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Abstract

In this paper, we stabilize and limit continuous Galerkin discretizations of a linear
transport equation using an algebraic approach to derivation of artificial diffusion
operators. Building on recent advances in the analysis and design of edge-based al-
gebraic flux correction schemes for singularly perturbed convection-diffusion prob-
lems, we derive algebraic stabilization operators that generate nonlinear high-order
stabilization in smooth regions and enforce discrete maximum principles every-
where. The correction factors for antidiffusive element or edge contributions are
defined in terms of nodal gradients that vanish at local extrema. The proposed limit-
ing strategy is linearity-preserving and provides Lipschitz continuity of constrained
terms. Numerical examples are presented for two-dimensional test problems.

Keywords: hyperbolic conservation laws, finite element methods, discrete maxi-
mum principles, algebraic flux correction, linearity preservation

1.1 Introduction

Bound-preserving discretizations of hyperbolic conservation laws and convection-
dominated transport problems use limiting techniques to enforce discrete maximum
principles. Recent years have witnessed an increased interest of the finite element
community in algebraic flux correction (AFC) schemes [9] based on various gen-
eralizations of flux-corrected transport (FCT) algorithms and total variation dimin-
ishing (TVD) methods. A major breakthrough in the theoretical analysis of AFC
for continuous finite elements was achieved by Barrenechea et al. [3, 4] whose re-
cent work has provided a set of design principles for derivation of limiters that lead
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to well-posed nonlinear problems in the context of stationary convection-diffusion
equations. Limiting techniques for continuous Galerkin discretizations of hyper-
bolic problems were proposed in [2, 7, 12]. As shown in [7, 12], the use of the stan-
dard Galerkin method as the AFC target for hyperbolic conservation laws may give
rise to bounded ripples and nonphysical weak solutions. In fact, the Galerkin dis-
cretization may even produce singular matrices on criss-cross (Union Jack) meshes
[13]. The use of limiters restricts the range of possible solution values but does not
rule out spurious oscillations within this range. In this paper, we design artificial
diffusion operators that introduce high-order stabilization in smooth regions and en-
force preservation of local bounds in the vicinity of steep fronts. The element or
edge contributions to the residual of the nonlinear system are constrained using lim-
iters defined in terms of nodal gradients rather than nodal correction factors. This
approach leads to a limiting procedure that satisfies all essential design criteria.

1.2 Artificial diffusion operators

To make the presentation self-contained, we begin with an outline of the basic AFC
methodology [9] for C0 finite element discretizations of the hyperbolic equation

∂u
∂ t

+∇ · (vu) = 0 in Ω (1.1)

to be solved in a bounded domain Ω with a Lipschitz boundary Γ . The velocity
field v is assumed to be known. At the inlet Γin = {x ∈Γ : v ·n < 0}, we impose the
boundary condition u = 0 in a weak sense by using the variational formulation∫

Ω

w
∂u
∂ t

dx+
∫

Γ

wumax{0,v ·n}ds−
∫

Ω

∇w · (vu)dx = 0, (1.2)

where n is the unit outward normal and w ∈ H1(Ω) is an admissible test function.
The numerical solution uh = ∑

N
j=1 u jϕ j is defined in terms of continuous piecewise-

linear or multilinear Lagrange basis functions ϕ j associated with vertices x j of a
mesh (alias triangulation) Th. The standard Galerkin discretization leads to

MC
du
dt

+Au = 0, (1.3)

where MC = {mi j} is the consistent mass matrix, A = {ai j} is the discrete transport
operator, and u = {ui} is the vector of time-dependent nodal values.
Introducing the lumped mass matrix ML = {δi j ∑ j mi j} and a symmetric artificial
diffusion operator D = {di j}, we construct the low-order approximation

ML
du
dt

+(A−D)u = 0 (1.4)
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which is provably bound-preserving if ∑ j di j = 0 and di j ≥ max{ai j,0,a ji} for all
j 6= i [4, 9]. The original Galerkin discretization (1.3) can be written as

ML
du
dt

+(A−D)u = f
(

u,
du
dt

)
, fi = ∑

m
f m
i , (1.5)

where f = { fi} is the antidiffusive part that requires limiting. In edge-based AFC
schemes, f m

i is the contribution of edge m to node i, and there exists a neighbor node
j 6= i such that f m

j =− f m
i [4, 7, 9]. In element-based versions, f m

i is the contribution
of element m to node i and ∑i f m

i = 0 by definition [10, 12]. In the 1D case, the
decompositions of f into edge and element contributions are equivalent.
In the process of limiting, each component f m

i is multiplied by a solution-dependent
correction factor αm ∈ [0,1]. This modification leads to the nonlinear system

ML
du
dt

+(A−D)u = f̄
(

u,
du
dt

)
, f̄i = ∑

m
α

m f m
i . (1.6)

We define f m
i and αm in the next section. The discretization in time can be performed

using a strong stability preserving (SSP) Runge-Kutta method [6]. Note that only the
backward Euler method is SSP without any restrictions on the time step.

