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Abstract

In this paper, we present a collection of algorithmic tools for constraining
high-order discontinuous Galerkin (DG) approximations to hyperbolic con-
servation laws. We begin with a review of hierarchical slope limiting tech-
niques for explicit DG methods. A new interpretation of these techniques
leads to an unconditionally stable implicit algorithm for steady-state com-
putations. The implicit global problem for the mean values (coarse scales)
has the computational structure of a finite volume method. The constrained
derivatives (fine scales) are obtained by solving small local problems. The in-
terscale transfer operators provide a two-way iterative coupling between the
solutions to the global and local problems. Another highlight of this paper is
a new approach to compatible gradient limiting for the Euler equations of gas
dynamics. After limiting the conserved quantities, the gradients of the ve-
locity and energy density are constrained in a consistent manner. Numerical
studies confirm the accuracy and robustness of the proposed algorithms.

Key words: hyperbolic conservation laws, discontinuous Galerkin methods,
variational multiscale methods, slope limiting, constrained optimization

1. Introduction

Discontinuous Galerkin (DG) methods [8, 9] belong to the most popular
numerical techniques for Computational Fluid Dynamics. Bridging the gap
between finite volumes and finite elements, the DG approach is particularly
well suited for numerical treatment of hyperbolic conservation laws. The
underlying variational formulation is locally conservative, and the discrete
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problem can be written in terms of upwind-biased numerical fluxes. The use
of slope limiting techniques makes it possible to control the jumps of the DG
solution by constraining the high-order components of the shape function or
setting them to zero in “troubled”cells [2, 3, 7, 10, 11, 22, 35, 36, 41, 42].

A well-designed slope limiter filters out nonphysical oscillations without
degrading the order of accuracy at smooth peaks. In an attempt to satisfy
both requirements, monotonicity-preserving limiters are frequently combined
with heuristic oscillation detectors. Clearly, the robustness of such a method
depends on the underlying criteria for distinguishing between “good” and
“bad” discontinuities. It also depends on the choice of free parameters. More-
over, classical slope limiters are tailored for constraining linear reconstruc-
tions. Their extension to high-order discontinuous Galerkin approximations
is difficult due to the lack of generalized maximum principles.

In this paper, we discuss some improvements and new generalizations of
the hierarchical slope limiter proposed in [24, 25]. In the case of an explicit
DG scheme, this limiter constrains the derivatives in the Taylor polynomial
form of the shape function so as to eliminate undershoots and overshoots
at the vertices of the mesh. A derivative of degree p ≥ 1 is limited in such
a way that the value of the (p − 1)-st derivative at each vertex is bounded
by the cell averages in elements containing this vertex. Since derivatives of
degree p possess higher regularity than those of degree q > p, they are limited
by at most the same amount. This hierarchical approach to slope limiting
preserves smooth peaks without resorting to troubled cell markers.

The above limiting strategy has a lot in common with other methods
proposed in the literature. The use of Taylor basis functions was inspired
by the work of Luo et al. [32], Michalak and Ollivier-Gooch [35], and Yang
and Wang [42]. The bounds for the solution values at the vertices of the
mesh are defined as in the paper by Hoteit et al. [19] and enforced using a
modification of the Barth-Jespersen limiter [2]. As shown by Aizinger [1], the
resulting algorithm can be interpreted as a local optimization problem. It is
simpler than the one formulated in [19] since mass conservation is guaranteed
by the properties of the Taylor basis and does not need to be imposed as an
additional constraint. The far-reaching idea of limiting higher-order terms in
a hierarchical manner is due to Krivodonova [22] who developed a generalized
moment limiter for a tensor-product basis of Legendre polynomials. Our
vertex-based hierarchical limiter [24] is based on the same design philosophy
but is applicable to arbitrary meshes and basis functions. Representation in
terms of the Taylor basis is required for limiting purposes only [36].
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In the original paper [24], we used an explicit Runge-Kutta time-stepping
method and neglected the off-diagonal part of the Taylor mass matrix to
avoid spurious distortions due to implicit coupling between the unconstrained
derivatives. This mass lumping strategy is conservative but results in a loss
of accuracy, especially in higher-order approximations. As a remedy, we
developed a predictor-corrector algorithm that eliminates the need for mass
lumping using the vertex-based limiter to pre-constrain the discretized time
derivatives [25]. This strategy was found to eliminate the side effects caused
by the non-orthogonality of the Taylor basis on triangular meshes.

In what follows, we extend the methodology developed in [24, 25] to im-
plicit time discretizations and nonlinear systems of conservation laws. The
design of an unconditionally stable implicit algorithm is based on an anal-
ogy with variational multiscale (VMS) methods. As shown by Bochev et al.
[5, 20], the multiscale nature of DG approximations provides useful insights
for the design of efficient algorithms. In particular, an additive decomposition
of the finite element space into continuous coarse scales and discontinuous
fine scales leads to a DG scheme with the computational structure of a contin-
uous Galerkin method [5]. In this paper, we split each shape function into the
cell mean value and higher-order terms. The result is a DG scheme in which
the coarse-scale problem has the computational structure of a finite volume
method. The fine-scale components (derivatives) are filtered using slope lim-
iting or inequality-constrained optimization. The global coarse-scale problem
and local fine-scale problems are solved sequentially using the constrained so-
lution from the previous iteration to calculate the fluxes. In contrast to the
full p-multigrid algorithm [31, 33], all fine-scale components associated with
the same element are updated simultaneously.

Other ideas to be discussed include the use of boundary conditions in the
definition of upper and lower bounds for the slope limiter, derivative recov-
ery via reconstruction techniques, and limiter-based smoothness indicators
for hp-adaptivity in finite element codes. Last but not least, we extend the
vertex-based slope limiter [24] to the compressible Euler equations and in-
troduce a compatible gradient limiting strategy for coupled variables. The
proposed algorithm makes it possible to constrain the velocity and energy
density using the product rule to calculate the gradients. Numerical stud-
ies are performed for standard two-dimensional test problems. The two-scale
iterative solver is shown to be unconditionally stable. The results for the Eu-
ler equations indicate that compatible gradient limiting eliminates the ripples
that arise when the conserved quantities are limited independently.
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2. Global and local problems

The first model problem that we will use for presentation of the con-
strained DG method in this paper is the linear convection equation

∂u

∂t
+∇ · (vu) = 0 in Ω, (1)

where Ω is a bounded domain, u(x, t) is a conserved scalar quantity, and
v(x, t) is a (continuous) velocity field. The initial condition is given by

u(·, 0) = u0 in Ω. (2)

The hyperbolic inlet is defined as Γin = {x ∈ Γ |v(x) · n(x) < 0}, where n
denotes the unit outward normal to the boundary Γ = ∂Ω. The Dirichlet
boundary condition u = uin on Γin is imposed in a weak sense as follows:

uv · n = uinv · n on Γin. (3)

This formula defines the incoming convective flux. In accordance with the
hyperbolic PDE theory, no boundary conditions are prescribed on Γ\Γin.

Remark 1. We are also interested in steady state solutions to the above
problem, i.e., in solutions to (1) that are obtained in the limit ∂u

∂t
→ 0.

To formulate the discontinuous Galerkin method, we consider an arbi-
trary element K ∈ Th of a (possibly unstructured) computational mesh Th.
Multiplying (1) by a suitable test function w, integrating over K, and using
Green’s formula, one obtains the local variational formulation∫

K

(
w
∂u

∂t
−∇w · vu

)
dx +

∫
∂K

wûv · n ds = 0, ∀w ∈ V, (4)

where V is the space of admissible test functions and û is the upwind-sided
trace of the (generally discontinuous) function u : Ω→ R.

The inflow and outflow boundaries of element K are defined by

∂Kin = {x ∈ ∂K |v(x) · n(x) < 0},

∂Kout = {x ∈ ∂K |v(x) · n(x) > 0}.
By virtue of (3), we have û = uin on ∂Kin ∩Γin. On the interface between K
and another element K ′ ∈ Th, the traces are given by the one-sided limits

u±(x, t) = lim
ε→±0

u(x + εn, t), x ∈ ∂K.
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Selecting the upwind-sided value, we define the convective fluxes using

û(x, t) =


u+(x, t) if x ∈ ∂Kin\Γin,
uin(x, t) if x ∈ ∂Kin ∩ Γin,
u−(x, t) otherwise.

