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STRICTLY EQUIVALENT A POSTERIORI ERROR
ESTIMATORS FOR QUASI-OPTIMAL NONCONFORMING

METHODS

CHRISTIAN KREUZER, MATTHIAS ROTT, ANDREAS VEESER, AND PIETRO ZANOTTI

Abstract. We devise a posteriori error estimators for quasi-optimal noncon-
forming finite element methods approximating symmetric elliptic problems of
second and fourth order. These estimators are defined for all source terms
that are admissible to the underlying weak formulations. More importantly,
they are equivalent to the error in a strict sense. In particular, their data os-
cillation part is bounded by the error and, furthermore, can be designed to be
bounded by classical data oscillations. The estimators are computable, except
for the data oscillation part. Since even the computation of some bound of
the oscillation part is not possible in general, we advocate to handle it on a
case-by-case basis. We illustrate the practical use of two estimators obtained
for the Crouzeix-Raviart method applied to the Poisson problem with a source
term that is not a function and its singular part with respect to the Lebesgues
measure is not aligned with the mesh.

1. Introduction

Nonconforming finite element methods are a well-established technique for the
approximate solution of partial differential equations (PDEs). Classical noncon-
forming elements, like the ones of Morley [Mor68] and Crouzeix-Raviart [CR73],
were originally proposed as valuable alternatives to conforming ones for the bihar-
monic and the Stokes equations. Later on, other nonconforming techniques like
discontinuous Galerkin and C0 interior penalty methods have proved to be com-
petitive for a wide range of problems.

Nonconforming methods weaken the coupling between elements so that at least
some discrete functions are not admissible to the weak formulation of the PDE of
interest. On the one hand, this increases flexibility for approximation and accom-
modating desired structural properties, but on the other hand it complicates the
theoretical analysis and, without suitable measures, excludes data that is admissible
in the weak PDE.

An a posteriori error analysis aims at devising a quantity, called estimator, that,
ideally, is computable and equivalent to the error of the approximate solution. Such
an estimator can be used to asses the quality of the approximate solution and, if it
splits into local contributions, to guide adaptive mesh refinement. To outline the
structure of most available results, consider a weak formulation of the form

u P V such that @v P V apu, vq “ xf, vy,
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where the bilinear form a is symmetric and V -coercive, and apply some noncon-
forming method based upon a discrete space Vh Ć V . Then the error }u ´ uh}

and the estimator esth are related by the following equivalence, cf. [DDP95, KP03,
Car05, Voh07, AR08, Bre15, CN22, CGN24]:

(1.1) }u´ uh}2 ` osc2h ≂ est2h “ ncf2h `η2h ` osc2h,

where ncfh is an approximation of the distance of uh to V , ηh is a PDE-specific
part of the estimator depending on uh, and osch is the so-called oscillation, typically
involving only data. Notice the presence of osch on both sides, which spoils the
ideal equivalence of error and estimator. This flaw is due to the fact that in general
the error cannot bound the oscillation osch on a given mesh and this may even
persist under adaptive refinement; cf. Remark 3.17 below. Often and related, ηh
cannot be bounded by the error alone.

In contrast to (1.1), this article establishes the strict equivalence

(1.2) }u´ uh}2 ≂ est2h “ ncf2h `η2h ` osc2h,

where osch and often also ηh differ from their counterparts in (1.1) and are defined
for all f P V 1. Moreover, the oscillation osch in (1.2) can be designed to be bounded
by the one in (1.1). Observe that now the error dominates both oscillation osch
and ηh. We achieve this improvement by generalizing the new approach of [KV21],
used also in the recent survey [BCNV24], to nonconforming methods. To shed some
light on the proof, let us outline our approach.

We start by identifying a residual resh and, similarly to existing approaches,
obtain

}u´ uh}2 “ } resh }2pV `Vhq1 “ inf
vPV

}uh ´ v}2 ` } resCh }2V 1

with the conforming part resCh :“ resh |V of the residual. Note that the infinite
dimension of V obstructs the computation of both terms on the right-hand side. For
the first term, averaging operators allow deriving indicators ncfh that are strictly
equivalent, computable, and readily split into local contributions.

The second term with the conforming residual resCh is more delicate in view of
the dual norm and the fact that data, say only the source f , is typically taken from
an infinite-dimensional space. Considering just for a moment a simplifying special
case, we address these two issues by the following two steps:

(1.3) } resCh }2V 1 ≂
ÿ

zPV
} resCh }2V 1

z
≂

ÿ

zPV
}Pz res

C
h }2V 1

z
`

ÿ

zPV
}f ´ Pzf}2V 1

z
,

where V are the vertices of the underlying mesh, Vz are local counterparts of V ,
and Pz are local projections onto finite-dimensional counterparts Dz of V 1

z .
The general version of the first step in (1.3) is given in Lemma 3.7. It hinges on

(near) orthogonality properties of the conforming residual resCh, which originate in
the nonconforming discrete test functions. If the nonconforming method is quasi-
optimal in the sense of

(1.4) }uh ´ u} ď Cqo inf
vhPVh

}u´ vh},

they are verified in Lemma 3.6, else they have to be measured by an additional
indicator in the spirit of Remark 4.14.

The second step in (1.3) further decomposes the residual, adapting the ideas
in [KV21] to new features arising from nonconformity. Thanks to dimDz ă 8,
classical techniques allow deriving strictly equivalent and computable indicators ηh
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for the sum with the approximate residuals Pz res
C
h, while the computability issue

due to infinite dimensional data is isolated in the second sum, which coincides with
osc2h in (1.2). The latter decomposition is also useful for adaptivity; see Remark 3.19
below. It is also the crucial step for the difference between the two equivalences
(1.1) and (1.2). For the latter, the projections Pz have to be stable in a V 1-like
manner, while classical techniques (implicitly) use projections that are stable only
in proper subspaces; see Remark 3.17.

We advocate to first apply the outlined approach and then address the com-
putability of the oscillation osch on a case-by-case basis, exploiting all the available
information on the structure and regularity of the given data. We postpone a more
detailed discussion to the Remarks 3.15, 3.16, and 3.18 and only mention here that
an a posteriori analysis based upon a ‘more computable’ oscillation may lead to
indicators ηh that cannot be bounded by the error alone, as in the case of several
classical techniques.

To illustrate the generality of the outlined approach, we apply it to various
quasi-optimal nonconforming methods covering arbitrary approximation order as
well as second- and fourth-order problems. The approach also allows for estimator
simplifications thanks to nonconformity as in [DDP95, DDPV96]. We restrict our-
selves to equations with data-free symmetric principal terms in order to avoid the
technical complications which are addressed in [BCNV24, Section 4] in the case of
conforming methods. Furthermore, for the sake of the simplicity, we do not cover
estimators based on flux equilibration; the related changes are however illustrated
for conforming methods in [KV21, Section 4.4] (lowest-order case) and in [BCNV24,
Section 4.9] (higher-order cases).

Organization. In Section 2, we briefly recall the framework for quasi-optimal
nonconforming methods from [VZ18a]. Section 3 provides the framework for the
a posteriori analysis of this class of methods, based on the principles in [KV21]. Sec-
tion 4 illustrates the application of the abstract results to lowest- and higher-order
quasi-optimal methods for the Poisson problem, while Section 5 concerns lowest-
order methods for the biharmonic problem. Finally, we illustrate the practical use
of two derived estimators in Section 6.

Notation. Let X, Y be Hilbert spaces. We equip the dual space X 1 with the norm
} ¨ }X1 “ supxPX,}x}Xď1x¨, xy, where x¨, ¨y is the dual pairing on X 1 ˆX and } ¨ }X is
the norm on X. We denote the norm of a bounded linear operator L : X Ñ Y by
|||L|||. Moreover, we use standard notation for Lebesgue and Sobolev spaces.

2. Quasi-optimal nonconforming methods

In this section we summarize the framework for quasi-optimal nonconforming
methods introduced in [VZ18a]. We report only the notions and results that are
useful to our subsequent developments.

Let V be a Hilbert space with scalar product ap¨, ¨q and induced norm } ¨ } :“

} ¨ }V :“
a

ap¨, ¨q. As in [VZ18a], we focus on PDEs whose weak formulation reads

(2.1) for f P V 1, find u P V such that @v P V apu, vq “ xf, vy.

Thanks to the Riesz representation theorem, the operator A : V Ñ V 1 induced by
a and defined as Av :“ apv, ¨q is an isometry. Hence, for any source term f P V 1,
there exists a unique solution u “ A´1f of (2.1) with }u} “ }f}V 1 .
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Let Vh be a finite-dimensional, linear space, which is possibly nonconforming,
i.e. not necessarily a subspace of V . We assume that a extends to a scalar product
ra on the space rV :“ V ` Vh. The norm induced by ra extends the one induced
by a, therefore we still denote it by } ¨ }. Consequently, the operator rA : rV Ñ rV 1

extending A via rAṽ “ rapṽ, ¨q is an isometry as well. Writing ΠV : rV Ñ V for the
ra-orthogonal projection onto V , the distance to conformity of an element rv P rV is
given by the distance to its projection

}rv ´ ΠV rv} “ inf
vPV

}rv ´ v}.(2.2)

To discretize (2.1), we need a nondegenerate bilinear form ah : Vh ˆ Vh Ñ R
and a functional fh P V 1

h, which approximate their counterparts a and f in a sense
to be specified. According to [VZ18a, Theorem 4.7], a necessary condition for the
quasi-optimality (1.4) is full stability, i.e. the mapping V 1 Q f ÞÑ fh P V 1

h induced
by the discretization of the source term must be bounded. This, in turn, implies
that we necessarily have fh “ E˚

h f , where E˚
h : V 1 Ñ V 1

h is the adjoint of some
linear smoothing operator Eh : Vh Ñ V . Therefore, we restrict our attention to
nonconforming discretizations of (2.1) which read as follows:

(2.3) for f P V 1, find uh P Vh such that @vh P Vh ahpuh, vhq “ xf, Ehvhy.

Since ah is nondegenerate and dimVh ă 8, the operator Ah : Vh Ñ V 1
h, defined

by Ahpvhq :“ ahpvh, ¨q, is invertible. Then, for any source term f P V 1, there
exists a unique solution of the discrete problem (2.3) with uh “ A´1

h E˚
h f “: Mhf .

Henceforth, we assume that the evaluations of ah and f in the discrete problem are
computationally realizable, so that uh is computable (in exact arithmetic). This
entails that the evaluations of f for all test functions in EhpVhq are known. We call
the linear operator Mh : V 1 Ñ Vh the nonconforming method, i.e. the mapping of
the source term f to the approximation uh of u, whereas Ph : V Ñ Vh defined as

(2.4) Ph :“ MhA “ A´1
h E˚

hA

is the associated approximation operator, i.e. the mapping of u to uh. Figure 2.1
summarizes the functional framework.

V 1

E˚
h

��

Mh

  

V
A

oo

Ph

��

V 1
h Vh

Ah

oo

Figure 2.1. Commutative diagram summarizing the construction
of a fully stable nonconforming method Mh.

The definitions (2.1) and (2.3) of exact and approximate solution directly lead
to the generalized Galerkin orthogonality

(2.5) @vh P Vh ahpuh, vhq “ apu, Ehvhq.

Note the presence of the smoothing operator Eh and the related possible difference
between the test functions in the bilinear forms a and ah.



A POSTERIORI ESTIMATES FOR QUASI-OPTIMAL NONCONFORMING METHODS 5

In view of [VZ18a, Theorem 4.14], the compatibility condition

(2.6) @u P V X Vh, vh P Vh ahpu, vhq “ apu, Ehvhq,

called full algebraic consistency, is necessary and sufficient for the quasi-optimality
of a fully stable nonconforming method. More precisely, the following result holds
true.

Proposition 2.1 (Quasi-optimality). For the fully stable method Mh, induced by
the discretization (2.3), the following statements are equivalent:

(1) Mh is quasi-optimal, i.e. (1.4) is verified for some constant Cqo ě 1.
(2) Mh is fully consistent, i.e. (2.6) is verified.
(3) There is a constant δh ě 0 verifying

@wh P Vh sup
vhPVh

ahpwh, vhq ´ apΠV wh, Ehvhq

}A˚
hvh}V 1

h

ď δh}wh ´ ΠV wh}.

Moreover, if (1)-(3) are verified, then the constant Cqo from (1.4) is such that

maxtCstab, δhu ď Cqo ď

b

C2
stab ` δ2h

with
Cstab :“ sup

vhPVh

}Ehvh}

}A˚
hvh}V 1

h

.

Proof. See [VZ18a, Theorem 4.14] and, for the gap between the barriers for Cqo,
[VZ18a, Remark 3.5]. □

We refer to the constants δh and Cstab in Proposition 2.1 as the consistency
measure and the stability constant of the method Mh, respectively.

Remark 2.2 (Overconsistency). Quasi-optimal methods satisfying δh “ 0 are called
overconsistent in [VZ19], hinting at the fact that this condition does not need to
be satisfied for consistent quasi-optimality (or convergence for a suitable sequence
of discrete spaces Vh). Such methods are closer to conforming methods in the
following sense. First, their quasi-optimality constant equals the stability constant,
Cqo “ Cstab. Second, the error function is ra-orthogonal to EhpVhq because the
generalized Galerkin orthogonality (2.5) can be rewritten as

(2.7) @vh P Vh rapu´ uh, Ehvhq “ 0.

3. Abstract a posteriori analysis

The goal of an a posteriori analysis is to devise a quantity, called error estimator,
that is equivalent to the typically unknown error, that splits into local contributions,
so-called indicators, and that is computable. Such an estimator allows assessing the
quality of the current approximate solution and its indicators may be used as input
for adaptive mesh refinement.

This section proposes a framework for the a posteriori analysis of quasi-optimal
nonconforming methods. Conceptually speaking, it proceeds in three steps. The
first step determines the residual, along with a convenient decomposition, and re-
lates it to the error by means of a dual norm. This complements the previous
frameworks used in [KP03, Voh07] and is an alternative to [Car05]. The second
step provides a localization, i.e. it splits the global residual norm into local contri-
butions. Finally, the third step addresses computability, generalizing the approach
[KV21] to nonconforming methods.
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3.1. The residual of nonconforming errors. We start by looking for a quantity
that is equivalent to the error and given in terms of available information, viz.
problem data f and approximate solution uh in the setting of Section 2.

In the special case of a conforming Galerkin discretization, i.e. for Vh Ď V ,
ah “ a|VhˆVh

, and Eh “ idV in (2.3), the residual f ´Auh P V 1 satisfies

(3.1) }u´ uh} “ sup
vPV,}v}ď1

apu´ uh, vq “ }f ´Auh}V 1

thanks to (2.1) and the fact that A is a linear isometry.
In the general case, the possibility of uh R V and the identity

(3.2) }u´ uh} “ sup
ṽP rV ,}ṽ}ď1

rapu´ uh, ṽq

thus suggest to suitably extend the residual f ´Auh P V 1 in (3.1) to a functional in
rV 1 allowing for uh R V . While rAuh P rV 1 is such an extension for the term Auh P V 1,
the extension for f P V 1 is less obvious. Mimicking the role of (2.1) in (3.1) for the
given nonconforming situation, we observe

(3.3) @ṽ P rV rapu, ṽq “ rapu,ΠV ṽq “ xf,ΠV ṽy.

Note that these conditions are meaningful for u P rV and the original condition
u P V is encoded in the new conditions

@vK P V K
rapu, vKq “ 0

where V K denotes the ra-orthogonal complement of V in rV . These observations
suggest to take xf,ΠV ¨y P rV 1 as extension for f P V 1 and motivate the following
residual notions: given the solution uh of the discrete problem (2.3), we define its
residual as

(3.4) resh :“ reshpf, uhq :“ xf,ΠV ¨y ´ rAuh P rV 1,

which can be decomposed into a conforming and nonconforming component by

resCh :“ resChpf, uhq :“ resh |V “ f ´ rAuh P V 1,(3.5a)

resNCh :“ resNCh puhq :“ resh |V K “ ´ rAuh P
`

V K
˘1
.(3.5b)

Thus, we have resh “ xresCh,ΠV ¨y ` xresNCh , pid rV ´ ΠV qp¨qy and, upon identifying a
component with its respective term in this relationship, it may be viewed as an
element of rV 1.

The following lemma states a well-known orthogonal decomposition of the error,
which is usually formulated not completely in terms of residuals.

Lemma 3.1 (Error, residual and their decompositions). For the respective solutions
u and uh of (2.1) and (2.3), we have

}u´ uh}2 “ } resh }2
rV 1 “ } resCh }2V 1 ` } resNCh }2pV Kq1 ,

}u´ ΠV uh} “ } resCh }V 1 , and }uh ´ ΠV uh} “ } resNCh }pV Kq1 .

Proof. Let us write eh :“ u ´ uh for the error function and observe ΠV u “ u. In
light of (3.2),

}u´ ΠV uh} “ sup
vPV,}v}ď1

rapeh, vq, and }uh ´ ΠV uh} “ sup
vKPV K,}vK}ď1

rapeh, v
Kq,
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the identities for these errors follow from (3.3) and the fact that rA is a linear
isometry. The missing identity is then a consequence of orthogonality

rapu´ ΠV uh, uh ´ ΠV uhq “ rapΠV eh, eh ´ ΠV ehq “ 0,

which expresses also the orthogonality of the residual components in rV 1 endowed
with the scalar product rap rA´1¨, rA´1¨q. □

Remark 3.2 (Extended weak formulation). An equivalent formulation of the weak
formulation (2.1) in the extended space rV reads as follows: for f P V 1, find u P rV
such that

@v P V apu, vq “ xf, vy and @vK P V K
rapu, vKq “ 0.

This formulation is an alternative departure point for the definition of the residual
resh and its components resCh and resNCh .

Remark 3.3 (Decomposition features). Orthogonal decompositions are ‘constant-
free’ and therefore desirable in an a posteriori error analysis. The orthogonal de-
compositions in Lemma 3.1 are essentially characterized by the property that one
component coincides with the conforming subcase. This prepares the ground for
using techniques available for conforming methods and will be exploited in the
following steps concerning localization and computability.

In what follows, we shall refer to the two parts resCh and resNCh of the residual,
respectively, as conforming and nonconforming residual for short and handle them
differently.

3.2. Indicators for the nonconforming residual. We start with the noncon-
forming residual norm } resNCh }pV Kq1 , which, according to Lemma 3.1, equals the
distance to conformity }uh ´ ΠV uh} of the approximate solution uh.

In applications, the abstract space V is a space of functions over some domain
Ω and the extended bilinear form ra is defined in terms of an integral over Ω. Thus,
given a partition T of Ω, the extended energy norm can be written as

(3.6) } ¨ }2 “
ÿ

TPT
| ¨ |2T ,

where the local contributions | ¨ |T are in general only seminorms.
The distance to conformity }uh ´ ΠV uh} therefore readily splits into the local

quantities |uh ´ ΠV uh|T , T P T . Note however that the presence of the projection
ΠV and the infinite dimension of V typically entail that these quantities are not
computable and depend on uh in a global manner. We therefore look for an equiv-
alent alternative. For this purpose, the following proposition individuates a simple
algebraic condition. It coincides with [CN22, Lemma 2.2], which is proved by a dif-
ferent argument and seems to be used in the context of the smoothing operator Eh
in the discrete problem (2.3); for such a usage, it is instructive to take Remark 4.21
into account.

