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Abstract

The algebraic flux correction (AFC) paradigm is extended to finite element dis-
cretizations with a consistent mass matrix. A nonoscillatory low-order scheme is
constructed by resorting to mass lumping and conservative elimination of negative
off-diagonal coefficients from the discrete transport operator. In order to recover the
high accuracy of the original Galerkin scheme, a limited amount of compensating
antidiffusion is added in regions where the solution is sufficiently smooth. The raw
antidiffusive fluxes, which include a contribution of the consistent mass matrix, are
limited node-by-node so as to satisfy algebraic constraints imposed on the discrete
solution. The proposed limiting strategy combines the advantages of multidimen-
sional FEM-FCT and FEM-TVD schemes introduced previously. Its performance
is illustrated by application to scalar convection problems in 1D and 2D.
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1 Introduction

The advent of flux-corrected transport (FCT) and total variation diminishing (TVD) meth-
ods paved the way to the development of nonlinear high-resolution schemes based on
flux/slope limiters. However, a serious disadvantage of many limiting techniques avail-
able to date is the lack of generality which precludes their use in the finite element
framework. In a series of recent publications [13],[14],[15],[16], we developed an algebraic
approach to the design of local extremum diminishing (LED) schemes by adding discrete
(anti-)diffusion so as to enforce the M-matrix property in a conservative fashion. The
underlying Galerkin discretization of high order was equipped with the (symmetric) FCT
limiter or its (upwind-biased) counterparts of TVD type. In either case, the antidiffusive
fluxes were limited node-by-node as proposed by Zalesak [28]. Promising results were
obtained for scalar conservation laws as well as for the compressible Euler and incom-
pressible Navier-Stokes equations on unstructured grids [16],[17],[25].

Algebraic flux correction of FCT type is applicable to Galerkin schemes with a con-
sistent mass matrix and yields highly accurate solutions to time-dependent problems.
However, it is not to be recommended for steady-state computations due to the fact that
the correction factors depend on the time step. On the other hand, TVD-like schemes

∗Correspondence to: kuzmin@math.uni-dortmund.de

1



lend themselves to the treatment of stationary problems but mass lumping is mandatory
and there is an alarming ambiguity in the choice of the limiter function. In the present pa-
per, we get rid of this ambiguity by constraining the target flux [29] which corresponds to
the original Galerkin discretization. Building on our experience with algebraic FCT and
TVD schemes, we design a symmetric limiter for the contribution of the consistent mass
matrix and blend it with an upwind-biased limiter for the discretized convective term.
As a result, we obtain a high-resolution finite element scheme which yields time-accurate
solutions to transient problems and, moreover, does not suffer from a loss of accuracy if
large time steps are employed when the solution approaches a highly convective steady
state. Numerical examples are presented for 1D and 2D benchmark problems.

2 Linear high-order scheme

As a model problem, consider the time-dependent continuity equation

∂u

∂t
+ ∇ · (vu) = 0 (1)

discretized in space by a high-order finite element method which yields an ODE system
for the vector of time-dependent nodal values

MC

du

dt
= Ku, (2)

where MC = {mij} denotes the consistent mass matrix and K = {kij} is the discrete
transport operator. A common practice in the FEM community is to employ the group

finite element formulation as proposed by Fletcher [9]

uh =
∑

j

ujϕj, (vu)h =
∑

j

(vjuj) ϕj, (3)

where ϕj refers to the basis function for node j. The use of these approximations in the
weak form of (1) leads to the following formulae for the computation of matrix entries

mij =

∫

Ω

ϕiϕj dx, kij = −vj · cij, cij =

∫

Ω

ϕi∇ϕj dx. (4)

The operator K may also contain some streamline diffusion used for stabilization purposes
and/or to achieve better phase accuracy in the framework of Taylor-Galerkin methods [5].
This sparse matrix can be decomposed into the skew-symmetric part K ′ := 1

2
(K − KT )

and the symmetric part S := K − K ′ such that

k′
ij =

kij − kji

2
= −k′

ji, sij =
kij + kji

2
= sji. (5)

Integration by parts reveals that the discrete gradient operator is skew-symmetric, i.e.,
cij = −cji. Therefore, the coefficients defined by (4)-(5) correspond to

k′
ij = −

vi + vj

2
· cij, sij =

vi − vj

2
· cij. (6)

The contribution of streamline diffusion (if any) belongs into the symmetric part sij.
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As explained in [26],[27], a skew-symmetric discretization is consistent with the prop-
erties of the continuous convective derivative v ·∇ and implies the conservation of kinetic
energy in turbulent flow computations. Any symmetric contribution S results in a non-
physical but sometimes desirable production or dissipation of kinetic energy. Symmetric
matrices with zero row/column sums can be classified as discrete diffusion/antidiffusion
operators [13]. As we are about to see, they constitute a handy tool for the design of
multidimensional high-resolution schemes on unstructured meshes.