(5)

The generic form of the local problem associated with element K reads(
w,
∂u

∂t

)
K

+ aK(w, u) = bK(w), ∀w ∈ V, (6)

where

aK(w, u) =

∫
∂Kout

wuv · n ds−
∫
K

∇w · vu dx, (7)

bK(w) = −
∫
∂Kin

wûv · n ds,

(
w,
∂u

∂t

)
K

=

∫
K

w
∂u

∂t
dx. (8)

The global variational formulation is obtained by adding together all local
problems. Consider a pair of neighbor elements K,K ′ ∈ Th that have a
common edge/face S = ∂K ∩ ∂K ′ with the unit normal n pointing from K
into K ′. The sum of the corresponding surface integrals can be written as∫

S

w−ûv · n ds−
∫
S

w+ûv · n ds =

∫
S

[[w]]ûv · n ds,

where [[w]] := w− −w+ is the jump of w across S. Thus the sum of integrals
over the internal boundaries of all elements K ∈ Th equals the sum of jump
terms over S ∈ Sh, where Sh denotes the set of all internal edges/faces.

In light of the above, the global semi-discrete problem is given by(
w,
∂u

∂t

)
+ a(w, u) = b(w), ∀w ∈ V, (9)

where

a(w, u) =
∑
S∈Sh

∫
S

[[w]]ûv · n ds+

∫
Γ\Γin

wuv · n ds−
∑
K∈Th

∫
K

∇w · vu dx, (10)

b(w) = −
∫

Γin

wuinv · n ds,

(
w,
∂u

∂t

)
=
∑
K∈Th

∫
K

w
∂u

∂t
dx. (11)

Remark 2. Setting w ≡ 1 in the local or global problem, one obtains the
integral form of the conservation law for K and Ω, respectively. This proves
that the variational formulation is locally and globally conservative.
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3. DG space discretization

Leaving the time variable continuous for the time being, we discretize
(6) in space using the finite element method. The weak solution u is ap-
proximated by a linear combination of piecewise-polynomial basis functions
{ϕj} spanning a finite-dimensional space Vh. The restriction of the numerical
solution uh to an element K ∈ Th is a continuous shape function given by

uh(x, t) =
∑
j

uj(t)ϕj(x), x ∈ K. (12)

Restricting (6) to functions from Vh, we look for uh ∈ Vh such that(
wh,

∂uh
∂t

)
K

+ aK(wh, uh) = bK(wh), ∀wh ∈ Vh. (13)

By (12), this variational problem is equivalent to the linear system∑
j

dui
dt

(ϕi, ϕj)K +
∑
j

ujaK(ϕi, ϕi) = bK(ϕi), ∀i. (14)

The matrix form of the so-defined semi-discrete local problem reads

MK
duK
dt

+ AKuK = fK , (15)

where MK = {mij} is the element mass matrix, AK = {aij} is the discrete
convection operator (including the outgoing fluxes), and fK = {fi} is the
vector of incoming fluxes. By (14), the coefficients are given by

mij = (ϕi, ϕj)K , (16)

aij = aK(ϕi, ϕi), (17)

fi = bK(ϕi). (18)

The global system can be assembled from element contributions which are
coupled through the surface integrals in the coefficients aij and fi. Note that
there is no need for global matrix assembly if the time integration is explicit
or the algebraic systems are solved using a matrix-free iterative method.

6



4. Taylor basis functions

In a discontinuous Galerkin method of degree p ≥ 0, the shape function
uh|K is given by (12), where the number of basis functions depends on p.
Following Luo et al. [32], we restrict our discussion to quadratic polynomials
uh|K ∈ P2(K) and consider the two-dimensional Taylor expansion

uh(x, y) = uc + ∂u
∂x

∣∣
c
(x− xc) + ∂u

∂y

∣∣∣
c
(y − yc) + ∂2u

∂x2

∣∣∣
c

(x−xc)2

2

+ ∂2u
∂y2

∣∣∣
c

(y−yc)2

2
+ ∂2u

∂x∂y

∣∣∣
c
(x− xc)(y − yc)

(19)

about the centroid (xc, yc) of K ∈ Th. Introducing the volume averages

ūK =
1

|K|

∫
K

uh dx, xnym|K =
1

|K|

∫
K

xnym dx,

the quadratic function uh can be expressed in the equivalent form [32, 35, 42]

uh(x, y) = ūK + ∂u
∂x

∣∣
c
(x− xc) + ∂u

∂y

∣∣∣
c
(y − yc)

+ ∂2u
∂x2

∣∣∣
c

[
(x−xc)2

2
− (x−xc)2

2

]
+ ∂2u

∂y2

∣∣∣
c

[
(y−yc)2

2
− (y−yc)2

2

]
+ ∂2u

∂x∂y

∣∣∣
c

[
(x− xc)(y − yc)− (x− xc)(y − yc)

]
.

(20)

This representation has led Luo et al. [32] to consider the local Taylor basis

ϕ1 = 1, ϕ2 = x−xc
∆x

, ϕ3 = y−yc
∆y

, ϕ4 = (x−xc)2

2∆x2
− (x−xc)2

2∆x2
,

ϕ5 = (y−yc)2

2∆y2
− (y−yc)2

2∆y2
, ϕ6 = (x−xc)(y−yc)−(x−xc)(y−yc)

∆x∆y
.

(21)

The scaling by ∆x = (xmax − xmin)/2 and ∆y = (ymax − ymin)/2 is required
to obtain a well-conditioned system [32]. The normalized degrees of freedom
are proportional to the cell mean value ūK and derivatives of uh at (xc, yc)

uh(x, y) = ūKϕ1 +
(
∂u
∂x

∣∣
c
∆x
)
ϕ2 +

(
∂u
∂y

∣∣∣
c
∆y
)
ϕ3 +

(
∂2u
∂x2

∣∣∣
c
∆x2

)
ϕ4

+
(
∂2u
∂y2

∣∣∣
c
∆y2

)
ϕ5 +

(
∂2u
∂x∂y

∣∣∣
c
∆x∆y

)
ϕ6.

(22)
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On a uniform mesh of rectangular elements, the Taylor basis (21) is or-
thogonal [10] and yields a diagonal mass matrix MK . In general, we have

m11 = |K|, m1j = mj1 = 0, 2 ≤ j ≤ 6. (23)

However, higher-order Taylor basis functions are non-orthogonal to one an-
other on triangular meshes and on general quadrilateral meshes. A non-
diagonal mass matrix MK may be ‘lumped’ by setting all off-diagonal entries
equal to zero. In contrast to the case of a typical Lagrange basis, this modifi-
cation is conservative but mass lumping degrades phase accuracy and should
be avoided whenever possible (see the numerical examples below).

5. Multiscale decomposition

The above representation of uh in terms of Taylor basis functions makes
it possible to limit the gradients and second derivatives in a conservative
manner. Moreover, the Taylor basis defines the two-scale decomposition

uh = ūh + u′h, (24)

where the coarse-scale component ūh is the mean value of uh over K ∈ Th
and u′h = uh − ūh is the contribution of linear and quadratic terms in (20).

The high-order part admits a further additive decomposition into resolved
fine scales ū′h and unresolved fine scales ū′′h = u′h − ū′h. This gives

u′h = ū′h + u′′h. (25)

Since unresolvable fluctuations u′′h tend to produce nonphysical oscillations,
they should be removed by imposing certain constraints on the fine-scale
problem. The filtered component ū′h can be extracted using hierarchical
slope limiting [22, 24, 42] of by solving a constrained minimization problem
[1, 19, 37]. Both approaches are discussed in detail in this paper.

