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Abstract

A new approach to slope limiting for discontinuous Galerkin methods on
arbitrary meshes is introduced. A local Taylor basis is employed to express
the approximate solution in terms of cell averages and derivatives at cell
centroids. In contrast to traditional slope limiting techniques, the upper and
lower bounds for admissible variations are defined using the maxima/minima
of centroid values over the set of elements meeting at a vertex. The correction
factors are determined by a vertex-based counterpart of the Barth-Jespersen
limiter. The coefficients in the Taylor series expansion are limited in a hi-
erarchical manner starting with the highest-order derivatives. The loss of
accuracy at smooth extrema is avoided by taking the maximum of correction
factors for derivatives of order p ≥ 1 and higher. No free parameters, oscil-
lation detectors, or troubled cell markers are involved. Numerical examples
are presented for 2D transport problems discretized using a DG method.

Key words: hyperbolic conservation laws, finite elements, discontinuous
Galerkin methods, hierarchical bases, slope limiting

1. Introduction

Discontinuous Galerkin (DG) methods [4, 5, 8, 11] represent one of the
most promising current trends in computational fluid dynamics. The fre-
quently mentioned advantages of this approach include local conservation and
the ease of constructing high-order approximations on unstructured meshes.
Moreover, DG methods are well suited for hp-adaptivity and parallelization.
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One of the major bottlenecks in the design of high-order DG methods for
convection-dominated transport problems is the lack of reliable mechanisms
that ensure nonlinear stability and effectively suppress spurious oscillations.
A number of successful discontinuity capturing and slope limiting techniques
are available for DG finite element methods [2, 3, 6, 12, 13, 14, 20] and their
finite difference/volume counterparts [1, 19, 22, 21]. However, no universally
applicable methodology has been developed to date. Since the accuracy of
monotonicity-preserving schemes degenerates to first order at local extrema,
free parameters or heuristic indicators are frequently employed to distinguish
between troubled cells and regions where the solution varies smoothly. In
some cases, the results leave a lot to be desired. Also, the use of limiters may
cause severe convergence problems in steady state computations [21].

In the present paper, we devise a parameter-free, non-clipping slope lim-
iter for high-resolution DG-FEM on arbitrary meshes. A hierarchical ap-
proach to adaptive p-coarsening is pursued. The Taylor series form [18, 19,
22] of a polynomial shape function is considered, and the involved deriva-
tives are limited so as to control the variations of lower-order terms. The
corresponding upper and lower bounds are defined using the data from ele-
ments sharing a vertex. This strategy yields a remarkable gain of accuracy,
as compared to traditional compact limiters that search the von Neumann
(common face) neighbors of a given element [1, 6, 14]. The performance of
the new algorithm is illustrated by two-dimensional numerical examples.

2. Upwind DG formulation

A simple model problem that will serve as a vehicle for our presentation
of slope-limited DG approximations is the linear convection equation

∂u

∂t
+ ∇ · (vu) = 0 in Ω, (1)

where u(x, t) is a scalar quantity transported by a continuous velocity field
v(x, t). Let n denote the unit outward normal to the boundary Γ of the
domain Ω. The initial and boundary conditions are given by

u|t=0 = u0, u|Γin
= g, Γin = {x ∈ Γ |v · n < 0}.

Multiplying (1) by a sufficiently smooth test function w, integrating over Ω,
and using Green’s formula, one obtains the following weak formulation

∫

Ω

(

w
∂u

∂t
−∇w · vu

)

dx +

∫

Γ

wuv · n ds = 0, ∀w. (2)

2



In the discontinuous Galerkin method, the domain Ω is decomposed into a
finite number of cells Ωe, and a local polynomial basis {ϕj} is employed to
define the restriction of the approximate solution uh ≈ u to Ωe via

uh(x, t)|Ωe
=

∑

j

uj(t)ϕj(x), ∀x ∈ Ωe. (3)

The globally defined uh is piecewise-polynomial and may have jumps at in-
terelement boundaries. The meaning of the coefficients uj depends on the
choice of the basis functions. A local version of (2) can be formulated as

∫

Ωe

(

wh

∂uh

∂t
−∇wh · vuh

)

dx +

∫

Γe

whûhv · n ds = 0, ∀wh, (4)

where wh is an arbitrary test function from the DG space spanned by ϕi.
Since uh is multiply defined on Γe, the surface integral is calculated using the
solution value ûh from the upwind side of the interface, that is,

ûh(x, t)|Γe
=















lim
δ→+0

uh(x + δn, t), v · n < 0, x ∈ Ω̄\Γin,

g(x, t), v · n < 0, x ∈ Γin,

lim
δ→+0

uh(x − δn, t), v · n ≥ 0, x ∈ Ω̄.

