ref − qt|∑NTS
t=1

|qt,ref |
,

l2 error : ||e||2 =

(∑NTS
t=1

|qt,ref − qt|2∑NTS
t=1

|qt,ref |2

)1/2

,

l∞ error : ||e||∞ =
maxt |qt,ref − qt|

maxt |qt,ref |
,

where qt is the temporal evolution of quantity q.
The solution computed on the finest grid with the smallest time step is usu-

ally taken as a reference solution qt,ref . Interpolation should be appropriately
applied if there are more time steps or sample points (NTS) for the reference
solution than the solutions qt for which error norms should be computed.

With the relative errors established and CPU times measured it is then easy
to see how much effort is required to establish a certain accuracy. Additionally,
convergence rates for the quantities can also be computed as

ROC = log10(
||el−1||
||el|| )/log10(

hl−1

hl
)

where l is the grid level and h the mean cell edge length.

3 Participating Groups

Initial computational studies of the proposed benchmarks were performed by the
groups listed in Table 2. Their corresponding methods and codes are described
in the following.

3.1 Group 1: TP2D

The TP2D code (short for Transport Phenomena in 2D) is an extension of the
FeatFlow incompressible flow solver to treat immiscible fluids with the level set
method [21, 31].

TP2D is based on finite element discretizations in space with non-conforming
Q̃1Q0 basis functions for the flow variables and a conforming Q1 bilinear approx-
imation for the level set function. Time discretization of the governing equations
is optionally done with either 2nd order one- or fractional-step-theta schemes.
The velocity and pressure flow variables are decoupled from each other with
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Table 2: Participating groups and methods.

Group and Affiliation Code/Method

1 Uni. Dortmund, Inst. of Applied Math. TP2D

S. Turek, D. Kuzmin, S. Hysing FEM-Level Set
2 EPFL Lausanne, Inst. of Analysis and Sci. Comp. FreeLIFE

E. Burman, N. Parolini FEM-Level Set
3 Uni. Magdeburg, Inst. of Analysis and Num. Math. MooNMD

L. Tobiska, S. Ganesan FEM-ALE

the discrete projection method, which has proved to be very efficient for time
dependent problems [30]. In each time step the dependent variables are thus
treated sequentially after each other (momentum equations, pressure Poisson
equation, and the level set equation). The involved linear systems are solved
with a highly efficient geometric multigrid approach. More details on the solver
aspects can be found in references [14, 29, 30].

In order to keep the level set function from deviating too much from a dis-
tance function one may periodically apply some form of reinitialization. There
are a number of options available in the TP2D code, of which the most efficient
is a combination of the fast marching method for the far field and direct initial-
ization of the interface nodes [15]. A mass correction step can also be applied to
the level set function by addition of a suitable constant and thus globally low-
ering/raising it by a small amount. This only introduces a very small change
to the level set field which may be necessary to prevent accumulation of mass
errors for long time dependent simulations.

The low Re numbers of the proposed benchmarks did not necessitate the use
of artificial stabilization for the convective terms in the momentum equations.
Artificial stabilization was only used with the level set equation and then in the
form of high order FEM-TVD [18]. Surface tension effects were incorporated by
straight line approximation of the interface contours and direct integration over
these line segments instead of using the usual continuum surface force approach.

3.2 Group 2: FreeLIFE

The FreeLIFE (Free-Surface Library of Finite Element) software is an incom-
pressible flow solver for the solution of free-surface two-fluid problems. The
software is based on the numerical solution of the Navier-Stokes equations with
variable density and viscosity. In order to track the location of the interface
between the two fluids, where discontinuities in the density and viscosity occur,
a level set approach is adopted. The Navier-Stokes equations are therefore cou-
pled with an advection equation for the level set function whose zero level set
defines the interface location [22, 23].

The spatial discretization is based on a piecewise linear finite-element ap-
proach. In particular, the Navier-Stokes problem is solved using P1-isoP2 ele-
ments for the velocity and P1 for the pressure. The sub-grid topology associated
with the P1-isoP2 element is also exploited for the solution of the level set trans-
port equation, where the local sub-grid edge stabilization introduced in [1] has
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been adopted. In the simulations presented here, to be consistent with the
method of group 1, a mass correction step has been added which consists in
lowering/raising the level set function by a constant value in order to guarantee
a global mass conservation.