3 Linear low-order scheme

For the numerical scheme to be nonoscillatory, it should possess certain properties, e.g.,
be monotone, total variation / local extremum diminishing, positivity- or monotonicity-
preserving and/or satisfy the discrete maximum principle. These well-known criteria can
be expressed as algebraic constraints to be imposed on a linear high-order discretization
such as (2). For instance, if each solution update un → un+1 or the converged steady-
state solution un+1 = un satisfy a (nonlinear) algebraic system of the form

Aun+1 = Bun, (7)

where A = {aij} is an M-matrix and B = {bij} has no negative entries, then the positivity
of the old solution carries over to the new one [14],[16]

un ≥ 0 ⇒ un+1 = A−1Bun ≥ 0. (8)

In the linear case, the M-matrix property can be readily enforced by resorting to ‘discrete
upwinding’ [14],[15],[16]. In essence, the consistent mass matrix MC is replaced by its
lumped counterpart ML = diag{mi} and the high-order operator K is rendered local
extremum diminishing by adding an artificial diffusion operator D designed so as to elim-
inate all negative off-diagonal coefficients. These straightforward algebraic manipulations
yield a nonoscillatory low-order scheme of the form

ML

du

dt
= Lu, where Lu = Ku + Du. (9)

By construction, the diffusive term Du can be decomposed into a sum of skew-symmetric
internodal fluxes associated with the edges of the sparsity graph [16]

(Du)i := −
∑

j 6=i

fij, where fij = dij(ui − uj) = −fji. (10)

The artificial diffusion coefficient dij for the edge
−→
ij is defined as follows

dij = d′
ij − sij, where d′

ij = |k′
ij|. (11)

Thus, the off-diagonal coefficients of the low-order operator are given by

lij := kij + dij = k′
ij + |k′

ij|. (12)
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Without loss of generality, the edge
−→
ij is oriented so that k′

ij < 0, which results in lij = 0
and lji = 2d′

ij. This convention implies that node i is located ‘upwind’ and corresponds
to the row number of the eliminated negative coefficient [15],[16].

The semi-discretized equation for the nodal value ui can be represented as

mi

dui

dt
=

∑

j 6=i

lij(uj − ui) + ui

∑

j

kij, (13)

where mi =
∑

j mij > 0 and lij ≥ 0, ∀i 6= j. The last term in the above expression
vanishes for discretely divergence-free velocity fields and is responsible for a physical
growth of local extrema otherwise [16]. It can readily be seen that (cf. [11])

ui(t) = 0, uj(t) ≥ 0, ∀j 6= i ⇒
dui

dt
≥ 0, (14)

which proves that the low-order scheme (9) is positivity-preserving. For its fully discrete
counterpart to inherit this property, the time step should satisfy a CFL-like condition
that ensures the positivity of diagonal coefficients in the right-hand side of (7).

4 Nonlinear high-resolution scheme

The high-resolution finite element schemes to be derived in this paper represent a nonlin-
ear combination of the high-order Galerkin scheme (2) and its overly diffusive low-order
counterpart (9). After the discretization in time by the standard θ-scheme, the algebraic
systems for these linear methods are related by the formula [13]

[ML − θ∆tL]un+1 = [ML + (1 − θ)∆tL]un + ∆tF (un+1, un). (15)

The contribution of the last term to each node has the following structure

Fi(u
n+1, un) =

∑

j 6=i

fij, (16)

where fij denotes the raw antidiffusive flux (from node j into node i) which offsets the
error induced by mass lumping and discrete upwinding:

fij = mij(u̇i − u̇j) + dij(ui − uj) = −fji. (17)

Here and below

u̇i =
un+1

i − un
i

∆t
, ui = θun+1

i + (1 − θ)un
i . (18)

For our linear model problem, the artificial diffusion coefficients dij are independent of
the solution but for nonlinear conservation laws they must be updated along with the
operators K and L. The skew-symmetric fluxes fij represent the difference between the
high-order scheme and the low-order one. Clearly, it is desirable to use the former as long
as the imposed physical and/or mathematical constraints are satisfied. Otherwise, some
artificial diffusion must be retained, i.e., the raw antidiffusive flux needs to be limited:

f ∗
ij := αijfij, where 0 ≤ αij ≤ 1. (19)

A node-oriented limiting strategy which builds on the algebraic FCT and TVD schemes
proposed previously [14],[15],[16] will be presented in the next section.
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If implicit time-stepping (0 < θ ≤ 1) is employed, the nonlinear algebraic system at
hand must be solved iteratively, e.g., by the defect correction scheme

u(m+1) = u(m) + [A(u(m))]−1r(m), m = 0, 1, 2, . . . (20)

where r(m) is the residual vector which includes the sum of limited antidiffusive fluxes

r(m) = [ML + (1 − θ)∆tL]un − [ML − θ∆tL]u(m) + ∆tF ∗(u(m), un), (21)

whereas A(u(m)) is a suitably chosen ‘preconditioner’. The typical choices are

A := ML (22)

(only suitable for very small time steps) and the low-order operator [14],[15]

A := ML − θ∆tL (23)

which was designed to be an M-matrix. Alternatively, algebraic flux/defect correction
schemes may be preconditioned by the nonlinear ‘LED’ operator

A(u(m)) := ML − θ∆tL∗(u(m)) (24)

such that L∗(u)u = Lu + F ∗ and l∗ij ≥ 0, ∀j 6= i. The existence of L∗(u) is guaranteed by

the flux limiter [16]. This kind of preconditioning renders all intermediate solutions u(m)

positivity-preserving [11] but convergence is a prerequisite for mass conservation.
In a practical implementation, the ‘inversion’ of A is performed by an iterative method

for solving the linear subproblem

A∆u(m+1) = r(m), m = 0, 1, 2, . . . (25)

After a certain number of inner iterations, the solution increment ∆u(m+1) is applied to
the last iterate, whereby un provides a reasonable initial guess

u(m+1) = u(m) + ∆u(m+1), u(0) = un. (26)

The iteration process is terminated when a certain norm of the defect r(m) or that of the
relative changes ∆u(m+1) becomes small enough. Explicit and/or implicit underrelaxation
techniques may be invoked to secure the convergence of outer iterations [8].