1.3 Limiting of antidiffusive terms

First and foremost, the definition of correction factors αm should guarantee that the
limited antidiffusive term f̄i be local extremum diminishing (LED), i.e.,

umax
i := max

j∈Ni
u j = ui ⇒ f̄i ≤ 0, (1.7)

umin
i := min

j∈Ni
u j = ui ⇒ f̄i ≥ 0, (1.8)

where Ni = { j ∈ {1, . . . ,N} : mi j 6= 0} is the computational stencil of node i.
Obviously, the LED property (1.7),(1.8) holds for αm satisfying (cf. [3, 5])

α
m ≤ αi := min

{
1,

γi min{umax
i −ui,ui−umin

i }
max{umax

i −ui,ui−umin
i }+ εh

}
∀i ∈N m, (1.9)

where N m is the set of nodes belonging to the element or edge, γi > 0 is a parameter
to be defined in Section 1.3.2, h is the mesh size, and ε is a small positive constant.
Theoretical and numerical studies of AFC schemes indicate that the use of linearity-
preserving limiters is an essential prerequisite for achieving optimal accuracy on
general meshes [3, 5, 9, 10]. The bound αi in formula (1.9) is linearity preserving
if αi = 1 whenever uh is linear on the patch Ω̄i = {K ∈ Th : xi ∈ K} of elements
containing an internal node xi ∈Ω . According to the analysis of Barrenechea et al.
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[3, 5], the nodal correction factor αi defined by (1.9) possesses this property if

γi ≥ γ
min
i :=

maxx j∈∂Ωi |xi−x j|
dist{xi,∂Ω conv

i }
, (1.10)

where | · | is the Euclidean norm and Ω conv
i is the convex hull of points x j ∈ Ω̄i.

Implicit time integration requires iterative solution of nonlinear systems and only
converged solutions are guaranteed to be bound preserving. Therefore, convergence
behavior of iterative solvers should also be taken into account. It is essential to guar-
antee that each product αm f m

i be a Lipschitz-continuous function of nodal values.
This property is used in proofs of existence and uniqueness for the nonlinear discrete
problem [3, 4] and secures convergence of fixed-point iterations based on deferred
correction methods (see [1], Proposition 4.3). Faster convergence can be achieved,
e.g., using Anderson acceleration [9] or differentiable LED limiters [2].

1.3.1 Nonlinear high-order stabilization

The straightforward choice αm = mini∈N m αi of the correction factor αm for f m
i

corresponds to using the oscillatory Galerkin scheme (1.3) as the limiting target.
In this section, we construct a stabilized AFC scheme using a definition of αm in
terms of limited nodal gradients g∗i such that g∗i = 0 if ui = umax

i or ui = umin
i at

an internal node xi ∈ Ω . Additionally, the gradient recovery procedure should be
exact for linear functions. In Section 1.3.2, we use nodal correction factors αi of the
form (1.9) to correct a linearity-preserving gradient reconstruction gi and obtain a
Lipschitz-continuous approximation g∗i = αigi satisfying the above requirements.
An element-based AFC scheme with a stabilized high-order target is defined by

α
m =

(
min{‖|∇um

h |‖C(Km), pmini∈N m |g∗i |}
‖ |∇um

h |‖C(Km)+ ε

)q

, (1.11)

where ‖ ·‖C(K) is the maximum norm. The parameters p≥ 1 and q ∈N act as steep-
eners that make the limiter less diffusive. By default, we use p = q = 2.
If a local extremum is attained at node i for any i∈N m, then |g∗i |= 0 and, therefore,
αm = 0 in accordance with the LED criterion. If uh is linear on Ω̄i and the parameter
γi is defined by (1.16), then αi = 1 and, therefore, g∗i = gi = ∇um

h . In general, our
formula (1.11) will produce αm = 1 if the magnitude of ∇um

h does not exceed that of
the smallest nodal gradient by more than a factor of p. Lipschitz continuity of αm f m

i
can be shown following Lohmann’s [11] proofs for edge-based tensor limiters.
An edge-based counterpart of our gradient-based limiter (1.11) is defined by