The Taylor basis functions associated with ūh and u′h are given by {ϕ1}
and {ϕ2, . . . , ϕ6}, respectively. The space of test functions admits a similar
decomposition. Thus, the local problem can be split into two subproblems(

w̄h,
dūh
dt

+
∂u′h
∂t

)
K

+ aK(w̄h, ūh + u′h) = bK(w̄h), ∀w̄h ∈ V̄h, (26)(
w′h,

dūh
dt

+
∂u′h
∂t

)
K

+ aK(w′h, ūh + u′h) = bK(w′h), ∀w′h ∈ V ′h, (27)

8



where V̄h = span{ϕ1} and V ′h = span{ϕ2, . . . , ϕ6} are the local finite element
spaces associated with the coarse and fine scales, respectively.

By definition of the Taylor basis, the first subproblem reduces to a finite
volume method. Plugging w̄h = ϕ1 into (26) and rearranging, we obtain

|K|dūK
dt

+ ūK

∫
∂Kout

v · n ds = −
∫
∂Kin

ûhv · n ds−
∫
∂Kout

u′hv · n ds. (28)

The first integral in the right-hand side defines the inflow boundary con-
ditions for K. By definition (5), the value of this integral not depend on
the solution inside K. The influence of fine-scale fluctuations u′h inside K is
taken into account by the second integral in the right-hand side.

Conversely, the coarse-scale solution ūh influences the evolution of the
fine-scale component u′h by changing the magnitude of the convective flux.
Using the test function w′h = ϕi, i = 2, . . . , 6, we can write (27) thus:∫
K

(
ϕi
∂u′h
∂t
−∇ϕi · vu′h

)
dx +

∫
∂Kout

ϕiu
′
hv · n ds = −

∫
∂Kin

ϕiûhv · n ds

+ūK

∫
K

∇ϕi · v dx − ūK

∫
∂Kout

ϕiv · n ds. (29)

The last two integrals in the right-hand side of this formula describe the
response of the fine-scale problem to the coarse-scale solution inside K.

In explicit DG schemes, the coarse and fine scales can be updated simulta-
neously by solving the fully discrete version of (15). However, the separation
of coarse and fine scales turns out to be very handy when it comes to the
design of iterative solvers for implicit DG schemes (see Section 10).

Since the unconstrained solution to (29) may exhibit spurious undershoots
and overshoots, it requires certain postprocessing to extract the filtered fine-
scale fluctuation ū′h. In the following sections, we describe the constraints to
be imposed and present some practical tools for enforcing them.

6. Inequality constraints

Following Krivodonova [21], we constrain the fine-scale components by
limiting the derivatives in a hierarchical manner. Given a two-dimensional
multiindex p = (p1, p2), the Taylor degree of freedom associated with the

partial derivative ∂|p|u
∂xp1∂yp2

of degree |p| = p1 + p2 > 0 is denoted by

u
(p1,p2)
K =

∂|p|u

∂xp1∂yp2

∣∣∣∣
c

∆xp1∆yp2 , (30)
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whereas u
(0,0)
K := ūK denotes the cell-averaged value of the shape function.

The first-order Taylor polynomial associated with u
(p1,p2)
K is given by

T
(p1,p2)
K (x, y) = u

(p1,p2)
K + u

(p1+1,p2)
K

x− xc
∆x

+ u
(p1,p2+1)
K

y − yc
∆y

. (31)

The linear polynomial T
(p1,p2)
K attains its maxima and minima at the ver-

tices of K. Thus, the following local maximum principle holds

min
i∈V(K)

T
(p1,p2)
K (xi, yi) ≤ T

(p1,p2)
K (x, y) ≤ max

i∈V(K)
T

(p1,p2)
K (xi, yi),

where V(K) denotes the set of vertex numbers for element K ∈ Th.
In the slope-limited DG method [24], inequality constraints of the form

u
(p1,p2)
i,min ≤ T

(p1,p2)
K (xi, yi) ≤ u

(p1,p2)
i,max , ∀i ∈ V(K) (32)

are used to extract the nonoscillatory fine-scale components [21, 24]. We

define the bounds u
(p1,p2)
i,min and u

(p1,p2)
i,max as the maximum and minimum values

of u
(p1,p2)
K in elements containing the vertex (xi, yi). That is,

u
(p1,p2)
i,max = max{ u(p1,p2)

K | K ∈ Th, i ∈ V(K)}, (33)

u
(p1,p2)
i,min = min{ u(p1,p2)

K | K ∈ Th, i ∈ V(K)}. (34)

In practice, the bounds are initialized by a small/large constant and updated
in a loop over elements as follows: ∀K ∈ Th ∀i ∈ V(K) set

u
(p1,p2)
i,max := max{u(p1,p2)

K , u
(p1,p2)
i,max }, (35)

u
(p1,p2)
i,min := min{u(p1,p2)

K , u
(p1,p2)
i,min }. (36)

Remark 3. Hoteit et al. [19] generalize the above definition of u
(p1,p2)
i,max and

u
(p1,p2)
i,min by introducing a free parameter that can be used to steer the amount

of limiting. We do not use this trick to keep the method parameter-free.

Remark 4. The vertices located on the boundary of the domain require
special treatment since the amount of information available at these vertices
is limited. To prevent the bounds from becoming too restrictive, we set

u
(p1,p2)
i,max := max{û(p1,p2)

i , u
(p1,p2)
i,max }, (37)

u
(p1,p2)
i,min := min{û(p1,p2)

i , u
(p1,p2)
i,min }, (38)
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where û
(p1,p2)
i is the upwind trace evaluated at the vertex (xi, yi) ∈ Γ. The

value of û
(p1,p2)
i on Γin is inferred from the Dirichlet boundary conditions.

If condition (32) holds for all vertices of K, no limiting is required for the

gradient of T
(p1,p2)
K and lower-order derivatives. If the inequality constraints

are violated at any vertex, it is necessary to limit the gradient of T
(p1,p2)
K

and check the maximum principle for the Taylor polynomials of low-order
derivatives. Thus, the limiting process must begin with the highest-order
components and stop as soon as an unconstrained derivative satisfying (32)
is found [21]. This hierarchical limiting strategy makes it possible to prevent
spurious oscillations while preserving optimal accuracy at smooth peaks.

7. Vertex-based limiter

In the case of an explicit DG method, inequality constraints (32) can
be readily enforced by limiting the Taylor degrees of freedom that define
the fine-scale fluctuation. Given u

(p1,p2)
K , the objective is to find a correction

factor α
(p1,p2)
K ∈ [0, 1] such that the constrained Taylor polynomial

T̄
(p1,p2)
K (x, y) = u

(p1,p2)
K + α

(p1,p2)
K

{
u

(p1+1,p2)
K

x− xc
∆x

+ u
(p1,p2+1)
K

y − yc
∆y

}
(39)

satisfies the inequality constraints

u
(p1,p2)
i,min ≤ T̄

(p1,p2)
K (xi, yi) ≤ u

(p1,p2)
i,max , ∀i ∈ V(K). (40)

Let u
(p1,p2)
i = T

(p1,p2)
K (xi, yi) denote the unconstrained value of the Taylor

polynomial at a vertex (xi, yi). The correction factor α
(p1,p2)
K is defined by

α
(p1,p2)
K = min

i∈V(K)


min

{
1,

u
(p1,p2)
i,max −u

(p1,p2)
K

u
(p1,p2)
i −u(p1,p2)K

}
, if u

(p1,p2)
i > u

(p1,p2)
K ,

1, if u
(p1,p2)
i = u

(p1,p2)
K ,

min

{
1,

u
(p1,p2)
i,min −u(p1,p2)K

u
(p1,p2)
i −u(p1,p2)K

}
, if u

(p1,p2)
i < u

(p1,p2)
K .

(41)

This limiting strategy was proposed by Barth and Jespersen [2] in the context
of finite volume schemes using a different definition of ui,max and ui,min.
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In the case of a P2 approximation, the filtered polynomials are given by

(p1, p2) T̄ (p1,p2)(x, y)/(∆xp1∆yp2)

(0, 0) ūK + α
(0,0)
K

{
∂u
∂x

∣∣
c
(x− xc) + ∂u

∂y

∣∣∣
c
(y − yc)

}
(1, 0) ∂u

∂x

∣∣
c

+ α
(1,0)
K

{
∂2u
∂x2

∣∣∣
c
(x− xc) + ∂2u

∂x∂y

∣∣∣
c
(y − yc)

}
(0, 1) ∂u

∂y

∣∣∣
c

+ α
(0,1)
K

{
∂2u
∂x∂y

∣∣∣
c
(x− xc) + ∂2u

∂y2

∣∣∣
c
(y − yc)

}
.