5 Algebraic flux correction

The design philosophy of modern high-resolution schemes as presented by Zalesak [30]
involves three main components which can be chosen and optimized individually:

1. an approximation to which they reduce in regions where the solution is smooth;

2. an approximation to which they reduce in the vicinity of shocks and steep fronts;

3. a mechanism for blending the above approximations at each node and time step so
as to satisfy the imposed physical or mathematical criteria.

In the preceding three sections, we specified the first two components and showed how to
combine them within an iterative defect correction scheme. Now we can proceed to the
design of flux limiters to be used for the computation of the correction factors αij in (19).
To this end, let us adopt a node-oriented limiting strategy which can be traced back to
the flux-corrected transport (FCT) methodology [19],[28].

5



The limiting techniques to be considered are based on the following algorithm:

1. Compute the sums of positive/negative antidiffusive fluxes into each node.

2. Select nodal correction factors so as to satisfy the algebraic constraints.

3. Check the sign of the antidiffusive fluxes and limit them edge-by-edge.

Unlike many other algorithms, flux limiters of this form are fully multidimensional because
they control the net antidiffusive flux / solution increment rather than the slope ratio for a
local three-point stencil or a similar smoothness indicator [16]. Below we discuss different
options for the choice and enforcement of appropriate upper/lower bounds.

5.1 Upwind-biased flux limiting

As demonstrated by Zalesak [29] for the one-dimensional advection equation ut +vux = 0,
where the velocity v is assumed to be positive, a family of upwind-biased flux limiters can
be derived by imposing the TVD constraint on a suitable ‘target flux’ of the form

fij = φijdij(ui − uj), (27)

where dij is an artificial diffusion coefficient. Typically, the Lax-Wendroff or central differ-
ence method serves as the high-order algorithm, while ‘upwind’ represents the monotone
low-order one. The limited antidiffusive flux for a classical TVD scheme is given by

f ∗
ij := max{0, min{2, φij, 2ri}}dij(ui − uj) = αijfij. (28)

Importantly, the slope ratio ri = (ui − uk)/(uj − ui) is evaluated at the upwind node i.
Of course, the bounds imposed on fij are not optimal since the left boundary of the

TVD region depends on the Courant number [10],[29]. However, ignoring this dependence
in favor of the simple constraint αijφij ≤ 2ri (regardless of the time step) makes TVD-like
limiters remarkably efficient and, moreover, directly applicable to stationary problems. To
put it another way, instead of computing a sharp bound for a given time step (which is
particularly expensive in multidimensions) one can use some reasonable fixed bounds and
adjust the time step if this is necessary to satisfy a CFL-like condition.

The above interpretation reveals that the numerous ‘limiter functions’ proposed in
the literature differ merely in the definition of the underlying target flux. Recall that
any linear combination of the central difference / Lax-Wendroff method (φij = 1) and
second-order upwind / Beam-Warming scheme (φij = ri) yields a second-order accurate
target flux. The most widely used TVD ‘limiters’ are as follows

minmod φij = min{1, ri},

Van Leer φij = 2ri/(1 + ri),

MC φij = (1 + ri)/2,

Koren φij = (2 + ri)/3,

superbee φij = max{1, ri}.
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The best accuracy attainable within Sweby’s second-order TVD region is provided by
Koren’s limiter [12] which has been repeatedly reinvented under different names [1],[24].
Due to the fact that the leading terms in the modified equation cancel out, the resulting
scheme is third-order accurate for sufficiently smooth data. We remark that all of the
above approximations are only valid for a constant velocity v on a uniform 1D mesh.

Let us come back to the multidimensional continuity equation (1) and extend the
above ideas to finite element discretizations on unstructured grids. In this case, the most
natural choice of the target flux appears to be (17) or its lumped-mass counterpart which
is appropriate for the treatment of steady or creeping flows:

fij = φijd
′
ij(ui − uj), where φij := dij/d

′
ij. (29)

Note that for a skew-symmetric transport operator sij = 0 and, consequently,

dij = d′
ij, φij = 1. (30)

The family of high-resolution schemes proposed in [15],[16] is based on target fluxes
constructed as for classical TVD methods (see above). To this end, the smoothness
indicator ri was redefined as the ratio of positive/negative edge contributions associated
with positive/negative coefficients in the sum

∑

j 6=i k
′
ij(uj − ui) = fi + gi, where

fi = f+
i + f−

i , f±
i =

∑

j 6=i

min{0, k′
ij}

min
max

{0, uj − ui}, (31)

gi = g+
i + g−

i , g±
i =

∑

j 6=i

max{0, k′
ij}

max
min

{0, uj − ui}. (32)

It is easy to verify that ri = g±
i /f±

i reduces to the usual slope ratio in the one-dimensional
case [15],[16]. Constraining the target fluxes according to (28), one obtains a discretization
which proves local extremum diminishing for any standard TVD limiter and returns a
limited average of ‘upwind’ and ‘downwind’ edge contributions to each node. Although
the results are typically quite good, the target fluxes for such an algorithm are inconsistent
with the underlying Galerkin scheme and may fail to be second-order accurate on a
nonuniform mesh. Furthermore, this sort of flux limiting requires mass lumping which
is undesirable for strongly time-dependent problems. In the finite element framework,
target fluxes of the form (17) or (29) are preferable because the high-order Galerkin
approximation is recovered in regions where the solution is smooth enough.