(5)

In the case of a piecewise-constant approximation, the result is equivalent to
the first-order accurate upwind finite volume scheme. The DG formulation
for general conservation laws and systems thereof is described, e.g., in [5, 6].

3. Runge-Kutta DG schemes

Substitution of (3) and (5) into (4) with wh = ϕi yields a system of
semi-discrete equations which can be written in matrix form as follows:

M
du

dt
= r(u). (6)

Here u = {uj} is the vector of unknown coefficients and M = {mij} is
the (block-diagonal) mass matrix. The right-hand side vector r(u) is the
contribution of convective terms, including fluxes across the inflow boundary.

The time integration method for the semi-discrete problem (6) should
guarantee nonlinear stability, at least for sufficiently small time steps ∆t.

3



Gottlieb and Shu [9] introduced a family of explicit Runge-Kutta methods
that preserve the total variation diminishing (TVD) property of a 1D space
discretization. In general, such time-stepping schemes can be classified as
strong stability-preserving (SSP) [10]. If the forward Euler method is SSP, so
are its high-order counterparts, perhaps under a different restriction on the
time step. For details, we refer to the review paper by Gottlieb et al. [10].

In this work, we use the optimal third-order SSP Runge-Kutta scheme [9]

u(1) = un + ∆tM−1r(un), (7)

u(2) =
3

4
un +

1

4

[

u(1) + ∆tM−1r(u(1))
]

, (8)

un+1 =
1

3
un +

2

3

[

u(2) + ∆tM−1r(u(2))
]

. (9)

Since the DG mass matrix M is block-diagonal, it can be inverted efficiently
element-by-element. A time-stepping scheme like (7)–(9) can also be em-
ployed as an iterative smoother within the framework of a fast p-multigrid
solver [17] in which only coarse-level approximations are treated implicitly.

4. Taylor basis functions

In a discontinuous Galerkin method of degree p ≥ 0, the shape function
uh|Ωe

is given by (3), where the number of basis functions depends on p.
Clearly, many alternative representations are possible, and some choices are
better than others. For accuracy and efficiency reasons, it is worthwhile
to consider an orthogonal basis such that M is a diagonal matrix and its
inversion is trivial. For example, tensor products of Legendre polynomials
are commonly employed on quadrilaterals and hexahedra [2]. The Gram-
Schmidt orthonormalization procedure [8, 23], Dubiner’s basis functions [3,
11], and Bernstein-Bézier [7] polynomials are suitable for the construction
of hierarchical approximations on triangular meshes. In general, one set of
basis functions may be used for matrix assembly and another for limiting or
visualization purposes. Due to the local nature of DG methods, conversion
between a pair of alternative bases is straightforward and relatively efficient.

Following Luo et al. [18], we restrict our discussion to quadratic polyno-
mials uh|Ωe

∈ P2(Ωe) and consider the 2D Taylor series expansion

uh(x, y) = uc + ∂u
∂x

∣

∣

c
(x − xc) + ∂u

∂y

∣

∣

∣

c
(y − yc) + ∂2u

∂x2

∣

∣

∣

c

(x−xc)2

2

+ ∂2u
∂y2

∣

∣

∣

c

(y−yc)2

2
+ ∂2u

∂x∂y

∣

∣

∣

c
(x − xc)(y − yc)

(10)
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about the centroid (xc, yc) of a cell Ωe. Introducing the volume averages

ūh =
1

|Ωe|

∫

Ωe

uh dx, xnym =
1

|Ωe|

∫

Ωe

xnym dx,

the quadratic function uh can be expressed in the equivalent form [18, 19, 22]

uh(x, y) = ūh + ∂u
∂x

∣

∣

c
(x − xc) + ∂u

∂y

∣

∣

∣

c
(y − yc)

+ ∂2u
∂x2

∣

∣

∣

c

[

(x−xc)2

2
− (x−xc)2

2

]

+ ∂2u
∂y2

∣

∣

∣

c

[

(y−yc)2

2
− (y−yc)2

2

]

+ ∂2u
∂x∂y

∣

∣

∣

c

[

(x − xc)(y − yc) − (x − xc)(y − yc)
]

.

(11)

This representation has led Luo et al. [18] to consider the local Taylor basis

ϕ1 = 1, ϕ2 = x−xc

∆x
, ϕ3 = y−yc

∆y
, ϕ4 = (x−xc)2

2∆x2 − (x−xc)2

2∆x2 ,

ϕ5 = (y−yc)2

2∆y2 − (y−yc)2

2∆y2 , ϕ6 = (x−xc)(y−yc)−(x−xc)(y−yc)
∆x∆y

.