The level set reinitialization is based on a new method proposed in [22] con-
sisting of a local (L2-projection-based) reconstruction of the distance function
in the neighborhood of the interface and a fast marching strategy for the far
field [2].

The FreeLIFE software has been used for the simulation of a variety of
test cases concerning laminar two-fluid flows. The results of these simulations
have been presented and discussed in [8, 22, 23]. The method has been im-
plemented in a finite element library which is restricted to two-dimensional
problems. However, the proposed methodology is well suited for the solution
of three-dimensional problems. This approach is currently being extended to
three-dimensional problems in the framework of the library LifeV, a three di-
mensional finite element code developed in a joint collaboration between Ecole
Polytechnique Fédérale de Lausanne (CMCS), Politecnico di Milano (MOX)
and INRIA (BANG).

3.3 Group 3: MooNMD

MooNMD stands for Mathematics and object oriented Numerics in MagDeburg
[17]. It is a program package based on mapped finite element methods for dis-
cretizing partial differential equations. In particular, it covers the solution of the
incompressible Navier-Stokes equations by inf-sup stable isoparametric finite el-
ements [12] and the solution of convection-diffusion equations by stabilized finite
element methods. It has been extended to treat incompressible two-phase flows
with capillary forces using the arbitrary Lagrangian-Eulerian (ALE) approach.

For the benchmarks, the velocity components were discretized on simplex
grids by quadratic basis functions enriched with cubic bubble functions, and the
pressure by discontinuous piecewise linear elements. In this way, high accuracy
could be achieved and spurious velocities suppressed [11]. It is worth to mention,
that no mass correction step was applied. Furthermore, the curvature was
replaced by the Laplace-Beltrami operator which could then be integrated by
parts and thus reduced the smoothness requirements [3, 9, 25].

For the time discretization, the second order, strongly A-stable fractional-
step-theta scheme was used [24]. In each time step the interface was fully
resolved by the mesh, meaning that the interface was always aligned with cell
edges. Three to four different initial meshes were generated using the mesh
generator Triangle [26], by fixing 200-900 degrees of freedom on the interface.
The movement of the interface was done in a Lagrangian manner after which the
inner mesh points were fitted to the new interface by an elastic mesh update, that
is by solving a linear elasticity problem [10]. It turned out that no remeshing, to
improve the mesh quality, was needed for long periods. During such a period the
number of degrees of freedom was fixed; however, remeshing had to be applied
after some time depending on the degree of deformation, which changed the
number of degrees of freedom dynamically during the simulations.
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4 Results for Test Case 1

In test case 1 the bubble, being initially circular, is stretched horizontally and
first develops a dimple as it rises, but after some time proceeds to assume a
more stable ellipsoidal shape.

4.1 Group 1: TP2D

The results for test case 1 computed with the TP2D code of group 1 are pre-
sented here. All computations were performed on rectangular tensor product
grids with cell sizes h = 1/[40, 80, 160, 320]. The implicit 2nd order Crank-
Nicolson scheme was used with the time step fixed to ∆t = h/16. Table 3
shows the simulation statistics for the different grid levels where the number of
elements is denoted by NEL, the total number of degrees of freedom by NDOF,
and the total number of time steps by NTS. The time in seconds required for
each computation is denoted by CPU which scaled by the number of time steps
yields the factor CPU/TS. The Fortran 77 TP2D code was compiled with the
PathScale v2.5 compiler suite and the computations were performed on servers
with 2.4 GHz AMD Opteron processors.

Table 3: Simulation statistics and timings for test case 1 and group 1 (TP2D).

1/h NEL NDOF NTS CPU CPU/TS

40 3200 19561 1920 181 0.1
80 12800 77521 3840 1862 0.5

160 51200 308641 7680 20360 2.7
320 204800 1231681 15360 126373 8.2
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(a) h = 1/40
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(b) h = 1/80

Figure 3: Test case 1 bubble shapes for the TP2D code at time t=3. Coarse
grid solutions (shown in red) compared to the shape computed on the finest
grid h = 1/320 (shown in blue).

