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Abstract

Convection of a scalar quantity by a compressible velocity field may give
rise to unbounded solutions or nonphysical overshoots at the continuous and
discrete level. In this paper, we are concerned with solving continuity equa-
tions that govern the evolution of volume fractions in Eulerian models of
disperse two-phase flows. An implicit Galerkin finite element approximation
is equipped with a flux limiter for the convective terms. The fully multidi-
mensional limiting strategy is based on a flux-corrected transport (FCT) al-
gorithm. This nonlinear high-resolution scheme satisfies a discrete maximum
principle for divergence-free velocities and ensures positivity preservation for
arbitrary velocity fields. To enforce an upper bound that corresponds to the
maximum-packing limit, an FCT-like overshoot limiter is applied to the con-
verged convective fluxes at the end of each time step. This postprocessing
step imposes an additional physical constraint on the numerical solution to
the unconstrained mathematical model. Numerical results for 2D implosion
problems illustrate the performance of the proposed limiting procedure.
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1. Introduction

Many modern high-resolution schemes for the equations of fluid dynamics
trace their origins to the flux-corrected transport (FCT) algorithm [3, 18]
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which is readily applicable to finite element approximations on unstructured
meshes [6, 8, 11, 13]. FCT belongs to the family of algebraic flux correction
schemes backed by the theory of discrete maximum principles [9, 10, 11]. This
theory makes it possible to preserve important properties of the exact solution
(nonnegativity, monotonicity, nonincreasing total variation in 1D). However,
compressibility effects may trigger an uncontrolled growth of a conserved
quantity. In particular, concentrations or volume fractions may exceed 1
and eventually blow up. A consistent numerical scheme does not suppress
overshoots that are present in the exact solution. Hence, only solutions to
incompressible flow problems are guaranteed to be bounded, whereas there
is no upper bound in the case of a compressible velocity field [9].

In the context of Eulerian and Lagrangian two-phase flow models, it is
essential to ensure that the volume fraction of the disperse phase is bounded
above. A typical model for dense suspensions incorporates an interparticle
stress term designed to keep the particle volume fraction below the close-
packing value [1, 5, 14]. An interesting alternative to this approach was
introduced by Leiderman and Fogelson [12] who multiplied the convective
flux by a monotonically decreasing function of the volume fraction to impair
the ability of platelets to move into regions packed with other platelets.

The method proposed in this paper combines the idea of Leiderman and
Fogelson [12] with algebraic flux correction. Instead of modifying the con-
vective flux at the continuous level, we decompose the discretized convective
term into numerical fluxes and limit the magnitude of these fluxes so as to
get rid of undesired maxima. The advantages of constraining the discrete
solution in this way are twofold. First, there is no need for tuning any free
parameters or choosing the ‘right’ damping function for the convective flux.
Second, the FCT-like limiting strategy does not prevent the particles from
leaving the regions of high concentration. In this paper, we apply the new
limiter to 2D implosion problems discretized with bilinear finite elements.

2. Continuous problem

The evolution of densities and volume fractions in (laminar) multiphase
flow models is governed by continuity equations of the form

∂u

∂t
+∇ · (vu) = 0 in Ω, (1)

where u is the conserved quantity, v is a given velocity field and Ω is a
bounded domain. Since equation (1) is of hyperbolic type, we prescribe a
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Dirichlet boundary condition on the inflow part of the boundary Γ

u = uD on ΓD := {x ∈ Γ |v · n < 0}, (2)

where n is the unit outward normal to Γ. The initial condition is given by

u(x, 0) = u0(x), x ∈ Ω. (3)

In the case of an incompressible velocity field (∇ · v = 0) the solution to
problem (1)–(2) is known to satisfy the following maximum principle

min{u0, uD} ≤ u ≤ max{u0, uD}. (4)

In particular, this useful a priori estimate implies positivity preservation

u0 ≥ 0, uD ≥ 0 ⇒ u ≥ 0. (5)

The solution to (1) with ∇ · v 6= 0 satisfies (5) but may violate (4) since

∇ · (vu) = v · ∇u+ (∇ · v)u (6)

contains a nonvanishing zero-order term (∇ · v)u. This ‘reactive’ term acts
as a source or a sink, depending on the sign of ∇ · v. It can increase the
magnitude of u but cannot change its sign (see [9] and references therein).