Proposition 3.4 (Approximating the distance to conformity). If

(H1)
Ah : Vh Ñ V is a bounded linear operator with

@wh P V X Vh Ahwh “ wh,

then there exists a constant Cav ą 0 such that

@vh P Vh Cav}vh ´ Ahvh} ď }vh ´ ΠV vh} ď }vh ´ Ahvh}.
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Proof. The upper bound is an immediate consequence of Avh P V , while the lower
bound essentially follows from the proof of [VZ18a, Theorem 3.2] about the quasi-
optimality of a nonconforming method. We provide a sketch for the sake of com-
pleteness. Thanks to the compatibility condition in (H1), the following extension
of Ah to rV is well-defined:

rAhrv :“ v ` Ahvh, rv “ v ` vh with v P V, vh P Vh.

Since V and Vh are closed subspaces of rV , the extension rAh is bounded, too; cf.
[VZ18a, Lemma 3.1], swapping the roles of V and Vh. Given vh P Vh, we can thus
write

vh ´ Ahvh “ pid
rV ´ rAhqpvh ´ vq

with an arbitrary v P V and immediately get

}vh ´ Ahvh} ď }id
rV ´ rAh} inf

vPV
}vh ´ v} “ }id

rV ´ rAh}}vh ´ ΠV vh}.

Notably, [VZ18a, Lemma 3.4] shows that }id
rV ´ rAh}´1 is actually the largest con-

stant Cav such that the claimed lower bound holds. □

Observe that the upper bound in Proposition 3.4 comes with constant 1, while
the concrete value of Cav in the lower bound is left unspecified. We will provide
more information on Cav in the applications.

Remark 3.5 (Computable realization of the distance to conformity). An operator
Ah verifying (H1) provides a computable realization of the distance to conformity
whenever it is itself computable and each | ¨ |T can be computationally evaluated
on Vh ´ AhpVhq. Note that, even if Ah is a local operator, the indicators are still
of global nature due to their dependence on uh. In the applications below, Ah will
be an averaging operator.

3.3. Localization of the conforming residual. Our next goal is to split the
conforming residual norm } resCh }V 1 “ supvPV,}v}ď1xresCh, vy into an equivalent ‘sum’
of local counterparts. This step is underlying most techniques. It is complicated by
the fact that functions in V and the norm } ¨ } typically involve derivatives. Indeed,
first, the partition of unity with characteristic functions underlying (3.6) cannot be
directly applied. Instead, as for conforming methods, we use sufficiently smooth
partitions of unity to split the test function v into local contributions. Second, the
effect of the cut-off in the norm } ¨ } has to be stabilized with the help of some
orthogonality property of the residual.

For nonconforming methods, it is convenient to formulate such orthogonality
properties with the help of the smoothing operator Eh. Indeed, the overconsistency
of Remark 2.2 then leads to exact orthogonality, while, in general, quasi-optimality
turns out to be a useful ingredient.

Lemma 3.6 (Near orthogonality of conforming residual). If the discretization (2.3)
induces a quasi-optimal method Mh, then we have, for all v P V and K ą 0,

(3.7) xresCh, vy ď inf
vhPVh,}vh}ďK}v}

xresCh, v ´ Ehvhy `Kδh|||Ah|||}uh ´ ΠV uh}}v}.

Proof. Let vh P Vh be such that }vh} ď K}v}. We add and subtract Ehvh in the
action of the conforming residual

xresCh, vy “ xresCh, v ´ Ehvhy ` xresCh, Ehvhy.
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For the second term on the right-hand side, we use the method (2.3), the ra-
orthogonal projection ΠV , and the quasi-optimality of the method through Propo-
sition 2.1(3), to derive

xresCh, Ehvhy “ ahpuh, vhq ´ apΠV uh, Ehvhq ď δh}A˚
hvh}V 1

h
}uh ´ ΠV uh}.

We thus conclude by recalling that the operator norm of the adjoint A˚
h equals the

operator norm of Ah. □

Concerning the partition of unity, we assume the following properties:

(H2)

There are a finite index set Z, functions pΦzqzPZ , subspaces pVzqzPZ of
V , a bounded linear operator Ih : V Ñ Vh and constants Cloc, Ccol ą 0
such that

(i) for z P Z and v P V , we have
ř

zPZ vΦz “ v with vΦz P Vz,
(ii) for vz P Vz, we have }

ř

zPZ vz}2 ď C2
col

ř

zPZ }vz}2, and
(iii) for v P V , we have

ř

zPZ }pv ´ EhIhvqΦz}2 ď C2
loc}v}2.

The term ‘localization’ in the title of this subsection hints to the fact that in appli-
cations the functions Φz, z P Z, have compact supports. We therefore shall refer to
the subspaces Vz, z P Z, as local test spaces. Properties (ii) and (iii) prescribe some
sort of stability of the partition of unity, where the form of (iii) allows countering
the effect of the cut-off.

Lemma 3.7 (Localizing the conforming residual norm). If the discretization (2.3)
induces a quasi-optimal method Mh, then (H2) implies that

1

C2
col

ÿ

zPZ
} resCh }2V 1

z
ď } resCh }2V 1 ď 2C2

ortδ
2
h}uh ´ ΠV uh}2 ` 2C2

loc

ÿ

zPZ
} resCh }2V 1

z

holds for some constant Cort ď |||Ah||||||Ih||| arising through near orthogonality prop-
erties of the residual.

Recall that the distance to conformity of the approximate solution uh is localized
in Section 3.2. Furthermore, for overconsistent methods, we have δh “ 0 meaning
that the upper bound does not mix with the nonconforming residual; in this case,
the factor 2 in the constant 2C2

loc of the upper bound can be removed.

Proof. We begin by verifying the lower bound. Given z P Z, let vz P Vz be the Riesz
representer of resCh |Vz

in Vz entailing }vz} “ } resCh }V 1
z

and xresCh, vzy “ } resCh }2V 1
z
.

Defining v :“
ř

zPZ vz P V , we infer
ÿ

zPZ
} resCh }2V 1

z
“

ÿ

zPZ
xresCh, vzy “ xresCh, vy ď } resCh }V 1 }v}.

Thus, by invoking (ii) in (H2), we obtain the lower bound
ÿ

zPZ
} resCh }2V 1

z
ď C2

col} resCh }2V 1 .

To prove the upper bound, let v P V with }v} ď 1 and set vh :“ Ihv P Vh. The
assumptions (i) and (iii) in (H2) provide

xresCh, v ´ Ehvhy “
ÿ

zPZ
xresCh, pv ´ EhIhvqΦzy ď Cloc

˜

ÿ

zPZ
} resCh }2V 1

z

¸
1
2

.
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We use this estimate in Lemma 3.6 with K “ |||Ih|||, then take the supremum over
v and conclude the upper bound

} resCh }2V 1 ď 2δ2h|||Ah|||2|||Ih|||2}uh ´ ΠV uh}2 ` 2C2
loc

ÿ

zPZ
} resCh }2V 1

z
. □

3.4. Computability and conforming residual norm. Lemma 3.7 may suggest
to employ the local quantities } resCh }V 1

z
“ }f ´ rAuh}V 1

z
, z P Vz, as indicators. How-

ever, these quantities neither are computable nor can be bounded by a computable
expression if we only know that f is taken from the infinite-dimensional space V 1;
cf. [KV21, Lemma 2]. We therefore adapt the approach in [KV21] to the noncon-
forming methods in Section 2, thus isolating this computability problem in data
terms.

More precisely, for each z P Z, using a suitable local projection Pz, we split the
local conforming residual pf ´ rAuhq|Vz

into two parts with the following proper-
ties: The first part pPz res

C
hq|Vz

is a local finite-dimensional approximation of the
conforming residual, while the second part presCh ´Pz res

C
hq|Vz

“ pf ´ Pzfq|Vz
only

depends on data and is of oscillatory nature. Doing so, }Pz res
C
h }V 1

z
is equivalent to

a computable quantity and, therefore, the above computability problem gets iso-
lated in the second part and may be handled on a case-by-case basis, depending on
the knowledge of f . A further advantage of this splitting is outlined in Remark 3.19
below.

To construct a local projection Pz, we discretize the local test and dual spaces
Vz and V 1

z by respective local, finite-dimensional spaces Sz and Dz. We shall
refer to the elements of these discrete spaces as simple (test) functions and simple
functionals, respectively. The simple test functions may be locally nonconforming,
i.e. Sz Ę Vz is allowed, but have to be globally conforming, i.e. Sz Ď V . Similar
to [DDP95, DDPV96], this additional freedom is exploited in Theorem 4.9 below
to provide an estimator, which is simpler than the one in Theorem 4.5 based on
locally conforming simple test functions. In view of possibly nonconforming simple
test functions, we consider the local space rVz :“ Vz ` Sz and require Dz Ď rV 1

z .
Thus, the simple functionals are locally nonconforming only if there are locally
nonconforming simple test functions. The operator Pz will then project rV 1

z onto
Dz orthogonal to Sz and we shall build on the following assumption:

(H3)

There are subspaces pDzqzPZ , pSzqzPZ , and constants Ccom, Ccom ą 0, such
that, for all z P Z,

(i) Sz Ď V and Dz Ď rV 1
z , where rVz :“ Vz ` Sz,

(ii) rApVhq
| rVz

Ď Dz,
(iii) dimSz ď dimDz ă 8,
(iv) for χ P Dz, we have }χ}V 1

z
ď Ccom}χ}S1

z
,

(v) for g P V 1, we have
ř

zPZ }g}2S1
z

ď C2
com

ř

zPZ }g}2V 1
z
.

If we consider the case of locally conforming simple test functions, i.e. Sz Ď Vz, the
conditions (i) and (ii) are equivalent to

(3.8) rApVhq|Vz
Ď Dz Ď V 1

z

and (v) holds with Ccom “ 1 since }g}2S1
z

ď }g}2V 1
z
.

In any case, the simple functionals have to cover locally the part of the residual
depending on the approximate solution. This is a crucial structural condition and
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the remaining conditions (iii)-(v) concern the relationship between simple function-
als and simple test functions in order to ensure well-posedness and stability of the
aforementioned operators Pz, z P Z. Condition (iv) is equivalent to the inf-sup
condition

(3.9) inf
χPDz

sup
sPSz

xχ, sy

}χ}V 1
z
}s}

ě
1

Ccom

ą 0

and implies dimDz ď dimSz. Consequently, a necessary condition for (H3) is
dimSz “ dimDz. In Sections 4 and 5 below, we exemplify how to choose simple
functionals and local test functions in concrete settings.

The next lemma establishes the local projections, along with their stability prop-
erties and their interplay with the extended operator rA and the discrete space Vh.

Proposition 3.8 (Local projections). Suppose assumption (H3) holds. Then the
variational equations

(3.10) @s P Sz xPzg, sy “ xg, sy, z P Z,

define linear projections Pz : rV 1
z Ñ Dz, satisfying the invariances

@z P Z, vh P Vh
`

Pz
rAvh

˘

|Vz
“
`

rAvh
˘

|Vz
(3.11a)

and the collective stability bound

@g P V 1
ÿ

zPZ
}Pzg}2V 1

z
ď C2

comC
2
com

ÿ

zPZ
}g}2V 1

z
.(3.11b)

Hereafter, we also write simply Pzg instead of Pzpg
| rV 1

z
q for g P V 1.

Proof. Fix any z P Z. Thanks to the rank-nullity theorem and condition (iii) in
(H3), the well-posedness of the linear variational problem for Pz follows from its
uniqueness. To show the latter, let χ P Dz with xχ, sy “ 0 for all s P Sz, that is
χ|Sz

“ 0. Condition (iv) in (H3) then implies χ|Vz
“ 0. By its linearity, χ vanishes

on the sum Vz `Sz, meaning χ “ 0 in the light of (i) in (H3). Consequently, (3.10)
has a unique solution in Dz and Pz is the linear projection from rV 1

z onto Dz with
the orthogonality property

(3.12) @s P Sz xg ´ Pzg, sy “ 0.

The invariance (3.11a) then follows from the observation that, for vh P Vh, the
difference Pz

rAvh ´ p rAvhq
| rVz

is in the image Dz of Pz thanks to (ii) in (H3).
Finally, given any g P V 1, the collective stability bound (3.11b) readily follows

by combining (iv) and (v) in (H3) and the orthogonality (3.12) of Pz:
ÿ

zPZ
}Pzg}2V 1

z
ď C2

com

ÿ

zPZ
}Pzg}2S1

z
“ C2

com

ÿ

zPZ
}g}2S1

z
ď C2

comC
2
com

ÿ

zPZ
}g}2V 1

z
. □

The use of local projections is motivated by difficulties with the computability
of the local quantities } resCh }V 1

z
. The next remark is therefore of primary interest.

Remark 3.9 (Computing the local projections). Let z P Z and g P V 1. From an
algebraic viewpoint, the projection Pzg from (3.10) can be computed by solving a
linear system of equations. Moreover, we have for the S1

z-norm of Pzg that

}Pzg}2S1
z

“ gT
z A

´1
z gz,
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where gz is the column vector representing the action of g on some basis of Sz and
Az is the matrix representing the extended scalar product ra on Sz ˆSz with respect
to the same basis.

The reader may skip the following two remarks as they are not used in what
follows. They, however, give instructive information on the approximation qualities
of the local projections and how they are achieved.

Remark 3.10 (Near-best approximation of the local projections). The local projec-
tions provide the collective near-best approximation

(3.13)
ÿ

zPZ
}g ´ Pzg}2V 1

z
ď p2 ` 2C2

comC
2
comq inf

χP rApVhq

ÿ

zPZ
}g ´ χ}2V 1

z

for all g P V 1. This follows from the local invariances (3.11a) for any fixed χ P rApVhq,
the linearity of the local projections, and their collective stability (3.11b).

Remark 3.11 (Local projections as nonconforming approximations). Each projec-
tion Pz can be viewed as a nonconforming Petrov-Galerkin approximation of the
identity idV 1

z
on V 1

z . Equally, in Section 2, Mh is such an approximation of A´1. It is
therefore in order to compare the approach based upon (H3) with the one in [VZ18a]
used in Section 2. To this end, we note that (ii) of (H3) is not of interest in this
context, and ignore that [VZ18a] does not properly cover the collective or product
setting with different continuous trial and test spaces of the local projections.

A common feature of both approaches is that they invoke the same type of
extended spaces. Indeed, the model rV “ V `Vh is repeated in the context of (H3),
on the test side, by rVz “ Vz ` Sz, which we may write also as rVz “ Vz ‘ SNC

z ,
where SNC

z is a complement of Sz X Vz in Sz, i.e. we have Sz “ pSz X Vzq ‘ SNC
z .

Similarly, for the more involved trial side, we can view rV 1
z as the direct sum of V 1

z

and the nonconforming part pDz |SNC
z

q of Dz. In fact, we have rV 1
z “ pVz ‘ SNC

z q1 ≂
V 1
z ‘ pSNC

z q1 ≂ V 1
z ‘ pDz |SNC

z
q and Dz ≂ pDz |Vz

q ‘ pDz |SNC
z

q.
There is, however, an important and, at the first look, perhaps striking differ-

ence. The nonconforming discrete problems (3.10) do not invoke smoothers but
exploit simple restriction. Recall that classical nonconforming methods relying on
simple restriction cannot be quasi-optimal, i.e. cannot provide near-best approxi-
mation; cf. [VZ18a]. Nevertheless, the use of restriction in (3.10) does not obstruct
the collective near-best approximation (3.13) thanks to the fact that all simple test
functions are globally conforming. In addition, restriction is preferable over smooth-
ing in (3.10) as it simplifies the implementation of the local projections. The global
conformity of all simple test functions implies also that each extended space rV 1

z ,
like its counterpart V 1

z , can be viewed as a subspace of V 1, meaning that the simple
functionals are globally conforming. Hence, the extension of the local projections
to the extended local spaces is ‘built-in’, while the extension of the approximation
operator Ph in (2.4) has to be constructed.

The next lemma applies the local projections in order to obtain the announced
splitting of the conforming residual. Therein, an indicator ηh is computationally
C-quantifiable whenever it is equivalent to a computable quantity η̄h up to a mul-
tiplicative constant C ą 0, i.e., for all f P V 1, we have C´1η̄h ď ηh ď Cη̄h.
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Lemma 3.12 (Conforming residual splitting). Assumption (H3) ensures

C2
splt

`

η2h ` osc2h
˘

ď
ÿ

zPZ
} resCh }2V 1

z
ď 2

`

η2h ` osc2h
˘

with some Csplt ě p1 ` 2C2
comC

2
comq´1{2 and the indicators

(3.14) η2h :“
ÿ

zPZ
}Pz res

C
h }2V 1

z
and osc2h :“

ÿ

zPZ
}f ´ Pzf}2V 1

z
,

where the indicator ηh is computationally quantifiable up to maxtCcom, C
´1
comu when-

ever resCh “ f ´ rAuh can be computationally evaluated for all simple test functions.

Proof. The upper bound follows from the triangle inequality and the special case
pPz

rAuhq|Vz
“ rAuh|Vz

of the invariance (3.11a):

(3.15) } resCh }V 1
z

ď }Pz res
C
h }V 1

z
` } resCh ´Pz res

C
h }V 1

z
“ }Pz res

C
h }V 1

z
` }f ´ Pzf}V 1

z
.

The lower bound follows from using the last equality in the opposite direction and
applying the collective stability (3.11b) of the local projections,

ÿ

zPZ
}Pz res

C
h }2V 1

z
` }f ´ Pzf}2V 1

z
ď p2 ` 3C2

comC
2
comq

ÿ

zPZ
} resCh }2V 1

z
.

To show the quantifiability of ηh, observe that η̄2h :“
ř

zPZ }Pz res
C
h }2S1

z
is com-

putable thanks to Remark 3.9 and the assumed knowledge on resCh. Furthermore,
it is equivalent to ηh thanks to (iv) and (v) of (H3). □

It is important to note that, thanks to the structural condition (ii) in (H3), the
oscillation osch is not just of oscillatory nature, but a data oscillation, i.e., in the
context of (2.1), it depends only on the data f and not on the discrete solution uh.

Remark 3.13 (Improving Csplt). In the analysis [BCNV24, Section 4] for a con-
forming method, one has the counterpart of the improved inequality

Csplt ě
1

?
2CcomCcom

thanks to [Szy06, Lemma 2.1]. For the corresponding case when all simple test
functions are locally conforming, i.e. Sz Ď Vz for all z P Z, this improvement
follows from applying the cited lemma on each projection Pz. Similarly, it follows
also if the local projections arise from a global one, viz. there is a projection on Ph

on V 1 such that Pz |Vz
“ Ph|Vz

for all z P Z. In fact, we can then apply the cited
lemma on Ph, endowing V 1 with the square root of

ř

zPZ } ¨ }2V 1
z
.

3.5. Deriving a strictly equivalent error estimator. We now combine the
various ingredients and previous results to obtain the main result of our abstract
a posteriori analysis: a guideline to derive an estimator bounding the error from
above and below without any additional terms.