In Figure 3 the coarse grid bubble shapes at the final time (t=3) are com-
pared to the solution from the computation on the finest grid (h = 1/320). It
is apparent that the solution on the coarsest grid h = 1/40 (Figure 3(a)) is
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already quite good but does visibly differ somewhat from the reference solution.
The computation on a one level finer grid (h = 1/80 shown in Figure 3(b))
is clearly better and further refinements yield bubble shapes which are visu-
ally indistinguishable from the reference shape. Merely looking at the bubble
shapes is obviously not sufficient to say anything about the accuracy on the finer
grids, and it is now that the previously defined benchmark quantities become
particularly useful.

The relative error norms for the circularity, center of mass, and rise velocity
are shown in Table 4 together with the estimated convergence rates (ROC). The
reference solution is as before taken as the solution from the computation on
the finest grid (h = 1/320). It is evident that all quantities converge with a
more than linear convergence order, approaching quadratic convergence in the
l1 and l2 norms. In the maximum norm the convergence order decreased to 1.16
for the circularity and 1.39 for the rise velocity.

Table 4: Relative error norms and convergence orders for test case 1 and group 1
(TP2D).

1/h ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞

Circularity

40 1.00e-03 1.22e-03 2.89e-03
80 3.01e-04 1.74 3.63e-04 1.75 9.67e-04 1.58

160 8.83e-05 1.77 1.10e-04 1.72 4.32e-04 1.16

Center of mass

40 2.65e-03 2.99e-03 3.56e-03
80 9.64e-04 1.46 1.02e-03 1.55 1.14e-03 1.64

160 2.62e-04 1.88 2.71e-04 1.91 2.96e-04 1.95

Rise velocity

40 1.19e-02 1.29e-02 1.49e-02
80 2.90e-03 2.04 3.07e-03 2.07 5.08e-03 1.55

160 7.73e-04 1.91 7.85e-04 1.97 1.94e-03 1.39

The following figures depict the time evolution of the benchmark quantities
for test case 1 and group 1 (TP2D). From Figure 4(a), which shows the circu-
larity, it is quite hard to discern any significant differences between the different
grids. Only for the coarsest grid (h = 1/40) can we see that the circularity
drops too quickly up until t=0.7, after which the correct solution behavior is
recovered. A close up around the point of minimum circularity is shown in
Figure 4(b) from where it is possible to see the convergence behavior. Most
notable is that there are irregularities or small jumps in the curves for the two
coarsest grids which is due to the reinitialization procedure which was applied
every 20 time steps. The minimum circularity converges towards a value of
0.9013 around t=1.90 (see Table 5).
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Figure 4: Circularity for test case 1 and group 1 (TP2D).

Table 5: Minimum circularity and maximum rise velocity, with corresponding
incidence times, and the final position of the center of mass for test case 1 and
group 1 (TP2D).

1/h 40 80 160 320

/cmin
0.9016 0.9014 0.9014 0.9013

t|/c=/cmin
1.9234 1.8734 1.9070 1.9041

Vc,max 0.2418 0.2418 0.2419 0.2417
t|Vc=Vc,max 0.9141 0.9375 0.9281 0.9213
yc(t = 3) 1.0818 1.0810 1.0812 1.0813

Both the center of mass, shown in Figure 5(a), and the mean rise velocity of
the bubble, shown in Figure 5(b), converge very nicely. From Table 5 we see that
the maximum rise velocity of Vc,max = 0.2417 is attained quite early at time
t=0.92. The center of mass of the bubble can asymptotically be described as a
linear function of time and approaches yc = 1.0813 at the end of the simulation.
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Figure 5: Center of mass and rise velocity for test case 1 and group 1 (TP2D).
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4.2 Group 2: FreeLIFE

The following results are computed with the FreeLIFE code of the second group.
The computations were performed on simplex cells created by subdivision of
regular quadrilaterals with element mesh sizes h = 1/[40, 80, 160]. The time
step was chosen as ∆t = h/2. Statistics and timings for the computations can
be seen in Table 6.

Table 6: Simulation statistics and timings for test case 1 and group 2
(FreeLIFE).

1/h NEL NDOF NTS CPU CPU/TS

40 6400 14145 240 257 1.1
80 25600 55485 480 4299 8.5

160 102400 219765 960 108846 113.2

In Figure 6 the bubble shapes at the final time (t=3) with the different grid
resolutions are compared. Although the interface contour from the solution on
the coarsest grid seems to be offset in the y-direction the overall shape is correct,
and when the grid is refined once we cannot anymore distinguish between the
two bubbles (Figure 6(b)).
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Figure 6: Test case 1 bubble shapes for the FreeLIFE code at time t=3. Coarse
grid solutions (shown in red) compared to the shape computed on the finest
grid h = 1/160 (shown in blue).