3. Space discretization

The variational form of the above initial-boundary value problem reads∫
Ω

w

(
∂u

∂t
+∇ · (vu)

)
dx = 0 (7)

for all admissible test functions w vanishing at the inlet ΓD. For notational
simplicity, we refrain from a formal definition of the functional spaces.

In this paper, we discretize (7) in space using the Galerkin finite ele-
ment method. Let {ϕj} denote a finite set of continuous piecewise-linear or
multilinear basis functions. The numerical solution uh is defined as

uh =
∑
j

ujϕj. (8)
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The unknowns of the semi-discrete problem are the coefficients uj which
represent the time-dependent values of uh at the vertices of the mesh.

The Galerkin discretization of the convective term can be defined by
differentiating vuh. For our purposes, it is more convenient to work with
Fletcher’s [4] group finite element interpolant of the convective flux

(vu)h =
∑
j

(vjuj)ϕj. (9)

This formula implies the following discretization of the divergence operator

∇ · (vu)h =
∑
j

uj(vj · ∇ϕj). (10)

Using approximations (8) and (10) in the Galerkin weak form (7) with the
test function wh = ϕi, we obtain the following semi-discrete equation∑

j

(∫
Ω

ϕiϕj dx

)
duj
dt

= −
∑
j

vj ·
(∫

Ω

ϕi∇ϕj dx

)
uj. (11)

The system of equations for all unknowns can be written in the generic form

MC
du

dt
= Ku, (12)

where u is the vector of unknowns, MC = {mij} is the consistent mass matrix,
and K = {kij} is the discrete transport operator. We have

mij =

∫
Ω

ϕiϕj dx (13)

and kij = −vj · cij, where cij is the vector of discretized space derivatives

cij =

∫
Ω

ϕi∇ϕj dx. (14)

In the case of an unsteady velocity field, the discrete transport operator must
be updated at each time step. If the mesh is fixed, then the coefficients cij
do not change and need to be evaluated just once. Hence, the group finite
element formulation makes it possible to update K in a very efficient way.
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4. Algebraic flux correction

A semi-discrete scheme of the form (12) proves local extremum diminish-
ing for ∇ · v = 0 and/or positivity-preserving for any v if [9, 10, 11]

mii > 0, mij = 0, kij ≥ 0, ∀j 6= i. (15)

The standard Galerkin discretization fails to satisfy these sufficient condi-
tions, so it tends to produce nonphysical oscillations (also known as ‘wiggles’)
in a neighborhood of discontinuities and steep fronts. This is unacceptable
when it comes to solving continuity equations in multiphase flow models.
Therefore, we will use algebraic flux correction [10] to constrain the contri-
bution of matrix entries that have a wrong sign (mij > 0 and kij < 0).

To begin with, we replace the matrix MC with its lumped counterpart

ML := diag{mi}, mi =
∑
j

mij. (16)

Next, we fix K by adding a discrete diffusion operator D = {dij} with [10, 11]

dij = max{−kij, 0,−kji} = dji, ∀j 6= i (17)

so that K+D has no negative off-diagonal coefficients. The diagonal entries
of D are defined so that this symmetric matrix has zero row sums

dii := −
∑
j 6=i

dij. (18)

Due to symmetry, the column sums are also equal to zero. In the 1D case,
the lumped-mass Galerkin approximation on a uniform mesh of linear finite
elements is equivalent to the central difference scheme, while the modified
operator K +D corresponds to the first-order upwind difference [11].

In summary, the semi-discrete Galerkin scheme (12) can be split as follows

ML
du

dt
= (K +D)u+ f(u), (19)

where f(u) is the sum of antidiffusive terms that may destroy positivity

f(u) = (ML −MC)
du

dt
−Du. (20)
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Since ML −MC and D are symmetric with zero row sums, we have

(MLu−MCu)i = miui −
∑
j

mijuj =
∑
j 6=i

mij(ui − uj), (21)

(Du)i =
∑
j

dijuj = diiui +
∑
j 6=i

dijuj =
∑
j 6=i

dij(uj − ui). (22)

Thus, each component of (20) admits a flux decomposition of the from

fi =
∑
j 6=i

fij, fji = −fij. (23)