Theorem 3.14 (Abstract estimator). Let Mh be a quasi-optimal method, induced
by the discretization (2.3). Suppose that (H1), (H2), and (H3) hold and, given
tuning constants C1, C2 ą 0, define an abstract estimator by

est2h :“ p1 ` C2
1δ

2
hqncf2h `C2

2 pη2h ` osc2hq, where
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ncf2h :“ }uh ´ Ahuh}2, (approximate distance to conformity)

η2h :“
ř

zPZ }Pzf ´ rAuh}2V 1
z
, (approximate conforming residual)

osc2h :“
ř

zPZ }f ´ Pzf}2V 1
z
, (data oscillation)

and the projections Pz are defined by (3.10). Then this estimator quantifies the
error by

C esth ď }u´ uh} ď C esth

where the equivalence constants C, C depend only on the norm |||Ah||| of the discrete
operator Ah, the constants arising from the assumptions (H1), (H2), and (H3), and
the tuning constants C1, C2.

Proof. We first show the upper bound. Combining Lemmas 3.1, 3.7, 3.12, and
Proposition 3.4 leads to

}u´ uh}2 “ } resh }2
rV 1 “ }uh ´ ΠV uh}2 ` } resCh }2V 1

ď p1 ` 2C2
ortδ

2
hqncf2h `2C2

loc

ÿ

zPZ
} resCh }2V 1

z

ď p1 ` 2C2
ortδ

2
hqncf2h `4C2

locpη2h ` osc2hq.

This implies the upper bound for some

C ď max

"

1,

?
2Cort

C1
,
2Cloc

C2

*

.

Regarding the lower bound, we apply the same auxiliary results to derive

est2h ď p1 ` C2
1δ

2
hqC´2

av }uh ´ ΠV uh}2 ` C2
2C

´2
spltC

2
col} resCh }2V 1

ď max
␣

p1 ` C2
1δ

2
hqC´2

av , C
2
2C

´2
spltC

2
col

(

}u´ uh}2,

whence the lower bound holds for some

C ě max
␣

p1 ` C2
1δ

2
hqC´2

av , C
2
2C

´2
spltC

2
col

(´1
. □

Several remarks about the properties of the estimator esth in Theorem 3.14 are
in order. We start by discussing the computability of esth, compare with typical
results from literature, highlight its features for adaptivity, and conclude with a
remark about how to choose the simple functionals.

Remark 3.15 (On computability). In Remark 3.5 and Lemma 3.12, we have already
observed that, under mild assumptions, the indicators ncfh and ηh are computable
(in exact arithmetic), exploiting their finite-dimensional nature. The remaining
oscillation indicator osch cannot be computationally bounded, not to mention com-
puted, in general, viz. knowing only that the data f is from the infinite-dimensional
space V 1; cf. [KV21, Lemma 2 and Corollary 5]. We may neglect it (see Remark 3.16
for a discussion of this option) or resort to some approximation of osch, which is
derived case-by-case, possibly exploiting additional information on the regularity
and/or structure of f . The significance of Theorem 3.14 then of course hinges on
the quality of those approximations. In particular, to facilitate the approximation,
it may be convenient to waive the lower bound with the data oscillation osch and
replace it by a so-called surrogate oscillation, i.e. a quantity that provides an upper
bound of osch and can be considered computable; cf. [CDN12, Section 7.1].
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Remark 3.16 (Neglecting data oscillation?). Let us compare the splitting of the
conforming residual in Lemma 3.12 to the following formula in numerical integra-
tion:

ż 1

0

v “ vp 1
2 q `

ż 1

0

vpxq ´ vp 1
2 q dx.

Similarly to Lemma 3.12 combined with Remark 3.9, but with an equality instead of
an equivalence, this formula relates an exact non-computable value, a computable
approximation and a representation of the error of the approximation. Since in
numerical integration the error is often not considered on a computational level,
one may be tempted to also neglect the oscillation osch. This approach amounts
to use in computations simply the estimator

Ăest2h :“ p1 ` C2
1δ

2
hqncf2h `C2

2η
2
h.

Note that this estimator depends on the data f only through the discrete solution
uh and the local projections Pz, z P Z. It therefore cannot see components of
f orthogonal to EhpVhq `

Ť

zPZ Sz, which may constitute the main part of the
error; cf. [BCNV24, Section 5.3.1]. Hence, a reliable use of Ăesth requires to verify
a smallness assumption of the type osch ! Ăesth. Apart from the fact that such a
smallness condition would a priori restrict the admissible data, it is not clear to us
that its verification is a simpler task than the alternatives outlined in Remark 3.15.
Notice also that, in an adaptive context, the estimator Ăesth does not provide any
information to adapt to the aforementioned orthogonal components of f and the
smallness assumption will be needed for the initial and all subsequent meshes.

Remark 3.17 (Strict equivalence and error-dominated oscillation). The strict equiv-
alence between error and the estimator esth and the related error-dominated os-
cillation osch are key features of Theorem 3.14. In fact, if we derive a posteriori
bounds for (2.1) and (2.3) by means of classical techniques, the equivalence between
error and estimator is spoiled.

To explain this defect in more detail, denote the classical estimator and oscillation
by xesth and xosch, respectively. The classical oscillation requires f P L2pΩq Ĺ V 1 or
other regularity assumptions beyond V 1. The modified equivalence then reads

(3.16) }u´ uh} ď C1

`

xesth ` xosch
˘

and xesth ď C1

`

}u´ uh} ` xosch
˘

,

where, depending on the estimator type, xosch may be not present in one of the
bounds. Since the classical oscillation xosch does not vanish whenever the error
does, a bound of the type xosch ď C}u ´ uh} does not hold. Furthermore, the fact
that the classical oscillation xosch is formally of higher order does not exclude that,
under adaptive refinement, it converges slower than the error in certain cases; cf.
[CDN12, Section 6.4] and [KV21, Section 3.8]. Consequently, a strict equivalence
cannot be obtained from (3.16) and the defect may not mitigate under adaptive
refinement. In contrast to this, Theorem 3.14 ensures osch ď C}u ´ uh} for some
constant C.

The crucial step for this improvement is the splitting of the conforming residual
by means of the triangle inequality in (3.15). Therein, the splitting is realized with
the local projections that are collectively stable without changing the involved norm
thanks to conditions (iv) and (v) of (H3). Classical techniques split, explicitly or
implicitly, the conforming residual in the upper and/or lower bound in a less stable
manner, passing to some norm that is strictly stronger than } ¨ }V 1 . This difference
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in the stability of the splitting of the conforming residual is the new twist. In
view of the discussion in [BCNV24, Remark 4.19] and [KVZ], it is also a necessary
ingredient for the strict equivalence.

Remark 3.18 (Classical oscillation as surrogate). A classical oscillation xosch from
Remark 3.17 may be used as a surrogate oscillation, as defined in Remark 3.15;
see Theorems 4.5, 4.9, 4.19, 5.8, and 5.15 below. In this context, it is worth men-
tioning that the application of Theorem 3.14 is nevertheless advantageous. Indeed,
Theorem 3.14 ensures the lower bound ηh ď C}u ´ uh} with some constant C,
while, for certain classical techniques, the corresponding lower bound gets spoiled,
i.e. one has only pηh ď Cp}u ´ uh} ` xoschq for the counterpart pηh of ηh, with the
disadvantages outlined in Remark 3.17; cf. [BCNV24, Remark 4.43].

Remark 3.19 (Conforming residual splitting and adaptivity). We briefly discuss a
further advantage of the splitting of the conforming residual in an adaptive context.
The quantity

ř

zPZ } resCh }2V 1
z

“
ř

zPZ }f ´ rAuh}2V 1
z

is of infinite-dimensional and,
although localized, of global nature. The infinite dimension arises through the data
f , while the global dependence through the approximate solution uh. These features
lead to complications in adaptivity. Roughly speaking, infinite dimension in absence
of additional information entails that a given pattern for local refinement cannot
be expected to uniformly reduce the error, while global dependence complicates the
behavior of indicators under local refinement. After the splitting in Lemma 3.12,
the indicator ηh is of finite-dimensional but global nature and the data oscillation
osch of local, but infinite-dimensional nature. In other words: the two difficulties get
separated by this splitting. This separation, which relies on the structural condition
(ii) in (H3), can be exploited in the design and analysis of adaptive algorithms; cf.,
e.g., [BCNV24, Section 5].

Remark 3.20 (Choosing the simple functionals). The crucial structural condition
(ii) of (H3) prescribes a minimal size for the sets Dz, z P Z, of simple function-
als. Furthermore, in the light of the computational issues with osch, it appears
convenient that its formal convergence order is larger than the one for the error
and that it is smaller than available classical oscillations. It will then play, at least
asymptotically for sufficiently smooth sources f , a less important role. Of course,
the larger the sets Dz, z P Z, the greater the computational cost of the estimator.
All this suggests to take the simple functionals not much larger than necessary for
the aforementioned three conditions.

4. Estimators for the Poisson problem

In this section, we first exemplify the application of the guidelines developed
Section 3 in a simple case and then start to illustrate its generality. For the first
purpose, we consider the Poisson problem

´∆u “ f in Ω and u “ 0 on BΩ,(4.1)

together with a first-order Crouzeix-Raviart method, which is quasi-optimal and
overconsistent. Covering the use of locally conforming and locally nonconforming
simple test functions, we derive and discuss two different strictly equivalent a pos-
teriori error estimators, highlighting various aspects of the abstract framework.

To illustrate the generality of the guidelines, we then consider quasi-optimal
discontinuous Galerkin methods of arbitrary but fixed order for the second-order



A POSTERIORI ESTIMATES FOR QUASI-OPTIMAL NONCONFORMING METHODS 17

problem (4.1). This will be complemented in Section 5 by dealing with noncon-
forming methods for a fourth-order problem.

4.1. Domain, mesh, and polynomials. Let Ω be a polyhedral Lipschitz domain
Ω Ă Rd, d ě 2. We denote by n the outward pointing unit normal vector field of BΩ
and, correspondingly, Bnv :“ ∇v ¨n stands for the normal derivative of a sufficiently
smooth function v.

Let T be a simplicial face-to-face (conforming) mesh of the domain Ω. We
denote, respectively, the set of its faces, of its interior faces, of its vertices, and of
its interior vertices by F , F i, V, and Vi. The mesh-size function h : Ω Ñ r0,8q of
T is given by

h|intpT q :“ hT for T P T , and h|F :“ hF , for F P F ,

where hT and hF are the respective diameters of T and F . We extend the normal
field n on the skeleton Σ :“

Ť

FPF F by setting

n|F :“ nF for F P F i,

where nF is an arbitrary but fixed unit vector normal to the interior face F . The
patches around a simplex T P T , a face F P F and a vertex z P V are the respective
sets

ωT :“
ď

T 1PT ,T 1XT‰H

T 1, ωF :“
ď

T 1PT ,FĎBT 1

T 1, ωz :“
ď

T 1PT ,zPT 1

T 1,

and ω`
z :“

ď

T 1PT ,T 1Xωz‰H

T 1.

For convenience, we introduce a dedicated notation also for diameter, induced mesh
and set of interior faces of the above patches around a vertex, namely

hz :“ diampωzq, Tz :“ tT P T | z P T u, F i
z :“ tF P F i | z P F u,

T `
z :“ tT P T | T X ωz ‰ Hu, F i`

z :“ tF P F i | F X ωz ‰ Hu.

For ℓ P N0, we denote by PℓpT q and PℓpF q the sets of polynomials with total
degree not larger than ℓ on a simplex T P T and a face F P F , respectively. For
ℓ ă 0, we use the convention PℓpT q :“ t0u “: PℓpF q. Given k P N0, we consider the
following sets of piecewise polynomials on T

Sk
ℓ :“ tv P HkpΩq | @T P T v|T P PℓpT qu and S̊k

ℓ :“ Sk
ℓ X H̊kpΩq,

with the convention H0pΩq :“ L2pΩq “: H̊0pΩq. We make use of the Courant
basis functions tΨzuzPV of the first-order space S1

1 , which are determined by the
condition

(4.2) Ψzpyq “ δzy, y, z P V,

and of the bubble functions

(4.3) ΨT :“
ź

zPV,zPT

Ψz P S̊1
d`1 and ΨF :“

ź

zPV,zPF

Ψz P S1
d

associated with each element T P T and face F P F .
For a piecewise smooth function v : Ω Ñ R, the jump JvK : Σ Ñ R of v is defined

on the skeleton Σ of T as

JvK|F :“ v|T1
´ v|T2

for F P F i, and JvK|F :“ v|T for F P FzF i,
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where, for F P F i, the simplices T1, T2 P T are such that T1 X T2 “ F and nF
points from T1 to T2, and for F P FzF i, T P T is such that T Ą F . Similarly, the
average ttvuu : Σ Ñ R of v is defined as

ttvuu|F :“
v|T1

` v|T2

2
on F P F i, and ttvuu|F :“ v|T on F P FzF i.

Finally, we write a À b if there exists a positive constant c such that a ď c b and
a ≂ b when in addition b À a. The hidden constants possibly depend on the space
dimension d, the polynomial degree ℓ and the shape constant

γT :“ max
TPT

hT
ρT
,(4.4)

of the mesh T , where ρT is the diameter of the largest ball in T .

4.2. Crouzeix-Raviart method as model example. This section is devoted to
the a posteriori analysis of the quasi-optimal Crouzeix-Raviart method from [VZ19,
section 3.2]. Exemplifying the guidelines in Section 3, two strictly equivalent error
estimators of hierarchical type are derived in Theorems 4.5 and 4.9. The first
estimator involves face-bubble functions, while the second one does not, in line
with the results in [DDP95, DDPV96].

We start by recalling the aforementioned Crouzeix-Raviart method. The lowest-
order finite element space of Crouzeix-Raviart [CR73] on T is defined as

(4.5) CR1 :“

"

v P S0
1 | @F P F

ż

F

JvK “ 0

*

,

and is not contained in H̊1pΩq, the trial and test space of the standard weak for-
mulation of the Poisson problem (4.1). The corresponding discrete problem reads

(4.6)
for f P H´1pΩq, find uh P CR1 such that

@vh P CR1

ż

Ω

∇huh ¨ ∇hvh “ xf, ECRvhy.

Hereafter, ∇h denotes the broken gradient given by

p∇hvq|T :“ ∇pv|T q for T P T and suitable v.

The smoothing operator ECR : CR1 Ñ H̊1pΩq is defined in [VZ19, Proposition 3.3]
and satisfies the following properties: for all vh P CR1, we have

@F P F
ż

F

ECRvh “

ż

F

vh,(4.7a)

@T P T h´1
T }vh ´ ECRvh}L2pT q ` }∇ECRvh}L2pT q À }∇hvh}L2pωT q,(4.7b)

which are related to consistency and stability of the method, respectively; see also
below. Note that the bound (4.7b) entails that ECR is a local operator but may
enlarge the support of its argument.

In order to apply Section 3, we first note that the Poisson problem (4.1) and the
method (4.6) fit into the abstract framework of Section 2 with

(4.8)

rV “ H̊1pΩq ` CR1 with V “ H̊1pΩq, Vh “ CR1,

rapv, wq “

ż

Ω

∇hv ¨ ∇hw, }v} “ }∇hv}L2pΩq,

ah “ ra|CR1ˆCR1
, and Eh “ ECR.
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The conservation (4.7a) of face means by the smoother ECR and the fact that both,
discrete and continuous bilinear forms, are restrictions of ra imply

@vh, wh P CR1

ż

Ω

∇hwh ¨ ∇hpvh ´ ECRvhq “ 0.(4.9)

Consequently, the consistency measure vanishes, i.e. δh “ 0, and the method is
overconsistent; cf. Remark 2.2. Hence, Proposition 2.1 and the smoother stabil-
ity (4.7b) ensure that the method is quasi-optimal with the constant Cqo “ |||ECR|||
depending on the shape constant γT and the dimension d.

We next verify the main assumptions of Section 3 for the setting (4.8). The
derivations of the two estimators will differ only in the verification of (H3) for
the construction of the local projections. Let us start with (H1) concerning the
distance to conformity. According to Proposition 3.4, we need a linear operator
that is invariant on the intersection H̊1pΩq X CR1 “ S̊1

1 . In line with Remark 3.5,
a possible choice is the averaging operator ACR : CR1 Ñ S̊1

1 defined by

(4.10) ACRvhpzq :“
1

#Tz

ÿ

TPTz

vh|T pzq, z P Vi, vh P CR1,

see [Bre96, CGN24].

Lemma 4.1 (Approximate }∇h ¨ }L2 -distance to H̊1 by averaging). In the set-
ting (4.8), the operator ACR in (4.10) satisfies assumption (H1) and Cav Á 1. In
particular, for all vh P CR1 we have that

}∇hpvh ´ ACRvhq}L2pΩq À inf
vPH̊1pΩq

}∇hpvh ´ vq}L2pΩq ď }∇hpvh ´ ACRvhq}L2pΩq.

Proof. Clearly, ACR satisfies (H1) and so the second bound of the claimed equiva-
lence holds. For its first bound, which is equivalent to Cav Á 1, we have

}∇hpvh ´ ACRvhq}2L2pΩq À

ż

Σ

| JvhK |2

h
;

see, e.g., [KP03, Theorem 2.2]. To conclude, we adapt ideas from [ABC03, Theorem
10] to prove that the jumps are bounded by the distance to H̊1pΩq. Let F P F be
any face and, for any element T P T with BT Ą F , define ϕT P H1pT q as the weak
solution of the Neumann problem

´∆ϕT “ 0 in T, BnϕT “ JvhK on F, and BnϕT “ 0 on BT zF,

with
ş

T
ϕT “ 0. Note that the existence of ϕT hinges on

ş

F
JvhK “ 0 and thus on

vh P CR1. For all v P H̊1pΩq, integration by parts yields
ż

F

| JvhK |2 “
ÿ

TPT ,TĄF

ż

T

∇ϕT ¨ ∇pvh ´ vq ď
ÿ

TPT ,TĄF

}∇ϕT }L2pT q}∇pvh ´ vq}L2pT q.

For any T P T with BT Ą F , the norm of ϕT can be further estimated by

}∇ϕT }2L2pT q “

ż

F

JvhKϕT À h
1
2

F } JvhK }L2pF q}∇ϕT }L2pT q

with the help of the scaled trace theorem, a Poincaré inequality thanks to
ş

T
ϕT “ 0,

and hT À hF . Inserting this bound into the previous one shows
ż

F

| JvhK |2

h
À inf

vPH̊1pΩq

}∇hpvh ´ vq}2L2pωF q.
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We conclude by summing over all faces, because the number of patches ωF contain-
ing a given simplex is bounded by d` 1. □

The proof of Lemma 4.1 reveals that properly scaled jumps of vh on the mesh
skeleton can be considered as an alternative indicator for the distance to H̊1pΩq.

Corollary 4.2 (Approximate }∇h ¨ }L2 -distance to H̊1 by jumps). For vh P CR1,
we have that

inf
vPH̊1pΩq

}∇hpvh ´ vq}2L2pΩq ≂
ż

Σ

| JvhK |2

h
.

We next establish assumption (H2). Recalling that the Courant basis functions
(4.2) form a partition of unity in H1pΩq, we take

(4.11) Z “ V, Φz “ Ψz, Vz “ H̊1pωzq, Ih “ ICR
where ICR : H̊1pΩq Ñ CR1 is the Crouzeix-Raviart interpolant; see, e.g., [Bre15,
Section 2.1].

Lemma 4.3 (Partition of unity in H1 for CR). In the setting (4.8), the choices
(4.11) satisfy assumption (H2) with constants Cloc, Ccol À 1.

