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Abstract 
 
This is an experimental and numerical study of dry, frictional powder flows in the quasi-static 
and intermediate regimes using the simple geometry of the Couette device. We measure 
normal and shear stresses on the shearing surface and propose a constitutive equation valid 
in both the slow frictional, quasi-static and the intermediate (dense) collisional regimes of 
flow. This constitutive equation is then used in a new, specially developed numerical scheme 
to solve the continuum equations of motion and to obtain stress and velocity distributions in 
the powder. While the measurements to obtain the constitutive equation are performed in a 
concentric Couette device, the numerical scheme is used to predict the torque and stresses 
in two additional geometries: an eccentric Couette device where the inner, rotating cylinder 
is placed off-center with different eccentricities and a more complicated geometry where a 
cylindrical body is introduced in the middle between the rotating and stationary cylinders and 
obstructs part of the shearing gap. Further experiments are then conducted in the two new 
geometries and the torque on the inner, rotating cylinder is measured and compared to the 
numerical solution.  
 
We find experimentally, that it is possible to measure normal stresses on the shearing wall of 
the Couette device inside the granular layer and calculate the ratio of the average shear to 
normal stress as a function of shear rate. It appears that the powder’s dynamic angle of 
friction is reproduced by this ratio only at very low shear rates. As the shearing rate 
increases, the ratio of the stresses also increases due to collisions between particles that 
sustain loads in addition to dry friction that is prevalent at low shear rates.  We show that a 
modified Couette device with slow axial flow superimposed on the shearing motion induced 
by the rotating cylinder can be used to determine the constants (“b” and “n”) of a yield 
condition for any powdery material that is somewhat free flowing. The yield condition is valid 
in both the quasi-static as well as the “intermediate” regime of flow and contains a term 
characterizing “solid”-like behavior and an additional term that captures some “fluid”-like 
properties at higher shear rates.  
 
The paper also describes a new finite element solution, realized in the FEM solver 
FleatFlow, of the generalized Navier-Stokes equations that uses, in addition to the yield 
condition determined above, a generalized viscosity that describes a Newtonian fluid, a 
Bingham Plastic, an incompressible frictional powder (Schaeffer solid) and a power-law fluid. 
We use the numerical method to validate some experimental measurements and calculate 
the torque in the Couette device in three different geometries: a concentric, two cylinder, 
arrangement and two new geometries in which the cylinder is positioned eccentric in the 



 2

Couette and one where an additional cylindrical object is placed into the shearing gap and 
obstructs parts of it. 
 

A. Experimental Program 
 
Powder flows have been studied extensively in the past starting with the pioneering work of 
Jenike (1954) and Jackson (1986). The accent of this earlier work was to establish the 
condition under which a stressed layer of powder will rupture and the material will start to 
flow. More recent studies were dedicated to modeling powder flows using mostly numerical 
methods of various kinds: Luding (2005), Moreno-Atanasio et al., (2005), Muguruma et al., 
(2000), Srivastava and  Sundaresan, (2003), just to mention a few. Extensive work by 
Savage (Savage, 1998) and Tardos and co-workers (Tardos et al., 1998 Tardos et al., 2003 
and Tardos and Mort, 2005) looked into the slow and intermediate regimes of flow at slow 
and moderately high shear rates and the transition from one to another. The study of 
continuum models to describe powder flows was pioneered by Schaeffer, (1987) and 
continued by Tardos, (1997) and Quazzi et al., (2005), among others. In the present study 
we explore experimentally and numerically the transition of powder flows from slow to 
moderately fast by using a Couette device. 
 

1. Background – batch and continuous-flow Couette device 
 
A schematic representation of the Couette device used during the present investigation is 
shown in Figure 1 with details of the sensors and the rotating cylinder given on the RHS of 
the figure. The vertical shear gap forms between the rotating and the stationary cylinders 
and both its width and height can be adjusted by appropriate choice of the radius and height 
of the rotating cylinder. The material is fed from above using a vibratory feeder (not shown in 
the figure) and is discharged by a screw-in-cylinder metering device (also not shown) that 
transfers the material to a precision balance for flow rate measurement. The walls of the 
Couette are made rough by gluing sand paper on the shearing surfaces as shown in the 
figure. The roughness of the walls is chosen to match or exceed the coefficient of internal 
friction of the material thereby trying to assure a non-slip boundary condition. By closing the 
discharge section, the Couette device can be operated in batch mode or, by feeding and 
removing material to achieve a steady state vertical flow one can operate the device 
continuously. The material above the rotating cylinder (denoted overburden in the figure) is 
stationary and only provides dead weight to the shearing layer. 
 
Experiments in the Couette device were performed without (batch) and with axial flow 
(continuous), and several depths overburdens to control the pressure in the shearing gap. 
Normal stresses were measured on both the outer, stationary wall as well as the inner, 
rotating (shearing) wall of the device as shown in the figure.  Shear stresses where 
measured indirectly and recalculated from the torque on the rotating cylinder. 
 