The limited antidiffusive flux f ∗
ij from node j into its upwind (in the sense of our

orientation convention) neighbor i is given by relation (19). As proposed in [15],[16],
positive and negative fluxes are treated separately, whereby the multipliers αij depend on
the nodal correction factors R±

i (to be defined below) and on the magnitude of φij

αij =

{

min{R+
i , 2/φij}, if fij > 0,

min{R−
i , 2/φij}, if fij < 0,

αji := αij. (33)

In the trivial case fij = 0 no limiting is required. On the other hand, |fij| > 0 implies
|φij| > 0 and d′

ij > 0 so that no division by zero takes place in the above relations.
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Recall that the edges are oriented so that lij = 0 while lji = 2d′
ij > 0. Hence, the edge

contribution to node j can be expressed as follows

k∗
ji(ui − uj) := 2d′

ij(ui − uj) − αijfij (34)

and due to (33) the off-diagonal coefficient in row j remains nonnegative:

k∗
ji = (2 − min{2, R±

i φij})d
′
ij ≥ 0. (35)

In order to make sure that the edge contribution to node i does not pose any hazard to
positivity either, the sum of edge contributions from all downwind neighbors j 6= i needs
to be limited so as to enforce the corresponding upper/lower bounds. By definition,

R±
i ≤ 1 ⇒ αij ≤ min{1, 2/φij}. (36)

It follows that the ‘downwind’ antidiffusion into node i is bounded by

P±
i =

∑

j 6=i

min

{

1,
φij

2

}

lji
max
min

{0, ui − uj} (37)

which reduces to the sum f±
i in the special case of target fluxes given by (29)–(30).

In addition, the equivalent algebraic system (7) is supposed to satisfy the positivity
constraint, at least for sufficiently small time steps or in the steady-state limit un+1 = un.
Therefore, the nodal correction factors are sought in the form

R±
i = min{1, Q±

i /P±
i }, (38)

where the auxiliary quantities Q±
i admit the following representation

Q±
i =

∑

j 6=i

qn
ij

max
min

{0, un
j − un

i } +
∑

j 6=i

qn+1
ij

max
min

{0, un+1
j − un+1

i }, (39)

qn
ij ≥ 0, qn+1

ij ≥ 0, ∀j 6= i. (40)

Specifically, the upper/lower bounds for our algebraic TVD schemes read [15]

Q±
i =

∑

j 6=i

lij
max
min

{0, uj − ui} = 2g±
i , (41)

where lij = max{0, 2k′
ij} are the coefficients of the low-order operator. The choice of Q±

i

for finite element discretizations with a consistent mass matrix will be addressed below.

Let us summarize what we have said so far and piece together the revised algorithm
for an upwind-biased flux correction of TVD type:

1. For each pair of neighboring nodes i and j, adopt the upwind-downwind edge ori-
entation (!!!) and represent the target flux fij in terms of φij such that

fij = φijd
′
ij(ui − uj). (42)
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2. Prelimit fij and add its contribution to the sums P±
i initialized by zero

fij := min{1, 2/φij}fij, P±
i := P±

i +
max
min

{0, fij}. (43)

3. Update the upper/lower bounds Q±
j initialized by zero, for instance

gij := 2d′
ij(ui − uj), Q±

j := Q±
j +

max
min

{0, gij}. (44)

4. Calculate the nodal correction factors and apply them edge-by-edge

f ∗
ij :=

{

R+
i fij, if fij > 0,

R−
i fij, if fij < 0,

R±
i = min{1, Q±

i /P±
i }. (45)

5. Insert the limited antidiffusive fluxes f ∗
ij into the defect vector (21)

ri := ri + ∆tf∗
ij, rj := rj − ∆tf∗

ij. (46)

Remarkably, all the necessary information is extracted from the original matrix K and
there is no need to know the coordinates of nodes or any other geometric details.

5.2 Symmetric flux limiting

For genuinely time-dependent problems, mass lumping degrades the phase accuracy of
finite element schemes and deprives them of a significant advantage in comparison to finite
difference and finite volume methods. Berzins [2],[3] recognized the need for including the
consistent mass matrix in a positivity-preserving fashion and presented some ideas as to
how this can be accomplished. As of this writing, no truly multidimensional extension of
his methodology seems to be available, so we need to look for another way to embed the
consistent mass matrix into algebraic flux correction schemes.

In fact, our revised FEM-TVD algorithm (42)-(46) is applicable to target fluxes of
the form (17). However, the upper/lower bounds may need to be redefined as explained
below and the mass matrix contribution may be large enough to render the upwind-biased
limiting strategy impractical. As an alternative, we introduce a symmetric flux limiter
which was largely inspired by the consistent-mass FEM-FCT algorithm [19],[20]. Let us
start with a ‘stand-alone’ limiter for the mass antidiffusion (ML − MC)u̇ such that

fij = mij(u̇i − u̇j) (47)

and address the treatment of fij given by (17) with dij 6= 0 in the next subsection.