Proof. Property (i) in (H2) is valid because Ψz P W 1,8pΩq and suppΨz “ ωz for
all z P V as well as

ř

zPV Ψz “ 1. Property (ii) follows from the fact that each
given element T P T is contained in pd ` 1q stars ωz, z P V, the triangle and the
Cauchy-Schwarz inequality. Indeed, given any vz P H̊1pωzq, z P V, we have

›

›

›

›

›

∇

˜

ÿ

zPV
vz

¸
›

›

›

›

›

2

L2pT q

“

›

›

›

›

›

ÿ

zPVXT

∇vz

›

›

›

›

›

2

L2pT q

ď

˜

ÿ

zPVXT

}∇vz}L2pT q

¸2

ď pd` 1q
ÿ

zPVXT

}∇vz}2L2pT q,

and summing over T P T yields Ccol ď
?
d` 1. Finally, in order to verify prop-

erty (iii), let v P H̊1pΩq and z P V. The scaling properties }Ψz}L8pΩq “ 1 and
}∇Ψz}L8pΩq ≂ h´1

z of the Courant basis functions and a triangle inequality entail

}∇
`

pv ´ ECRICRvqΨz

˘

}L2pΩq À h´1
z

`

}v ´ ICRv}L2pωzq ` }ICRv ´ ECRICRv}L2pωzq

˘

` }∇pv ´ ECRICRvq}L2pωzq.

Then, the stability properties of the smoother ECR, see (4.7b), and of the interpo-
lation ICR (see [Bre15, eq. (2.14)]) imply

ÿ

zPV
}∇ppv ´ ECRICRvqΨzq}2L2pΩq À

ÿ

zPV
}∇v}2

L2pω`
z q

À }∇v}2L2pΩq.

Here the second inequality follows from the observation that the number of enlarged
stars ω`

z containing a given simplex is bounded in terms of the shape constant γT
and d. Hence Cloc À 1. □

We finally turn to assumption (H3) enabling the construction of the local pro-
jections. In order to choose the simple functionals, we follow Remark 3.20. To
this end, we observe that, for a discrete trial function vh P CR1 and test function
v P H̊1pΩq, element-wise integration by parts provides the representation

(4.12)
ż

Ω

∇hvh ¨ ∇v “ ´
ÿ

TPT

ż

T

∆vhv `
ÿ

FPFi

ż

F

J∇vhK ¨ nv
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where we do not exploit ∆pvh|T q “ 0 for vh P CR1 and T P T , in order to hint
at the higher-order case. Furthermore, we note that the classical oscillation in the
case at hand arises from approximating with functionals of the form

H̊1pΩq Q v ÞÑ

ż

Ω

f̄v,

where f̄ P L8pΩq is given by f̄|T :“ |T |´1
ş

T
f for suitable f . For local test functions

v P H̊1pωzq, z P V, the latter type of functionals and those of the second sum in
the right-hand side of (4.12) are given by constants associated with the elements
of the set Tz Y F i

z. We thus define

pDz “

!

χ P H´1pΩq | xχ, vy “
ÿ

TPTz

ż

T

rT v `
ÿ

FPFi
z

ż

F

rF v

with rT P R, T P Tz, and rF P R, F P F i
z

)

,

(4.13)

where the degrees of freedom are decoupled in contrast to (4.12), and take

(4.14a) Dz “ pDz |H̊1pωzq

as simple functionals. The space pDz is introduced to allow for a better comparison
with the announced second approach to (H3). The fact that each member of the
set Tz YF i

z corresponds to a degree of freedom in the given Dz suggests to establish
an analogous correspondence for the simple test functions. A possible choice is

(4.14b) Sz “ spantΨT | T P Tzu ‘ spantΨF | F P F i
zu,

where ΨT and ΨF are the bubble functions from (4.3). These choices for simple
functionals and test functions are essentially used also in [KV21] for the conforming
method based upon the space S̊1

1 . The only difference is that here we pair simple
functionals and test functions locally instead of globally.

Lemma 4.4 (Local projections for CR@Poisson with face bubbles). In the settings
(4.8) and (4.11), the choices (4.14) verify assumption (H3) with Ccom À 1 and
Ccom “ 1. Therefore, (3.10) defines projections Pz : H´1pωzq Ñ Dz Ă H´1pωzq

satisfying
@g P H´1pΩq

ÿ

zPV
}Pzg}2H´1pωzq À

ÿ

zPV
}g}2H´1pωzq.

Proof. Let z P V. As Sz Ă H̊1pωzq “ Vz, the simple test functions are locally con-
forming. This readily yields condition (i) of (H3) with rVz “ H̊1pωzq, condition (v)
with Ccom “ 1, and condition (ii) in the light of (4.12). Condition (iii) holds because
the functionals H̊1pωzq Q v ÞÑ

ş

K
v, K P Tz Y F i

z, form a basis of Dz. Condition
(iv) is proved in [KV21, Theorems 8-10] with Ccom À 1; see also Lemma 4.8 below
for a similar argument. Finally, Proposition 3.8 provides the existence of Pz and
the claimed stability bound. □

The approach represented by Lemmas 4.1, 4.3 and 4.4 leads to the following
strictly equivalent error estimator.

Theorem 4.5 (Estimator for CR@Poisson). Let u P H̊1pΩq be the weak solution
of the Poisson problem (4.1) and uh P CR1 its quasi-optimal Crouzeix-Raviart
approximation from (4.6). Given tuning constants C1, C2 ą 0, define
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est2CR :“ ncf2CR `C2
1η

2
CR ` C2

2 osc
2
CR, where

ncf2CR :“ }∇hpuh ´ ACRuhq}2L2pΩq,

η2CR :“
ÿ

TPT
η2CR,T with ηCR,T :“ max

KPKT

|xf,ΨKy ´
ş

Ω
∇huh ¨ ∇ΨK |

}∇ΨK}L2pΩq

,

osc2CR :“
ÿ

zPV
}f ´ Pzf}2H´1pωzq,

with the averaging operator ACR from (4.10), KT “ tT u Y tF P F i | F Ă T u,
the bubble functions ΨT and ΨF from (4.3), and the local projections Pz from
Lemma 4.4. This estimator quantifies the error by

C estCR ď }∇hpu´ uhq}L2pΩq ď C estCR and ηCR,T ď }∇hpu´ uhq}L2prωT q

where rωT “
Ť

FPFi,FĂBT ωF and the equivalence constants C and C depend only
on the dimension d, the shape constant γT , and the tuning constants C1, C2.

Furthermore, if f P L2pΩq, the oscillation indicator is bounded in terms of the
classical L2-oscillation:

osc2CR À
ÿ

TPT
h2T inf

cPR
}f ´ c}2L2pT q.

Remark 4.6 (Estimator variants for CR@Poisson). For the ease of implementation,
the reduction of computational cost, or with the hope to improve the equivalence
constants C,C, one may consider the following variants of the indicators in Theo-
rem 4.5:

‚ In view of Corollary 4.2, we may replace ncfCR with properly scaled jumps
and an additional tuning constant.

‚ A simplification of ηCR is derived in Theorem 4.9 below. [KV21, Section 4]
discusses other alternatives for ηCR by using so-called local problems (this
type is used also in Theorem 4.19 below) and the standard residual tech-
nique. Moreover, in light of the equivalences }∇ψK}L2pΩq ≂ hd´2

K , one may
replace ηCR,T by

max
KPKT

|xf,ΨKy ´
ş

Ω
∇huh ¨ ∇ΨK |

hd´2
K

,

which is particularly simple for d “ 2. This simplified hierarchical indicator
is closely related to Remark 3.9, which in turn connects to local problems
on Sz. Indeed, taking into account also hK ≂ hz, we observe that the
matrix Az in Remark 3.9 is spectrally equivalent to the diagonal matrix
diagphd´2

z , . . . , hd´2
z q. We therefore have

}Pz res
C
h }2H´1pωzq ≂

ÿ

TPTz

|xresCh,ΨT y|2

hd´2
T

`
ÿ

FPFi
z

|xresCh,ΨF y|2

hd´2
F

.

and see that the ‘max’ in the above hierarchical indicators is mainly moti-
vated by the ‘constant-free’ lower bound in Theorem 4.5.

‚ For alternative oscillation indicators, see the discussion in the Remarks 3.15,
3.16, and 3.18.

The hierarchical variant for ηCR in Theorem 4.5 is best suited for a comparison with
Theorem 4.9.
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Proof of Theorem 4.5. Thanks to Lemmas 4.1, 4.3, and 4.4, we can apply Theo-
rem 3.14 with (4.8) and (4.11). The overconsistency of the Crouzeix-Raviart method
(4.6), i.e. δh “ 0, simplifies the abstract estimator therein and the claimed equiva-
lence follows with the help of

(4.15)
ÿ

zPV
}Pz res

C
h }2H´1pωzq ≂

ÿ

zPV
} resCh }2S1

z
≂ η2CR,

where the first equivalence is a consequence of properties (iv) and (v) of (H3) and
the second one can be shown with the arguments in [KV21, §4.1].

To verify the claimed lower bound, let T P T and K P tT u Y tF P F i | F Ă BT u

be arbitrary. Thanks to the weak formulation of (4.1) and suppΨK Ă rωT , we
readily obtain the constant-free lower bound

|xf,ΨKy ´
ş

Ω
∇huh ¨ ∇ΨK |

}∇ΨK}L2pΩq

“
|
ş

Ω
∇hpu´ uhq ¨ ∇ΨK |

}∇ΨK}L2pΩq

ď }∇hpu´ uhq}L2prωT q.

To show the bound for the oscillation, write f̄ for the piecewise constant function
with f̄|T “ |T |´1

ş

T
f for all T P T . Since f̄|ωz

P Dz for any vertex z P V, the
properties of the local projections and the Poincaré inequality imply

ÿ

zPV
}f ´ Pzf}2H´1pωzq “

ÿ

zPV
}f ´ f̄ ´ Pzpf ´ f̄q}2H´1pωzq À

ÿ

zPV
}f ´ f̄}2H´1pωzq

À
ÿ

zPV
h2z}f ´ f̄}2L2pωzq À

ÿ

TPT
h2T inf

cPR
}f ´ c}2L2pT q

and the proof is finished. □

Remark 4.7 (Generalization to higher order Crouzeix-Raviart elements). [VZ19,
section 3.3] derives quasi-optimal methods based upon Crouzeix-Raviart spaces
of any order and dimension. Using techniques similar to those in Section 4.3 for
discontinuous Galerkin methods, Theorem 4.5 can be generalized to these methods.

We next derive an error estimator that does not need the evaluations xresCh,ΨF y,
F P F i, of the conforming residual associated with interior faces. This simplification
is in line with [DDP95, DDPV96] and, in the framework of Section 3, mainly
relies on suitably replacing the face-bubble functions ψF , F P F i

z, in the choice
(4.14b) of the simple test functions. To individuate their alternatives, denote by
pΨCR

F qFPFi Ď CR1 the Crouzeix-Raviart basis functions, defined by the condition

ΨCR
F pmF 1 q “ δFF 1 , @F 1 P F i,(4.16)

where mF 1 is the barycenter of F 1. We observe from (4.6) that

(4.17) @F P F i xresCh, ECRΨCR
F y “ xf, ECRΨF y ´

ż

Ω

∇huh ¨ ∇hΨ
CR
F “ 0.

This orthogonality suggests to replace the face-bubble functions by the smoothed
Crouzeix-Raviart basis functions, which have enlarged supports; cf. (4.7b). In or-
der to maintain the boundedness in terms of classical oscillation, these enlarged
supports need to be accompanied by additional element-bubble functions; see Re-
mark 4.10 below. Thus, the new simple test functions and functionals are

Sz “ spantΨT | T P T `
z u ‘ spantECRΨCR

F | F P F i
zu(4.18a)

Dz “

!

χ P
`

H̊1pωzq ` Sz

˘1
| xχ, vy “

ÿ

TPT `
z

ż

T

rT v `
ÿ

FPFi
z

ż

F

rF v(4.18b)
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with rT P R, T P T `
z , and rF P R, F P F i

z

)

.

The simple test functions (4.18a) are locally nonconforming, i.e. Sz Ć H̊1pωzq, and
the simple functionals (4.18b) essentially differ from (4.14a) only by the additional
characteristic functions χT , T P T `

z zTz.

Lemma 4.8 (Local projections for CR@Poisson with smoothed CR basis). In the
settings (4.8) and (4.11), the choices (4.18) satisfy assumption (H3) with Ccom À 1

and Ccom À 1. Hence, (3.10) defines projections Pz : rV 1
z Ñ Dz Ă rV 1

z with rVz “

H̊1pωzq ` Sz and we have

@g P H´1pΩq
ÿ

zPV
}Pzg}2H´1pωzq À

ÿ

zPV
}g}2H´1pωzq.

Proof. Let z P V. Clearly, the choices (4.18) satisfy conditions (i) and (iii) of (H3).
In order to verify (ii), let vh P Vh, v P H̊1pωzq and s P Sz. Then the representation
(4.12) and ∆pvh|T q “ 0 in each T P T yield

ż

Ω

∇hvh ¨ ∇pv ` sq “
ÿ

FPFi
z

ż

F

J∇vhK ¨ npv ` sq `
ÿ

F 1PFzFi
z

ż

F 1

J∇vhK ¨ ns

and we have to show that the second sum vanishes. Let F 1 P FzF i
z be any face

appearing therein and observe, for any T P T `
z and any F P F i

z, that

(4.19) ΨT |F 1 “ 0,

ż

F 1

ECRΨCR
F “

ż

F 1

ΨCR
F “ ΨCR

F pmF 1 q “ 0

thanks to the moment conservation (4.7a) and the definition of the Crouzeix-Raviart
basis. Therefore,

ş

F 1 J∇vhK ¨ ns “ 0 and condition (ii) is verified.
We next show condition (iv) of (H3). Given any χ P Dz and v P H̊1pωzq, we can

write

xχ, vy “
ÿ

TPT `
z

ż

T

rT v `
ÿ

FPFi
z

ż

F

rF v

for some rT P P0pT q, T P T `
z and rF P P0pF q, F P F i

z. Fixing a local test function
v, we choose the simple test function

s “
ÿ

TPT `
z

sTΨT `
ÿ

FPFi
z

sFECRΨCR
F P Sz

where sT P P0pT q, T P T `
z , and sF P P0pF q, F P F i

z, solve the problems

@pF P P0pF q

ż

F

sF pFΨ
CR
F “

ż

F

vpF ,

@pT P P0pT q

ż

T

sT pTΨT “

ż

T

vpT ´
ÿ

FPFi
z

ż

T

sF pTECRΨCR
F .

These problems are uniquely solvable because ΨCR
F and ΨT are strictly positive in

the interior of F and T , respectively. We then have xχ, vy “ xχ, sy and

}∇s}L2pω`
z q

À h´1
z

ÿ

TPT `
z

}sT }L2pT q ` h
´ 1

2
z

ÿ

FPFi
z

}sF }L2pF q À }∇v}L2pωzq,

where the first inequality follows from (4.7b) and the scaling properties of the basis
functions of Sz and, for the second one, we use in addition norm equivalences with
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bubble functions [Ver13, Proposition 1.4], trace and Poincaré inequalities. Hence,
we arrive at

xχ, vy

}∇v}L2pωzq

À
xχ, sy

}∇s}L2pω`
z q

ď }χ}S1
z

and, taking the supremum over v, we obtain the desired condition (iv).
Finally, for verifying condition (v) in (H3), assume g P H´1pΩq. Since we have

Sz Ă H̊1pω`
z q and so }g}S1

z
ď }g}H´1pω`

z q
for all vertices z P V, the desired bound

follows from

(4.20)
ÿ

zPV
}g}2

H´1pω`
z q

À
ÿ

zPV
}g}2H´1pωzq.

Given any vertex z P V and v P H̊1pω`
z q, we can write v “

ř

yPVXω`
z
vΨy and have

the stability bounds }∇pvΨyq}L2pωyq À }∇v}L2pω`
z q

thanks to scaling properties of
the Courant basis and the Poincaré inequality with zero boundary values on ω`

z .
Hence, similarly to the proof of Lemma 4.3, we derive

(4.21)

xg, vy

}∇v}L2pω`
z q

À
ÿ

yPVXω`
z

xg, vΨyy

}∇pvΨyq}L2pωyq

À
ÿ

yPVXω`
z

}g}H´1pωyq

À

¨

˝

ÿ

yPVXω`
z

}g}2H´1pωyq

˛

‚

1{2

,

where in the last inequality we used that #pV X ω`
z q is bounded in terms of the

shape constant γT and d. We take the supremum over v, square and sum over
all vertices z. This verifies (4.20) because the number of patches ω`

z containing a
vertex y is again bounded in terms of shape constant γT and d. □

Theorem 4.9 (Simplified estimator for CR@Poisson). Let u P H̊1pΩq be the weak
solution of the Poisson problem (4.1) and uh P CR1 its quasi-optimal Crouzeix-
Raviart approximation from (4.6). Given tuning constants C1, C2 ą 0, define

est2
ĂCR

:“ ncf2
ĂCR

`C2
1η

2
ĂCR

` C2
2 osc

2
ĂCR
, where

ncf2
ĂCR

:“ }∇hpuh ´ ACRuhq}2L2pΩq,

η2
ĂCR

:“
ÿ

TPT
η2
ĂCR,T

with η
ĂCR,T

:“
|xf,ΨT y ´

ş

Ω
∇huh ¨ ∇ΨT |

}∇ΨT }L2pΩq

,

osc2
ĂCR

:“
ÿ

zPV
}f ´ Pzf}2H´1pωzq,

with the averaging operator ACR from (4.10), the element-bubble functions ΨT from
(4.3), and the local projections Pz from Lemma 4.8. This estimator quantifies the
error by

C est
ĂCR

ď }∇hpu´ uhq}L2pΩq ď C est
ĂCR

and η
ĂCR,T

ď }∇hpu´ uhq}L2pT q

and the equivalence constants C and C depend only on the dimension d, the shape
constant γT , and the tuning constants C1, C2.
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Furthermore, if f P L2pΩq, the oscillation indicator is bounded in terms of the
classical L2-oscillation:

osc2
ĂCR

À
ÿ

TPT
h2T inf

cPR
}f ´ c}2L2pT q.

Proof. The proof is very similar to the one of Theorem 4.5. The main differences for
the estimator equivalence are that we must invoke Lemma 4.8 instead of Lemma 4.4
and that the smoothed CR basis functions do not appear in the estimator in view of
their orthogonality (4.17) to the residual. Also the oscillation bound follows along
the same lines, with the caveat that now the condition

(4.22) f̄
|ω`

z
P Dz

ensures the invariance pPz f̄q
|H̊1pωzq

“ f̄|ωz
, where we identify f̄|ωz

with the func-
tional H̊1pωzq Q v ÞÑ

ş

Ω
f̄v. □

To discuss Theorem 4.9, two remarks address the design and the generality of
the approach behind it and three remarks compare its estimator with alternatives.

Remark 4.10 (Nonconforming element-bubble functions). One may be tempted to
build the second approach on the simpler pairs

(4.23) Sz “ spantΨT | T P Tzu ‘ spantECRΨCR
F | F P F i

zu, Dz “ pDz |pH̊1pωzq`Szq
,

which just replace the face-bubble functions in (4.14b) by the smoothed Crouzeix-
Raviart basis functions, thus avoiding the nonconforming element-bubble functions
in Sz along with their companions in Dz. In this case, the estimator equivalence in
Theorem 4.9 still holds, but the oscillation bound is not valid in general. Indeed,
assuming (4.23), testing (3.10) first with the element-bubble functions ΨT , T P Tz,
and then with the smoothed Crouzeix-Raviart basis functions ECRΨCR

F , F P Fz

reveals that Pz f̄ “ f̄ holds only under additional assumptions on f̄
|pω`

z zωzq
outside

of the star ωz. This drawback is overcome by including the nonconforming element-
bubble functions ΨT , T P T `

z zTz, and their companions χT , T P T `
z zTz, ensuring

(4.22), which in turn implies pPz f̄q
|H̊1pωzq

“ f̄|ωz
.