A typical batch, filling curve of the Couette is shown in Figure 2 for 1 mm in diameter round 
glass beads with a cylinder height of 20 inches and diameter of 1.5 inches, in a housing of 
six inches in diameter (with a gap of 2 and ¼ inches). We distinguish between the increasing 
portion of the torque as a function of height (LHS of the figure) and the torque due to packing 
of the material at constant height and increasing time (RHS of the figure). First, we 
concentrate on the LHS region where the torque is height dependent as the Couette is filled 
with particles and fit the equation of the torque, T to the measured data as was done 
previously by Tardos et al., [1998]: 
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where τ=p sinφ  is the shear stress and p is the average normal stress given by 
p=ρΒ gh/2. Other notations in equation (1) are: ρΒ is the bulk density, g is the acceleration of 
gravity, h is the height of material in the vertical direction (function of filling time, see figure 
1b.), R is the cylinder radius and φ is the angle of internal friction of the material. The 
implication of equation (1) is that the shear stress τ is linearly dependent on the height h so 
that when the torque is calculated the height appears to the second power.  In addition, the 
theoretical line fits the experimental results quite well suggesting that the shear stress is 
indeed a linear function of height as long as the material is continuously fed to the system. 
These general characteristics of the device were already established in our earlier work 
mentioned above. 
 
We now concentrate on the second part of the curve where the torque increases due to 
packing of the material at constant height. Additional experiments were performed with a 
larger inner cylinder of 4 inches in diameter so that the shearing gap was approximately one 
inch and three different curves of the same kind are reproduced in Figure 3a for small (0.1 
mm), medium (0.5 mm) and large (1.0 mm) diameter glass particles. One can easily see the 
different rates at which these particles pack at a constant shearing rate (15 RPM of the 
rotating cylinder): larger particles pack at a much higher rate due to their enhanced 
capability of bridging the relatively small shear gap. It appears from Figure 3a that the trends 
shown would continue but in reality, the range of the torque-meter is exceeded and the 
experiment has to be stopped. 
 
Figure 3b depicts similar behavior for the 0.1 mm in diameter glass beads but for a much 
wider shear gap (2 and ¼ inches). Here, we calculated the average shear stress using the 
equation 
 

)2(2/ 2 LRTave πτ =  
 

As seen in the figure, the torque increases significantly during the packing phase but does 
not exceed the range of the torque-measuring device. This is mainly due to the shorter 
cylinder used and by the relatively large shear gap that allows some additional movement of 
the granular layer in the radial direction. It appears from the figure that the torque has 
reached its steady state value at the lowest shear rate (blue curve) and we use this 
experiment to show how the shear stress depends on shear rate when the Couette is 
operated in batch mode (without vertical flow) at constant height. As seen in Figure 3b, 
increasing the shear rate more then five-fold does not result in any significant change in the 
shear stress: the material is in the frictional, Quasi-static regime and the average shear 
stress is practically independent of shearing rate. 
 
We reproduced in Figure 4 a similar experiment to that shown in Figure 3b but allowing 
material to flow at a small rate vertically in the shear gap. The torque in this case decreases 
significantly due to a minute change in solid fraction (porosity) that allows chains of particles 
to break as the inner cylinder rotates. Using equation (2), the average shear stress can be 
calculated as a function of shear rate as shown in Figure 4. As seen, the shear stress 
exhibits two very distinct regimes: a quasi-static regime where the shear stress is mostly 
independent of the shear rate (at low shear rates) and an additional regime (“intermediate” 
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as denoted in the figure) where the dependence takes the form of an increasing function. 
We assume that the behavior resembles a power-law with an index n=0.5-1. In fact, the 
power-law index appears to be variable, increasing at higher shear rates. One would 
assume that continuing to increase the shear rate would yield even higher values of the 
index “n” as the flow approaches the inertial regime (where the coefficient should be n=2) 
but such experiments are outside the capability of our Couette device since centrifugal 
forces take over and the material is pushed radially outward and a slip condition sets in near 
the rotating cylinder. 
 
The purpose of these experiments was to show the significant difference in behavior of the 
shearing layer in the batch, no-flow and the continuous-flow device. While in the batch 
mode, the material continues to pack increasing its solid fraction as a function of time, in the 
flowing system a steady state sets in at an approximately constant solid fraction. This solid 
fraction is beyond a certain critical value, somewhat characteristic for each powder, where 
the material can “dilate” sufficiently and “flow” under shear. In this expanded, mobilized 
(sometimes also called “fluidized”, even though there is no gas present to actually fluidize 
the powder) condition, the powder can transit from the quasi-static to the intermediate 
regime as the shearing rate is increased. We showed in separate experiments that the 
influence of the vertical flow rate is negligible if it can be kept small, just enough to prevent 
packing.  
 
The remainder of the paper is concerned with this second case where there is a minute flow 
of material in the vertical direction and where a quasi-static, shear-rate-independent and an 
intermediate, dense-phase, shear-rate-dependent shear stress (torque) develops. The main 
goal of the experiments is to measure the shear and normal stresses on the shearing wall, 
their location and their ratio. We further propose a yield condition and a constitutive equation 
(closure) derived entirely from experimental measurements and develop a new numerical 
scheme to solve the momentum equations with the newly proposed closure, to cover both 
regimes of flow. 