A quantitative convergence analysis has been performed computing the rel-
ative errors for the circularity, center of mass, and rise velocity together with
the estimated convergence rates (ROC), as defined in section 2.6. Here, the
solution from the finest grid (h = 1/160) is taken as the reference solution. As
can be seen in Table 7 the method gives a convergence order approaching 1.5
for the circularity and about 2 for the rise velocity. The center of mass shows a
very good convergence behavior of about 3 in the l1 and l2 norms and 2 in the
l∞ norm.
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Table 7: Relative error norms and convergence orders for test case 1 and group
2 (FreeLIFE).

1/h ‖e‖1 ROC1 ‖e‖2 ROC2 ‖e‖∞ ROC∞

Circularity

40 2.61e-03 3.63e-03 8.09e-03
80 1.05e-03 1.31 1.36e-03 1.41 2.51e-03 1.69

Center of mass

40 7.85e-03 8.14e-03 7.74e-03
80 9.42e-04 3.06 1.25e-03 2.70 1.72e-03 2.17

Rise velocity

40 1.78e-02 1.95e-02 3.30e-02
80 3.99e-03 2.16 5.54e-03 1.82 1.00e-02 1.72

Figure 7 depicts the circularity for the three different grid levels. Although
the solution on the coarsest grid is highly oscillating the results converge toward
the solution corresponding to the finest grid (h = 1/160). The maximum defor-
mation of the bubble is reached at time t=1.88 where the circularity attains its
minimum value of 0.9011 (see Table 8 and Figure 7(b)).
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Figure 7: Circularity for test case 1 and group 2 (FreeLIFE).

The time evolutions of the center of mass and mean rise velocity can be seen
in Figures 8(a) and 8(b), respectively. Both these quantities seem to converge
although the curve from the simulation on the coarsest grid deviates somewhat
from the other two. The rise velocity reaches its maximum value of 0.2421 at
time t=0.9313 and center of mass of the bubble reaches a height of 1.08 at the
end of the simulation (see Table 8).
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Table 8: Minimum circularity and maximum rise velocity, with corresponding
incidence times, and the final position of the center of mass for test case 1 and
group 2 (FreeLIFE).

1/h 40 80 160

/cmin
0.9060 0.9021 0.9011

t|/c=/cmin
1.8375 1.9125 1.8750

Vc,max 0.2427 0.2410 0.2421
t|Vc=Vc,max 0.9000 0.9375 0.9313
yc(t = 3) 1.0715 1.0817 1.0799
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Figure 8: Center of mass and rise velocity for test case 1 and group 2 (FreeLIFE).

4.3 Group 3: MooNMD

Simulations of test case 1 with the MooNMD code of the third group were
performed with 200, 300, 600, and 900 degrees of freedom resolving the interface
(denoted by NDOFint). The computations were run on a server with a 2.16
GHz Intel processor, for which simulation statistics are given in Table 9.

Table 9: Simulation statistics and timings for test case 1 and group 3
(MooNMD).

NDOFint NDOF CPU

200 17846 11034
300 24002 25110
600 50048 58349
900 72836 180819

Table 10 shows the computed error norms and convergence orders for MooNMD.
Since the finer meshes are not obtained by uniform refinement of the coarse
mesh, but with the help of a mesh generator, we replaced the h in the formula
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for calculating the convergence rates by h∗, the edge length of the interface at
t = 0. This is indicated in Table 10 by the notation ROC∗. The center of mass
and the rise velocity approach a convergence order of 3 and 2.2, respectively, in
the l1 and l2 norms. In the l∞ norm the convergence order decreases for the
rise velocity. The circularity had the overall lowest convergence order of 1.3.

Table 10: Relative error norms and convergence orders for test case 1 and
group 3 (MooNMD).