On the other hand, if we set the oscillation bound in Theorem 4.9 aside, we can
use the even simpler pair

Sz “ spantECRΨCR
F | F P F i

zu, Dz “ pDz |pH̊1pωzq`Szq
,

and obtain another strictly equivalent estimator, which consists only of an approxi-
mate distance to conformity and a data oscillation term and which is a lower bound
of the estimators in [Bre15, Section 2.3] and [CGN24, Section 3.2.3], respectively.

Remark 4.11 (Simplification for some higher-order Crouzeix-Raviart methods). For
d “ 2 and odd polynomial degree ℓ, a similarly simplified estimator as in Theo-
rem 4.9 can be derived for the corresponding Crouzeix-Raviart method in [VZ19,
Section 3.3]. In this case, [SB06, Lemma 1] shows that point evaluations at the
order ℓ Legendre nodes on the element edges together with the order ℓ Lagrange
points in the interior of a given element determine Pℓ. The smoothed basis func-
tions corresponding to the Legendre nodes on the edges are then orthogonal to the
residual. Thus, the higher order counterpart of (4.14) can be modified to a higher
order counterpart of (4.18) in order to obtain a generalization of Theorem 4.9.
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Remark 4.12 (Comparison of strictly equivalent estimators with quasi-optimality).
Let us compare the two estimators in Theorems 4.5 and 4.9. The differing indicators
are related as follows:

(4.24) ηCR ě η
ĂCR
, ηCR Â η

ĂCR
, and oscCR ≂ osc

ĂCR
.

These properties are proved below.
Clearly, the implementation of the indicator η

ĂCR
is easier than the one of ηCR,

while the one of oscCR is slightly easier that the one of osc
ĂCR

because the latter
in addition involves some smoothing; recall that smoothing itself has to be imple-
mented in any case for assembling the discrete problem (2.3) and that oscillations
may be replaced by surrogates. In terms of computational costs, the situation is
quite similar in the sense that ‘easier’ is replaced with ‘less costly’. To sum up, we
may view est

ĂCR
as a simplification of estCR.

We finally inspect the (hidden) constants in the proof. Since the derivations of
the two upper bounds differ only in the second equivalence of (4.15), the constants
in front of the oscillations oscCR and osc

ĂCR
coincide and we expect that those in

front of ηCR and η
ĂCR

are different. In light of the first inequality in (4.24), the latter
should turn out to be larger. For the global lower bounds, the constants for η

ĂCR
and

osc
ĂCR

are expected to be larger in view of the increased overlapping in the simple
functions, as suggested by the given proofs for (v) in (H3).

Proof of (4.24). We use the superscript ‘„’ to distinguish the spaces and operators
related to the estimator est

ĂCR
from those related to estCR.

1 The first claimed inequality readily follows by the respective definitions. Fur-
thermore, the invariance and stability properties of Pz as well as rDz |H̊1pωzq

“ Dz

imply

}f ´ Pzf}H´1pωzq “ }pid´Pzqpf ´ rPzfq}H´1pωzq À }f ´ rPzf}H´1pωzq.

Hence, summing over z P V, gives the oscillation bound oscCR À osc
ĂCR

.
2 To prepare the proof of inequality osc

ĂCR
À oscCR, we introduce a further local

projection acting over the extended star ω`
z : for any vertex z P V, the pair

S`
z :“ spantΨT | T P T `

z u ‘ spantΨF | F P F i`
z u,

D`
z :“

!

χ P H´1pω`
z q | xχ, vy “

ÿ

TPT `
z

ż

T

rT v `
ÿ

FPFi`
z

ż

F

rF v

with rT P R, T P T `
z , and rF P R, F P F i`

z

)

,

induces through Proposition 3.8 a local projection P`
z : H´1pω`

z q Ñ D`
z . For a

given vertex y P V X ωz, combining D`
z |H̊1pωyq

“ Dy, Sy Ă S`
z , and the uniqueness

of (3.10) for (4.14) yield that, for any g P H´1pΩq,

(4.25) pP`
z gq

|H̊1pωyq
“ Pyg.

Also, there are constants rT , T P T `
z , and rF , F P F i

z, such that, for all v P H̊1pωzq

and s P rSz, we have

xP`
z g, v ` sy “

ÿ

TPT `
z

ż

T

rT pv ` sq `
ÿ

FPFi
z

ż

F

rF pv ` sq
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thanks to (4.19). In other words, pP`
z gq

|pH̊1pωzq` rSzq
P rDz and the invariance of rPz

ensure

(4.26)
`

P`
z g

˘

|pH̊1pωzq` rSzq
“ rPzpP`

z gq.

Note that this property hinges on the companions of the nonconforming element-
bubble functions in Remark 4.10.

3 We turn to the proper proof of osc
ĂCR

À oscCR. Employing (4.26) restricted to
H̊1pωzq, the stability properties of rPz, rSz Ă H̊1pω`

z q, (4.21) and (4.25), we obtain

}f ´ rPzf}H´1pωzq “ }f ´ P`
z f ´ rPzpf ´ P`

z fq}H´1pωzq

À }f ´ P`
z f}H´1pω`

z q
À

¨

˝

ÿ

yPVXω`
z

}f ´ Pyf}2H´1pωyq

˛

‚

1{2

,

and so squaring, and summing over all vertices, yields the desired bound.
4 Finally, we verify that ηCR cannot be bounded by η

ĂCR
. For f P H´1pΩq and

T P T , an integration by parts reveals

xf,ΨT y ´

ż

Ω

∇huh ¨ ∇ΨT “ xf,ΨT y.

Moreover, for F P F i, the orthogonality property of the interpolant ICR in (4.11),
see [Bre15, Section 2.1], and (4.6) entail that

xf,ΨF y ´

ż

Ω

∇huh ¨ ∇ΨF “ xf,ΨF ´ ECRICRΨF y.

The construction of ECR in [VZ19, Proposition 3.3] reveals that there is a face F
such that pΨF ´ ECRICRΨF q|F is not the zero function. Therefore, fixing that face
and taking the source f so that xf, vy “

ş

F
pΨF ´ ECRICRΨF qv for v P H̊1pΩq, we

have ηCR ‰ 0, whereas η
ĂCR

“ 0. □

Remark 4.13 (Comparison with classical estimators). We compare the estimators
in Theorems 4.5 and 4.9 with the classical ones in [DDPV96], for the classical
Crouzeix-Raviart method

(4.27) find uh P CR1 such that @vh P CR1

ż

Ω

∇huh ¨ ∇hvh “ xf, vhy.

For ˚ P tCR, ĂCRu, the classical estimators are given by

(4.28)

est2˚ :“ncf2cl,˚ `η2cl,˚ ` osc2cl,˚, where

ncf2cl,˚ :“

ż

Σ

| JuhK |2

h
, osc2cl,˚ :“

ÿ

TPT
inf
cPR

ż

T

h2|f ´ c|2

η2cl,˚ :“
ÿ

TPT
ηcl,˚pT q2 with

ηcl,˚pT q2 :“

#

ş

T
h2|f |2 `

ř

FĎBT

ş

F
h| J∇uhK ¨ n|2, if ˚ “ CR,

ş

T
h2|f |2, if ˚ “ ĂCR.

Note that both, the classical method (4.27) and the estimators (4.28), are not
defined for all f P H´1pΩq. More crucially, there are no continuous extensions
of their definitions to H´1pΩq. As a consequence, the classical method (4.27) is
not quasi-optimal and the estimators cannot be strictly equivalent; cf. [VZ18a,
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Remark 4.9] and [KVZ]. It therefore comes as no surprise that, if f P L2pΩq, we
have

(4.29) est˚ À estcl,˚ ˚ P tCR, ĂCRu.

In fact, the respective inequalities for the oscillations indicators are already shown in
Theorems 4.5 and 4.9, while those for the indicators of the approximate H̊1-distance
and the conforming residual follow from Corollary 4.2 and standard residual tech-
niques. The fact that the dependence of estcl,˚ on f does not continuously extend
to H´1pΩq entails that there is a sequence pfkqk Ă L2pΩq such that the right-hand
side of (4.29) tends to 8, while the left-hand side remains bounded or even tends
to 0.

Remark 4.14 (Quasi-optimality and strict estimator equivalence). The quasi-opti-
mality of the nonconforming method is a useful but not necessary ingredient for
the strict equivalence of error estimators. In fact, the usefulness is clear from
Lemma 3.6 and, to show the non-necessity, we outline the derivation of a strictly
equivalent error estimator for the classical Crouzeix-Raviart method (4.27). Since
the quasi-optimality enters our approach only in Lemma 3.6, we can generalize the
bounds therein by accepting the additional indicator

} resCh }EhpVhq1 :“ sup
whPEhpVhq,}wh}ď1

xresCh, why.

This indicator can be computed by solving a discrete problem or quantified by using
the correction of a solver with strict error reduction or by a hierarchical approach
as illustrated in [FV06]. Combing this idea, e.g., with Theorem 4.5 and using the
notation therein shows that the estimator

´

ncf2CR `η2CR ` } resCh }2ECRpCR1q1 ` osc2CR

¯1{2

is strictly equivalent to the error }∇hpu´uhq}L2pΩq of the classical Crouzeix-Raviart
method (4.27).

4.3. Discontinuous Galerkin methods of fixed arbitrary order. In this sec-
tion we apply the abstract framework of Sections 2 and 3 to derive strictly equivalent
error estimators for quasi-optimal discontinuous Galerkin methods of fixed arbitrary
order. We shall restrict to the symmetric and non-symmetric interior penalty meth-
ods in [VZ18b, Section 3.2] for the ease of presentation, see also Remark 4.21. To
recall them, we use the notation of Section 4.1.

Given a polynomial degree ℓ P N and a stabilization parameter σ, we define a
discrete bilinear form on the possibly discontinuous piecewise polynomials S0

ℓ by

(4.30)
ahpuh, vhq “

ż

Ω

∇huh ¨ ∇hvh `

ż

Σ

σ

h
JuhK JvhK

`

ż

Σ

θ JuhK ttBnvhuu ´ ttBnuhuu JvhK

with θ “ 1 for the non-symmetric and θ “ ´1 for the symmetric case. In order to
ensure coercivity of the bilinear form, the former case requires σ ą 0 and the latter
σ ą σ˚ for some sufficiently large σ˚ depending on the dimension d, the shape
constant γT and the polynomial degree ℓ; compare, e.g., with [VZ18b, Lemma 3.5
and (3.23)]. The discrete problem then reads

(4.31) for f P H´1pΩq, find uh P S0
ℓ such that @vh P S0

ℓ ahpuh, vhq “ xf, Eℓvhy,
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where the smoothing operator Eℓ : S0
ℓ Ñ H̊1pΩq is defined in [VZ18b, Proposi-

tion 3.4] and satisfies for the following moment conditions and stability properties:
for all vh P S0

ℓ , F P F i, mF P Pℓ´1pF q, T P T , mT P Pℓ´2pT q
ż

F

EℓpvhqmF “

ż

F

ttvhuumF ,

ż

T

EℓpvhqmT “

ż

T

vhmT ,(4.32a)

h´2
T }vh ´ Eℓvh}2L2pT q ` }∇Eℓvh}2L2pT q

À }∇hvh}2L2pωT q `
ÿ

FPF,FXT‰H

ż

F

1

h
|JvhK|2.

(4.32b)

Together with the Poisson problem (4.1), method (4.31) fits into the framework
of Section 2 by considering

(4.33)

rV “ S0
ℓ ` H̊1pΩq with V “ H̊1pΩq, Vh “ S0

ℓ ,

rapv, wq “

ż

Ω

∇hv ¨ ∇hw `

ż

Σ

σ

h
JvK JwK , }v} “ }v}dG :“ rapv, vq1{2,

ah as in (4.30), and Eh “ Eℓ.
We note that these methods are quasi-optimal but not overconsistent, i.e. we have
δh À 1 in Proposition 2.1, where the hidden constants depend only on d, γT , ℓ and
σ; see [VZ18b, Theorems 3.6 and 3.7], which also shows that δh Œ 0 for σ Õ 8.

To establish the main assumptions of Section 3, we follow the arguments of
the first approach for the Crouzeix-Raviart method in Section 4.2, focusing on the
changes due to the higher order. Regarding a suitable operator for (H1), recall
that averaging the function values at the Lagrange points of order ℓ instead of the
vertices of the mesh generalizes the operator from (4.10) to an averaging operator

Aℓ : S
0
ℓ Ñ S̊1

ℓ such that @wh P S̊1
ℓ “ S0

ℓ X H̊1pΩq Aℓwh “ wh;(4.34)

compare, e.g., with [KP03, Section 2.1].

Lemma 4.15 (Approximate } ¨ }dG-distance to H̊1 by averaging). In the set-
ting (4.33), the operator Aℓ from (4.34) satisfies assumption (H1) and Cav Á
a

σ{p1 ` σq. In particular, we have that, for all vh P S0
ℓ ,

c

σ

1 ` σ
}vh ´ Aℓvh}dG À inf

vPH̊1pΩq

}vh ´ v}dG ď }vh ´ Aℓvh}dG.

Proof. The second inequality holds because the operator Aℓ verifies assumption (H1)
and it remains to show the first one. Similar to Lemma 4.1, [VZ18b, (3.17)] assures

}vh ´ Aℓvh}2dG À p1 ` σq

ż

Σ

| JvhK |2

h
.

Since the right-hand side scaled by σ
1`σ is bounded by }v´vh}dG for any v P H̊1pΩq,

the proof is finished. □

In analogy to Section 4.2, the proof of Lemma 4.15 shows that properly scaled
jumps of vh on the mesh skeleton may be used as approximate distance.

Corollary 4.16 (Approximate } ¨ }dG-distance to H̊1 by jumps). For vh P S0
ℓ , we

have
ż

Σ

σ

h
| JvhK |2 ď inf

vPH̊1pΩq

}v ´ vh}2dG À

ż

Σ

1 ` σ

h
| JvhK |2.
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Next, we turn to assumption (H2). Motivated by the inclusion CR1 Ă S0
ℓ , we

choose

(4.35) Z “ V, Φz “ Ψz, Vz “ H̊1pωzq, Ih “ ICR,

which coincides with (4.11) and, in particular, does not depend on the polynomial
degree ℓ.

Lemma 4.17 (Partition of unity in H1). In the setting (4.33), the choices (4.35)
satisfy assumption (H2) with constants Cloc, Ccol À 1.

Proof. Since the difference between the settings (4.8) and (4.33) does not affect the
proofs of (i) and (ii) of (H2) in Lemma 4.3, they are still valid here. The proof
of condition (iii), however, requires a small change due to the different smoothing
operators, namely invoking the stability properties (4.32b) of Eℓ instead of those of
ECR in (4.7b). □

In order to motivate the simple test functions and functionals for assumption (H3),
we follow Remark 3.20 and observe that, for a discrete trial function vh P S0

ℓ and a
test function v P H̊1pΩq, we have

(4.36) rapvh, vq “ ´
ÿ

TPT

ż

T

∆vhψ `
ÿ

FPFi

ż

F

J∇vhK ¨ nv

thanks to JvK “ 0 on all faces F P F . Thus, although the extended bilinear form
differs from Section 4.2, the left-hand side has the same piecewise structure as the
one in (4.12), only with polynomial densities of higher order. Given any vertex
z P V, this suggests to choose the simple functionals

(4.37a)
Dz “

!

χ P H´1pωzq | χpvq “
ÿ

TPTz

ż

T

rT v `
ÿ

FPFi
z

ż

F

rF v

with rT P Pℓ´1pT q, T P Tz, and rF P Pℓ´1pF q, F P F i
z

)

.

To define the accompanying simple functions, we need to extend the polynomials
on faces into the volume. To this end, given a face F “ conv hulltz0 . . . , zd´1u P F
and its midpoint zF , we recall that the extension operator EF : Pℓ´1pF q Ñ H1pωF q

given by

pEF vqpxq :“ v

˜

zF `

d´1
ÿ

i“1

Ψzipxqpzi ´ zF q

¸

, x P ωF ,

satisfies the stability bound

}EF v}L2pωF q À h
1
2

F }v}L2pF q;

see, e.g., [BCNV24, Lemma 4.20]. The simple functions are then

(4.37b)
Sz “ span

␣

pTΨT | pT P Pℓ´1pT q, T P Tz
(

‘ span
␣

pEF pF qΨF | pF P Pℓ´1pF q, F P F i
z

(

.

These choices coincide with those for conforming methods in [KVZ].
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Lemma 4.18 (Local projections for dG@Poisson). In the settings (4.33) and (4.35),
the choices (4.37) satisfy assumption (H3) with Ccom À 1 and Ccom “ 1. Hence,
(3.10) defines projections Pz : H´1pωzq Ñ Dz Ă H´1pωzq with

@g P H´1pΩq
ÿ

zPV
}Pzg}2H´1pωzq À

ÿ

zPV
}g}2H´1pωzq.

Proof. Given any vertex z P V, we have Sz Ă Vz, viz. the simple functions are
locally conforming, and therefore (i) of (H3) holds with rVz “ H̊1pωzq, (v) with
Ccom “ 1, and (ii) in view of (4.36). Condition (iii) holds because Sz determines
Dz. Condition (iv) with Ccom À 1 is shown in [KVZ] by using an argument similar
to the corresponding one in Lemma 4.8. Then Proposition 3.8 implies the existence
of Pz and the collective stability bound. □

Using the above lemmas in the abstract a posteriori analysis of Section 3 leads
to the following strictly equivalent estimator.

Theorem 4.19 (Estimator for dG@Poisson). Let u P H̊1pΩq be the weak solution
of the Poisson problem (4.1) and uh P S0

ℓ its quasi-optimal discontinuous Galerkin
approximation from (4.31). Given tuning constants C1, C2, C3 ą 0, define

est2ℓ :“ C1 ncf
2
ℓ `C2η

2
ℓ ` C3 osc

2
ℓ , where

ncf2ℓ :“ }uh ´ Aℓuh}2dG, osc2ℓ :“
ÿ

zPV
}f ´ Pzf}2H´1pωzq,

η2ℓ :“
ÿ

zPV
η2ℓ,z with ηℓ,z :“ sup

sPSz

|xf, sy ´
ş

Ω
∇huh ¨ ∇s|

}∇s}L2pωzq

with the averaging operator Aℓ from (4.34), the local projections Pz from Lemma 4.18,
the test simple functions Sz from (4.37b), and ηℓ,z can be computed as indicated in
Remark 3.9. This estimator quantifies the error by

C estℓ À }uh ´ u}dG À C estℓ ηℓ,z ď }∇hpuh ´ uq}L2pωzq,

where the equivalence constants C,C depend only on the dimension d, the shape
constant γT , the polynomial degree ℓ, the stabilization parameter σ, and the tuning
constants C1, C2 and C3.

Furthermore, if f P L2pΩq, the oscillation indicator is bounded in terms of the
classical higher-order L2-oscillation:

osc2ℓ À
ÿ

TPT
h2T inf

pPPℓ´1

}f ´ p}2L2pT q.