The formula for the raw antidiffusive fluxes fij follows from (21)–(22)

fij =

(
mij

d

dt
+ dij

)
(ui − uj), ∀j 6= i. (24)

Some fluxes are harmless but others may create an undershoot or over-
shoot. The contribution of these “bad” fluxes must be limited so as to make
the antidiffusive term local extremum diminishing for a given solution. The
flux-corrected counterpart of (12) is a semi-discrete problem of the form

ML
du

dt
= (K +D)u+ f̄(u), (25)

where f̄(u) stands for the sum of limited antidiffusive fluxes

f̄i =
∑
j 6=i

f̄ij, f̄ji = −f̄ij. (26)

A well-designed flux limiter produces f̄ij ≈ fij in smooth regions and f̄ij = 0
elsewhere. The unconstrained Galerkin scheme (12) and its nonoscillatory
“good” part correspond to f̄ = f and f̄ = 0, respectively.

In general, the best definition of f̄ij is given by the solution of a con-
strained optimization problem [2]. A nonoptimal but cost-effective alterna-
tive is the multiplication by a solution-dependent correction factor

f̄ij := αijfij, 0 ≤ αij ≤ 1. (27)

This kind of flux correction traces its origins to the FCT algorithm and forms
the basis for the construction of our algebraic flux correction schemes.
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5. Time discretization

Let 0 = t0 < t1 < t2 < . . . < tM = T be the sequence of time levels
for the fully discrete problem. For simplicity, we assume that the time step
∆t := tn+1 − tn is constant, whence tn = n∆t. The two-level θ-scheme with
θ = 1

2
or θ = 1 yields a nonlinear algebraic system of the form

Aun+1 = Bun + f̄ , (28)

where f̄ = f̄(un+1, un) is the limited antidiffusive term and

A =
1

∆t
ML − θ(K +D), (29)

B =
1

∆t
ML + (1− θ)(K +D). (30)

In this paper, we solve the nonlinear system (28) in an iterative way. Let
{u(m)} be a sequence of successive approximations to un+1. A reasonable
initial guess is u(0) = un or u(0) = 2un − un−1. These settings correspond to
the constant and linear extrapolation in time, respectively. Given the current
iterate u(m) and the vector of approximate time derivatives

u̇(m) :=
u(m) − un

∆t
, (31)

we recalculate the implicit part of the raw antidiffusive fluxes given by

f
(m)
ij = mij(u̇

(m)
j − u̇(m)

i ) + θdij(u
(m)
j − u(m)

i )

+ (1− θ)dij(unj − uni ), j 6= i. (32)

Then we apply the FCT limiter (to be presented in the next section), assemble
the limited antidiffusive term f̄ (m), and solve the linear system

Au(m+1) = Bun + f̄ (m). (33)

The solution, the raw antidiffusive fluxes, and the corresponding correction
factors are updated in this way until the residuals or relative changes become
smaller than a prescribed tolerance. It can be shown that each solution
update is positivity-preserving under the CFL-like condition [10, 11]

∆t ≤ 1

θ − 1

mi

kii + dii
, ∀i. (34)

Note that there is no time step restriction in the fully implicit case (θ = 1).
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6. Zalesak’s FCT limiter

In this section, we present Zalesak’s limiter [18] that we use to calculate
the correction factors αij. Consider an explicit update of the form

miui = miũi + ∆t
∑
j 6=i

αijfij, (35)

where ũ := M−1
L Bun is an explicit low-order approximation to un+1−θ. Let

Si = {j 6= i |mij 6= 0} be the set of nearest neighbors of node i. Define

umax
i := max{ũi,max

j∈Si

ũj}, (36)

umin
i := min{ũi,min

j∈Si

ũj}. (37)

In accordance with the FCT philosophy, the flux limiting procedure must
render the antidiffusive term local extremum diminishing. That is, the solu-
tion to (35) must satisfy the local discrete maximum principle

umin
i ≤ ui ≤ umax

i . (38)

The process of flux correction begins with the optional ‘prelimiting’ step

fij := 0 if fij(ũj − ũi) > 0. (39)

This adjustment was found to eliminate spurious ripples created by fluxes
that flatten the solution profiles instead of steepening them [10, 18].