The first step is to specify suitable upper/lower bounds Q±
i to be imposed on the sum

of raw antidiffusive fluxes P±
i . Unlike those defined in (41), they should be applicable

even in the case of a pure L2-projection (K = L = 0). Let the contribution of the mass
matrix to the right-hand side of the algebraic system (7) be represented in the form

bi = miu
n
i + ∆t

∑

j 6=i

αijfij = (mi − ci)u
n
i + ciu

n
k , (48)
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where un
k is a local extremum (minimum or maximum over the set of nodes j such that

mij 6= 0) and the coefficient ci is defined by (cf. [13],[14])

ci = ∆t

∑

j 6=i αijfij

un
k − un

i

, un
k =

{

umax
i if

∑

j 6=i αijfij > 0,

umin
i if

∑

j 6=i αijfij < 0.
(49)

By construction, ci ≥ 0 and if there are no other contributions to the right-hand side,
the positivity criterion is satisfied for ci ≤ mi. In the presence of convective and diffusive
terms, such a sharp estimate is also feasible [10] but computationally expensive. Therefore,
it is worthwhile to relax the above condition so as to accommodate the contribution of
the low-order transport operator and some ‘convective’ antidiffusion in what follows.

Recall that the target fluxes (47) correspond to a decomposition of the term

(ML − MC)u̇ =
1

∆t
(ML − MC)un+1 +

1

∆t
(MC − ML)un. (50)

The implicit part violates the M-matrix property in the left-hand side of (7) and, thus, is
truly antidiffusive. At the same time, the off-diagonal coefficients of the explicit part are
nonnegative and it turns out to be strongly diffusive. In fact, mass diffusion of this form
has frequently been used for construction of ‘monotone’ low-order schemes to be combined
with the underlying high-order ones in the finite element context [6],[19],[22],[23]. The
maximum amount of artificial diffusion introduced thereby can be estimated by

(mi − mii)(u
min
i − un

i ) ≤
∑

j 6=i

mij(u
n
j − un

i ) ≤ (mi − mii)(u
max
i − un

i ), (51)

since mi =
∑

j mij. These considerations have led us to require that the coefficient mi−ci

in (48) be bounded from below by the diagonal entry of the consistent mass matrix mii.
That is, the diagonal coefficient for the L2−projection with built-in mass antidiffusion
should be bounded by those for the consistent and lumped mass matrices. To this end,
the auxiliary quantities P±

i and Q±
i are redefined as follows

P±
i =

∑

j 6=i

max
min

{0, fij}, Q±
i =

mi − mii

∆t
(un

k − un
i ) (52)

and the nodal correction factors R±
i given by (38) are applied to the raw antidiffusive fluxes

edge-by-edge. Note that it no longer makes sense to distinguish between ‘upwind’ and
‘downwind’ nodes because the flow direction is immaterial. If the skew-symmetric part
is missing (K ′ = 0), the antidiffusive flux produces two negative off-diagonal coefficients.
Hence, the minimum of nodal correction factors should be taken

αij =

{

min{R+
i , R−

j } if fij > 0,
min{R−

i , R+
j } if fij < 0,

αji = αij. (53)

This symmetric limiting strategy has proved its worth in two-step FCT algorithms,
whereby the local extrema of a provisional (low-order) solution are used to determine
the upper and lower bounds such that ci ≤ mi [14],[16],[19],[28]. The use of slack bounds
(52) based on the inequality mii ≤ mi − ci eliminates the need for computing an interme-
diate solution and leads to a marked improvement of the convergence rates.
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A practical implementation of the above algorithm involves the following steps:

1. Initialize the auxiliary arrays thus: P±
i ≡ 0, Q±

i ≡ 0, R±
i ≡ 1.

2. For each pair of neighboring nodes i and j, evaluate fij and add its contribution
to the sums of positive/negative antidiffusive fluxes for both nodes

P±
i := P±

i +
max
min

{0, fij}, P±
j := P±

j +
max
min

{0,−fij}. (54)

3. Update the maximum/minimum admissible increments for both nodes

Q±
i :=

max
min

{

Q±
i , un

j − un
i

}

, Q±
j :=

max
min

{

Q±
j , un

i − un
j

}

. (55)

4. In a loop over nodes, scale the increments Q±
i so as to ensure that mii ≤ mi − ci

and compute the corresponding nodal correction factors from (38)

Q±
i :=

mi − mii

∆t
Q±

i , R±
i := min{1, Q±

i /P±
i }. (56)

5. Limit the raw antidiffusive fluxes fij using the minimum of R±
i and R∓

j

f ∗
ij :=

{

min{R+
i , R−

j }fij if fij > 0,
min{R−

i , R+
j }fij if fij < 0.

(57)

6. Insert limited antidiffusion into the right-hand side and/or the defect vector

bi := bi + ∆tf∗
ij, bj := bj − ∆tf∗

ij. (58)

Note that the bounds Q±
i depend on the local extrema of the old solution un and need

to be updated just once per time step. For fij given by (47), the nodal correction factors
R±

i are independent of ∆t, since both Q±
i and P±

i are inversely proportional to it.