Remark 4.20 (Estimator variants for dG@Poisson). The estimator in Theorem 4.19
amounts to an approach based upon (discrete) local problems. Indeed, the solution
of

find vz P Sz such that @s P Sz

ż

ωz

∇vz ¨ ∇s “ xresCh, sy

satisfies the identity ηℓ,z “ }∇vz}L2pωzq. For alternative indicators, we refer to
Remark 4.6 as well as [BCNV24, Section 4.9].

Proof of Theorem 4.19. Supposing the settings (4.33) and (4.35), Lemmas 4.15,
4.17, and 4.18 verify (H1), (H2) and (H3). Hence, we can apply Theorem 3.14 and
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the claimed equivalence follows from
ÿ

zPV
}Pz res

C
h }2H´1pωzq ≂

ÿ

zPV
} resCh }2S1

z
,

which is a consequence of (iv) and (v) in (H3). The lower bound is an immediate
consequence of the definition of ηℓ,z and xresCh, sy “

ş

Ω
∇hpu ´ uhq ¨ ∇s for all

s P Sz. □

Remark 4.21 (Assumptions for smoothing operator). Theorem 4.19 assumes that
the smoothing operator in (4.31) verifies (4.32). We emphasize that this covers
high-order smoothing operator which are only invariant on S̊1

1 . Although such
operators are not quasi-optimal in the sense of [CN22, Definition 2.1], they lead
to quasi-optimal methods [VZ18b, Theorem 3.10]. In fact, the required stability
property (4.32b) for quasi-optimality and Theorem 4.19 hinges only on an local
invariance within S̊1

1 , which is a proper subspace of the full conforming subspace
S̊1
ℓ for ℓ ě 2.

5. Estimators for the biharmonic problem

In this section, we continue to illustrate the generality of the guidelines in Sec-
tion 3 for an a posteriori analysis of nonconforming methods. To this end, we con-
sider the fourth-order problem of the two-dimensional biharmonic equation with
clamped boundary conditions:

(5.1) ∆∆u “ f in Ω Ă R2, and u “ Bnu “ 0 on BΩ.

Generally speaking, fourth-order problems are challenging test cases for noncon-
forming techniques because, in contrast to second-order problems, the conforming
subspaces of the underlying discrete spaces may be so small that they are unus-
able for theoretical or practical purposes. To illustrate how to handle this adverse
feature within the aforementioned guidelines, we derive strictly equivalent error
estimators for a quasi-optimal C0-interior penalty method of lowest order and a
quasi-optimal Morely method. For convenience of the reader, we recall the weak
formulation of (5.1) underlying these methods:

for f P H´2pΩq, find u P H̊2pΩq such that @v P H̊2pΩq

ż

Ω

D2u : D2v “ xf, vy,

where, in addition to the assumptions and notation of Section 4.1,

H̊2pΩq “ tv P H2pΩq | v “ Bnv “ 0 on BΩu, H´2pΩq “ H̊2pΩq1,

and D2u : D2v “

2
ÿ

i,j“1

B2u

BxiBxj

B2v

BxiBxj
.

5.1. H̊2-conforming quadratics and HCT elements. The piecewise quadratics
S0
2 underlie both the Morley method [Mor68] and the C0-interior penalty method

[BS05] of lowest order. In this section, we recall that their H̊2pΩq-conforming
subspace S0

2 X H̊2pΩq may be trivial, whence other conforming discrete functions
have to be used in the a posteriori error analysis (and in a quasi-optimal method).
Furthermore, for the later purpose, we recall properties of the H2-conforming HCT
elements.
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The following example illustrates the well-known fact from [dBD83, Theorem 3]
that smoothness requirements for the approximate may adversely affect their ap-
proximation properties in multidimensions.

Example 5.1 (No H̊2-conforming quadratics). Subdivide Ω “ p0, 1q2 for a given
n P N into n2 equal sized squares and obtain a triangulation T by inserting in each
square the diagonal parallel to the line tpx, xq | x P Ru. Then S0

2 X H̊2pΩq “ t0u.
To see this, let v P S0

2 X H̊2pΩq and consider first the square containing the origin,
denoting by Ti, i “ 1, 2, its two triangles. Factorizing v|Ti

P P2 by means of the
boundary conditions yields v “ cia

2
i on Ti with ci P R and ai P P1, i “ 1, 2. The C1-

transition along the diagonal tpx, xq | x P Ru implies c1 “ c2 and ∇a1 “ ∇a2 and
therefore v|pT1YT2q “ 0. Inductively repeating this argument for the other squares
provides the desired identity v “ 0.

In the Sections 4.2 and 4.3 for the Poisson problem, the operator Ah to approx-
imate the distance of conformity }vh ´ ΠV vh} has values in S̊1

ℓ “ Vh X V . This is
algorithmically convenient as there is no need to implement additional shape func-
tions. However, in situations with Vh X H̊2pΩq “ t0u as in Example 5.1, the crucial
constant Cav in Proposition 3.4 vanishes for h Ñ 0 whenever the discrete spaces
can approximate a nontrivial exact solution. Indeed, under these assumptions, we
have

Cav}u} “ lim
hÑ0

Cav}ΠVh
u} “ lim

hÑ0
Cav}pAh ´ id

rV qΠVh
u} ď lim

hÑ0
}u´ ΠVh

u} “ 0.

Thus, a generic approach for nonconforming quadratics has to employ additional
shape functions with a sufficiently large H̊2-conforming subspace.

Conforming discrete functions also play a role in bounding the conforming resid-
ual resCh, namely trough EhpVhq in the near orthogonality of Lemma 3.6. Of course,
Example 5.1 excludes also that the smoothing operator Eh of quasi-optimal meth-
ods with piecewise quadratics has values in Vh X H̊2pΩq. In fact, the smoothers of
the quasi-optimal methods in [VZ18b, VZ19] are based upon HCT elements. Since
we shall also build here on these elements, we recall them and then prove some
useful properties of their nodal basis.

Let

HCT :“
␣

wh P C1pΩq | wh|T P S2
3pTT q, T P T

(

Ă H2pΩq(5.2)

be the H2pΩq-conforming Hsieh-Clough-Tocher space of [CT65]. Hereafter, for
each T P T , the sub-triangulation TT is obtained by drawing three lines from the
barycenter mT to the vertices of T and consists of three triangles. Each function
wh P HCT is uniquely defined by the values whpzq of the function itself and its
gradient ∇whpzq in the vertices z P V of T and by the normal derivatives ∇whpmF q¨

nF at the midpoints mF of each F P F . We denote the corresponding nodal basis
functions by Υ0

z (function values), Υ1
z, Υ2

z (respective partial derivatives), z P V,
and ΥF (normal derivatives in mF ), F P F .

Lemma 5.2 (Properties of HCT basis). We have
ř

zPV Υ0
z “ 1 in Ω, where, for all

z P V,

suppΥ0
z “ ωz, h2z}D2Υ0

z}L8pΩq ≂ hz}∇Υ0
z}L8pΩq ≂ }Υ0

z}L8pΩq ≂ 1.
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Furthermore, for all z P V, j “ 1, 2, all T P T with T Q z, as well as all F P F ,
T P T with T Ą F ,

suppΥj
z “ ωz, }D2Υj

z}L2pT q À 1, suppΥF “ ωF , }D2ΥF }L2pT q À 1.

All hidden constants only depend on the shape constant γT .

Proof. The functions Υ0
z, z P V, form a partition of unity because the function 1Ω

that equals 1 in Ω satisfies 1Ω P HCT and ∇1Ω “ 0 in Ω. The identities for the
supports are also immediate. Regarding the scaling properties, we only prove those
of Υ0

z, z P V, while those for Υj
z, z P V, j “ 1, 2, and ΥF , F P F , follow from a

similar reasoning; compare also with [VZ19, Lemma 3.14].
The first two equivalences for Υ0

z immediately follow from the fact that Υ0
z |T P

S0
3pTT q, which is finite dimensional and affine equivalent to a corresponding refer-

ence space.
For the third or last equivalence for Υ0

z, however, notice that the nodal variables
involve normal derivatives and are thus not affine equivalent. To overcome this,
we follow the idea in the proof of [Cia02, Theorem 6.1.3], which involves a similar,
affine equivalent finite element: Fix T P T with z P T and observe that S2

3pTT q is
also determined by the evaluations of ppzq, ∇ppzq ¨ py ´ zq, for z, y P V X T with
z ‰ y and ∇ppmF q ¨ pmT ´mF q for F P FpT q :“ tF P F | F Ă T u. We denote the
corresponding nodal basis functions by Υ̃z, Υ̃y

z , z, y P V XT with z ‰ y and Υ̃F for
F P FpT q, respectively. As this new finite element is affine equivalent, we derive in
particular

(5.3) }Υ̃z}L8pT q ≂ 1 and }Υ̃F }L8pT q ≂ 1

by standard arguments. To conclude, we relate the new basis functions with the
original ones. Given F P FpT q with z P F , let yF P V X F with y ‰ z and, from
the definition of Υ0

z, deduce the representation

Υ0
z “ Υ̃z `

3

2

ÿ

FPFpT q,zPF

pz ´ yF q

|z ´ yF |2
¨ pmT ´mF qΥ̃F .

Hence the desired equivalence }Υ0
z}L8pT q ≂ 1 follows from (5.3) and the rela-

tionship |mT ´ mF |{|z ´ yF | ≂ 1, where, as before, the hidden constants depend
only on the shape constant γT . □

5.2. A quasi-optimal C0 interior penalty method. In this section, we derive
a strictly equivalent error estimator for the quasi-optimal variant [VZ18b, (3.51)]
of the C0 interior penalty method [BS05] for the 2-dimensional biharmonic prob-
lem (5.1).

We start by recalling the above method. In the notation of Section 4.1 and
given a stabilization parameter σ ą 0, define a discrete bilinear form on the space
S̊1
2 “ S1

2 X H̊1pΩq by

(5.4)
ahpvh, whq :“

ż

Ω

D2
hvh : D2

hwh `

ż

Σ

σ

h
JBnvhK JBnwhK

´

ż

Σ

ttB2
nvhuu JBnwhK ` JBnvhK ttB2

nwhuu.

Hereafter, the operator D2
h evaluates the broken Hessian, i.e., for a suitable v, we

have

pD2
hvq|T “ D2pv|T q for all T P T .
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The bilinear form ah is coercive provided σ ą σ˚ for some σ˚ ą 0 depending on
the shape constant γT ; see [BS05, Lemma 7]. The discrete problem then reads

(5.5) for f P H´2pΩq, find uh P S̊1
2 such that @vh P S̊1

2 ahpuh, vhq “ xf, EC0vhy,

where the smoothing operator EC0 : S̊1
2 Ñ H̊2pΩq is constructed with the help of the

HCT element and satisfies the following properties: for all vh P S̊1
2 , F P F , T P T ,

ż

F

∇EC0vh “

ż

F

tt∇vhuu,(5.6a)

h´4
T }vh ´ EC0vh}2L2pT q ` h´2

T }∇pvh ´ EC0vhq}2L2pT q ` }D2EC0vh}2L2pT q

À }D2
hvh}2L2pωT q `

ÿ

FPF,FXT‰H

ż

F

1

h
| JBnvhK |2;

(5.6b)

see [VZ18b, Proposition 3.17]. According to [VZ18b, Theorem 3.18], this method
is quasi optimal whenever σ ą σ˚ and, as the dG methods from Section 4.3, not
overconsistent, i.e., we have Proposition 2.1 with δh À 1, where the hidden constants
depend on the shape constant γT and the stabilization parameter σ.

The weak formulation of the biharmonic problem (5.1) and the method (5.5) fit
into the abstract framework of Section 2 with

(5.7)

rV “ H̊2pΩq ` S̊1
2 with V “ H̊2pΩq and Vh “ S̊1

2 ,

rapv, wq “

ż

Ω

D2
hv : D2

hw `

ż

Σ

σ

h
JBnvK JBnwK , }v} “ }v}C0 :“

a

rapv, vq

ah as in (5.4), and Eh “ EC0.
To derive a strictly equivalent error estimator, we follow the guidelines of Sec-

tion 3 and start by establishing the main assumptions therein. For the first assump-
tion (H1) regarding the approximate distance to conformity, we take the observa-
tions of Section 5.1 into account and base a simplified averaging operator upon the
HCT element, already used for the smoother EC0. More precisely, we assign to each
interior vertex z P Vi an element Tz P T with z P T , to each interior edge F P F i

an element TF with F Ă T , and define

AC0vh :“
ÿ

zPVi

´

vhpzqΥ0
z `

2
ÿ

j“1

B

Bxj
pvh|Tz

qpzqΥj
z

¯

`
ÿ

FPFi

Bnpvh|TF
qpmF qΥF .(5.8)

This averaging operator is locally computable, thus in line with Remark 3.5. It
also coincides with the operator [VZ18b, (3.48)], which is helpful in the following
lemma specifying Proposition 3.4.

Lemma 5.3 (Approximate }¨}C0-distance to H̊2 by averaging). In the setting (5.7),
the operator AC0 in (5.8) satisfies assumption (H1) and Cav Á

a

σ{p1 ` σq: for all
vh P S̊1

2 , we have
c

σ

1 ` σ
}AC0vh ´ vh}C0 À inf

vPH̊2pΩq

}v ´ vh}C0 ď }AC0vh ´ vh}C0.

Proof. We first verify (H1) for AC0. Since HCT Ă H2pΩq and definition (5.8) does
not involve any basis functions associated with the boundary BΩ, we have AC0vh P

H̊CT :“ HCT X H̊2pΩq for all v P S̊1
2 . Clearly, AC0 is invariant on S̊1

2 X H̊2pΩq “

S̊1
2 X H̊CT . Assumption (H1) is thus verified, as well as the second inequality of the

claimed equivalence.
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To show the first inequality, we combine stability properties of AC0 and properties
of the basis function in Lemma 5.2. Given vh P S̊1

2 Ă C0pΩ̄q and an element T P T ,
we have vh|T P P2pT q Ă S2

3pTT q and

pvh ´ AC0pvhqq|T “
ÿ

zPViXT

2
ÿ

j“1

B

Bxj
pvh|T ´ AC0vhqpzqΥj

z|T

`
ÿ

FPF, FĂT

Bnpvh|T ´ AC0vhqpmF qΥF |T ,

whence

}D2
hpvh ´ AC0pvhqq}L2pT q ď

ÿ

zPViXT

|∇pvh|T ´ AC0vhqpzq|

˜

2
ÿ

j“1

}D2Υj
z}2L2pT q

¸
1
2

`
ÿ

FPF,FĂT

|Bnpvh|T ´ AC0vhqpmF q| }D2ΥF }L2pT q.

Thanks to the definition (5.8), we observe ∇pAC0vhqpzq “ ∇pvh|Tz
qpzq as well

as BnpAC0vhqpmF q “ Bnpvh|TF
qpmF q. Furthermore, the continuity of vh entails

|J∇vhK | “ | JBnvhK | on the skeleton Σ. We thus obtain

|∇pvh|T ´ AC0vhqpzq| À
ÿ

FPFi
z

}h´ 1
2 JBnvhK }L2pF q, z P Vi,(5.9a)

|∇pvh|T ´ AC0vhqpmF q| À }h´ 1
2 JBnvhK }L2pF q, F P F .(5.9b)

We insert these two inequalities in the preceding one and use the scaling properties
in Lemma 5.2. As each side F P F is contained in at most two of the sets tF i

zuzPVi ,
we conclude the proof by arriving at

}AC0vh ´ vh}2C0 À p1 ` σq
ÿ

FPF
}h´ 1

2 JBnvhK }2L2pF q ď
1 ` σ

σ
}v ´ vh}2C0,

where v P H̊2pΩq is arbitrary. □

The proof of Lemma 5.3 reveals that properly scaled jumps of the normal de-
rivative of vh provide an alternative estimator for the distance to H̊2pΩq, which is
widely used in the literature [BGS10].

Corollary 5.4 (Approximate } ¨ }C0-distance to H̊2 by jumps). For vh P S̊1
2 , we

have
ż

Σ

σ

h
|JBnvhK|

2
À inf

vPH̊2pΩq

}vh ´ v}2C0 À

ż

Σ

1 ` σ

h
|JBnvhK|

2
.

Next, we prepare the localization of the conforming residual by establishing
assumption (H2). Motivated by Lemma 5.2 and the embedding H̊2pΩq ãÑ CpΩ̄q,
we choose

(5.10) Z “ V, Φz “ Υ0
z, Vz “ H̊2pωzq, Ih “ IL,

where IL denotes the Lagrange interpolation operator onto S̊1
2 .

Lemma 5.5 (Partition of unity in H2 for biharmonic C0). In the setting (5.7), the
choices (5.10) satisfy assumption (H2) with constants Cloc, Ccol À 1.
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Proof. Since Υ0
z P W 2,8pΩq and suppΥ0

z “ ωz, condition (i) of (H2) holds with
Vz “ H̊2pωzq and Z “ V. Similarly to the proof in Lemma 4.3, condition (ii) follows
with Ccol “ 3 from the fact that each mesh element is contained in three stars.

It remains to check condition (iii) of (H2). Given any v P H̊2pΩq and z P V, we
may write

}
`

pv ´ EC0pILvq
˘

Υ0
z}C0 ď }pv ´ ILvqΥ0

z}C0 ` }
`

ILv ´ EC0pILvq
˘

Υ0
z}C0.

The first term on the right-hand side can be bounded by means of trace inequali-
ties, standard interpolation error estimates, the stability bound }D2

hpILvq}L2pωzq À

}D2v}L2pωzq and the scaling properties of Υ0
z in Lemma 5.2. For the second term, we

use again Lemma 5.2, (5.6b), a scaled trace inequality and again error and stability
bounds of IL to derive

}
`

ILv ´ EC0pILvq
˘

Υ0
z}2C0

À }h´2
`

ILv ´ EC0pILvq
˘

}2L2pωzq ` }h´1∇
`

ILv ´ EC0pILvq
˘

}2L2pωzq

` }D2
h

`

ILv ´ EC0pILvq
˘

}2L2pωzq ` σ
ÿ

FPFz

ż

F

1

h
JBnILvK2

À }D2v}2
L2pω`

z q

where F`
z “

Ť

tFy | y P V X ωzu. We collect the previous bounds and sum over all
vertices z P V. This finishes the proof as the stars ω`

z , z P V, overlap finitely many
times and, for each edge F P F , we have #tz P V | F`

z Q F u À 1. □

Our last preparatory step is the choice of simple functionals and test functions
verifying (H3). To this end, planning for a conforming approach, i.e. Sz Ă H̊2pωzq,
we first analyze the structure of the space rApS̊1

2qq
|H̊2pωzq

. Let vh P S̊1
2 be a discrete

trial function and w P H̊2pωzq be a local test function. Integration by parts gives

rapvh, wq “

ż

Ω

D2
hvh : D2w “

ÿ

FPFi
z

ż

F

q
D2

hvhn
y

¨ ∇w ´
ÿ

TPTz

ż

T

∇∆vh ¨ ∇w,

where the second sum on the right-hand sides vanishes. To simplify the first sum,
we shall use an orthogonal decomposition on the skeleton Σz “

Ť

FPFi
z
F around

z. For any edge F P F i
z, denote by yFz P V the vertex of F opposite to z and let

tz : Σz Ñ R2 be the tangent field defined by

(5.11) tz |F “
z ´ yFz

|z ´ yFz |
, F P F i

z.