Since the mixed derivative appears in two rows of the above table, we
multiply the second derivatives by the common correction factor

α
(1)
K := min{α(1,0)

K , α
(0,1)
K }. (42)

In accordance with the assumption that derivatives of lower degree possess
higher regularity, the correction factor for the gradient is given by

α
(0)
K := max{α(0,0)

K , α
(1)
K }. (43)

In particular, this limiting strategy produces α
(0)
K = 1 at a smooth extremum,

where the gradient varies smoothly and, therefore, α
(1)
K = 1. Numerical ex-

periments confirm that the hierarchical limiting procedure does not degrade
the rate of convergence even in the case of nonsmooth data.

The application of the vertex-based limiter to the derivatives of a two-
dimensional Taylor polynomial (20) yields the fine-scale fluctuation [24]

ū′h(x, y) = α
(0)
K

{
∂u
∂x

∣∣
c
(x− xc) + ∂u

∂y

∣∣∣
c
(y − yc)

}
+ α

(1)
K

{
∂2u
∂x2

∣∣∣
c

[
(x−xc)2

2
− (x−xc)2

2

]
+ ∂2u

∂y2

∣∣∣
c

[
(y−yc)2

2
− (y−yc)2

2

]
+ ∂2u

∂x∂y

∣∣∣
c

[
(x− xc)(y − yc)− (x− xc)(y − yc)

]}
,

(44)

and the unconstrained quadratic shape function is overwritten by

uh(x, y) := ūh + ū′h(x, y). (45)

In general, we begin with the highest-order derivatives (cf. [21, 42]) and set

α
(|p|)
K := max

|q|>|p|
α

(|q|)
K , |p| ≥ 0. (46)

As soon as α
(|q|)
K = 1 is encountered, no further limiting is performed since

α
(|p|)
K = 1 for |p| ≤ |q|. It is generally safe to use the correction factors given

by (46) since solutions that require limiting cannot have smooth derivatives.
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8. Constrained minimization

A more general slope limiting strategy is based on solving a local mini-
mization problem. Given the vector of Taylor degrees of freedom

u′K =
(
u

(1,0)
K , u

(0,1)
K , u

(2,0)
K , u

(0,2)
K , u

(1,1)
K

)T
, (47)

the objective is to find ū′K as close to u′K as possible (in the sense to be
defined below) without violating the imposed inequality constraints.

The optimization-based approach was employed, e.g., in the publications
by Aizinger [1], Bochev et al. [6], Hoteit et al. [19], and Rider and Kothe [37].
As shown in [1, 6], conventional limiting is equivalent to solving a modified
optimization problem with the same objective but simpler box constraints.

In this paper, we formulate the local inequality-constrained least squares
problem for the vector of slope-limited derivatives ū′K as follows: min ‖P (ū′K − u′K)‖2

2 subject to

ui,min ≤ TK(xi, yi)ū
′
K ≤ ui,max, i ∈ V(K)

(48)

where ‖ · ‖2 is the Euclidean vector norm, P is a matrix that defines the
objective function for constrained minimization (see below) and T (xi, yi)ū

′
K

is the vector of components to be limited using the bounds

ui,max =

 u
(0,0)
i,max − u

(0,0)
K

u
(1,0)
i,max − u

(1,0)
K

u
(0,1)
i,max − u

(0,1)
K

 , ui,min =

 u
(0,0)
i,min − u

(0,0)
K

u
(1,0)
i,min − u

(1,0)
K

u
(0,1)
i,min − u

(0,1)
K

 .
In the case of P2 elements, there are three constraints per vertex and

TK(x, y)u′K =

 u
(1,0)
K

u
(2,0)
K

u
(1,1)
K

 x− xc
∆x

+

 u
(0,1)
K

u
(1,1)
K

u
(0,2)
K

 y − yc
∆y

. (49)

If the objective function for (48) is defined using the identity matrix

P = I, (50)

then the difference between the values of u′K and ū′K is minimized. The so-
defined objective is the same as that for the vertex-based slope limiter but
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the corresponding correction factors are determined individually for each
derivative and are not required to lie between 0 and 1.

Definition of the objective in terms of the reduced element mass matrix

P = M ′
K (51)

minimizes the L2-norm of the rejected fine-scale component u′′h = u′h − ū′h
subject to the imposed constraints. The optimization problem defined by

P = A′K (52)

modifies the standard DG discretization of the convective term if it is found
to produce undershoots or overshoots at the vertices of element K.

The local optimization problems are solved in a loop over elements. Given
an unfiltered solution u′K , we check if the highest-order components of the
vector TKu

′
K satisfy the imposed inequality constraints. If this is the case,

we set ū′K := u′K and proceed to the next element. Otherwise, we solve the
constrained least squares problem and overwrite u′K by ū′K . In the current
implementation, we use the NAG subroutine E04NCF as solver for (48).

The reasons for verification of constraints prior to solving the minimiza-
tion problem are twofold. First, only a small number of “troubled cells”
require limiting. In most elements, the solution to (48) is given by ū′K = u′K .
Second, it is essential to avoid unnecessary limiting of low-order components
in elements with smooth high-order components. As explained above, this is
a prerequisite for preserving the order of accuracy at smooth extrema.

In our experience, the results are not very sensitive to the choice of the
target matrix P , and there is no spectacular improvement in accuracy com-
pared to the vertex-based limiter. However, constrained minimization makes
it possible to avoid convergence problems associated with conventional slope
limiting in implicit steady-state solvers (see Section 13). Moreover, the resid-
ual of the least squares problem may be used to quantify the amount of
limiting and serve as an error indicator for adaptive mesh refinement.

9. Explicit time stepping

The semi-discrete DG scheme (15) can be discretized in time using an
explicit or implicit method. In this section, we describe the implementation
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of slope limiting in explicit DG schemes. In particular, we consider the third-
order strongly stability preserving (SSP) Runge-Kutta method [16]

u
(1)
K = unK + ∆tM−1

K [fnK − AKunK ], (53)

u
(2)
K =

3

4
unK +

1

4

(
u

(1)
K + ∆tM−1

K [f
(1)
K − AKu

(1)
K ]
)
, (54)

un+1
K =

1

3
un +

2

3

(
u(2) + ∆tM−1

K [f
(2)
K − AKu

(2)
K ]
)
. (55)

Like other SSP Runge-Kutta methods, this time-stepping scheme preserves
the total variation diminishing (TVD) property of the underlying space dis-
cretization under certain time step restrictions. For a detailed presentation
of such methods, we refer to the review paper by Gottlieb et al. [17].

The optimization-based approach is not to be recommended for explicit
Runge-Kutta DG schemes since the vertex-based slope limiter presented in
Section 7 produces essentially the same results at a lower cost [1]. In our
implementation, the DG solution is constrained after each Runge-Kutta cy-
cle. The solution values and the bounds are updated in a loop over elements.
The correction factors αK are calculated and the slope limiter is applied in
a second loop over elements. Both loops are readily parallelizable.

In the case of a non-orthogonal Taylor basis, the non-vanishing off-diagonal
entries of the consistent mass matrix MK give rise to an implicit coupling
between the Taylor degrees of freedom in each element. The replacement of
MK with the lumped mass matrix ML := diag{mii} preserves the mass of
the DG solution but generates considerable errors, degrading the accuracy
of high-order approximations. The contribution of MK −ML does not cause
any troubles in the case of smooth temporal variations but an implicit cou-
pling between oscillatory time-dependent modes may give rise to spurious
distortions of the solution profiles (see Fig. 2a,b below). To avoid the above
side effects, we multiply the off-diagonal part of a non-diagonal mass ma-
trix MK by the vector of pre-constrained time derivatives [25]. This filtering
procedure can be interpreted as selective mass lumping.