(12)

The scaling by ∆x = (xmax − xmin)/2 and ∆y = (ymax − ymin)/2 is required
to obtain a well-conditioned system [18]. The normalized degrees of freedom
are proportional to the cell mean value ūh and derivatives of uh at (xc, yc)

uh(x, y) = ūhϕ1 +
(

∂u
∂x

∣

∣

c
∆x

)

ϕ2 +
(

∂u
∂y

∣

∣

∣

c
∆y

)

ϕ3 +
(

∂2u
∂x2

∣

∣

∣

c
∆x2

)

ϕ4

+
(

∂2u
∂y2

∣

∣

∣

c
∆y2

)

ϕ5 +
(

∂2u
∂x∂y

∣

∣

∣

c
∆x∆y

)

ϕ6.

(13)

Note that the cell averages are decoupled from other degrees of freedom since
∫

Ωe

ϕ2
1 dx = |Ωe|,

∫

Ωe

ϕ1ϕj dx = 0, 2 ≤ j ≤ 6.

On a uniform mesh of rectangular elements, the whole Taylor basis (12) is
orthogonal, as shown by Cockburn and Shu [6]. On a triangular mesh, this is
not the case even for the linear part {ϕ1, ϕ2, ϕ3} since the L2 inner product
of ϕ2 and ϕ3 is nonvanishing. However, the consistent mass matrix M may
be ‘lumped’ by setting all off-diagonal entries equal to zero. In contrast to
the case of a typical Lagrange basis, this modification is conservative because
it does not affect the decoupled equation for the mean value of uh in Ωe.
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5. The Barth-Jespersen limiter

The above Taylor series representation is amenable to p-adaptation and
limiting. In the context of finite volume and DG finite element methods,
a slope limiter is a postprocessing filter that constrains a polynomial shape
function to stay within certain bounds. Many unstructured grid codes employ
the algorithm developed by Barth and Jespersen [1] for piecewise-linear data.
Given a cell average ūh = uc and the gradient (∇u)c, the goal is to determine
the maximum admissible slope for a constrained reconstruction of the form

uh(x) = uc + αe(∇u)c · (x − xc), 0 ≤ αe ≤ 1, x ∈ Ωe. (14)

Barth and Jespersen [1] define the correction factor αe so that the final
solution values at a number of control points xi ∈ Γe are bounded by the
maximum and minimum centroid values found in Ωe or in one of its neighbors
Ωa having a common boundary (edge in 2D, face in 3D) with Ωe. That is,

umin
e ≤ u(xi) ≤ umax

e , ∀i. (15)

Due to linearity, the solution uh attains its extrema at the vertices xi of the
cell Ωe. To enforce condition (15), the correction factor αe is defined as [1]

αe = min
i















min
{

1, umax
e

−uc

ui−uc

}

, if ui − uc > 0,

1, if ui − uc = 0,

min
{

1, umin
e

−uc

ui−uc

}

, if ui − uc < 0,

(16)

where ui = uc + (∇u)c · (xi − xc) is the unconstrained solution value at xi.

The above algorithm belongs to the most popular and successful limiting
techniques, although its intrinsic non-differentiability tends to cause severe
convergence problems at steady state [19, 21]. Another potential drawback
is the elementwise definition of umax

e and umin
e which implies that

• the bounds for u(xi) satisfying (15) at a vertex xi depend on the element
number e and may be taken from neighbors that do not contain xi,

• no constraints are imposed on the difference between the solution values
in elements meeting at a vertex but having no common edge/face,

• the results are rather sensitive to the geometric properties of the mesh.

In particular, problems are to be expected if Ωe has sharp angles, as in Fig. 1.
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xi

Ωa

Ωe

Figure 1: Vertices and neighbors of Ωe on a triangular mesh.

6. The vertex-based limiter

In light of the above, the accuracy of limited reconstructions can be sig-
nificantly improved if the bounds for variations ui − uc at the vertices of Ωe

are constructed using the maximum and minimum values in the elements
containing the vertex xi. The so-defined umax

i and umin
i may be initialized by

a small/large constant and updated in a loop over elements Ωe as follows:

umax
i := max{uc, u

max
i }, umin

i := min{uc, u
min
i }. (17)

The elementwise correction factors αe for (14) should guarantee that

umin
i ≤ u(xi) ≤ umax

i , ∀i. (18)

This vertex-based condition can be enforced in the same way as (15)

αe = min
i















min
{

1,
umax

i
−uc

ui−uc

}

, if ui − uc > 0,

1, if ui − uc = 0,

min
{

1,
umin

i
−uc

ui−uc

}

, if ui − uc < 0.