 
2. Stress measurements in the continuous-flow Couette device 

 
Experiments were performed to show the dependence of the shear and normal stresses on 
the shear rate. We use as test material glass beads and chips of different size and shape. 
 

a. Average shear stress measurements and their location. 
 
Since there are no direct shear-stress measuring sensors commercially available that can be 
employed in a dense granular bed, the shear stress on the rotating cylinder was measured 
indirectly using the torque on the shaft exerted by the granular medium on the entire length, 
L of the cylinder as in equation (2). To explore the dependence of the shear stress on the 
depth of the granular layer, we employed cylinders of different length, L=4, 8, 12 and 16 
inches (and diameter of 4 inches) and calculated the average shear stress in each case. The 
experiments were performed with no overburden (material on top of the rotating cylinder, 
see Figure 1) using 0.5 mm in diameter glass beads and an axial flow rate of 1 cm3/sec. 
Results are given in Figure 5 where the average shear stress is given as a function of 
cylinder height, L for different shear rates by rotating the inner cylinder from 5-45 RPM. As 
seen, the shear stress is approximately linear as a function of height and depends strongly 
on shear rate as already shown above.  
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Another interesting observation is that, by forcing the trend of the experimental 
measurements to go to zero stress at zero height, data from the shortest cylinder (L=4 
inches in length) fall above the line at a somewhat higher shear stress. This behavior is due 
to friction between the lower cover of the cylinder and the granular material (in addition to 
friction in the shearing layer between the cylinders) which is not a linear function of height; 
this result was already demonstrated by DaCruz et al., (2005). When the length, L (height) of 
the shearing layer is small, the influence of this portion of the cylinder is significant and 
hence the torque is higher. At larger length (height), the influence of the bottom cover 
becomes less significant and the dependence is almost perfectly linear. The main conclusion 
from this measurement is that using cylinders longer (taller) then about 8 inches will mostly 
eliminate the influence of the end effect (lower cover) and that the value of the average 
shear stress will most likely occur at the middle point over the length, L. 
 

b. Normal stress measurements. 
 

Figure 6 shows a schematic representation and a picture of the instrumentation to measure 
normal stresses inside the bulk material on the rotating cylinder at three depths (l1 , l2 and l3). 
The stress sensor is commercially available from Tekscan, Inc. (Boston Ma) and is made of 
a circular sensitive element 1.1 cm in diameter glued to the surface of the rotating cylinder 
and an electronic circuit situated inside the blue box in the picture. Since the cylinder is 
rotating inside the granular layer, the signal cannot be hard-wired but is instead transmitted 
by radio to a receiver connected directly to the data acquisition system. To our knowledge, 
this is the first time that such a measurement was undertaken on a shearing surface inside a 
granular medium. The cylinder used is 4 inches in diameter (this dimension is imposed by 
the size of the radio-transmitter) and 20 inches long (to accommodate the three radio 
transmitters). The outside diameter of the stationary cylinder that forms the Couette device 
(not shown in the figure) is 6 inches in diameter and thus defines a granular layer of one inch 
in thickness that surrounds the sensors. 
 
These particular experiments were performed with an overburden of approximately four 
inches so that the depth of the three sensors was l1 – l3 plus the overburden as shown in 
Figure 7. Different rotation rates from 5-60 RPM and glass beads of 0.5 mm in diameter 
were used. The experiment was performed with an overall vertical flow-rate of approximately 
2 cm3/sec; this results in a very slow axial velocity in the Couette gap of less then 0.1 
mm/sec and does not influence significantly the flow and stresses in the radial direction.  
 
Figure 7 depicts the results of the stress measurements as a function of depth. The 
distribution appears to be linear with the error bars representing the fluctuation of stress and 
the dependence on the applied shear. As seen, the normal stress in the sheared layer is not 
shear rate dependent even at the highest shear rate (at 60 RPM), within the error of the 
measurement and the presence of fluctuations. This allows the calculation of an average 
normal stress on the rotating cylinder that appears, according to these results, to reside in 
the middle of the cylinder (L/2). This is an important conclusion since it shows that both the 
average shear and normal stresses are practically located around the midpoint of the 
rotating cylinder at least under the experimental conditions of this experiment. In subsequent 
experiments only one normal sensor, situated at the midpoint on the cylinder, was used.  
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c. Ratio of Shear to Normal stresses in the Couette device. 
 
The most interesting result from the above measurements is that one can calculate the ratio 
of the average shear to normal stresses as a function of shear rate.  A typical result is shown 
in Figure 8 where the average shear stress and local normal stress measured in the middle 
of the rotating cylinder (L/2) are shown as a function of shear rate. The particles used are 1 
mm in diameter spherical glass beads. The shear stress has the overall behavior already 
described in Figure 4 as the stress is practically constant at low shear rates and increases 
significantly as soon as the material reaches the intermediate regime of flow. The normal 
stress shows a very interesting behavior: it is constant and lower at low shear rates (where 
the shear stress is also constant) and then increases abruptly and remains practically 
constant thereafter even though the shear stress increases continuously. 
 