α
m =

(min{p|g∗i · (xi−x j)|, |ui−u j|, p|g∗j · (xi−x j)|}
|ui−u j|+ ε

)q

. (1.12)
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A proof of Lipschitz continuity for q ∈ N follows from Lohmann’s analysis [11].
If the gradient is nonsmooth, our method may produce αm < 1 even in the case when
g∗i = gi for all i. In contrast to limiters designed to recover the standard Galerkin dis-
cretization whenever it satisfies the LED constraints, our definition of αm generates
nonlinear high-order dissipation in elements free of local extrema. On a uniform
mesh of 1D linear elements both (1.11) and (1.12) lead to a symmetric limited posi-
tive (SLIP) scheme [8] that switches between second- and fourth-order dissipation.
In predictor-corrector algorithms of FCT type, high-order dissipation can also be
generated by adding nonlinear entropy viscosity [7] or linear gradient-based stabi-
lization [10, 12]. However, the use of such artificial diffusion operators in iterative
AFC schemes inhibits convergence due to the lack of Lipschitz continuity.

1.3.2 Recovery of nodal gradients

If uh is linear on Ω̄i, then gi = ∇uh(xi) holds for any weighted average gi of the one-
sided element gradients ∇uh|K(xi), K ∈ Ω̄i. For example, the global lumped-mass
L2 projection yields the averaged nodal gradient [9]

gi =
1
mi

∑
j∈Ni

ci ju j =
1
mi

∑
j∈Ni\{i}

ci j(u j−ui), (1.13)

mi =
∫

Ω

ϕidx, ci j =
∫

Ω

ϕi∇ϕ jdx. (1.14)

However, the so-defined gi does not necessarily vanish if a local maximum or mini-
mum is attained at xi ∈Ω . To rectify this, we consider the limited gradient

g∗i = αigi =
1
mi

∑
j∈Ni\{i}

ci jαi(u j−ui), (1.15)

where αi is the nodal correction factor defined by (1.9). The limited gradient recon-
struction g∗i does vanish at local extrema. Lipschitz continuity of αi(u j−ui) can be
shown using Lemma 6 in [4]. Linearity preservation is guaranteed under condition
(1.10) since αi = 1 if uh is linear on Ω̄i. The use of the sharp bound γi := γmin

i defined
by (1.10) requires calculation of the distance to the convex hull and leads to rather
diffusive minmod limiters like the one proposed in [5]. To simplify the formula for
γi and make the LED constraints less restrictive, we define γi as follows.

The anisotropy of a mesh element K ∈ Th can be characterized by the ratio of the
local mesh size hK = diam(K) and the diameter ρK of the largest ball that fits into K.
A family of triangulations {Th} is called regular if there exists a constant σ > 0 such
that hK

ρK
≤ σ for all K ∈ Th and all h. For triangular elements, ρK is the diameter of

the inscribed circle. Since hK ≥maxx j∈K |xi−x j| and ρK ≤ dist{xi,∂K∩∂Ω conv
i }for
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all K ∈ Ω̄i, condition (1.10) holds for parameters γi = γi(s), s≥ 1 defined by

γi = s
maxK∈Ω̄i

hK

minK∈Ω̄i
ρK

. (1.16)

A reasonable default setting for iterative AFC schemes is s= 2. The limiter becomes
less diffusive as s is increased but the use of γi � γmin

i may cause convergence
problems when it comes to iterative solution of nonlinear systems.

1.3.3 Recovery of nodal time derivatives

By (1.3) and (1.6), the term to be limited is given by f (u, u̇) = (ML−MC)u̇−Du.
Using the Neumann series approximation [7] to M−1

C , we obtain

u̇ = M−1
L (I +(ML−MC)M−1

L )( f̄ (u,0)− (A−D)u). (1.17)