The right choice of the correction factors αij for f̄ij = αijfij ensures that
positive antidiffusive fluxes cannot create an overshoot, while negative ones
cannot create an undershoot. Assuming the worst-case scenario, we enforce
condition (38) using Zalesak’s multidimensional FCT algorithm [18]:

1. Compute the sums of positive/negative antidiffusive fluxes

P+
i =

∑
j 6=i

max{0, fij}, P−i =
∑
j 6=i

min{0, fij}. (40)

2. Define the upper/lower bounds for admissible increments

Q+
i =

mi

∆t
(umax

i − ũi), Q−i =
mi

∆t
(umin

i − ũi). (41)
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3. Compute the nodal correction factors for the components of P±i

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
. (42)

4. Check the sign of the unconstrained flux and multiply fij by

αij =

{
min{R+

i , R
−
j } if fij > 0,

min{R−i , R+
j } if fij < 0.

(43)

This definition of αij guarantees that the corrected nodal value ui satisfies
(38). As shown in [10, 11], this implies positivity preservation for (33).

7. Overshoot limiter

In this section, we present a new limiter for overshoots created by the
discrete counterpart of (∇ · v)u. Given a global bound umax, such as the
close-packing value of a particle volume fraction, we eliminate nonphysical
maxima using the following representation of the discrete problem

miu
n+1
i = miu

n
i + ∆t

∑
j 6=i

gij, (44)

where un+1 is the converged solution to (28) and gij denotes the corrected
convective flux from node j into node i. It can be shown that [9, 10]

(Ku)i =
∑
j 6=i

(cji · vjuj − cij · viui) (45)

for each internal node. If i is a node on the boundary, then a surface integral
is added. The vector-valued coefficients cij are given by (14). A very similar
flux decomposition was presented by Selmin and Formaggia [15, 16].

By virtue of (45), the semi-discrete form of the convective flux gij reads

gij : = cji · vjuj − cij · viui
+ dij(uj − ui) + f̄ij. (46)

Since the solution updates (35) and (44) have the same structure, we use a
one-sided version of Zalesak’s limiter to enforce the upper bound

un+1
i ≤ umax.
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As in the case of algebraic flux correction for the antidiffusive part, each
convective flux gij is multiplied by a solution-dependent correction factor
βij ∈ [0, 1]. Since there are no undershoots, only positive fluxes require
limiting. The algorithm for the practical computation of βij becomes:

1. Compute the sums of positive convective fluxes into node i

P+
i =

∑
j 6=i

max{0, gij}. (47)

2. Define the upper bounds for admissible increments

Q+
i =

mi

∆t
(umax − uni ). (48)

3. Compute the nodal correction factors for the components of P+
i

R+
i = min

{
1,
Q+
i

P+
i

}
. (49)

4. Check the sign of the unconstrained flux and multiply gij by

βij =

{
R+
i if gij > 0,

R+
j if gij < 0.

(50)

This FCT-like limiter makes it possible to fix un+1 with a single postpro-
cessing step. However, the formula for βij is based on the worst-case scenario.
Since positive fluxes are limited without knowing the magnitude of negative
ones, unnecessary flux correction is performed if there is no overshoot at node
i but the removal of negative fluxes would create an overshoot. This may
lead to some erosion in regions where un+1 ≈ umax. A possible remedy is
iterative flux limiting. The contribution of negative fluxes can be taken into
account using βij from the previous iteration to sharpen the bounds thus:

Q+
i =

mi

∆t
(umax − uni ) +

∑
j 6=i

βij min{0, gij}. (51)

At the first iteration, we use βij = 1 so that the solution remains unchanged
if the constraint un+1

i ≤ umax is satisfied from the outset for all nodes.
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8. Numerical examples

To test the new overshoot limiter, we apply it to 2D model problems
with highly compressible velocity fields. Computations are performed in the
square domain Ω := (0, 1)2 on a uniform mesh of 128×128 bilinear elements
using the Crank-Nicolson time-stepping (θ = 1

2
) with ∆t = 10−3. The pre-

sented solutions were calculated with the iterative overshoot limiter. The
single-step version produces almost identical results for both examples.