The ratio of the two stresses (apparent friction coefficient) is given in Figure 9 and, as seen, 
the ratio exhibits a similarly interesting behavior: at very low shear rates, the ratio is constant 
and only slightly lower then the tangent of the friction coefficient of glass particles (about 0.5) 
as one would expect from quasi-static flow theory. As the dimensionless shear rate 
increases beyond a certain critical value (in this case about 1.0 sec-1.), the ratio of shear 
stress vs. normal stress increases significantly. This behavior is mainly due to the 
superposition of collisions between particles on the sliding friction of surfaces so that the 
overall shear stress and “friction coefficient” also increase. This kind of behavior was already 
suggested by simulations (Campbell, 2006 and DaCruz et al., 2005) but never actually 
measured experimentally before. It also shows that the material moves from the quasi-static 
regime to the intermediate regime of flow where collisions become more important and 
actually carry some load. A power-law type curve is fitted to the data: it shows a power-law 
coefficient of n=0.72 and a constant coefficient a=0.39 for zero shear rate. In the same figure 
we show for comparison an equivalent correlation for crushed, odd-shaped glass particles of 
nominal size of 1 mm. As seen, the power-law index is somewhat higher, as expected from 
considerations of collisional impacts between non-spherical particles (n=1.03) and a higher 
constant coefficient (a=0.48) due to the higher internal angle of friction. 
 
We conclude from this work that it is possible to measure normal stresses on the sharing 
wall of the Couette device inside the granular layer and calculate the ratio of the average 
shear to normal stress as a function of shear rate. It appears, as suggested by previous 
theoretical simulations, that the dynamic angle of friction is reproduced by this ratio only at 
very low shear rates. As the shearing rate increases, the ratio of the stresses also increases 
due to collisions between particles that sustain loads in addition to dry friction that is 
prevalent at low shear rates. Our experiment could not probe the higher limit of the “friction 
coefficient” in the rapid granular flow regime (when only collisions are important) because of 
equipment limitations and the inherent presence of gravity that makes at least some 
enduring contacts between particles unavoidable. 
 

3. Proposed yield condition and constitutive equation 
 
We try to generalize the above findings for the case when the powder transitions from the 
quasi-static to the intermediate regime of flow and propose a yield condition that holds at low 
and higher shear rates. We show below how the experimental yield condition obtained from 
experiments in the Couette device and given in Figure 9 can be inserted into the Schaeffer 
constitutive law (Schaeffer, 1987). From Figure 9, one can fit the following equation to the 
data: 
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τ
σ

= a + bγ
• n

 

where τ and σ are the shear and normal stresses and “a”, “b” and “n” are coefficients 
characterized by the experimental curve. We use the notation for the modulus of the shear 

rate 
•

γ  to designate that only its magnitude is of relevance and not its direction. A slight 

generalization can be obtained by replacing the constant coefficient “a” by tanφ to obtain: 

τ
σ

= tan(φ) + bγ
• n

 

This equation has the advantage that it reduces to the Coulomb yield condition at zero 
shearing rate. The error between equations (3) and (4) comes from the complex way the two 
stresses are measured using independent instrumentation and calibration procedures for the 
torque and normal stress, respectively.  
An equivalent representation of the Coulomb yield condition c+= φστ tan  can be 
obtained from the characteristic Mohr circle, by replacing σ by p and τ/tanφ by q/sinφ, in the 
form (Nedderman, 1992): 

)5(cossin φφ cpq +=  

where q is half of the difference between the principal stresses and “c” is referred to as 
“cohesion”.  
 
The deviatoric part of the Schaffer law for flow of a dry powder in the quasi-static regime 
(Schaeffer, 1987) is 

)6(2sin2 γγ
γ

φτ &&
& z

qp
ij ==  

where ))((
2
1 Tuu ∇+∇=

•

γ is the rate of deformation tensor, 
•

γ  is its magnitude and z is 

twice the second invariant defined as ])[(:2 2
2 ••••

==== γγγγγ trz II
. One recognizes 

the Coulomb yield condition (5) (with c=0) in the numerator of equation (6). We replace “q” 

from equation (5) in (6) with
n

bc γ&= , to obtain 
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or in terms of the variable “z”: 
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1
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−
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n
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This is the constitutive equation for the modified Schaeffer’s law that includes the behavior at 
higher shear rates, characteristic of the “intermediate” regime of powder flow. The first term 
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on the right hand side of eqs. (7) corresponds to the plastic deformation (frictional or solid-
like behavior) while the other term corresponds to the viscous behavior (liquid-like) of the 
granular material. In simple shear flow, in Cartesian coordinates (small gap) where u = uy 

and v = 0, eq. (7) takes the simple form )cot1(sin n
yx anbp γφφτ &+= .  

From a practical point of view, a modified Couette device with slow axial flow superimposed 
on the shearing motion induced by the rotating cylinder, in which the materials can freely 
dilate and collide, can be used to determine the values of “b” and “n” for any material that is 
somewhat free flowing. These values can then be used in equations (7). 
 