We then may write
q
D2

hvhn
y

¨ ∇w “
q
D2

hvhn ¨ n
y
∇w ¨ n `

q
D2

hvhn ¨ tz
y
∇w ¨ tz,

where the jumps are edge-wise constant. Furthermore, thanks to yFz P Bωz and
w P H̊2pωzq Ă C0pω̄zq, we observe wpyFz q “ 0, which leads to

ş

F
∇w ¨ tz “ wpzq.

Combining these observations, we arrive at the representation

(5.12) rapvh, wq “

ˆ
ż

Σz

q
D2

hvhn ¨ tz
y˙

wpzq `
ÿ

FPFi
z

q
D2

hvhn ¨ n
y

|F

ż

F

Bnw,
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which, as a functional of w P H̊2pωzq, is given by constants associated with the
vertex z and the edges in F i

z. Note that if z P VzVi is a boundary vertex, then we
always have wpzq “ 0. We thus define

(5.13)

pDz :“
!

χ P H´2pΩq | χpvq “ rzvpzq `
ÿ

FPFi
z

rF

ż

F

Bnv,

with rF P R, F P F i
z, and rz P R if z P Vi and rz “ 0 else

)

and take

Dz “ pDz |H̊2pωzq
(5.14a)

as simple functionals. To choose the simple test functions, we employ some basis
functions of the HCT space in (5.2), writing Υz :“ Υ0

z for notational convenience.
More precisely, we set

(5.14b) Sz :“ span
␣

ΥF | F P F i
z

(

‘

#

spanΥz if z P Vi,

t0u if z P VzVi,

which is locally conforming, i.e. we have Sz Ă H̊2pωzq. As the following remark
shows, this is actually a convenient choice because, using the H´2pωzq-functionals

(5.15) xχz, vy :“ vpzq, and xχF , vy :“

ż

F

Bnv, F P F i
z,

we can choose a basis ofDz that is almost dual to the basis functions in Sz suggested
by (5.14b).

Remark 5.6 (Dual bases in simple pairs for biharmonic C0). Consider first the case
of an interior vertex z P Vi. Then χz, χF , F P F i

z is a basis of Dz and Υz, ΥF ,
F P F i

z, is one in Sz. The properties of the HCT nodal variables and straight-
forward calculations yield, for all F, F 1 P F i

z,

xχz,Υzy “ Υzpzq “ 1, xχz,ΥF y “ ΥF pzq “ 0,

xχF ,Υzy “

ż

F

BnΥz “ 0, xχF ,ΥF 1 y “

ż

F

BnΥF 1 “
2

3
hF δFF 1 .

Thus, the bases χz, χF , F P F i
z, and Υz, 3

2h
´1
F ΥF , F P F i

z, are dual. If z P VzVi is
a boundary vertex, we only have to discard χz and Υ0

z from the previous case.

Lemma 5.7 (Local projections for biharmonic C0). In the settings (5.7) and (5.10),
the choices (5.14) satisfy assumption (H3) with Ccom À 1 and Ccom “ 1. Conse-
quently, (3.10) defines projections Pz : H´2pωzq Ñ Dz Ă H´2pωzq with

@g P H´2pΩq
ÿ

zPV
}Pzg}2H´2pωzq À

ÿ

zPV
}g}2H´2pωzq.

Proof. Conditions (i), (ii) and (v) of (H3) immediately follow from Sz Ă H̊2pωzq

and (5.12). In view of Remark 5.6, we have dimSz “ dimDz ă 8 for all z P V,
which implies (iii) and it remains to prove (iv). To this end, we combine the
duality in Remark 5.6 with the scaling properties of the involved basis functions,
considering only the case of an interior vertex z P Vi. Given a simple functional
χ P Dz and v P H̊2pωzq, we write

xχ, vy “ rzvpzq `
ÿ

FPFi
z

rF

ż

F

Bnv,
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and, by means of scaled trace and Poincaré inequalities, derive

xχ, vy À

´

h2z|rz|2 `
ÿ

FPFi
z

h2z|rF |2
¯

1
2

}D2v}L2pωzq.(5.16)

In addition, the duality of Remark 5.6 and the scaling properties in Lemma 5.2
ensure

hz|rz| “ hz|xχ,Υzy| À }χ}S1
z
, and h

1
2
z |rF | “ hz|xχ, 32h

´1
F ΥF y| À }χ}S1

z
,

with hidden constants depending only on the shape constant γT . Inserting these
estimates in (5.16) and taking the supremum over all v P H̊2pωzq finishes the proof
of (H3). □

Given the preparation by Lemmas 5.3, 5.5, and 5.7, we are now in position to
derive an error estimator that is strictly equivalent to the error of the C0 interior
penalty method.

Theorem 5.8 (Estimator for biharmonic C0). Let u P H̊2pΩq be the weak solution
of the biharmonic problem (5.1) and uh P S̊1

2 be its quasi-optimal approximation of
the C0 interior penalty method in (5.5) with sufficiently large stabilization parameter
σ. Given tuning constants C1, C2 ą 0, define

est2C0 :“ ncf2C0 `C2
1η

2
C0 ` C2

2 osc
2
C0, where

ncf2C0 :“ }uh ´ AC0uh}2C0,

η2C0 :“
ÿ

TPT
η2C0,T with ηC0,T :“ max

KPVi
T YFi

T

|xf,ΥKy ´
ş

Ω
D2

huh : D2ΥK |

}D2ΥK}L2pΩq

,

osc2C0 :“
ÿ

zPV
}f ´ Pzf}2H´2pωzq,

swith the averaging operator AC0 from (5.8), Vi
T “ Vi XT , F i

T “ tF P F i | F Ă T u,
the HCT nodal basis functions Υz :“ Υ0

z and ΥF , as well as the local projections
Pz : H´2pωzq Ñ Dz from Lemma 5.7.

This estimator quantifies the error by

C estC0 ď }u´ uh}C0 ď C estC0 and ηC0,T ď }D2
hpu´ uhq}L2prωT q

where rωT “
Ť

zPVi
T
ωz and the equivalence constants C, C depend only on the shape

constant γT , the stabilization constant σ, and the tuning constants C1, C2.
Finally, if f P L2pΩq, we have

osc2C0 À
ÿ

TPT
h4T }f}2L2pT q,

where the latter is formally of higher order.

Remark 5.9 (Estimator variants of biharmonic C0). In view of Corollary 5.4, we
may remove the volume term from the indicator ncfC0 in Theorem 5.8 at the expense
of an additional tuning constant.

In (5.14), we could augment the simple functionals Dz with piecewise constants
over ωz and the simple functions Sz with corresponding H2-element-bubble func-
tions. Then the new oscillation bound involves on the right-hand side the oscillation
in [BGS10, CGN24], which is formally of third order. The new indicator of the ap-
proximate residual, however, is more expensive.
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Proof of Theorem 5.8. Recall that, according to [VZ18b, Theorem 3.18], we have
that δh À 1 depending only on the shape constant γT and the penalty parameter
σ ą σ˚. Thanks to Lemmas 5.3, 5.7 and 5.5, we can apply Theorem 3.14 and the
claimed equivalence as well as the local lower bound follow with similar arguments
as in the proof of Theorem 4.5; note that for the oscillation bound, just stability
and no invariance of Pz is invoked. □

5.3. A quasi-optimal Morley method. In this section, we derive a strictly
equivalent error estimator for the quasi-optimal Morley method from [VZ19, Sec-
tion 4,3] approximating the two-dimensional biharmonic problem (5.2). The estima-
tor is simplified in the spirit of Theorem 4.9, reducing this time to an approximate
distance to H̊2pΩq and data oscillation that is classically bounded and formally of
higher order. Again, the simplification is obtained by locally nonconforming simple
test functions that are orthogonal to the residual.

In the notation of Section 4.1, the Morley space [Mor68] is

MR :“

"

vh P S0
2 | vh is continuous in Vi, vh “ 0 in VzVi,

and @F P F
ż

F

JBnvhK “ 0

*

and the discrete problem reads

(5.17)
for f P H´2pΩq, find uh P MR such that

@vh P MR

ż

Ω

D2
huh : D2

hvh “ xf, EMRvhy.

The smoothing operator EMR : MR Ñ H̊2pΩq has the following properties: for all
vh P MR, F P F , z P V, and T P T ,

EMRvhpzq “ vhpzq and
ż

F

BnEMRvh “

ż

F

Bnvh,(5.18a)

h´4
T }vh ´ EMRvh}2L2pT q ` h´2

T }∇pvh ´ EMRvhq}2L2pT q

` }D2EMRvh}2L2pT q À }D2
hvh}2L2pωT q;

(5.18b)

see [VZ19, Propostition 3.17]. We note that the weak formulation of the biharmonic
problem (5.2) and this method fit into the abstract framework of Section 2 with

(5.19)

rV “ H̊2pΩq `MR with V “ H̊2pΩq, Vh “ MR,

rapv, wq “

ż

Ω

D2
hv : D2

hw, }v} “ }D2
hv}L2pΩq,

ah “ ra|MRˆMR, and Eh “ EMR.

The conservation (5.18a) of point values and face means of the normal derivatives,
together with element-wise integration by parts, implies

@vh, wh P MR

ż

Ω

D2
hwh : Dhpvh ´ EMRvhq “ 0.(5.20)

Since both discrete and continuous bilinear forms are restrictions of ra, the method
is thus overconsistent, i.e. its consistency measure vanishes, δh “ 0. Hence, Propo-
sition 2.1 and the stability (5.18b) ensure that the method is quasi-optimal with
the constant Cqo “ |||EMR||| depending on the shape constant γT .
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To apply the abstract a posteriori analysis in Section 3, we establish its main
assumptions. As we proceed similarly to Section 5.2 , we focus on the differences
and start with (H1) regarding the distance to conformity. Motivated by Section 5.1,
we define a linear and bounded operator AMR :MR Ñ H̊2pΩq with the help of HCT
elements by

(5.21) AMRvh :“
ÿ

zPVi

´

vhpzqΥ0
z `

2
ÿ

j“1

B

Bxj
pvh|Tz

qpzqΥj
z

¯

`
ÿ

FPFi

BnvhpmF qΥF ,

which in contrast to the operator AC0 in (5.8) for the C0 interior penalty method
exploits continuity of the normal derivatives in edge midpoints. The next lemma
specifies Proposition 3.4 for AMR.

Lemma 5.10 (Approximate }D2
h ¨ }L2 -distance to H̊2 by averaging). In the set-

ting (5.19), the operator AMR in (5.21) satisfies assumption (H1) and Cav Á 1: for
all vh P MR,

}D2
hpAMRvh ´ vhq}L2pΩq À inf

vPH̊2pΩq

}D2
hpv ´ vhq}L2pΩq ď }D2

hpAMRvh ´ vhq}L2pΩq.

Proof. The operator AMR maps MR into H̊CT “ HCT X H̊2pΩq and is invariant on
MR X H̊2pΩq Ă H̊CT . Hence, (H1) and the second claimed inequality hold.

It remains to show the first claimed inequality. Given vh P MR and a fixed
element T P T , we have vh|T Ă S2

3pTT q and thus

D2
h

`

vh ´ AMRpvhq
˘

|T
“

ÿ

zPViXT

2
ÿ

j“1

Bjpvh|T ´ AMRvhqpzqD2Υj
z |T .

Furthermore, arguing similarly as for (5.9a),

|∇hpvh|T ´ AMRvhqpzq| À
ÿ

FPFi
z

}h´ 1
2 J∇hvhK }L2pF q,(5.22)

where each face contribution has mean value zero, i.e.
ş

F
J∇hvhK “ 0 for all F P

F i
z. Indeed,

ş

F
J∇hvh ¨ nK “ 0 follows explicitly from the definition of MR, while

ş

F
J∇hvh ¨ tF K “ 0, where the unit vector tF “ p´n2, n1q|F is tangent to F , is a

consequence of the continuity of vh in V. Hence, a Poincaré inequality implies

}h´ 1
2 J∇hvhK }L2pF q À }h

1
2

q
D2

hvh
y
tF }L2pF q.

As in the proof of [Gal15, Proposition 2.3], we introduce ϕF :“
q
D2

hvh
y
tFΨF {

ş

F
ΨF

with the piecewise quadratic edge-bubble function ΨF from (4.3) and observe that,
for v P H̊2pΩq,

}
q
D2

hvh
y
tF }2L2pF q “

ż

F

q
D2

hvh
y
tF ¨ ϕF “

ż

ωF

D2
hpvh ´ vq : CurlϕF

with

CurlϕF “

ˆ

´BϕF,1{Bx2 BϕF,1{Bx1
´BϕF,2{Bx2 BϕF,2{Bx1

˙

.

Cauchy and inverse inequalities thus lead to

}h´ 1
2 J∇hvhK }2L2pF q À }D2

hpvh ´ vq}2L2pωF q.(5.23)
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We combine the above bounds with the scaling properties of Υj
z, j “ 1, 2, in

Lemma 5.2 , sum over all elements T P T , and take the infimum over all v P H̊2pΩq.
This concludes the second claimed inequality thanks to the fact that the overlap-
ping of the sets ωF with F P F i

z, z P Vi X T , and T P T is bounded in terms of the
shape constant γT . □

The proof of Lemma 5.10 reveals an alternative approximate distance to H̊2pΩq.

Corollary 5.11 (Approximate }D2
h ¨ }L2-distance to H̊2 by jumps). For vh P MR,

ż

Σ

1

h
|J∇hvhK|

2 ≂ inf
vPH̊2pΩq

}D2
hpvh ´ vq}2L2pΩq.

We next establish assumption (H2) for the localization of the conforming resid-
ual. Motivated by Section 5.1, we choose

(5.24) Z “ V, Φz “ Υ0
z, Vz “ H̊2pωzq, Ih “ ΠMR,

where ΠMR denotes the Morley projection, viz. the ra-orthogonal projection of
H̊2pΩq `MR projection onto MR. Notice that (5.24) differs from (5.10) for the C0

interior penalty method only in the choice of the operator Ih.

Lemma 5.12 (Partition of unity in H2 for biharmonic MR). In the setting (5.19),
the choices (5.24) satisfy assumption (H2) with constants Cloc, Ccol À 1.

Proof. Conditions (i) and (ii) in (H2) follow as in the proof of Lemma 5.5 and
we only need to verify condition (iii). Let v P H̊2pΩq. The properties (5.18)
ensure that EMR is a bounded right inverse of ΠMR; see [VZ19, Lemma 3.13]. We
thus have v ´ EMRΠMRv “ w ´ ΠMRw with w “ v ´ EMRΠMRv. Using the scaling
properties of Υ0

z in Lemma 5.2, stability and approximation properties of the Morley
interpolation (see also [Gal15, Proposition 2.3]), and the stability (5.18b) of the
smoothing operator, we derive

}D2
hppv ´ EMRΠMRvqΥ0

zq}L2pΩq “ }D2
h

`

pw ´ ΠMRwqΥ0
z

˘

}L2pωzq

À h´2
z }w ´ ΠMRw}L2pωzq ` h´1

z }∇hpw ´ ΠMRwq}L2pωzq ` }D2
hpw ´ ΠMRwq}L2pωzq

À }D2w}L2pωzq “ }D2pv ´ EMRΠMRvq}L2pωzq À }D2v}L2pω`
z q
.

Consequently, summing over all z P V and accounting for the finite overlapping of
the enlarged stars ω`

z , z P V, concludes the proof. □

Let us now turn to choose the simple test functions and functionals for assump-
tion (H3). Our departure point is the local structure of the conforming residual,
whose local contributions are represented in

pDz “ spantpχF | F P F i
zu ‘

#

span pχz, if z P Vi,

t0u, if z P VzVi,

where pχz, pχF , F P F i
z, are the H´2pΩq-variants of χz, χF , F P F i

z in (5.15); cf.
(5.12). Notably, the functionals pχz, z P Vi, pχF , F P F i, are the degrees of freedom
of MR. Moreover, the nodal basis functions ΨMR

F , F P F i, ΨMR
z , z P Vi, given by

(5.25) ΨMR
K P MR and xpχK1 ,ΨMR

K y “ δKK1 , K,K 1 P Vi Y F i,

satisfy the orthogonality

(5.26) xresh, EMRΨ
MR
K y “ 0
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thanks to the overconsistency of (5.17). Taking into account that the smoothing
operator EMR conserves the nodal variables pχK , K P Vi YF i, see (5.18a), we choose
the simple functions

Sz :“ spantEMRψ
MR
F | F P F i

zu ‘

#

span EMRψ
MR
z , if z P Vi,

t0u, if z P VzVi,
(5.27a)

and the simple functionals

Dz :“ pDz | rVz
with rVz “ H̊2pωzq ` Sz(5.27b)

and define, for convenience, χK :“ pχK | rVz
for K P Kz :“ F i

z Y ptzu X Viq.

Remark 5.13 (Dual bases in simple pairs for biharmonic MR). In view of the con-
servation (5.18a), the duality in (5.25) implies

xχK1 , EMRψ
MR
K y “ δKK1 , K,K 1 P Kz,

so that these bases of Dz and Sz are dual.

Lemma 5.14 (Local projections for biharmonic MR). In the settings (5.19) and
(5.24), the choices (5.27) satisfy assumption (H3) with Ccom, Ccom À 1. In particu-
lar, (3.10) defines projections Pz : rV 1

z Ñ Dz Ă rV 1
z with rV 1

z “ pH̊2pωzq ` Szq1 and

@g P H´2pΩq
ÿ

zPV
}Pzg}2H´2pωzq À

ÿ

zPV
}g}2H´2pωzq.

Proof. Condition (i) of (H3) is clear from the definitions (5.27) of the respective
spaces. To verify condition (ii), let z P V be arbitrary. Observations similar to the
proof of (5.12) imply rApMRq

|H̊2pωzq
Ă Dz and it remains to verify rApMRq|Sz

Ă Dz.
To this end, we let vh P MR and proceed similarly as for (5.12) and denote by t`

z an
extension of the tangent field tz in (5.11) to Σ`

z “ YFPFi`
z
F , where the orientation

of the unit vectors t`
z |F , F P F i`

z zF`
z , is arbitrary but fixed. For F P F i

z, we have
supp EMRΨ

MR
F Ă ω`

z and thus

rapvh, EMRΨ
MR
F q “

ż

Σ`
z

q
D2

hvhn ¨ n
y

BnEMRΨ
MR
F `

ż

Σ`
z

q
D2

hvhn ¨ t`
z

y
∇EMRΨ

MR
F ¨ t`

z

The second integral vanishes thanks to the fundamental theorem of calculus sinceq
D2

hvhn ¨ t`
z

y
is piecewise constant on F i`

z and EMRΨ
MR
F pyq “ ΨMR

F pyq “ 0 for all
y P V. In the light of xχF 1 , EMRΨ

MR
F y “ xχF 1 ,ΨMR

F y “ δFF 1 , the first integral reduces
to an integral over F and we arrive at

rapvh, EMRΨ
MR
F q “

ż

F

q
D2

hvhn ¨ n
y

BnEMRΨ
MR
F .

If z P Vi, a similar reasoning yields

rapvh, EMRΨ
MR
z q “

ÿ

FPFi
z

q
D2

hvhn ¨ tz
y
.

This shows rApMRq|Sz
Ă Dz and thus (ii) of (H3) is verified.