Introducing the slope limiting operator Φ, each step of the Runge-Kutta
DG method for a general Taylor basis can be written as follows:

1. Given u(k−1), calculate the vector of discretized time derivatives

u̇
(k)
K = M−1

K [f
(k−1)
K − AKu(k−1)

K ]. (56)
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2. Apply the vertex-based limiter Φ to the predictor u̇(k) and calculate

ũ
(k)
K = u

(k−1)
K + ∆tM−1

L [(ML −MK)Φu̇
(k)
K + f

(k−1)
K − AKu(k−1)

K ]. (57)

3. Apply the vertex-based limiter Φ to the convex average of un and ũ(k)

u
(k)
K = Φ(ωku

n
K + (1− ωk)ũ(k)

K ), (58)

where ωk ∈ [0, 1] is the weight for step k of the Runge-Kutta method.

The crucial step is the application of the slope limiting operator Φ to the
vector of provisional time increments u̇

(k)
K at each RK step. If the Taylor basis

is orthogonal (ML = MK), then the contribution of Φu̇K to (57) vanishes,
so (56) should be omitted. If no limiting is performed in the second step
(Φu̇K = u̇K), the result is the consistent-mass DG approximation

ũ
(k)
K = u

(k−1)
K + ∆tM−1

K [f
(k−1)
K − AKu(k−1)

K ]. (59)

The application of the slope limiter to u̇
(k)
K eliminates non-smooth spatial

variations in the discretized time derivatives, which improves the phase char-
acteristics of the constrained DG scheme. In the case of a non-orthogonal
Taylor basis, the extra cost is justified by a marked gain of accuracy.

The above approach to handling the off-diagonal part of the mass matrix
can also be used to constrain transformations between an orthogonal (e.g.,
Dubiner) basis and a non-orthogonal Taylor basis. Such transformations are
required in DG codes that use Taylor basis functions for limiting purposes
only [36]. A non-diagonal transformation mass matrix may result in a harm-
ful implicit coupling between the variations of Taylor degrees of freedom.
Hence, the transformed increments may need to be constrained in the same
fashion as the vector u̇K in the above Runge-Kutta DG method.

10. Implicit time stepping

Slope limiting for implicit DG schemes is a far more challenging task than
the explicit correction of derivatives in their explicit counterparts. In par-
ticular, the use of limiters may cause severe convergence problems in steady
state computations [44]. Moreover, the number of degrees of freedom is much
greater than in the case of continuous Galerkin methods, and interelement
communication via jump terms results in wide stencils, which makes it diffi-
cult to design efficient iterative solvers for the global problem.
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A very promising approach to solving steady-state problems with implicit
DG methods that employ Taylor basis functions is the p-multigrid method
developed by Luo et al. [31, 33]. The underlying idea boils down to using a
robust implicit solver for the lowest-order (ūh) component of the DG solution
and an inexpensive explicit smoother on finer p-levels. The explicit nature
of high-order corrections decouples the local problems for u′K and makes it
possible to perform limiting in the same way as in explicit DG schemes.

The idea of updating the coarse scales implicitly and fine scales explicitly
is ideally suited for solving the nonlinear system associated with the implicit
version of our variational multiscale DG method. Given the solution values
from the previous iteration, we solve an implicit global problem for the coarse-
scale component ūh, update the numerical fluxes and calculate the filtered
fine-scale components by solving small local problems.

Without loss of generality we discretize the semi-discrete problem in
(pseudo-)time using the backward Euler scheme. The fully discrete coun-
terpart of the global coarse-scale problem (28) can be written as

Āū = b̄(ū′). (60)

The discrete version of the fine-scale problem (29) is a system of the form

A′Ku
′
K = b′K(ū, ū′). (61)

At each iteration or pseudo time-step, we update the DG solution as follows:

1. Given the vector of old limited derivatives ū′, assemble b̄(ū′) and update
the mean values ū by solving the coarse-scale problem (60).

2. In a loop over elements K ∈ Th, assemble b′K(ū, ū′) using the updated
mean values ū and old limited derivatives ū′.

3. In a loop over elements K ∈ Th, solve the local problems (61) for the
unconstrained derivatives u′K and update the bounds.

4. In a loop over elements K ∈ Th, constrain the updated derivatives u′K
using the vertex-based limiter or constrained minimization.

We emphasize that the right-hand side of the local problem must be
assembled using the filtered derivatives from the previous iteration. If steps
2 and 3 are performed in the same loop over elements, it is necessary to store
ū′ and u′ as two separate vectors to avoid unintended overwriting.
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If steady-state solutions are of interest, the consistent mass matrix M ′
K

may be replaced with its diagonal part M ′
L. Interestingly enough, the non-

orthogonality of the Taylor basis does not seem to have any detrimental effect
on the accuracy of slope-limited solutions to unsteady transport equations.
In contrast to the explicit Runge-Kutta DG scheme presented in the previous
section, it is generally safe to use M ′

K in the backward Euler DG scheme.
The global coarse problem has the structure of an upwind finite volume

method. Hence, efficient iterative solvers are readily available. We solve
system (60) using a matrix-free BiCGSTAB method with a diagonal pre-
conditioner. The residual assembly procedure involves element-by-element
computations of matrix-vector products and numerical integration of the
flux function in a loop over the edges/faces of each element K ∈ Th.

Remark 5. We also mention the possibility of numbering the elements
in a way that produces a triangular matrix Ā and makes it possible to solve
the coarse-scale problem (61) using forward or backward substitution.

In our experience, the above algorithm is very robust and does not impose
any restrictions on the (pseudo)-time step. Moreover, it converges to steady
state solutions if all components of u′K are limited using the optimization-
based approach. The deactivation of limiting for lower-order components in
elements with smooth high-order components produces a marked improve-
ment in accuracy but prevents the residuals of the stationary coarse-scale
problem from becoming smaller than a certain threshold, although the solu-
tions “converge” in the eyeball norm and are free of visible oscillations.

11. Reconstruction techniques

Another implication of the multiscale nature of the DG method is the pos-
sibility of using postprocessing techniques as an inexpensive “subgrid scale
model” for the fine-scale components. Reconstruction of derivatives has re-
cently become a popular tool for reducing the number of degrees of freedom
in DG methods [12, 13, 34]. In a DG scheme labeled PnPm, the shape func-
tion is defined using polynomials of degree n, while the fluxes are calculated
using polynomials of degree m. The case P0Pm corresponds to a finite volume
scheme, while PmPm is the standard DG approximation. Numerical studies
in Section 13 confirm that Pm−1Pm may be as accurate as PmPm for m = 1, 2.

The derivative reconstruction techniques proposed by Dumbser et al. [12,
13] and Luo et al. [34] are based on patch recovery. Given the DG solution
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restricted to a stencil of neighbor elements, the high-order reconstruction is
obtained using an L2 projection or least squares fitting. In our implemen-
tation of the Pm−1Pm method, the piecewise-constant partial derivatives of
degree m−1 are L2-projected into the space Wh of continuous P1 or Q1 finite
elements. Partial derivatives of degree m are calculated by differentiating the
resulting linear/multilinear shape function at the center of K ∈ Th.

The global L2 projection uh ∈ Wh of a given function u is defined by∫
Ω

whuh dx =
∑
K∈Th

∫
K

whu dx, ∀wh ∈ Wh.

The values of the continuous approximation uh at the vertices of the mesh
are determined by solving a linear system of the form MCu = r, where MC

is the consistent mass matrix associated with the finite element space Wh.
Reconstructions of this kind can also be used to design parameter-free

troubled cell markers and regularity indicators for hp-adaptivity. Derivatives
of degree |p| ≥ 0 may be regarded as smooth if the (discontinuous) higher-
order reconstruction does not create new maxima or minima. In two recent
publications [4, 28], we used this criterion to estimate the local smoothness
and adjust the polynomial degree in continuous Galerkin methods. The deac-
tivation of limiting in regions of high regularity was found to deliver optimal
accuracy at smooth extrema without generating undershoots or overshoots
elsewhere. For details, the interested reader is referred to [4, 28].