5.3 Combined flux limiting

In light of the above, mass antidiffusion can be limited as if spatial differential operators
were missing and vice versa. The symmetric limiting strategy (54)-(58) is appropriate
for the former, while upwind-biased flux limiting of the form (42)-(46) lends itself to the
treatment of the convective term. However, such an ‘operator splitting’ for the target
flux (17) is undesirable because the independent limiting of its constituents (29) and (47)
may produce an antidiffusive flux of greater magnitude than the original one. Indeed, the
contribution of the consistent mass matrix and convective antidiffusion may have different
signs. Our experience with flux correction of FCT type indicates that it is worthwhile to
prelimit fij so as to prevent it from becoming diffusive and creating numerical artifacts
[13],[16]. The corresponding coefficient φT

ij for the total flux (17) reads

φT
ij = max{0,mij(u̇i − u̇j)/(ui − uj) + dij}/d

′
ij. (59)

It remains to specify the upper/lower bounds and choose the algorithm for enforcing them.
The above flux limiters can be combined in the following straightforward way:
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1. Limit the target fluxes fij := φT
ijd

′
ij(ui − uj) following the upwind-biased algorithm

(42)-(46) with P±
i and Q±

i defined as in (37) and (41), respectively

f ∗
ij := min{R±

i , 2/φT
ij}fij. (60)

2. Limit the rejected antidiffusion ∆fij = fij − f ∗
ij in a symmetric fashion according to

(54)-(58) with P±
i and Q±

i defined as in (52) to compute the correction

∆f ∗
ij := min{R±

i , R∓
j }∆fij. (61)

Alternatively, it is possible to invoke the upwind-biased flux limiter with P±
i given by (37)

and Q±
i redefined as the sum of bounds for the two steps of the above algorithm

Q±
i :=

mi − mii

∆t
(u∗

i − un
i ) +

∑

j 6=i

lij
max
min

{0, uj − ui}. (62)

This scenario is certainly cheaper than the use of symmetric ‘postlimiting’ but typically
less accurate because of the restriction αij ≤ min{1, 2/φT

ij} imposed by the positivity
condition for the downwind node j. It is not unusual that φT

ij ≫ 2 if mass antidiffusion
is strong enough, which means that a significant portion of the target flux cannot be
recovered by the upwind-biased flux limiter alone. Likewise, symmetric flux limiting with
Q±

i given by (62) is feasible but not as accurate as the two-step algorithm because the
minimum of nodal correction factors needs to be taken in (53).

In either case, the effective upper/lower bounds for the net antidiffusive flux consist
of a ‘stationary’ part (41) which is defined as in algebraic TVD schemes and a ‘time-
dependent’ part (52) which may be dropped if mass lumping is in order (mij = 0, ∀j 6= i).
This two-step approach to the definition of nodal constraints leads to an algorithm which
combines the advantages of FCT- and TVD-like schemes:

• Due to (41), the use of large time steps for steady-state computations does not lead
to a loss of accuracy, as the correction factors become largely independent of ∆t.

• By virtue of (52), solutions to truly time-dependent problems become more accurate
as ∆t is refined, since a larger portion of the target flux may be retained.

Both constituents of Q±
i were constructed using heuristic arguments rather than the

intrinsic ‘CFL’ condition which requires that the diagonal coefficient in the right-hand
side of (7) be nonnegative for a given ∆t. Such estimates would be expensive to obtain
and sometimes overly restrictive, e.g., for stationary problems solved by time marching.
Therefore, we deliberately relax them to make the algorithm more efficient, improve the
convergence rates, and satisfy the discrete maximum principle in the steady-state limit.

Of course, there are many other ways to select and enforce the upper/lower bounds.
Moderate improvements can be achieved – at a disproportionately high overhead cost –
but our numerical experiments indicate that the accuracy of the underlying target flux
rather than the choice of constraints and the type of flux limiter is decisive in many
cases. Roughly speaking, it is not the limiter but the antidiffusive flux itself that still
needs to be optimized. In the finite element context, the use of time-accurate Taylor-
Galerkin methods (for transient problems) and/or high-order basis functions appears to
be a promising way to improve the performance of algebraic flux correction schemes.
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6 Numerical examples

In order to illustrate the ideas presented in this paper, we apply the new limiting strategy
to equation (1) discretized in space by P1/Q1 finite elements. For a detailed numerical
study of its FCT and TVD prototypes which covers an extension of the algebraic flux
correction paradigm to nonlinear PDE systems (Euler equations, Navier-Stokes equations,
k − ε turbulence model), the interested reader is referred to [16],[17],[25].

6.1 Convection of a square wave

Let us start with a classical test problem which consists of solving the one-dimensional
convection equation ut +vux = 0 for discontinuous initial data depicted as dashed lines in
Fig. 1. The dotted lines show the exact solution for v = 1 and t = 0.5 which is obtained
by translation of the initial profile along the x−axis. The domain (0, 1) is discretized by
linear finite elements of equal length ∆x = 10−2. The discretization in time is performed
by the second-order accurate Lax-Wendroff method. The time step ∆t = 10−3 used to
compute the numerical solutions in Fig. 1 corresponds to a Courant number of 0.1. The
behavior of standard TVD schemes for this simple test problem is well known. As usual,
the most diffusive results are produced by the minmod limiter, while superbee performs
best on such discontinuous solutions but tends to corrupt smooth profiles due to artificial
steepening. Limiters like MC produce acceptable results in either case and are typically
used by default. For the square wave problem, the MC limiter proves far superior to
minmod but less accurate than superbee, see Fig. 1a-c.