B. Continuum theoretical approach 
 
The purpose of the simulations reproduced below was to predict theoretically experimental 
results obtained in this work using the simple geometry of the concentric Couette device. 
Based on these calculations we then predict results for more complex geometries, namely 
an eccentric Couette and one that has a cylindrical obstacle in the shearing zone. Further 
experiments are then conducted to check the numerical results.  
 

1. Equations of motion  
 
The underlying simulations were performed using a new numerical technique developed 
specifically to treat flow problems with general constitutive laws for non-Newtonian fluids 
(see Ouazzi et al. (2005)). The powder is assumed to be an incompressible continuum that 
obeys conservation of mass: 
 

)8(0)( =⋅∇+= u
tDt

D ρ
∂
∂ρρ

 

where D * / Dt  is the material derivative and u is the velocity  vector. Since we assume that 
the bulk density ρ  is a constant, the continuity equation reduces to the divergence of the 
velocity 0=⋅∇ u . The powder also obeys a conservation of momentum equation: 

)9(gT
Dt
Du ρρ +⋅−∇=  

where the stress tensor is given by pIT ijij −= τ and where I is the unit tensor. To complete 
the problem, a closure is required in the form of a constitutive equation that correlates the 
deviatoric part of the stress tensor ijτ  with the velocity. 
 
The above problem can be similarly formulated in the framework of the generalized 
incompressible Navier-Stokes equations valid for non-Newtonian fluids and powders:  

ρ Du
Dt

= −∇p + ∇ ⋅ μ(γ II , p)
•

γ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ρg, ∇ ⋅ u = 0 (10)  

where we take τ ij = μ(γ II , p)γ
•
. To complete the problem, the nonlinear pseudo-viscosity 

μ(γ II , p)  is defined as a function of the second invariant of the rate of deformation, or the 
variable “z”, and the normal stress “p”: 

 
1. Newtonian fluid, μ(z, p) = 2μ0 , where μ0 is the fluid viscosity,  (11-1) 
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2. Bingham solid 2
1

00 22),(
−

+= zpz τμμ , where τ0 is the yield strength,   (11-2) 

3. Powder in the quasi-static regime (Schaeffer’s law) 2
1

sin2),(
−

= zppz φμ ,  (11-3) 

4. Power-law fluid 2
1

02),(
−

=
n

zpz μμ , where “n” is the power law index,  (11-4) 

5. Modified Schaeffer law (from equation (7)) ]cos[sin2),( 2
1

2
1 −

−
+=

n

zbzppz φφμ . (11-5) 
  
A comparison of equation (10) with the classical Navier-Stokes equations (obtained by using 
eq. (11-1)) reveals that the ordinary viscous terms (proportional to the viscosity μ0) have 
been replaced by shear-rate independent terms (equations (11-2) to (11-5)) that contain the 
magnitude of the shearing rate ( z/1 ) in the denominator. This means that these equations 
are mathematically more complex than the Navier-Stokes equations and apply only when 
the material is deforming everywhere. 
 
The main mathematical problems of the generalized incompressible continuum material 
model (Eq. (10)) can be summarized as follows:  
 

• Mathematical analysis: There is a lack of research concerning the existence of 
solutions for the flow of such “fluids” except for special cases (Hron et al. (2003)), 
furthermore the dynamic equations (10) show some instability (Bulicky et al. (2008), 
Bulicky et al. (2005), Prasad and Rajagopal (2006), Malék et al. (2002), Renardy 
(2003), Schaeffer (1987) and Schaeffer (1990)). 

• Singular viscosity: The part of the stress tensor containing ( z/1 ) is well defined only 
for non zero values of the rate of strain tensor and for ’non-negative’ pressures, which 
requires some stabilization techniques of singular phenomena due to the nonlinear 
viscosity (Ouazzi, et al. (2005)). 

• Discretization method: It is well known that the computation of solutions to such 
incompressible systems requires that some care is taken in the choice of the 
approximating spaces in order to make the discrete problem well posed. Moreover, 
since a large number of successful spaces satisfying the above condition are 
nonconforming that present a locking phenomenon for problems involving the rate of 
deformation tensor, some consistent stabilizing term is required (Turek and Ouazzi 
(2007)). 

• Nonlinear multigrid solver: For this highly nonlinear problem, coupling the pressure 
and the velocity, there is almost no alternative to linearization using Newton’s 
techniques and therefore efficient multigrid methods for these new types of saddle-
point problems need to be developed (Turek (1998), Turek et al. (2002)). 

 

2. Finite element method  

The underlying finite element technique, which is the basis for the developed software 
package FeatFlow, is described in detail in Ouazzi et al. (2005) and a short summary is 
given in the Appendix. The essence of the special techniques for this kind of flow problems 
is the introduction of a stabilization term in the denominator that contains the magnitude of 
the shear stress and a modified multigrid solver. The method was used successfully to solve 
for incompressible granular flow in a two dimensional hopper using the Schaeffer closure 
(eq. (11-3)). In the present work we use the same method to solve the modified Navier-
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Stokes equations (eq. (10)) with the new closure that applies for the quasi-static and the 
intermediate regime (eq. (11-5)) in the Couette geometry and also compare this solution to 
results obtained for all other closures (eqs. (11)).  
 