Remark 5.13 readily implies dimDz “ dimSz ă 8 and thus (iii) of (H3). To
prove (iv), fix z P V, without loss of generality z P Vi, and let χ P Dz with

xχ, vy “ rzvpzq `
ÿ

FPFi
z

ż

F

rF Bnv for v P H̊2pωzq.
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Standard arguments with scaled trace and Poincaré inequalities yield

xχ, vy À

´

ÿ

FPFi
z

h2z|rF |2 ` h2z|rz|2
¯

1
2

}D2v}L2pωzq.

To further bound the right-hand side, we use the duality of the bases of Dz and Sz

and their scaling properties. For F P F i
z, we obtain

|rF | “

ˇ

ˇ

ˇ

ż

F

rF BnEMRpΨMR
F q

ˇ

ˇ

ˇ
ď }χ}S1

z
}D2EMRpΨMR

F q}L2pω`
z q

À }χ}S1
z
h´1
F ,

where we use the stability of EMR and }D2
hΨ

MR
F }L2pΩq À h´1

F , which follows from
the fact that the Morley element is almost affine [Cia02, Theorem 6.1.3]. A similar
reasoning yields

|rz| “ |rzEMRΨ
MR
z pzq| “

ˇ

ˇxχ, EMRΨ
MR
z y

ˇ

ˇ ď }χ}S1
z
}D2EMRΨ

MR
z }L2pω`

z q
À h´1

z }χ}S1
z
.

Combining the above results, and taking the supremum over all v P H̊2pωzq proves
the desired assertion.

The last step is to verify the collective stability property of Pz, z P V. Given
any vertex z P V and g P H´2pω`

z q, we have

Sz Ă H̊2pω`
z q and thus }g}S1

z
ď }g}H´2pω`

z q
.

Furthermore, we recall from Lemma 5.2 that the functions Υ0
y, y P V, form a

partition of unity with Υ0
y P W 2,8pΩq and suppΥ0

y “ ωy. Consequently, for local
test functions v P H̊2pω`

z q, we derive

xg, vy “
ÿ

yPVXω`
z

xg, vΥ0
yy ď

ÿ

yPVXω`
z

}g}H´2pωyq}D2pvΥ0
yq}L2pωyq

À
ÿ

yPVXω`
z

}g}H´2pωyq}D2v}L2pω`
z q
,

where, similarly to (4.21), we use the scaling properties of Υ0
y, the Poincaré in-

equality with vanishing boundary values, and diampω`
z q ≂ hy for all y P V X ω`

z .
As #tz P V | ω`

z Q yu À 1 uniformly in y P V, we arrive at
ÿ

zPV
}g}2

H´2pω`
z q

À
ÿ

zPV

ÿ

yPVXω`
z

}g}2H´2pωyq À
ÿ

zPV
}g}2H´2pωzq.

This proves (v) of (H3) with Ccol À 1. The collective stability bound follows from
Proposition 3.8. □

Building on Lemmas 5.10, 5.12 and 5.14, the following theorem derives an esti-
mator that is strictly equivalent to the error of the above Morley method.

Theorem 5.15 (Estimator for biharmonic MR). Let u P H̊2pΩq be the weak solution
of (5.1) and uh P MR be its quasi-optimal Morley approximation from (5.17).
Given a tuning constant C ą 0, define

est2MR :“ ncf2MR `C2 osc2MR, where ncf2MR :“ }D2
hpuh ´ AMRuhq}2L2pΩq,

osc2MR :“
ÿ

zPV
}f ´ Pzf}2H´2pωzq,
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with the averaging operator AMR from (5.21) and the local projections Pz from
Lemma 5.14. This estimator quantifies the error by

C estMR ď }D2
hpu´ uhq}L2pΩq ď C estMR .

The equivalence constants C, and C depend only on the shape constant γT and the
tuning constant C.

Finally, if f P L2pΩq, we have

osc2MR À
ÿ

TPT
h4T }f}2L2pT q,

where the latter is formally of higher order.

Remark 5.16 (Estimator variants of biharmonic MR). In view of Corollary 5.11, we
may replace ncfMR with properly scaled jumps and a second tuning constant. This
variant is widely used in the literature; see e.g. [CGN24]. As in Remark 5.9, the
order of the oscillation can be increased by suitably augmenting simple functionals
and test functions.

Proof of Theorem 5.15. The claimed equivalence is a direct consequence of Theo-
rems 3.14 and the observation

}Pz res
C
h }H´2pωzq À }Pz res

C
h }S1

z
“ } resCh }S1

z
“ 0,

which follows from (iv) of (H3), (3.10) and (5.17). The oscillation bounds follows
as in the proof of Theorem 5.8. □

6. A numerical benchmark with rough source term

This section presents some numerical results obtained from the discretization
of the Poisson problem (4.1), on an open polygon Ω Ď R2, with Crouzeix-Raviart
finite elements. Our implementation is realized with the library ALBERTA 3.1;
see [HKK`, SS05].

Recall that the Crouzeix-Raviart discretization (4.27) without smoothing is de-
fined only for sufficiently smooth source terms like, e.g., f P L2pΩq. This assump-
tion, in turn, implies that the solution of the Poisson problem is in H2pΩq, provided
that Ω is convex. Hence, adaptive mesh refinement can provide a higher error de-
cay rate than uniform refinement only in presence of re-entrant corners, as for the
so-called L-shaped or slit domains.

In contrast, the quasi-optimal discretization (4.6) is defined for general sources
f P H´1pΩq, entailing that H2pΩq-regularity of the solution cannot be expected in
general. Therefore, adaptive mesh refinement can asymptotically outperform the
uniform refinement also for convex Ω. We propose one such benchmark and test
the ability of the estimators in Theorems 4.5 and 4.9 to quantify the error and to
drive adaptive mesh refinement.

Let Ω “ p0, 1q2 be the unit square. For λ P p0, 1q, consider the manufactured
weak solution of (4.1) defined as

(6.1a) upx1, x2q :“

#

x1pλ´ x1qx2p1 ´ x2q, for x1 P p0, λq,

p1 ´ x1qpx1 ´ λqx2p1 ´ x2q, for x1 P pλ, 1q.

This function is in H̊1pΩq and the gradient is discontinuous along the ‘critical’ line
Λ “ tpx1, x2q P Ω | x1 “ λu. Thus, the corresponding source f “ ´∆u in (4.1)
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consists of a regular and a singular component and acts on v P H̊1pΩq as follows

(6.1b) xf, vy “

ż

Ω

fregv `

ż

Λ

wpx2qvpλ, x2qdx2,

where wpx2q :“ x2p1 ´ x2q and freg P L2pΩq is given by

(6.1c) fregpx1, x2q “

#

2x1pλ´ x1q ` 2x2p1 ´ x2q, for x1 P p0, λq,

2p1 ´ x1qpx1 ´ λq ` 2x2p1 ´ x2q, for x1 P pλ, 1q.

To obtain the initial mesh T0, we subdivide Ω into four triangles, by drawing the
two main diagonals, cf. Figure 6.2(A). Each successive mesh T1, T2, . . . is obtained
from the previous one subdividing each marked triangle into four triangles by bi-
section and performing completion to preserve conformity. We set λ “ 2

3 in (6.1),
to make sure that the critical line Λ is not contained in the skeleton of any mesh
Tk, k ě 0, cf. Remark 6.1 below. According to Remarks 3.15 and 3.18, we replace
the data oscillation in the estimators from Theorems 4.5 and 4.9 by the surrogate

(6.2) sur2˚,k :“
ÿ

TPTk

h2T inf
cPR

}freg ´ c}2L2pT q `
ÿ

TPTk,TXΛ‰H

h2T

´

max
TXΛ

w
¯2

where ˚ P tCR, ĂCRu. The second summand is inspired by [BCNV24, Lemma 7.19].
For both estimators, we make use of the tuning constants C1 “ 1 and C2 “ 0.3.

Mesh Error Theorem 4.5 Theorem 4.9
k #Tk errk eock estCR,k effCR,k est

ĂCR,k
eff

ĂCR,k

0 4 6.55e-02 1.37e-01 2.09 1.33e-01 2.03
1 16 5.91e-02 0.07 1.07e-01 1.81 1.05e-01 1.78
2 64 4.10e-02 0.26 7.33e-02 1.79 7.13e-02 1.74
3 256 2.71e-02 0.30 4.89e-02 1.80 4.77e-02 1.76
4 1024 1.86e-02 0.27 3.36e-02 1.81 3.30e-02 1.77
5 4096 1.30e-02 0.26 2.35e-02 1.81 2.31e-02 1.78
6 16384 9.11e-03 0.26 1.65e-02 1.82 1.62e-02 1.78
7 65536 6.42e-03 0.25 1.17e-02 1.82 1.15e-02 1.78
8 262144 4.53e-03 0.25 8.24e-03 1.82 8.09e-03 1.79
9 1048576 3.20e-03 0.25 5.82e-03 1.82 5.72e-03 1.79

Table 1. Errors, experimental orders of convergence, estimators
and corresponding effectivity indices for uniform mesh refinement.

We first consider the uniform mesh refinement, i.e. we obtain Tk`1 from Tk,
k ě 0, by marking each triangle for refinement. Since u P H1`spT q for all T P Tk
only if s ă 0.5, due to the choice of λ above, we expect that the error errk on Tk,
measured in the broken H1-norm from (4.8), decays to zero as p#Tkq´0.25. We test
our expectation by computing the experimental order of convergence

eock :“ logperrk{errk´1q{ logp#Tk´1{#Tkq, k ě 1.

We compute also the effectivity index

eff˚,k :“ est˚,k{errk, k ě 0

to assess the quality of the estimator est˚,k, with ˚ P tCR, ĂCRu, computed on Tk.
The data in Table 1 suggest that, for k Ñ 8, we have eock Ñ 0.25 as expected, the
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two estimators yield quite similar results and their effectivity indices are bounded
between 1 and 2.

The decay rate p#Tkq´0.25 of errk above hinges on the discontinuity of ∇u along
the critical line Λ. Therefore, the error is expected to concentrate along Λ. Remark-
ably, this property is captured by each indicator in the estimators, as illustrated in
Figure 6.1 for est

ĂCR,k
. In particular, all indicators decay to zero at the same rate

and the surrogate oscillation is not of higher order compared to the error.

(a) ncf1,4 (b) η1,4 (c) sur1,4

Figure 6.1. Distribution in space of the indicators in the estima-
tor est

ĂCR,4
, with oscillation replaced by surrogate, on the mesh T4

obtained by uniform refinement. Lower and higher values corre-
spond to cold and warm colors, respectively.

(a) T0 (b) T5 (c) T10

Figure 6.2. Initial mesh T0 and subsequent meshes T5 and T10
generated by adaptive refinement.

The above results suggest that adaptive mesh refinement could asymptotically
outperform uniform refinement for this benchmark. To check this, we restrict to
the use of the simplified estimator est

ĂCR,k
as input for Dörfler marking with bulk

parameter θ “ 0.7. As expected from Figure 6.1, such meshes are highly graded
along the line Λ and relatively coarse elsewhere, see Figure 6.2. Moreover, owing
to Figure 6.3, both error and estimator decay to zero as p#Tkq´0.5, that is the best
possible decay rate for a first-order method.
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Figure 6.3. Error errk (blue) and estimator est
ĂCR,k

(red) for uni-
form (⃝) and adaptive (△) mesh refinement versus #Tk. The
dashed line indicates the decay rate p#Tkq´0.5.

Remark 6.1 (Critical line). The position of the line Λ is crucial in this benchmark.
Indeed, if Λ was contained in the skeleton of, e.g., the initial mesh, then we would
have u P H2pT q for all T P Tk, k ě 0, and we would observe the error decay
rate p#Tkq´0.5 also with uniform refinement. Moreover, we should modify the
surrogate oscillation, because the simple functionals in (4.18b) would approximate
the singular component of the source term on Λ more accurately than predicted by
the latter term in (6.2).

Funding. Christian Kreuzer acknowledges funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – 321270008. Pietro Zanotti was
supported by the GNCS-INdAM project CUP E53C23001670001.

References

[ABC03] Y. Achdou, C. Bernardi, and F. Coquel. A priori and a posteriori analysis of finite
volume discretizations of Darcy’s equations. Numer. Math., 96(1):17–42, 2003.

[AR08] M. Ainsworth and R. Rankin. Fully Computable Bounds for the Error in Nonconform-
ing Finite Element Approximations of Arbitrary Order on Triangular Elements. SIAM
Journal on Numerical Analysis, 46(6):3207–3232, January 2008. Publisher: Society
for Industrial and Applied Mathematics.

[BCNV24] A. Bonito, C. Canuto, R. H. Nochetto, and A. Veeser. Adaptive finite element methods.
Acta Numer., 33:163–485, 2024.

[BGS10] S. C. Brenner, T. Gudi, and L.-y. Sung. An a posteriori error estimator for a qua-
dratic C0-interior penalty method for the biharmonic problem. IMA J. Numer. Anal.,
30(3):777–798, 2010.

[Bre96] S. Brenner. Two-level additive Schwarz preconditioners for nonconforming finite ele-
ment methods. Mathematics of Computation, 65(215):897–921, 1996.

[Bre15] S. C. Brenner. Forty years of the Crouzeix-Raviart element. Numer. Methods Partial
Differential Equations, 31(2):367–396, 2015.

[BS05] S. C. Brenner and L.-Y. Sung. C0 interior penalty methods for fourth order elliptic
boundary value problems on polygonal domains. J. Sci. Comput., 22/23:83–118, 2005.

[Car05] C. Carstensen. A unifying theory of a posteriori finite element error control. Numer.
Math., 100(4):617–637, 2005.

[CDN12] A. Cohen, R. DeVore, and R. H. Nochetto. Convergence rates of AFEM with H´1

data. Found. Comput. Math., 12(5):671–718, 2012.



A POSTERIORI ESTIMATES FOR QUASI-OPTIMAL NONCONFORMING METHODS 50

[CGN24] C. Carstensen, B. Gräßle, and N. Nataraj. Unifying a posteriori error analysis of five
piecewise quadratic discretisations for the biharmonic equation. J. Numer. Math.,
32(1):77–109, 2024.

[Cia02] P. G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam;
MR0520174 (58 #25001)].

[CN22] C. Carstensen and N. Nataraj. Lowest-order equivalent nonstandard finite element
methods for biharmonic plates. ESAIM Math. Model. Numer. Anal., 56(1):41–78,
2022.

[CR73] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods
for solving the stationary Stokes equations. I. Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge, 7:33–75, 1973.

[CT65] R. W. Clough and J. L. Tocher. Finite element stiffness matrices and analysis of
plate in bending. In Proceedings of the Conference on Matrix Methods in Structural
Mechanics, pages 515–545. Wright Patterson AFB, 1965.

[dBD83] C. de Boor and R. DeVore. Approximation by smooth multivariate splines. Trans.
Amer. Math. Soc., 276(2):775–788, 1983.

[DDP95] E. Dari, R. Durán, and C. Padra. Error estimators for nonconforming finite element
approximations of the Stokes problem. Math. Comp., 64(211):1017–1033, 1995.

[DDPV96] E. Dari, R. Duran, C. Padra, and V. Vampa. A posteriori error estimators for noncon-
forming finite element methods. RAIRO Modél. Math. Anal. Numér., 30(4):385–400,
1996.

[FV06] F. Fierro and A. Veeser. A posteriori error estimators, gradient recovery by averaging,
and superconvergence. Numerische Mathematik, 103(2):267–298, April 2006.

[Gal15] D. Gallistl. Morley finite element method for the eigenvalues of the biharmonic oper-
ator. IMA J. Numer. Anal., 35(4):1779–1811, 2015.

[HKK`] K.-J. Heine, D. Köster, O. Kriessl, A. Schmidt, and K. Siebert. Alberta - an adaptive
hierachical finite element toolbox.

[KP03] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous
Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal.,
41(6):2374–2399, 2003.

[KV21] C. Kreuzer and A. Veeser. Oscillation in a posteriori error estimation. Numer. Math.,
148(1):43–78, 2021.

[KVZ] C. Kreuzer, A. Veeser, and P. Zanotti. Accurate error bounds for finite element meth-
ods. In preparation.

[Mor68] L. S. D. Morley. The triangular equilibrium element in the solution of plate bending
problems. The Aeronautical Quarterly, 19:149–169, 1968.

[SB06] G. Stoyan and A. Baran. Crouzeix-Velte decompositions for higher-order finite ele-
ments. Comput. Math. Appl., 51(6-7):967–986, 2006.

[SS05] A. Schmidt and K. G. Siebert. Design of adaptive finite element software, volume 42
of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin,
2005. The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux).

[Szy06] D. B. Szyld. The many proofs of an identity on the norm of oblique projections. Numer.
Algorithms, 42(3-4):309–323, 2006.

[Ver13] R. Verfürth. A posteriori error estimation techniques for finite element methods. Nu-
merical Mathematics and Scientific Computation. Oxford University Press, Oxford,
2013.

[Voh07] M. Vohralík. A posteriori error estimates for finite volume and mixed finite element
discretizations of convection-diffusion-reaction equations. In Paris-Sud Working Group
on Modelling and Scientific Computing 2006–2007, volume 18 of ESAIM Proc., pages
57–69. EDP Sci., Les Ulis, 2007.

[VZ18a] A. Veeser and P. Zanotti. Quasi-optimal nonconforming methods for symmetric elliptic
problems. I—Abstract theory. SIAM J. Numer. Anal., 56(3):1621–1642, 2018.

[VZ18b] A. Veeser and P. Zanotti. Quasi-optimal nonconforming methods for symmetric elliptic
problems. III—Discontinuous Galerkin and other interior penalty methods. SIAM J.
Numer. Anal., 56(5):2871–2894, 2018.



A POSTERIORI ESTIMATES FOR QUASI-OPTIMAL NONCONFORMING METHODS 51

[VZ19] A. Veeser and P. Zanotti. Quasi-optimal nonconforming methods for symmetric elliptic
problems. II—Overconsistency and classical nonconforming elements. SIAM J. Numer.
Anal., 57(1):266–292, 2019.

TU Dortmund, Fakultät für Mathematik, D-44221 Dortmund, Germany
Email address: christian.kreuzer@tu-dortmund.de

TU Dortmund, Fakultät für Mathematik, D-44221 Dortmund, Germany
Email address: matthias.rott@tu-dortmund.de

Università degli Studi di Milano, Dipartimento di Matematica, 20133 Milano, Italy
Email address: andreas.veeser@unimi.it

Università degli Studi di Milano, Dipartimento di Matematica, 20133 Milano, Italy
Email address: pietro.zanotti@unimi.it


	Druckvorlage Ergebnisberichte mit ISSN
	ms-1
	1. Introduction
	Organization
	Notation

	2. Quasi-optimal nonconforming methods
	3. Abstract a posteriori analysis
	3.1. The residual of nonconforming errors
	3.2. Indicators for the nonconforming residual
	3.3. Localization of the conforming residual
	3.4. Computability and conforming residual norm
	3.5. Deriving a strictly equivalent error estimator

	4. Estimators for the Poisson problem
	4.1. Domain, mesh, and polynomials
	4.2. Crouzeix-Raviart method as model example
	4.3. Discontinuous Galerkin methods of fixed arbitrary order

	5. Estimators for the biharmonic problem
	5.1. 2-conforming quadratics and HCT elements
	5.2. A quasi-optimal C0 interior penalty method
	5.3. A quasi-optimal Morley method

	6. A numerical benchmark with rough source term
	Funding

	References