The target flux given by φij = 1 corresponds to the finite difference Lax-Wendroff
scheme which can be classified as a lumped-mass (LM) Taylor-Galerkin method of second
order. As shown in Fig. 1d, the resulting solution is asymmetric, whereby the right flank
of the square wave is reproduced much better than the left one. The latter is smeared
as much as that for minmod, which is due to mass lumping. Adding the contribution of
the consistent mass (CM) matrix yields a target flux with improved phase characteristics
[5]. Limiting it as before in accordance with (28) is equivalent to (60) in our two-step
approach to combined flux limiting. The numerical solution displayed in Fig. 1e resembles
that produced by superbee. Note that the upper right corner of the square wave remains
‘rounded’ because the bounds (41) are too restrictive for transient problems. This can
be rectified by resorting to symmetric postlimiting (61) which yields an equally crisp
resolution of both flanks, see Fig. 1f. We conclude that the use of a consistent mass
matrix is essential not only for the definition of the target flux but also for the estimation
of upper/lower bounds in finite element schemes based on algebraic flux correction.

6.2 Convection of a semi-ellipse

Our second test problem is a slightly modified version of the one used in [21],[29],[30] to
expose the ‘terracing’ phenomenon, an infamous byproduct of flux limiting. The linear
convection equation is solved for continuous initial data given by the formula

u(x, 0) =

√

1 −

(

x − 0.2

0.15

)2

if |x − 0.2| ≤ 0.15 (63)
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Figure 1. Convection of a square wave: numerical solutions at t = 0.5.

and u(x, 0) = 0 otherwise. All discretization parameters are the same as in the first exam-
ple. The challenge of the second test consists in resolving the steep parts of the otherwise
smooth profile without generating spurious kinks or plateaus. Such a nonphysical solu-
tion behavior, which is a common drawback of many modern high-resolution schemes,
is referred to as terracing and can be interpreted as ‘an integrated, nonlinear effect of
residual phase errors’ [21] or, loosely speaking, ‘the ghosts of departed ripples’ [4].
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Figure 2. Convection of a semi-ellipse: numerical solutions at t = 0.5.

Terracing was first discovered in the FCT context but it is also typical of TVD limiters
like superbee, see Fig. 2a. The best results for this benchmark problem are produced by
Koren’s limiter (Fig. 2b) which is based on a third-order accurate target flux. In the
finite element framework, mass lumping tends to aggravate phase errors, which manifests
itself in a pronounced terracing (Fig. 2c). The solution displayed in Fig. 2d illustrates
the benefits of using the consistent mass matrix in conjunction with the two-step limiting
strategy. The observed improvement in comparison to the lumped-mass version supports
the conjecture that terracing can be cured to some extent by increasing the resolving power
of the target flux so as to reduce the dispersive errors [29],[30]. Numerical experiments
indicate that the small but still noticeable deviations from the exact shape at the right edge
of the semi-ellipse in Fig. 2d are caused by the fluxes that prove insufficiently antidiffusive
(more diffusive than minmod) in spite of the prelimiting performed in (17). Indeed, false
diffusion cannot be detected by the flux limiter and should be filtered out beforehand.

6.3 Solid body rotation

Let us proceed to the two-dimensional benchmark problem proposed by LeVeque [18]
which makes it possible to assess the ability of a high-resolution scheme to preserve both
smooth and discontinuous profiles. To this end, a slotted cylinder, a sharp cone and
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a smooth hump are exposed to the nonuniform velocity field v = (0.5 − y, x − 0.5) and
undergo a counterclockwise rotation about the center of the unit square Ω = (0, 1)×(0, 1).
Each solid body lies within a circle of radius r0 = 0.15 centered at a point with Cartesian
coordinates (x0, y0). In the rest of the domain, the solution is initialized by zero. The
shapes of the three bodies as depicted in Fig. 3 can be expressed in terms of the normalized
distance function for the respective reference point (x0, y0) thus:

r(x, y) =
1

r0

√

(x − x0)2 + (y − y0)2.

The center of the slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its geometry in
the circular region r(x, y) ≤ 1 is given by

u(x, y, 0) =

{

1 if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,

0 otherwise.

The corresponding analytical expression for the conical body reads

u(x, y, 0) = 1 − r(x, y), (x0, y0) = (0.5, 0.25),

whereas the shape and location of the hump at t = 0 are as follows

u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})], (x0, y0) = (0.25, 0.5).

After one full revolution (t = 2π) the exact solution of the continuity equation (1)
coincides with the initial data. The numerical solutions presented in Fig. 4-6 were com-
puted on a uniform mesh of 128 × 128 bilinear finite elements using the second-order
accurate Crank-Nicolson time-stepping (θ = 0.5) with ∆t = 10−3. The consistent-mass
(CM) algorithm (60)-(61) produces the most accurate results shown in Fig. 4. The cone
and hump are reproduced very well and even the narrow bridge of the slotted cylinder
is largely preserved. Not surprisingly, this solution is very similar to that computed by
an FCT algorithm based on the same target flux [14]. In either case, the prelimiting of
antidiffusive fluxes in (59) is essential. If it is not performed, the ridges of the cylinder
are subject to spurious erosion which can be interpreted as a sort of terracing.

By contrast, the performance of standard TVD limiters for this time-dependent test
problem leaves a lot to be desired. The strong antidiffusion inherent to superbee alleviates
the diffusive effect of mass lumping and yields a fairly good resolution of the slotted
cylinder (Fig. 5) but entails a pronounced flattening of the smooth peaks. The numerical
solution produced by the ‘default’ MC limiter (Fig. 6) exhibits both a strong smearing of
the slotted cylinder and a noticeable distortion of the cone and hump.