(19)

Obviously, the only difference as compared to the classical Barth-Jespersen

(BJ) limiter is the use of u
max

min

i in place of u
max

min

e . This subtle difference turns
out to be the key to achieving high accuracy with p-adaptive DG methods.

In fact, the revised limiting strategy resembles the elementwise version of
the finite element flux-corrected transport (FEM-FCT) algorithm developed
by Löhner et al. [16]. In explicit FCT schemes, umax

i and umin
i represent the

local extrema of a low-order solution. In accordance with the local discrete
maximum principle for unsteady problems, data from the previous time level
can also be involved in the estimation of admissible upper/lower bounds.
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7. Limiting higher-order terms

The quality of the limiting procedure is particularly important in the case
of a high-order DG method [13]. Poor accuracy and/or lack of robustness
restrict the practical utility of many parameter-dependent algorithms and
heuristic generalizations of limiters tailored for piecewise-linear functions.

Following Yang and Wang [22], we multiply all derivatives of order p by

a common correction factor α
(p)
e . The limited counterpart of (11) becomes

uh(x, y) = ūh + α
(1)
e

{

∂u
∂x

∣

∣

c
(x − xc) + ∂u

∂y

∣

∣

∣

c
(y − yc)

}

+ α
(2)
e

{

∂2u
∂x2

∣

∣

∣

c

[

(x−xc)2

2
− (x−xc)2

2

]

+ ∂2u
∂y2

∣

∣

∣

c

[

(y−yc)2

2
− (y−yc)2

2

]

+ ∂2u
∂x∂y

∣

∣

∣

c

[

(x − xc)(y − yc) − (x − xc)(y − yc)
]}

.

(20)

In our method, the values of α
(1)
e and α

(2)
e are determined using the vertex-

based or standard BJ limiter, as applied to the linear reconstructions

u(2)
x (x, y) =

∂u

∂x

∣

∣

∣

∣

c

+ α(2)
x

{

∂2u

∂x2

∣

∣

∣

∣

c

(x − xc) +
∂2u

∂x∂y

∣

∣

∣

∣

c

(y − yc)

}

, (21)

u(2)
y (x, y) =

∂u

∂y

∣

∣

∣

∣

c

+ α(2)
y

{

∂2u

∂x∂y

∣

∣

∣

∣

c

(x − xc) +
∂2u

∂y2

∣

∣

∣

∣

c

(y − yc)

}

, (22)

u(1)(x, y) = ūh + α(1)
e

{

∂u

∂x

∣

∣

∣

∣

c

(x − xc) +
∂u

∂y

∣

∣

∣

∣

c

(y − yc)

}

. (23)

The last step is identical to (14). In the first and second step, first-order
derivatives with respect to x and y are treated in the same way as cell aver-
ages, while second-order derivatives represent the gradients to be limited.

Since the mixed second derivative appears in (21) and (22), the correction

factor α
(2)
e for the limited quadratic reconstruction (20) is defined as

α(2)
e = min{α(2)

x , α(2)
y }. (24)

The first derivatives are typically smoother and should be limited using

α(1)
e := max{α(1)

e , α(2)
e } (25)

to avoid the loss of accuracy at smooth extrema. It is important to implement
the limiter as a hierarchical p-coarsening algorithm, as opposed to making the
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assumption [6] that no oscillations are present in uh if they are not detected
in the linear part. In general, we begin with the highest-order derivatives
(cf. [13, 22]) and calculate a nondecreasing sequence of correction factors

α(p)
e := max

p≤q
α(q)

e , p ≥ 1. (26)

As soon as α
(q)
e = 1 is encountered, no further limiting is required since

definition (26) implies that α
(p)
e = 1 for all p ≤ q. Remarkably, there is

no penalty for using the maximum correction factor. At least for scalar
equations, discontinuities are resolved in a sharp and nonoscillatory manner
(see below). In the case of hyperbolic systems, the minimum of α

(p)
e for the

characteristic variables in each coordinate direction (x, y, z) may be taken.

8. Numerical examples

In this section, a preliminary evaluation of the constrained Runge-Kutta
DG method is performed on quadrilateral and triangular meshes. For visu-
alization purposes, the approximate solution uh is projected onto the space
Vh of continuous piecewise-linear or bilinear functions via the L2 projection

∫

Ω

w̃hũh dx =
∑

e

∫

Ωe

w̃huh dx, ∀w̃h ∈ Vh.