This definition of u̇ makes it possible to determine f̄ (0, u̇) without recalculating
f̄ (u,0). Moreover, the correct steady state behavior is preserved for u̇ = 0.
In our AFC scheme for time-dependent problems, we limit f m

i (u,0) using αm de-
fined in Section 1.3.1. To provide continuity, the contribution of f m

i (0, u̇) is limited
using a correction factor α̇m such that α̇m = 0 if αm = 0 (see below). In the element-
based version of (1.6), the limited antidiffusive components are given by

f̄ m
i (u, u̇) = ∑

j∈N m\{i}

[
mm

i jα̇
m(u̇i− u̇ j)+dm

i j α
m(ui−u j)

]
, i ∈N m. (1.18)

The coefficients mm
i j and dm

i j represent the contribution of Km ∈ Th to the global
matrix entries mi j and di j, respectively. Algebraic residual correction schemes based
on such decompositions into element contributions can be found in [10, 12].
The evolutionary part f m

i (0, u̇) is constrained using correction factors of the form

α̇
m = min

{
1,β m αm‖|∇um

h |‖C(Km)

‖|∇u̇m
h |‖C(Km)+ ε

}
(1.19)

such that (α̇m‖|∇u̇m
h |‖C(Km))/(α

m‖|∇um
h |‖C(Km))≤ β m, where β m > 0 should have

units of the reciprocal second s−1. In this work, we use β m = ‖v‖C(Km)/(2hKm).
In the edge-based version of (1.6), we limit f m

i = fi j and f m
j =− fi j as follows:

f̄ m
i (u, u̇) = mi jα̇

m(u̇i− u̇ j)+di jα
m(ui−u j), {i, j}=: N m, (1.20)

α̇
m = min

{
1,β m αm|ui−u j|

|u̇i− u̇ j|+ ε

}
. (1.21)

In pseudo-time-stepping schemes for steady-state computations, we use α̇m = 0.
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1.4 Numerical examples

In Figures 1 and 2, we present the AFC results for the time-dependent solid body
rotation benchmark and a stationary circular convection test. For the formulation of
the corresponding (initial-)boundary value problems, we refer the reader to [9, 10].
In this numerical study, we use the element-based version of (1.6). The station-
ary problem is solved using implicit pseudo-time-stepping and a fixed-point iter-
ation method [9]. The employed parameter settings and discretization parameters
are summarized in the captions. The constrained Galerkin solutions satisfy local
maximum principles if αm = αm(g∗h) is defined by (1.11). To assess the amount of
intrinsic high-order stabilization, we also present the numerical solutions obtained
using the target scheme (αm = αm(gh) and α̇m := αm in the unsteady case). The L1

convergence rates for the circular convection test without the discontinuous portion
of the inflow profile are shown in Table 1. The AFC scheme based on αm = αm(g∗h)
exhibits second-order superconvergence on uniform meshes. The convergence rates
on perturbed meshes are comparable to those for αm = αm(gh) and higher than the
optimal order 1.5 for continuous P1 finite element discretizations of (1.1).

h uniform, αm(g∗h) EOC perturbed, αm(g∗h) EOC perturbed, αm(gh) EOC
1/32 0.185E-01 0.150E-01 0.141E-01
1/64 0.511E-02 1.85 0.473E-02 1.67 0.446E-02 1.66
1/128 0.117E-02 2.14 0.155E-02 1.61 0.133E-02 1.75
1/256 0.256E-03 2.19 0.499E-03 1.64 0.438E-03 1.60

Table 1.1 Circular convection: L1 convergence history for triangular meshes consisting of 2/h2

cells, P1 approximation, AFC scheme based on (1.11), s = 2, smooth inflow profile.
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and S. Turek (eds.) Flux-Corrected Transport: Principles, Algorithms, and Applications.
Springer, 2nd edition: 145–192 (2012).

10. D. Kuzmin, S. Basting, and J.N. Shadid, Linearity-preserving monotone local projection sta-
bilization schemes for continuous finite elements. Computer Methods Appl. Mech. Engrg. 322
(2017) 23–41.

11. C. Lohmann, Algebraic flux correction schemes preserving the eigenvalue range of symmetric
tensor fields. Ergebnisber. Inst. Angew. Math. 584. TU Dortmund University, 2018.

12. C. Lohmann, D. Kuzmin, J.N. Shadid, and S. Mabuza, Flux-corrected transport algorithms for
continuous Galerkin methods based on high order Bernstein finite elements. J. Comput. Phys.
344 (2017) 151–186.

13. B. Neta and R.T. Williams, Stability and phase speed for various finite element formulations
of the advection equation. Computers & Fluids 14 (1986) 393–410.


	EB 589_1.Seite
	EB 589