12. Compressible Euler equations

Of course, the above design principles are not restricted to DG schemes
for the linear convection equation. In this section, we outline a generalization
of the (explicit) algorithm [24] to the Euler equations of gas dynamics

∂ρ

∂t
+∇ · (ρv) = 0, (62)

∂(ρv)

∂t
+∇ · (ρv ⊗ v + pI) = 0, (63)

∂(ρE)

∂t
+∇ · (ρEv + pv) = 0, (64)

where ρ is the density, v is the velocity, p is the pressure, E is the total
energy, and I denotes the identity tensor. The equation of state for an ideal
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polytropic gas with the heat capacity ratio γ reads

p = (γ − 1)

(
ρE − ρ|v|2

2

)
. (65)

The Euler equations represent a nonlinear hyperbolic system of the form

∂U

∂t
+∇ · F = 0, (66)

where

U =

 ρ
ρv
ρE

 , F =

 ρv
ρv ⊗ v + pI
ρEv + pv

 . (67)

The local problem associated with an element K ∈ Th is given by∫
K

(
w
∂U

∂t
−∇w · F(U)

)
dx +

∫
∂K

wF̂(UL, UR) · n ds = 0, ∀w ∈ V. (68)

The flux F̂(UL, UR) is defined using an approximate solution to the Riemann
problem with the interior state UL = U+ and exterior state UR = U−.

12.1. Boundary conditions

On a common edge/face of two mesh elements, the states UL and UR
are defined as the one-sided traces of the (possibly discontinuous) solution.
On the boundary Γ of the computational domain Ω, the components of UR
are determined using UL and the characteristic boundary conditions. At a
supersonic inlet, UR := U∞ is the vector of prescribed free stream values. At
a supersonic outlet, we set UR := UL. On a reflecting solid wall, we reverse
the sign of the normal velocity by setting (ρv)R := (ρv)L − 2n(ρv)L · n. We
refer to [14, 26, 40] for details and other types of boundary conditions.

12.2. Approximate Riemann solvers

The choice of the numerical flux function F̂ must guarantee consistency

F̂(U,U) = F(U)

and monotonicity of the coarse-scale (piecewise-constant) DG approximation.
A particularly simple formula is the Lax-Friedrichs / Rusanov flux

F̂(UL, UR) =
F(UL) + F(UR)

2
−max{sL, sR}(UR − UL), (69)
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where sL and sR are defined as the fastest characteristic speeds. In the
case of the compressible Euler equations, the solution to the local Riemann
problem is a superposition of waves moving at speeds n · v and n · v ± c,
where c =

√
γp/ρ is the local speed of sound. Hence, we have

sL = |n · vL|+ cL, sR = |n · vR|+ cR.

The Lax-Friedrichs flux (69) is very robust but tends to produce excessive
numerical dissipation. As an alternative, we consider the HLL flux [18, 39]

F̂(UL, UR) =


F(UL), if sL > 0,
F(UR), if sR < 0,

sRFL

sR−sL
− sLFR

sR−sL
+ sLsR

sR−sL
(UR − UL), otherwise,

(70)

where
sL = min{n · vL,n · vR} −max{cL, cR}
sR = max{n · vL,n · vR}+ max{cL, cR}.

For a review of popular approximate Riemann solvers, we refer to Toro [39].

12.3. Compatible gradient limiting

Slope limiting for systems of conservation laws requires special care since
certain derived quantities (e.g., v, E, p) may exhibit undershoots/overshoots
even if the conserved quantities (i.e., ρ, ρv, ρE) are bounded by the means.
A limiting procedure that preserves monotonicity of nonconservative quan-
tities of interest is called compatible [43]. The design of compatible limit-
ing techniques involves a transformation of variables. For example, Vilar
[45] constrained the local characteristic variables using a generalization of
the vertex-based slope limiter. Characteristic-based limiters for the one-
dimensional Euler equations are known to be compatible and very robust
[26]. In the multidimensional case, waves may travel in infinitely many di-
rections, whence the definition of characteristic variables is ambiguous. We
remark that the inequality constraints for a vertex xi must be defined using
the same characteristic direction ni for all transformed quantities.

In this paper, we propose another approach to enforcing compatibility
in the gradient limiting procedure for the Euler equations. Applying the
vertex-based limiter to a single component ρu of the solution vector U , we
obtain the limited gradient αρuK∇(ρu)K(xc). By the product rule, we have

∇uK(xc) =
αρuK∇(ρu)K(xc)− uK(xc)α

ρ
K∇ρK(xc)

ρK(xc)
. (71)
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Next, we calculate the bounds for the values of u at the vertices of the mesh
and apply the vertex-based limiter to the gradient ∇uK(xc) defined in (71).
Finally, the gradient of the conserved quantity ρu is corrected as follows:

∇(ρu)lim
K (xc) := ρK(xc)α

u
K∇uK(xc) + uK(xc)α

ρ
K∇ρK(xc). (72)

In the below numerical study, we use this gradient limiting procedure to
constrain each velocity component and the energy density. In our experience,
the proposed amendment leads to a marked improvement in situations when
segregated limiting produces spurious ripples. Moreover, the cost of limiting
v and E is not as high as that of a characteristic-based slope limiter.

13. Numerical studies

In this section, we perform a numerical study of the presented schemes for
the linear convection equation and for the Euler equations. For visualization
purposes, all solutions are projected into the space of continuous linears or
bilinears using the L2 projection described in Section 11. Mass lumping is
employed to prevent the projection operator from producing undershoots or
overshoots. The use of limiting in L2 projections is discussed in [4, 27].

13.1. Solid body rotation

The solid body rotation benchmark proposed by LeVeque [30] is often
used to evaluate numerical advection schemes. In this test, the velocity field
v for the two-dimensional convection equation (1) is given by

v(x, y) = (0.5− y, x− 0.5). (73)

This formula describes a counterclockwise rotation about the center of the
domain Ω = (0, 1) × (0, 1). After each full revolution, the exact solution u
coincides with the initial data u0. The objective of the numerical study is to
assess the ability of the given scheme to preserve the shape of u0.

Following LeVeque [30], we consider the initial configuration displayed
in Fig. 1a. The geometry of each body is described by a function G(x, y)
defined on a circle of radius r0 = 0.15 centered at some point (x0, y0). Let

r(x, y) =
1

r0

√
(x− x0)2 + (y − y0)2

be the normalized distance from (x0, y0). Then r(x, y) ≤ 1 inside the circle.
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The slotted cylinder is centered at the point (x0, y0) = (0.5, 0.75) and

G(x, y) =

{
1 if |x− x0| ≥ 0.025 or y ≥ 0.85,

0 otherwise.

The cone is centered at (x0, y0) = (0.5, 0.25), and its shape is given by

G(x, y) = 1− r(x, y).

The hump is centered at (x0, y0) = (0.25, 0.5), and the shape function is

G(x, y) =
1 + cos(πr(x, y))

4
.

The above test problem is solved using explicit DG approximations with
orthogonal and non-orthogonal Taylor bases. Of course, not only cell aver-
ages but also the derivatives must be initialized. The numerical solutions
presented in Fig. 1 were calculated using the RKDG method and the vertex-
based limiter on a uniform mesh of rectangular elements. The mesh size
and time step for this simulation are given by h = 1/128 and ∆t = 10−3,
respectively. The P0 approximation produces the diffusive solution shown in
Fig. 1b. The limited P1 approximation is more accurate but exhibits peak
clipping (Fig. 1c), whereas the P2 version (Fig. 1d) preserves the two peaks
remarkably well. The global errors E2 = ‖u − uh‖2 are measured in the
L2 norm at the final time t = 2π. They are calculated using the original DG
solution rather than the continuous projections presented in Fig. 1.