The numerical method yields as a first result the velocity and pressure distribution in the gap 
of the Couette device. Stresses are then computed from the velocity gradients using the 
constitutive laws (eq. (11-1) to (11-5)) for the respective material. From these results, 
and pIT ijij −= τ , the force (F) and torque (M) on the inner, rotating cylinder are calculated 
as follows: 

F = − Tij n
→

S
∫ ds and M = − (X − X 0) Tij n

→

S
∫ ds (12)  

In the above equation, S and X0 are the surface and the centre of the inner cylinder and 
→

n , 
is the direction vector. 

3. Computer simulations 

This section is intended to validate the proposed model via the FEM code FeatFlow for 
complex flow problems (see Appendix). The 2D simulation was done for two concentric 
cylinders. The outer cylinder, of radius router , was kept fixed while the inner cylinder, of radius 
rinner , was rotated (with rinner /router  set to 2/3). The torque was calculated for a section of the 
cylinders with length unity. All simulations were carried out with μ0 set to unity, the yield 
strength for the Bingham model τ 0 as well as sinφ  for the Schaeffer solid were set to 0.48 
which corresponds to a constant “a=0.48” for crushed glass. The simulations were carried 
out on a Linux PC with the characteristics shown in Table 1. 
 
Table 1:  Linux machine 
Architecture: Linux 64 2.6.18.8-0.10-default 
CPU type: AMD Opteron 250 
CPU frequency: 2393 Mhz 
Number of CPUs: 2 CPUs 
Main memory: 3965 MB 
Linpack test: 3,917 MFLOP/s per CPU 
 
Figure 10 depicts a sample calculation with the numerical method, for four continua including 
a Newtonian liquid, Bingham plastic (solid) and Schaeffer solid (powder in the quasi-static 
regime) compared with the proposed new constitutive equation, (7) that contains the viscous 
term as in equation (11-5, “modified Schaeffer law”). The torque on the inner rotating 
cylinder is given as a function of the rotational speed of the inner cylinder (in RPM). The 
Schaeffer powder (solid) yields a constant torque as a function of rotation (or shear) rate, as 
expected. The Bingham plastic also yields a constant torque at low shear rates but then 
behaves like the Newtonian fluid and, above a rotational speed of about 10 RPM, the data 
become indistinguishable. Two curves are presented in Figure 10 for the powder in the 
intermediate regime (“New model” in the figure) for a power-law index of n=0.5 and n=1.5, 
respectively. One can see that the viscous term has a significant influence on the modified 
Schaeffer law and the torque is shear rate dependent at higher shear rates as was found 
experimentally in Figure 8 (the shear stress and torque are related linearly as in equation 
(2)). 
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Figure 11 shows the ratio of average shear to normal stresses on the rotating cylinder 
versus the shear rate with the numerical solution using the new constitutive equation (11-5) 
and compares calculations with experimental data in Figure 9 (n=0.72 and n=1.03 and 
b=0.13 and b=0.06, respectively). Two zones can be seen, solid like behavior at low shear 
rate where the ratio is constant and independent of the shear rate reflecting quasi-static flow, 
and fluid like behavior as the shear rate increases beyond a critical value where the ratio is 
dependent on shear rate. This result in itself does not demonstrate that the model correctly 
predicts the experimental data since the input to the model was the experimental data itself 
(with a slight modification using tanφ instead of the constant coefficient “a” as mentioned 
above). It shows however that the simplifications introduced by the continuum approach and 
the numerical method used do not introduce excessive errors. The advantage of the 
numerical solution is that velocity, stress distributions and overall torque can be calculated 
for different geometries, and some examples are given below. 
  
Figure 12 gives the torque on a slice of the Couette of height “unity” for all four continua as a 
function of the rotational speed of the inner cylinder (in RPM). Different simulations were 
performed for the concentric cylinder (taken partially from Figure 10) and for the case when 
the inner cylinder is moved off-center by one quarter of the gap (0.25 inches) and half of the 
size of the shear gap (0.5 inches). An important conclusion from these simulations is that the 
torque is not influenced in a significant way by the eccentricity for any continua considered 
herein. Of course, this is true only as long as the eccentricity is kept to less or equal to half 
of the shearing gap as shown in the figure. This conclusion is relevant from an experimental 
point of view since small eccentricities and “wobbles” of rotating parts are very difficult to 
avoid in practice. Note that the torque generated by the Schaeffer solid is constant for all 
shear rates since the pressure is constant (constant stress experiment); this is to be 
expected for a solid powder moving in the quasi-static regime. The appropriate change in 
solid fraction (or bulk density) to achieve this is not captured by the model since it is 
assumed that the powder is incompressible. Experiments performed with an off-center 
cylinder (situated 0.25 inches off center) actually proved that there is no difference in the 
behavior of the powder and the overall torque is practically the same. 
 