NDOFint ‖e‖1 ROC∗
1 ‖e‖2 ROC∗

2 ‖e‖∞ ROC∗
∞

Circularity

200 4.40e-04 5.99e-04 1.19e-03
300 2.60e-04 1.30 3.40e-04 1.40 6.55e-04 1.47
600 1.07e-04 1.28 1.41e-04 1.27 2.90e-04 1.18

Center of mass

200 5.07e-04 7.91e-04 1.53e-03
300 1.79e-04 2.57 2.87e-04 2.50 5.82e-04 2.38
600 1.66e-05 3.43 2.11e-05 3.76 3.85e-05 3.92

Rise velocity

200 2.87e-03 3.70e-03 5.96e-03
300 1.18e-03 2.20 1.54e-03 2.17 2.48e-03 2.16
600 2.33e-04 2.34 3.10e-04 2.31 1.28e-03 0.95

That this method had very small error levels, even on the coarsest grids,
is also apparent in Figures 9(a) and 10, which depict the circularity, center of
mass, and the rise velocity. There is no real visible evidence that any of the
curves differ, even for the coarser grids, until we zoom in (see Figure 9(b)).
Then we can see that each grid refinement produces results that are closer to
the curve corresponding to the computation on the finest grid.
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Figure 9: Circularity for test case 1 and group 3 (MooNMD).
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Figure 10: Center of mass and rise velocity for test case 1 and group 3
(MooNMD).

Table 11 shows the time and values of the minimum circularity, maximum
rise velocity, and maximum position of the center of mass achieved during the
simulations. For the finest grid a minimum circularity of 0.9013 was measured at
time t=1.9. The rise velocity showed a very stable maximum, almost irrespective
of grid level, with a value of 0.2417 recorded at times around 0.92. At the final
time the center of mass of the bubble had reached a position of 1.0817.

Table 11: Minimum circularity and maximum rise velocity, with corresponding
incidence times, and the final position of the center of mass for test case 1 and
group 3 (MooNMD).

NDOFint 200 300 600 900

/cmin
0.9022 0.9018 0.9014 0.9013

t|/c=/cmin
1.8630 1.8883 1.9013 1.9000

Vc,max 0.2418 0.2417 0.2417 0.2417
t|Vc=Vc,max 0.9236 0.9236 0.9214 0.9239
yc(t = 3) 1.0833 1.0823 1.0818 1.0817

4.4 Overall results for test case 1

Here the results from all groups computations on the finest grids are compared
starting with the bubble shapes shown in Figure 11. No significant differences
can really be seen at all and we thus expect the computed benchmark quantities
to be similarly close.

The curves for the circularity shown in Figure 12(a) does not reveal any
significant differences between the groups. Only in the enlarged section around
the minimum (Figure 12(b)) can we see some separation between the curves.
The curves of groups 1 (TP2D) and 3 (MooNMD) agree best, while the minima
calculated by the 2nd group (FreeLIFE) is somewhat offset. This is also reflected
by the actual values shown in Table 12. From there we can conclude that the
minimum circularity will have a value of 0.9012±0.0001 and occur around t=1.9.
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Figure 11: Bubble shapes at the final time (t=3) for test case 1 (TP2D (solid
red), FreeLIFE (dotted green), and MooNMD (dashed blue)).

Table 12: Minimum circularity and maximum rise velocity, with corresponding
incidence times, and the final position of the center of mass for test case 1 (all
groups).

Group 1 2 3

/cmin
0.9013 0.9011 0.9013

t|/c=/cmin
1.9041 1.8750 1.9000

Vc,max 0.2417 0.2421 0.2417
t|Vc=Vc,max 0.9213 0.9313 0.9239
yc(t = 3) 1.0813 1.0799 1.0817
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Figure 12: Circularity for test case 1 (all groups).

The time evolution of the center of mass (Figure 13) essentially shows the
same behavior as the circularity. The curves for groups 1 and 3 agree well while
the bubble of the second group seems to rise with the same speed but has been
somewhat delayed (negative offset). From Table 12 we see that the center of
mass of the bubble reaches a position of 1.081±0.001 at the final time.
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Figure 13: Center of mass for test case 1 (all groups).

The last benchmark quantity we examine for this test case is the mean
rise velocity of the bubble, which is shown in Figure 14. Again the curves for
groups 1 (TP2D) and 3 (MooNMD) agree very well while the curve for FreeLIFE
(group 2) is slightly positively offset. The overall maximum rise velocity has a
magnitude of 0.2419±0.0002 and occurs between times t=0.921 and t=0.932.
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Figure 14: Rise velocity for test case 1 (all groups).