The results for the slope-limited P1 and P2 approximations on a triangular
mesh with the same vertices are displayed in Fig. 2. In this case, the Taylor
basis (21) is non-orthogonal, which means that there are implicit links be-
tween the derivatives of the DG solution in each element. The computation
of ũ

(k)
K using (58) without limiting produces the inaccurate solutions shown in

Fig. 2a–b. Replacing the consistent mass matrix MK with its diagonal part
ML, one obtains the results in Fig. 2c–d. Note that the P2 solution is just
marginally better than its P1 counterpart and also exhibits peak clipping.
The results shown in Fig. 2e-f were calculated with algorithm (56)–(57). The
application of the vertex-based limiter to the vector of time derivatives makes
it possible to recover the high accuracy of the P2 approximation in smooth
regions, and the results are even better than those in Fig. 1c–d.

For a better visual comparison of the solution profiles, we present 4 cut-
lines of the initial and final solutions in Figs 3–5. The difference between the
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(a) Initial/exact solution, E2 = 0.0 (b) P0 elements, E2=1.80e-1

(c) P1 elements, E2=7.19e-2 (d) P2 elements, E2=6.60e-2

Figure 1: Solid body rotation, simulation on a rectangular mesh, t = 2π.

P1 and P2 approximations is particularly pronounced near the two peaks.
Note that the P2 version resolves the smooth hump (x = 0.25) perfectly if
the Taylor basis is orthogonal (Fig. 3c) or if the off-diagonal part of the mass
matrix is applied to the vector of limited time derivatives (Fig. 5c). The peak
of the cone (y = 0.25) is also preserved much better than in the P1 version. In
the neighborhood of the slotted cylinder (y = 0.75), the vertex-based limiter
switches to the monotone P0 approximation. For this reason, the differences
between the limited P1 and P2 solutions are marginal in this region.
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(a) P1 / consistent mass, E2=1.33e-1 (b) P2 / consistent mass, E2=1.11e-1

(c) P1 / lumped mass, E2=6.81e-2 (d) P2 / lumped mass, E2=6.70e-2

(e) P1 / limited mass, E2=6.50e-2 (f) P2 / limited mass, E2=6.05e-2

Figure 2: Solid body rotation, simulation on a triangular mesh, t = 2π.
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(a) y = 0.25 (b) y = 0.75

(c) x = 0.25 (d) x = 0.5

Figure 3: Cutlines of the DG solutions on the triangular mesh, t = 2π.

The results produced by the Pm−1Pm algorithm that approximates the
DG solution using polynomials of degree m− 1 and reconstructs derivatives
of degree m to calculate the fluxes are displayed in Fig. 6. The L2 errors
(E2=7.99e-2 for P0P1 and E2=6.16e-2 for P1P2) are just marginally larger
than those produced by the PmPm version for m = 1, 2. This confirms that
reconstruction techniques constitute a viable alternative to computation of
higher-order derivatives. However, this approach does not offer significant
savings in explicit DG methods since the cost of solving the local fine-scale
problems for the PmPm discretization is just as low or even lower.
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(a) y = 0.25 (b) y = 0.75

(c) x = 0.25 (d) x = 0.5

Figure 4: Cutlines of the P1 solutions on the triangular mesh, t = 2π. Results obtained
with the consistent mass (MC), lumped mass (ML), and limited mass (MΦ).

13.2. Circular convection

In the second test, the steady-state counterpart of equation (1) is solved
in the rectangular domain Ω = (0, 2)× (0, 1). The exact solution and inflow
boundary conditions for v(x, y) = (y, 1− x) are given by the formula

u(x, y) =


1, if 0.2 ≤ r ≤ 0.4,
1
4

[
1 + cos

(
π r−0.65

0.15

)]
, if 0.5 ≤ r ≤ 0.8,

0, otherwise,
(74)
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(a) y = 0.25 (b) y = 0.75

(c) x = 0.25 (d) x = 0.5

Figure 5: Cutlines of the P2 solutions on the triangular mesh, t = 2π. Results obtained
with the consistent mass (MC), lumped mass (ML), and limited mass (MΦ).

where r =
√

(x− 1)2 + y2 is the distance from the reference point (1.0, 0.0).
Steady-state computations are performed with the P1 and P2 versions of

the backward Euler DG scheme. The nonlinear system is solved using the
two-level iterative solver presented in Section 10. The mesh is rectangular
with h = 1/128. The pseudo-time step for this simulation is as large as
∆t = 1.0. The stationary solutions displayed in Fig. 7 were obtained using
constrained optimization (CO) with the target matrix P = A′K . The vertex-
based (VB) limiter produces similar results (not shown here). The results of
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(a) P0P1 scheme, E2=7.99e-2 (b) P1P2 scheme, E2=6.16e-2

Figure 6: Solid body rotation, Pm−1Pm methods on a triangular mesh, t = 2π.

(a) P1-VB, E2=6.28e-2

(b) P2-VB, E2=5.88e-2

(c) Profiles at the outlet

Figure 7: Circular convection, constrained minimization on a rectangular mesh.

a grid convergence study for both methods are summarized in Table 1.
The P2 approximation produces smaller errors than the P1 scheme, while

the way in which the bounds are enforced has hardly any influence on the
results. At the same time, large differences are observed in the evolution
of the steady state residuals of the coarse-scale problem. As shown by the
P1 convergence history presented in Fig. 8, the CO algorithm drives the
Euclidean norm of the residual towards machine zero, while conventional VB
slope limiting prevents it from decreasing any further after reaching a certain
threshold. In the P2 version of the implicit DG scheme, the residuals behave
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DG-VB DG-CO

h P1 P2 P1 P2

1/16 2.08e-01 1.67e-01 2.06e-01 1.67e-01

1/32 1.25e-01 1.03e-01 1.11e-01 1.03e-01

1/64 9.75e-02 7.65e-02 8.16e-02 7.65e-02

1/128 8.14e-02 5.81e-02 6.28e-02 5.81e-02

Table 1: Circular convection: E2 errors on four successively refined meshes.

in the same way as long as both first and second derivatives are constrained.
The deactivation of CO in elements in which the inequality constraints hold
for the second derivatives results in stagnation of steady state residuals but
prevents degradation of accuracy at smooth extrema. Since VB deactivates
itself in the same cells, the constrained P2 solutions are virtually identical.

Figure 8: Circular convection, P1 approximation, Euclidean norm of the steady-state
residual (coarse-scale problem) vs. number of pseudo-time steps.
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13.3. Shock tube problem

Sod’s shock tube problem [38] is a standard benchmark for the Euler
equations of gas dynamics. The domain Ω = (0, 1) × (0, 1) has reflective
walls and is initially separated by a membrane into two sections. When the
membrane is removed, the gas begins to flow into the region of lower pressure.
The initial condition for the nonlinear Riemann problem is given by ρL

vL
pL

 =

 1.0
0.0
1.0

 ,
 ρR

vR
pR

 =

 0.125
0.0
0.1

 , (75)

where the subscripts refer to ΩL = (0, 0.5)× (0, 1) and ΩR = (0.5, 1)× (0, 1).
The removal of the membrane at t = 0 releases a shock wave that propa-

gates to the right with velocity satisfying the Rankine-Hugoniot conditions.
All of the primitive variables are discontinuous across the shock which is fol-
lowed by a contact discontinuity. The latter represents a moving interface
between the regions of different densities but constant velocity and pressure.
Furthermore, a rarefaction wave propagates in the opposite direction provid-
ing a smooth transition to the original values of the state variables in the
left part of the domain. Hence, the 1D flow pattern in the shock tube is
characterized by three waves traveling at different speeds.

The dashed lines in Fig. 9 depict the exact solution at the final time
t = 0.231. The solid lines show the numerical solutions calculated using
the explicit DG method with h = 1/128 and ∆t = 10−3. The presented
values of the E2 error for the density field confirm that the Lax-Friedrichs
flux (LF) produces more numerical dissipation than the HLL flux, especially
in the case of a P0 discretization (see Figs 9a,b). The difference between
the slope-limited P1 solutions is less pronounced. The results in Figs 9c,d
were calculated using the vertex-based limiter to constrain the conservative
variables ρ, ρv, and ρE in a segregated manner. The unconstrained velocity
and pressure exhibit undershoots and overshoots which carry over to the
conservative variables. The activation of compatible gradient limiting (VBC)
for the velocity and energy density (Section 12.3) leads to a further gain of
accuracy and produces monotone solution profiles, as shown in Figs 9e,f.