Figure 13 gives similar results for the four continua for the concentric case where an 
additional stationary cylinder is introduced in the middle of the gap. This cylinder is denoted 
“obstacle” in the figure and occupies a quarter of the gap (at 0.25) and half of the gap (at 
0.5). The Newtonian fluid and the Bingham plastic with the same viscosity appear to be quite 
sensitive to the presence of the obstacle, as expected, while the Schaeffer solid seems to be 
quite insensitive. This last result is again to be expected since previous studies showed 
(Tardos et al., 2003) that the shearing zone in the quasi-static regime is actually very close 
to the moving surface and decreases exponentially from the boundary. For this reason, the 
presence of an obstacle in the middle of the shearing gap, even if it occupies one half of the 
distance, does not affect the torque on the rotating cylinder to a significant degree. The 
behavior of the modified Schaeffer solid i.e., using the constitutive law in equation (11-5), is 
intermediate between the viscosity containing continua and the Schaeffer solid. The larger 
obstacle generates a somewhat higher torque but experiments performed so far with a 
similar system (in which the “obstacle” occupies half the shear gap) yielded results that are 
inconclusive in the sense that the fluctuation of the experimental torque are larger then the 
difference in torque between the absence and presence of the obstacle. 
 
Figure 14 is an attempt to show the complex capabilities of the numerical model. An 
exhaustive calculation of all the variables at all spatial positions is beyond the scope of the 
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present work. The figure contains the local rotational speed (in RPM), the shear rate (sec-1), 
pressure, viscosity and stress components using a color scheme and the geometry of the 
system for “Crushed glass” employing data from Figure 13 at a rotation rate of 10 RPM. The 
different quantities are given as a function of bed height which is zero at the bottom and 
increases in the vertical direction upwards to a maximum value of unity. The white point on 
the bottom plane is the center location of the “obstacle”. “No slip” boundary conditions are 
assumed on both cylinders (rotating, inner and stationary, outer) as well as on the bottom 
plate that is assumed to be stationary. The different quantities are calculated in the figure at 
a radial distance of 1/3 into the shearing zone (R=~2.32 inches). One can see the spatial 
distribution of the physical quantities in this more complex geometry: velocity, shear rate, 
normal stress and shear stress (T11 and T22 are the normal stresses in the “1 or rr” and “2 or 
θθ” directions and T12, is the shear stress). The velocity and shear rate are linearly 
dependent and were used to check the response of the constitutive law with respect to the 
shear rate. The jump of the normal stress in the presence of the obstacle in the gap is 
clearly reflected on the first (T11) and second component (T22) as well as in the shear and 
wall stresses. Moreover, wall shear stresses may have an important influence on the 
material flow-properties, as for instance the formation of granular chains. Another important 
conclusion (see in particular the three quantities calculated on the top row) is that the system 
becomes height (z) independent at approximately 2/3 away from the (stationary) bottom or 
approximately at a distance equal to the width if the shear gap. 
 
C. Conclusions 
 
We study in this work experimentally and numerically the flow of dry, frictional powders in 
the quasi-static and intermediate regimes using the simple geometry of the Couette device. 
We measure normal and shear stresses on the shearing surface and propose a constitutive 
equation valid in regimes. This constitutive equation is then used in a new, specially 
developed numerical scheme realized in the FEM package FeatFlow to solve the continuum 
equations of motion and to obtain stress and velocity distributions in the powder. While the 
measurements to obtain the constitutive equation are performed in a concentric Couette 
device, the numerical scheme is used to predict the torque and stresses in two additional 
geometries: an eccentric Couette device where the inner, rotating cylinder is placed off-
center with different eccentricities and a more complicated geometry where a cylindrical 
body is introduced in the middle between the rotating and stationary cylinders and obstructs 
part of the shearing gap.  
 
We find that it is possible to measure normal stresses on the shearing wall of the Couette 
device inside the granular layer and calculate the ratio of the average shear to normal stress 
as a function of shear rate. It appears that the dynamic angle of friction of the powder is 
reproduced by this ratio only at very low shear rates. As the shearing rate increases, the 
ratio of the stresses also increases due to collisions between particles that sustain some 
load.  We show that a modified Couette device with slow axial flow superimposed on the 
shearing motion can be used to determine the constants (“b” and “n”) of a yield condition for 
any material that is somewhat free flowing and thus can be used as a “powder rheometer”. 
The yield condition is valid in both the quasi-static as well as the “intermediate” regimes of 
flow and contains a term characterizing “solid’-like behavior and an additional term that 
captures some “fluid”-like properties at higher shear rates.  
 
The paper describes a new finite element solver FeatFlow of the generalized Navier-Stokes 
equations that uses, in addition to the yield condition determined experimentally for a 
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relatively free flowing powder, a generalized viscosity that describes a Newtonian fluid, a 
Bingham Plastic, an incompressible frictional powder (Schaeffer solid) and a power-law fluid. 
We use the numerical method to validate some experimental measurements and calculate 
the torque in the Couette device in three different geometries: a concentric, two cylinder, 
arrangement and two new geometries in which the cylinder is positioned eccentric in the 
Couette and one where an additional cylindrical object is placed into the shearing gap and 
obstructs parts of it. 
 