To summarize, we have conducted preliminary studies of test case 1 and
have been able to establish a target reference range for each of the benchmark
quantities. The different codes did not however agree completely and we must
conclude that numerical simulation of a single rising bubble, undergoing quite
moderate deformation, is still not a trivial task.
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5 Results for Test Case 2

Figure 15 shows snapshots of the time evolution of the bubble (computed by
group 1 on a h = 1/160 grid). Although the bubbles in both test cases rise with
approximately the same speed, the decrease in surface tension causes this bubble
to assume a more convex shape and develop thin filaments which eventually
break off. The time of break up is in this simulation predicted to occur between
t=2.2 and 2.4, as is evident from Figures 15(d) and 15(e). After the break
up small satellite droplets trail the bulk of the main bubble, which eventually
assumes the shape of a dimpled cap.
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Figure 15: Typical time evolution of the interface for test case 2.
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5.1 Group 1: TP2D

The bubble shapes at the final time (t=3), computed by the TP2D code of
group 1, are shown in Figure 16. First of all we can see that the simulation
on the coarsest grid produced a rather unphysical break up behavior, that is
sharp edged trailing filaments (Figure 16(a)). The shapes computed on the finer
grids did not have these filaments and seemed to converge for the main bulk
bubble. The two small satellite droplets were apparently the most difficult to
correctly capture since their shape and position even differed on the two finest
grids (Figure 16(d)).
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Figure 16: Test case 2 bubble shapes for the TP2D code at time t=3. Coarse
grid solutions (shown in red) compared to the shape computed on the finest
grid h = 1/640 (shown in blue).
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The circularity shown in Figure 17(a) is constant until t=0.5. It then de-
creases more or less linearly until somewhere between t=2.2 and t=2.6 where
there is a sharp inflection point (see Figure 17(b)). This point should be very
close to the time of break up since the thin elongated filaments, due to the
high curvature and surface tension, shrink quite rapidly thereafter. This is also
consistent with Figures 15(d)-15(f). The curves for all grid levels agree very
well until t=1.7 where they start to deviate from each other. Although the
deviations are also apparent from looking at the values of the minima in Table
13, the numbers point towards a minimum circularity of 0.59±0.05 occurring
between times 2.3 and 2.4.
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Figure 17: Circularity for test case 2 and group 1 (TP2D).

Table 13: Minimum circularity and maximum rise velocities, with corresponding
incidence times, and the final position of the center of mass for test case 2 and
group 1 (TP2D).

1/h 40 80 160 320 640

/cmin
0.5193 0.5717 0.5946 0.5943 0.5869

t|/c=/cmin
3.0000 2.4266 2.2988 2.3439 2.4004

Vc,max 1 0.2790 0.2638 0.2570 0.2538 0.2524
t|Vc=Vc,max 1

0.7641 0.7250 0.7430 0.7340 0.7332
Vc,max 2 0.2749 0.2597 0.2522 0.2467 0.2434
t|Vc=Vc,max 2

1.9375 1.9688 2.0234 2.0553 2.0705
yc(t = 3) 1.1303 1.1370 1.1377 1.1387 1.1380

The time evolutions of the center of mass and mean rise velocity of the
bubble are shown in Figures 18(a) and 18(b), respectively. The center of mass
moves similar to the first test case, reaching a slightly higher position of 1.138 at
the end of the simulation (Table 13). There are virtually no differences between
the curves for the different grids. For the mean rise velocity on the other hand
we see that the curves corresponding to simulations computed on coarser grids
differ quite much from, but also converge nicely toward, the fine grid solutions.
Instead of the single velocity maximum found in the first test case we now
have two, the first occurring at time 0.7332 with a magnitude of 0.2524 and the
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second one at t=2.0705 with a slightly smaller magnitude of 0.2434. Lastly note
that it is not possible to see when the break up occurs for these two benchmark
quantities in contrast to the circularity.
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Figure 18: Center of mass and rise velocity for test case 2 and group 1 (TP2D).