Mass lumping is employed in the current implementation of this postpro-
cessing step which has a smoothing effect. The solution uh is regarded as
nonoscillatory if at least ũh is free of undershoots and overshoots. In practical
applications, uh can be replaced by ũh in equations for other variables.

8.1. Solid body rotation

In the first test problem, equation (1) is solved with the incompressible
velocity field v(x, y) = (0.5−y, x−0.5) which corresponds to a counterclock-
wise rotation about the center of the domain Ω = (0, 1)2. The exact solution
reproduces the initial state u0 exactly after each full revolution (t = 2πk),
so the challenge is to preserve the shape of u0 as accurately as possible. The
initial data shown in Fig. 2a are defined as in [15]. Importantly, not only cell
averages but also spatial derivatives are initialized by differentiating u0.

Numerical solutions are computed by the Runge-Kutta DG method on a
Cartesian mesh with uniform spacing h = 1/128. The employed time step is
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(a) Initial/exact solution, E2 = 0.0 (b) DG-P0 solution, E2=1.80e-1

(c) BJ-P1 solution, E2=8.33e-2 (d) VB-P1 solution, E2=7.19e-2

(e) BJ-P2 solution, E2=8.51e-2 (f) VB-P2 solution, E2=6.61e-2

Figure 2: Solid body rotation, simulation on a rectangular mesh, t = 2π.
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∆t = 10−3. The errors E2 = ||u−uh||2 displayed in Figs. 2–3 are measured in
the L2 norm. The accuracy of the piecewise-constant upwind approximation
(DG-P0, Fig. 2b) is extremely poor. The piecewise-linear solution produced
by the standard Barth-Jespersen limiter (BJ-P1, Fig. 2c) is eroded stronger
than that obtained with the new, vertex-based approach (VB-P1, Fig. 2d).
This difference becomes more pronounced in the case of quadratic recon-
structions. The BJ-P2 solution (see Fig. 2e) is still strongly smeared near
the two peaks, while the new algorithm (VB-P2, Fig. 2f) resolves them with
high precision. In both cases, slope limiting was performed hierarchically.

(a) BJ-P1 solution, E2=1.27e-1 (b) VB-P1 solution, E2=6.81e-2

(c) BJ-P2 solution, E2=1.26e-1 (d) VB-P2 solution, E2=6.70e-2

Figure 3: Solid body rotation, simulation on a triangular mesh, t = 2π.

The results produced by both limiters on a triangular mesh with the same
vertices are presented in Fig. 3. In this example, the Taylor basis (12) is not
orthogonal. To avoid implicit links between the derivatives to be limited,
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all off-diagonal entries of the the mass matrix M were set equal to zero. As
explained in section 4, this lumping strategy is conservative. The inclusion
of a non-diagonal mass matrix would require the implementation of a limiter
for the involved time derivatives. The lumped-mass VB solutions (Fig. 3b,d)
are comparable to the results in Fig. 2, while the L2 errors in the BJ solutions
(Fig. 3a,c) are twice as large. In this example, searching for local maxima
and minima in common face neighbors makes the bounds too restrictive.

8.2. Circular convection

In the second test, the steady-state counterpart of equation (1) is solved
in the rectangular domain Ω = (0, 2) × (0, 1). The exact solution and inflow
boundary conditions for v(x, y) = (y, 1 − x) are given by the formula

u(x, y) =







1, if 0.2 ≤ r ≤ 0.4,
1
4

[

1 + cos
(

π r−0.65
0.15

)]

, if 0.5 ≤ r ≤ 0.8,
0, otherwise,

(27)

where r =
√

(x − 1)2 + y2 is the distance from the reference point (1.0, 0.0).
Steady-state solutions are computed using pseudo-time stepping on a uni-

form rectangular mesh. The mesh size h is the same as before. The con-
strained P2 approximations are shown in Fig. 4. Again, the new algorithm
delivers superb accuracy and does not smear the cosine hill as it travels along
the streamline of the velocity field. Figure 5 demonstrates that the solution
profiles at the outflow boundary {(x, 0) | 1 ≤ x ≤ 2} are in a good agreement
with the exact shape, while the BJ approximation is relatively diffusive.

9. Conclusions

This paper sheds some light on the design of generalized slope limiters for
high-order discontinuous Galerkin methods. The presented concepts are by
no means restricted to the linear convection equation. The embedding into
an adaptive hp-FEM framework, implementation of implicit time-stepping
schemes, and extension to nonlinear hyperbolic systems seem to be feasible.
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(a) BJ-P2 solution, E2=7.43e-2

(b) VB-P2 solution, E2=6.12e-2

Figure 4: Circular convection, simulation on a rectangular mesh.
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Figure 5: Circular convection, solution profiles at the outlet.
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