Finally, we show in Figure 14 some of the capabilities of the model to predict a wide variety 
of parameters for the most complicated geometry that of the “obstacle” occupying ½ of the 
shearing zone. We show, for example, that the different quantities predicted by the model 
become height independent at a distance roughly equal to the width of the shear gap. While 
the model predicts all stresses in the shear zone and the obstacle, experiments to check the 
torque on the rotating cylinder where inconclusive since the fluctuations of the torque were 
about equal in magnitude with the predicted difference in torque with and without the 
obstacle. Further work in measuring the local stresses and forces on the obstacle are in 
progress to further check the predictions of the model. 
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Appendix – Detailed description of the numerical methods in FeatFlow 
 
Let us consider the flow of the stationary, generalized Navier-Stokes problem in equation (10) in a 
bounded domain 2RΩ ⊂ . The weak formulation: find (u, p) ∈ X × M  such that  
 
 
 
 

(A1) 
 
 
 
with X = (H 0

1 (Ω))N , M = L2 (Ω)  for the Newtonian case. 
 
We consider a subdivision K ∈ Th  consisting of quadrilaterals in the domain, and we employ the 
nonconforming Rannacher-Turek element (Rannacher and Turek (1992)). For any quadrilateral let 
denote (ξ ,η)  a local coordinate system obtained by joining the midpoints of the opposing faces of 
the element K , Then, in the nonparametric case, we set on each element  
 
                                                  (A2) 
 
The degrees of freedom are determined by the nodal functions 
 

(A3) 
 
 
 
such that the finite element space can be written as 
  
 

(A4) 
 
 
Here, i j,Γ  denote all inner edges sharing the two elements i and j , while 0iΓ  denote the boundary 

edges of h∂Ω . In this paper, we always employ version ’a’ with the integral mean values as degrees 
of freedom. Then, the corresponding discrete functions will be approximated in the spaces  
 

(A5) 
 
There are well-known situations for standard FEM methods when severe numerical problems may 
arise, namely in the case of convection dominated problems. Then, numerical difficulties arise for 
instance for medium and high Re  numbers since the standard Galerkin formulation usually fails and 
may lead to numerical oscillations and to convergence problems of the iterative solvers. Among the 
stabilization methods existing in the literature for these types of problems, we use the proposed one 
in Ouazzi (2006) and Turek and Ouazzi (2007) which is based on the penalization of the gradient 
jumps over element boundaries. In 2D, the additional stabilization term J u, acting only on the 
velocity u in the momentum equations, takes the following form (with hE =| E |) 
 
 

(A6) 
 
 



 17

which can be simply added to the original bilinear form. Summarizing, in the underlying test cases 
which require the solution of stationary problems, efficient Newton-type and multigrid solvers can be 
easily applied for such highly accurate stabilization techniques (see, Kuzmin et al. (2005) for more 
details) which are the basis of the subsequent numerical analysis. 
 
The nonlinearity is first handled on the continuous level. Let ul  be the initial state, the (continuous) 
Newton method consists of finding such that u ∈ V  
 
 
 
 

(A7) 
 
 
 
 
 
 
where ∂i(., .); i = 1,2  is the partial derivative of μ  related to the first and second variables 
respectively; for more details, see Ouazzi. and Turek (2003). 
 
The resulting auxiliary sub-problems in each Newton step consist of (u, p) ∈ X × M  finding as 
solutions of the linear (discretized) systems  
 
 

 (A8) 
 
 
where Ru (., .)  and Rp (., .)  denote the corresponding nonlinear residual terms for the  
Momentum and continuity equations, and the operators A(ul , pl ), B(ul , pl ), A* (ul , pl ),  and 
B* (ul , pl ) are defined as follows: 
 

 (A9) 
 
 

(A10) 
 

(A11) 
 
 
                                (A12) 
 
Finally, the following part is devoted to give a brief description of the involved solution techniques for 

the resulting linear systems. For the nonconforming Q
~

1/Q0  Stokes element a ‘local pressure Schur 
complement’ preconditioner (see Turek (1998)) as generalization of the so-called ‘Vanka smoothers’ 
is constructed on patches Ω i  which are ensembles of one single or several mesh cells, and this local 
preconditioner is embedded as global smoother into an outer block Jacobi/Gauß-Seidel iteration 
which acts directly on the coupled systems of generalized Stokes, resp., Oseen type as described in 
Turek et al. (2002). If we denote by Ru  and Rp  the discrete residuals for the momentum and 
continuity equation which include the complete stabilisation term due to the modified bilinear form as 
described in (19), one smoothing step in defect-correction notation can be described as 
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                      (A13) 

 
 
 

with matrix A
~
, B

~
, A*,

~

 and B*
~

are the discrete matrices corresponding to the operators in (A9), (A10), 
(A11) and (A12). All components in the multigrid approach, that means intergrid transfer, coarse grid 
correction and coarse grid solver, are the standard ones and are based on the underlying 
hierarchical mesh hierarchy and the properties of the nonconforming finite elements (see Turek 
(1998) and Turek et al. (2002) for details).  
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