5.2 Group 2: FreeLIFE

The bubble shapes at the final time (t=3) computed with the FreeLIFE code
on the three grid levels h = 1/[40, 80, 160] are presented in Figure 19. Although
some sharp edged filaments are present despite refining the grids, the shapes do
seem to converge towards the solution obtained on the finest grid. The main
bulk of the bubble appears to be the easiest to capture correctly, showing only
minor visible differences between the two finest grids (Figure 19(b)).
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Figure 19: Test case 2 bubble shapes for the FreeLIFE code at time t=3. Coarse
grid solutions (shown in red) compared to the shape computed on the finest grid
h = 1/160 (shown in blue).
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The curves for the circularity (Figures 20(a) and 20(b)) agree well and show
a typical convergence behavior up to t=1.8 after which the bubble breaks up
and no convergence trend can be seen anymore. Since the thin filaments do
not retract after break up has occurred there is no clear inflection point which
could indicate the time of break up. The minimum circularity can thus be found
towards the very end of the simulations, as can be seen in Table 14.
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Figure 20: Circularity for test case 2 and group 2 (FreeLIFE).

Table 14: Minimum circularity and maximum rise velocities, with corresponding
incidence times, and the final position of the center of mass for test case 2 and
group 2 (FreeLIFE).

1/h 40 80 160

/cmin
0.4868 0.5071 0.4647

t|/c=/cmin
2.7500 2.8438 3.0000

Vc,max 1 0.2563 0.2518 0.2514
t|Vc=Vc,max 1

0.7750 0.7188 0.7281
Vc,max 2 0.2397 0.2384 0.2440
t|Vc=Vc,max 2

1.9875 1.9062 1.9844
yc(t = 3) 1.0843 1.1099 1.1249

The vertical position of the center of mass, shown in Figure 21(a), converges
better than the circularity. The thin filaments apparently do not influence the
overall movement too much since the curves are still approximately linear. A
position of 1.1249 is reached by the bubble at the end of the simulation on
the finest grid (Table 14). A very good agreement can be seen for the curves
describing the rise velocity up until the first maximum, occurring at t=0.7281
with a magnitude of 0.2514 on the finest grid (Figure 21(b) and Table 14).
From then on the curve corresponding to the simulation on the coarsest grid
starts to show a somewhat irregular and oscillatory behavior. The other two
curves corresponding to the finest grids keep in close contact until the second
maximum from where all curves show minor irregularities (most likely due to
the some oscillations in the velocity field close to the interface).
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Figure 21: Center of mass and rise velocity for test case 2 and group 2 (FreeL-
IFE).

5.3 Group 3: MooNMD

For the third group (MooNMD) the results are as consistent as for the first test
case with one exception, the simulation on the coarsest grid (NDOFint = 300)
failed at t=2.1 due to the formation of very computationally unfavorable cell
shapes in the thin filamentary regions. The Lagrangian approach used here
could not treat break up automatically, and thus the bubble kept deforming
more and more. This is evident from the curves for the circularity which after
the initial period decreases monotonically (Figures 22(a) and 22(b)).
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Figure 22: Circularity for test case 2 and group 3 (MooNMD).

Figure 23(a) shows the linear time evolution of the center of mass. The curves
agree completely irrespective of grid level and from Table 15 we can see that
the center of the bubble reaches a height of 1.1376 at the end of the simulation.
Table 15 also shows very consistent results for the two maxima found in the
mean rise velocity. The first maximum occurred at t=0.7317 with a magnitude
of 0.2502 while the second peak came later at t=2.06 with a velocity of 0.2393.
These results are also perfectly mirrored in the plotted curves (Figure 23(b)).
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Table 15: Minimum circularity and maximum rise velocities, with corresponding
incidence times, and the final position of the center of mass for test case 2 and
group 3 (MooNMD).

NDOFint 300 600 900

/cmin
- 0.5191 0.5144

t|/c=/cmin
- 3.0000 3.0000

Vc,max 1 0.2503 0.2502 0.2502
t|Vc=Vc,max 1

0.7317 0.7317 0.7317
Vc,max 2 0.2390 0.2393 0.2393
t|Vc=Vc,max 2

2.0650 2.0600 2.0600
yc(t = 3) - 1.1380 1.1376
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Figure 23: Center of mass and rise velocity for test case 2 and group 3
(MooNMD).

5.4 Overall results for test case 2

To compare the results for the second test case, a rising bubble with a sig-
nificantly lower density compared to that of the surrounding fluid, the bubble
shapes computed by the different codes are plotted against each other in Fig-
ure 24. It is evident that although all codes predict a similar shape for the main
bulk of the bubble, there is no agreement with respect to the thin filamentary
regions. The two first codes (TP2D and FreeLIFE) can handle break up au-
tomatically but do not, with the employed discretizations in space and time,
agree what happens after. Since no criteria for the break up of the bubble has
been implemented in the third code (MooNMD), the long thin trailing filaments
remain intact.