6.4 Convection in space-time

If the problem at hand is stationary, the time derivative vanishes and so does the con-
tribution of the consistent mass matrix. Therefore, mass lumping is appropriate, i.e.,
the raw antidiffusive flux is given by (29) and symmetric postlimiting (61) can/should be
omitted. Due to the fact that the upper/lower bounds for the upwind-biased part (60) are
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Figure 3. Solid body rotation: initial data / exact solution.

Figure 4. Solid body rotation: CM limiter, t = 2π.
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Figure 5. Solid body rotation: superbee limiter, t = 2π.

Figure 6. Solid body rotation: MC limiter, t = 2π.
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Figure 7. Convection in space-time: LM limiter.

Figure 8. Convection in space-time: minmod limiter.
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independent of the time step, it is possible to compute the steady-state solution directly
or by means of pseudo-time-stepping based on the fully implicit backward Euler scheme
(θ = 1). In the latter case, the time step represents a variable underrelaxation parameter
[8] which should be chosen as large as possible to reduce the computational cost. For an
FCT-like limiter, whereby each solution update is required to be positivity-preserving,
this would entail an irrecoverable loss of accuracy, since the nodal correction factors are
inversely proportional to ∆t. At the same time, our new algorithm is free of this drawback
because it reduces to a TVD-like method for large time steps.

Let us return to the square wave test and reformulate the one-dimensional convection
equation with v = 0.5 as a stationary problem of the form (1) with v = (0.5, 1). This
corresponds to computing the solution for all time levels simultaneously instead of doing
it step-by-step as usual [16]. The following initial/boundary conditions are imposed at
the ‘inlet’ of the space-time domain Ω = (0, 1) × (0, 1)

u(0, t) = 0, u(x, 0) =

{

1 if |x − 0.2| ≤ 0.1,

0 otherwise.

The numerical results obtained using algebraic flux correction based on the lumped-mass
(LM) Galerkin flux and the standard minmod limiter are presented in Fig. 7 and Fig. 8,
respectively. Both solutions were marched to the steady state by the backward Euler
method, whereby the time step ∆t = 1.0 was intentionally chosen to be very large. The
discontinuous initial profile is shown in the background, while the solution at time t = 1
appears in the front. This example demonstrates that even in the stationary case the new
algorithm is much better than minmod, the only standard TVD limiter which is consistent
with the underlying finite element scheme.

7 Conclusions

In this paper, we focused on the design of flux limiters for finite element discretizations
with a consistent mass matrix. Algebraic constraints were imposed node-by-node so as
to control the contribution of negative off-diagonal coefficients in the corresponding rows
of the discrete transport operator. Upper/lower bounds for the sum of positive/negative
antidiffusive fluxes were designed so as to satisfy the M-matrix property for an equivalent
algebraic system. A combination of the bounds derived separately for the special cases
of consistent-mass L2-projection and lumped-mass Galerkin approximation was found to
strike the balance between accuracy and efficiency. The choice of high-order target fluxes
was addressed and a fully multidimensional limiting strategy was presented. The new
algorithm which combines the advantages of algebraic FCT and TVD schemes [14],[15] is
capable of producing excellent results for stationary and time-dependent problems alike.
In the latter case, the phase accuracy can be improved in the framework of Taylor-Galerkin
methods [5]. Furthermore, high-order finite elements / bubble functions lend themselves
to the design of target fluxes. These outstanding issues constitute an interesting direction
for further research. An extension of the proposed methodology to the Euler and Navier-
Stokes equations of fluid dynamics can be readily performed as explained in [17],[25].
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Löhner and S. Turek (eds.) Flux-Corrected Transport: Principles, Algorithms, and

Applications. Springer, 2005, 5-28.

[5] J. Donea, L. Quartapelle and V. Selmin, An analysis of time discretization in the
finite element solution of hyperbolic problems. J. Comput. Phys. 70 (1987) 463–499.

[6] J. Donea, V. Selmin and L. Quartapelle, Recent developments of the Taylor-Galerkin
method for the numerical solution of hyperbolic problems. Numerical methods for

fluid dynamics III, Oxford, 171-185 (1988).

[7] J. Donea, B. Roig and A. Huerta, High-order accurate time-stepping schemes for
convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 182 (2000) no.
3-4, 249-275.

[8] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer,
1996.

[9] C. A. J. Fletcher, The group finite element formulation. Comput. Methods Appl.

Mech. Engrg. 37 (1983) 225-243.

[10] K. Hain, The partial donor cell method. J. Comput. Phys. 73 (1987) 131-147.

[11] T. Jongen and Y.P. Marx, Design of an unconditionally stable, positive scheme for
the K−ε and two-layer turbulence models. Comput. Fluids 26 (1997) no. 5, 469-487.

[12] B. Koren, A robust upwind discretization method for advection, diffusion and source
terms. In: C. B. Vreugdenhil et al. (eds.), Numerical methods for advection - diffusion

problems. Braunschweig: Vieweg. Notes Numer. Fluid Mech. 45 (1993) 117-138.

[13] D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Comput. Phys.

175 (2002) 525-558.
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[16] D. Kuzmin and M. Möller, Algebraic flux correction I. Scalar conservation laws. In:
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