13.4. Radially symmetric Riemann problem

The next benchmark is a radially symmetric 2D counterpart of the shock
tube problem [29]. Before an impulsive start, an imaginary membrane sepa-
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(a) LF-P0, Eρ
2=1.17e-3
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(c) LF-P1-VB, Eρ
2=1.76e-4
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(e) LF-P1-VBC, Eρ
2=1.41e-4
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(b) HLL-P0, Eρ
2=7.96e-4
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(d) HLL-P1-VB, Eρ
2=1.56e-4
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(f) HLL-P1-VBC, Eρ
2=1.18e-4
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Figure 9: Shock tube problem: h = 1/128, ∆t = 10−3. Snapshots of the density (blue),
velocity (green), and pressure (red) distribution along the line y = 0.5 at t = 0.231.
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rates the square domain Ω = (−0.5, 0.5)× (−0.5, 0.5) into the subdomains

ΩL = {(x, y) ∈ Ω |
√
x2 + y2 < 0.13}

and ΩR = Ω\ΩL. Reflective boundary conditions are prescribed on Γ. The
gas is initially at rest. Higher pressure and density are maintained inside ΩL

than outside. The interior and exterior states are given by ρL
vL
pL

 =

 2.0
0.0
15.0

 ,
 ρR

vR
pR

 =

 1.0
0.0
1.0

 .
The abrupt removal of the membrane at t = 0 gives rise to a radially expand-
ing shock wave driven by the pressure difference. The challenge of this test
is to capture the moving discontinuities while preserving radial symmetry.

Fig. 10 displays the isolines of the density distribution calculated with
the P0 and P1 versions of the HLL-DG method using the same mesh and
time step as in the previous example. The P1 solution is constrained using
the compatible gradient limiting strategy. The cutlines displayed in Fig. 11
show that the density profiles are perfectly symmetric and free of ripples.

13.5. Double Mach reflection

A more challenging test for the unsteady Euler equations is the double
Mach reflection problem of Woodward and Colella [46] . In this benchmark,
a Mach 10 shock impinges on a reflecting wall at the angle of 60◦ degrees.
The computational domain is the rectangle Ω = (0, 4)× (0, 1). The following
pre-shock and post-shock values of the flow variables are used

ρL
uL
vL
pL

 =


8.0

8.25 cos(30◦)
−8.25 sin(30◦)

116.5

 ,

ρR
uR
vR
pR

 =


1.4
0.0
0.0
1.0

 . (76)

Initially, the post-shock values are prescribed in ΩL = {(x, y) | x < 1
6

+ y√
3
}

and the pre-shock values in ΩR = Ω\ΩL. The reflecting wall corresponds to
1/6 ≤ x ≤ 4 and y = 0. No boundary conditions are required along the line
x = 4. On the rest of the boundary, the post-shock conditions are prescribed
for x < 1

6
+ 1+20t√

3
and the pre-shock conditions elsewhere. The so-defined

values along the top boundary describe the exact motion of the shock.
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(a) HLL-P0 (b) HLL-P1-VBC

Figure 10: Radially symmetric Riemann problem: density at t = 0.13.

(a) x = 0 vs. y = 0
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(b) x = y vs. x = −y
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Figure 11: Radially symmetric Riemann problem: density cutlines at t = 0.13.

The diagrams in Fig. 12 display snapshots of the density distribution
at t = 0.2. A uniform mesh of 65,536 rectangular elements and the time
step ∆t = 10−4 were employed in this test. The HLL-P0 solution (Fig. 12a)
exhibits strong numerical diffusion, which leads to a poor resolution of the
interacting shock waves. The results obtained with the HLL-P1 scheme reveal
that the structure of the flow pattern near the triple point is more complex
and calls for adaptive mesh refinement. It can be seen that the slope-limited
P1 solutions are free of ‘staircase structures’ and other artifacts observed by
Woodward and Colella [46]. In this example, the optional control of the
velocity and energy density (Fig. 12c,d) yields just a marginal improvement
compared to segregated limiting of the conservative variables (Fig. 12b).
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(a) HLL-P0

(b) HLL-P1-VB

(c) HLL-P1-VBC

(d) HLL-P2-VBC

Figure 12: Double Mach reflection: density at t = 0.2.
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14. Conclusions

The main outcome of the presented research is a new perspective on hier-
archical slope limiting in explicit and implicit DG methods. The variational
multiscale framework has motivated an iterative coupling of an implicit global
problem for the cell mean values with small local problems for the deriva-
tives of the DG solution. The developed iterative method enjoys uncondi-
tional stability, which makes it a robust tool for steady state computations.
The replacement of slope limiting by solution of local inequality-constrained
optimization problems was found to have a beneficial effect on convergence
to steady-state solutions. Also, we proposed a new definition of bounds for
boundary nodes, discussed the use of reconstruction techniques and intro-
duced a compatible gradient limiting procedure for the Euler equations.

The above methodology provides a fairly general framework for the design
of constrained DG methods. The presented algorithms produce promising
results but there is still a lot of room for further research. In particular, a
more careful numerical study of slope limiting and constrained minimization
in implicit DG schemes is required. The presented iterative solver may be ac-
celerated using a properly configured p-multigrid method [31]. Further work
will also explore the possibility of enriching a continuous P1/Q1 Galerkin ap-
proximation with higher-order discontinuous basis functions. This approach
seems to offer substantial efficiency gains compared to the pure DG method.
The discrete maximum principle for the continuous coarse-scale components
can be readily enforced using algebraic flux correction schemes [23].

Acknowledgments

This research was supported by the German Research Association (DFG)
under grant KU 1530/6-1. The author would like to thank Dr. Vadym
Aizinger (University Erlangen-Nuremberg) for inspiring discussions.

References

[1] V. Aizinger, A geometry independent slope limiter for the discontin-
uous Galerkin method. In: Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, Vol. 115 (2011) 207–217.

[2] T. Barth and D.C. Jespersen, The design and application of upwind
schemes on unstructured meshes. AIAA Paper, 89-0366, 1989.

36



[3] R. Biswas, K. Devine, and J. E. Flaherty, Parallel adaptive finite element
methods for conservation laws. Appl. Numer. Math. 14 (1994) 255–284.

[4] M. Bittl and D. Kuzmin, An hp-adaptive flux-corrected trans-
port algorithm for continuous finite elements. Computing, in press,
DOI:10.1007/s00607-012-0223-y.

[5] P.B. Bochev, T.J.R. Hughes, and G. Scovazzi, A multiscale discontinu-
ous Galerkin method. In I. Lirkov et al. (Eds.), Lecture Notes in Com-
puter Science, Vol. 3743, pp. 84-93, Springer, 2006.

[6] P. Bochev, D. Ridzal, G. Scovazzi, and M. Shashkov, Constrained-
optimization based data transfer / A new perspective on flux correc-
tion. In: D. Kuzmin et al. (Eds.) Flux-Corrected Transport: Principles,
Algorithms, and Applications, Springer, 2012, pp. 345–398.

[7] A. Burbeau, P. Sagaut, and C.-H. Bruneau, A problem-independent
limiter for high-order Runge-Kutta discontinuous Galerkin methods. J.
Comput. Phys. 169 (2001) 111–150.

[8] B. Cockburn, G.E. Karniadakis, and C.-W. Shu, The development of
discontinuous Galerkin methods. In: B. Cockburn, G.E. Karniadakis,
and C.-W. Shu (eds), Discontinuous Galerkin Methods. Theory, Com-
putation and Applications, LNCSE 11 (2000), Springer, New York, 3–50.

[9] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin
methods for convection-dominated problems. J. Sci. Comput. 16 (2001)
173–261.

[10] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin
method for conservation laws V. Multidimensional Systems. J. Comput.
Phys. 141 (1998) 199–224.
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(Eds), Flux-Corrected Transport: Principles, Algorithms, and Applica-
tions, Springer, 2nd edition, 2012, pp. 193–238.
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