8.1. Implosion of a circle

In the first test, we solve equation (1) with the compressible velocity field

v(x, y) :=
(0.5− x, 0.5− y)

r + ε
,

where
r :=

√
(x− 0.5)2 + (y − 0.5)2

is the distance to (0.5,0.5) and ε = 10−12 is added to prevent division by zero.
The initial solution u0 depicted in Fig. 1a is a circle of constant density

u0(x, y) :=

{
0.5 if r ≤ 0.4
0.0 otherwise.

Homogeneous Dirichlet boundary conditions are prescribed at the inlet Γ.
Since the velocity vector v points into the center of the domain Ω, the

unconstrained solution to (1) exhibits unlimited growth. As time goes on,
the entire initial mass is convected towards and concentrated at the point
(0.5,0.5). Hence, the final solution is a delta function. The snapshots shown
in Fig. 1 b–d were calculated using FEM-FCT with the overshoot limiter
that stops the growth of u as soon as the largest admissible value umax := 1
is attained. This prevents the blowup of the solution. The total ‘mass’, i.e.,
the integral of u is the same in all diagrams. The final solution is again a
circle of constant density (u = 1 inside, u = 0 outside), see Fig. 1d.

8.2. Implosion of a ring

In the second test, we employ the following definition of the velocity field

v(x, y) :=
(1− 2x, 1− 2y)

r
max{0, r − 0.1}.

11



(a) t = 0.0 (b) t = 0.05

(c) t = 0.1 (d) t = 0.15

Figure 1: Constrained implosion of a density circle (FEM-FCT simulation).

The initial data for this test is a ring of constant density (Fig. 2a)

u0(x, y) :=

{
0.5 if 0.3 ≤ r ≤ 0.4
0.0 otherwise.

Again, the mass is convected towards the point (0.5,0.5) but the magnitude
of the velocity vector v decreases linearly with r and vanishes inside the
circle r = 1. The resultant compression wave makes the imploding density
ring thinner, while the maximum value of u increases as time goes on. The
results of the FEM-FCT simulation are shown in Fig. 2b–d. The overshoot
limiter is activated when the threshold value umax := 1 is reached. In the
steady-state limit, all mass is concentrated in a thin ring of constant height
u = 1. As in the first example, the radial symmetry is preserved, and the
numerical solutions remain free of spurious undershoots/overshoots.
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(a) t = 0.0, umax = 0.5 (b) t = 0.1, umax = 0.7

(c) t = 0.2, umax = 0.98 (d) t = 0.3, umax = 1.0

Figure 2: Constrained implosion of a density ring (FEM-FCT simulation).

9. Conclusions

A new approach to enforcing physically-motivated upper bounds for vol-
ume/mass fractions was developed on the basis of an implicit FEM-FCT
algorithm. The presented scheme is nonlinear even for a linear transport
equation. The cost of flux correction can be significantly reduced using a
suitable linearization [8] or convergence acceleration techniques [7, 17]. An
application of particular importance is the numerical treatment of continuity
equations in Eulerian two-phase flow models (granular materials, fluidized
beds). This research will be presented in a forthcoming publication.
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[13] R. Löhner, K. Morgan, J. Peraire and M. Vahdati, Finite element flux-
corrected transport (FEM-FCT) for the Euler and Navier-Stokes equa-
tions. Int. J. Numer. Meth. Fluids 7 (1987) 1093–1109.

[14] N.A. Patankar and D.D. Joseph, Modeling and numerical simulation of
particulate flows by the Eulerian-Lagrangian approach. Int. J. Multiphase
Flow 27 (2001) 1659–1684.

[15] V. Selmin, The node-centred finite volume approach: bridge between fi-
nite differences and finite elements. Comput. Methods Appl. Mech. Engrg.
102 (1993) 107–138.

[16] V. Selmin and L. Formaggia, Unified construction of finite element and
finite volume discretizations for compressible flows. Int. J. Numer. Meth-
ods Engrg. 39 (1996) 1–32.

[17] H.W. Walker and P. Ni, Anderson acceleration for fixed-point iterations.
WPI Math. Sci. Dept. Report MS-9-21-45, September 2009. Submitted to
SIAM J. Numer. Anal.

[18] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms
for fluids. J. Comput. Phys. 31 (1979) 335–362.

15