The circularity for all groups (Figure 25(a)) agree very well with each other
until about t=1.75 after which significant differences start to appear. The main
difference is that the circularity predicted by the TP2D code (group 1) starts to
increase after the break up due to the retraction of the filaments (Figure 25(b)).
Table 16 clearly shows how there is no real agreement between the codes con-
cerning the minimum circularity.
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Figure 24: Bubble shapes at the final time (t=3) for test case 2 (TP2D (solid
red), FreeLIFE (dotted green), and MooNMD (dashed blue)).
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Figure 25: Circularity for test case 2 (all groups).

Table 16: Minimum circularity and maximum rise velocities, with corresponding
incidence times, and the final position of the center of mass for test case 2 (all
groups).

Group 1 2 3

/cmin
0.5869 0.4647 0.5144

t|/c=/cmin
2.4004 3.0000 3.0000

Vc,max1 0.2524 0.2514 0.2502
t|Vc=Vc,max1

0.7332 0.7281 0.7317
Vc,max2 0.2434 0.2440 0.2393
t|Vc=Vc,max2

2.0705 1.9844 2.0600
yc(t = 3) 1.1380 1.1249 1.1376
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The vertical movement of the center of mass, shown in Figures 26(a) and
26(b), is predicted very similarly for all groups. Surprisingly the break up does
not in this case influence the overall averaged quantities to a significant degree.
The estimated final position of the center of mass is 1.37±0.01, but this value
is however quite meaningless since we do not know the final shape the bubble
most likely will assume (Table 16).
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Figure 26: Center of mass for test case 2 (all groups).

Lastly we examine the time evolution of the mean rise velocity. There is also
here a quite good agreement between the different codes. The first maximum
is predicted to have a magnitude of 0.25±0.01 and occur around t=0.73±0.02
(Table 16). The prediction of this maximum should be quite trustworthy since
break up has not yet occurred and the curves are quite close to one another
(Figure 27(a)). The second maximum is more ambiguous but should most likely
have a somewhat smaller magnitude and occur around t=2.0 (Figure 27(b)).
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Figure 27: Rise velocity for test case 2 (all groups).
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6 Summary

Benchmark studies are valuable tools for the development of efficient numerical
methods. A well defined benchmark does not only assist with basic validation of
new methods, algorithms, and software components but can also help to answer
more fundamental questions, such as “How much numerical effort is required
to attain a certain accuracy?”, which would allow for rigorous comparison of
different methodologies and approaches.

We have defined and conducted extensive preliminary studies for two test
cases involving incompressible flows of two immiscible fluids. Both test cases
concern the evolution of a single bubble rising in a liquid column while under-
going topological change. For the first test case the shape deformation is quite
moderate while the second bubble deforms significantly and even breaks up af-
ter some time. We have additionally defined a number of benchmark quantities
which allow for easier evaluation and comparison of the computed results since
they can be used for strict validation in a “picture norm” free form. They
include the circularity and the center of mass, which both are topological mea-
sures, and also the mean rise velocity of the bubble. In future benchmarks
it would be interesting to additionally track more complex quantities, such as
force measures which involve derivatives of the dependent variables and the
discontinuous pressure.

The preliminary studies showed that it was possible to obtain very close
agreement between the codes for the first test case, a bubble undergoing mod-
erate shape deformation, and thus establish reference target ranges for the
benchmark quantities. The second test case proved far more challenging. Al-
though the obtained benchmark quantities were in the same ranges we were
not able to agree on the point of break up or even what the bubble should
look like afterwards, rendering these results rather inconclusive. To establish
reference benchmark solutions including break up and separation will clearly
require much more intensive effort by the research community which is in-
vited to participate and to fill this gap. All benchmark definitions and re-
sults are therefore made accessible via the FeatFlow benchmark repository:
www.featflow.de/indexcfdbenchmark.html, where other groups are encouraged
to download the presented results or contribute by submitting their own. It is
planned to collect all the submitted data and to provide a compilation of verified
test configurations, in both 2D and full 3D, to allow for validation and future
evaluation of numerical simulation techniques for interfacial flow problems.
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