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Abstract

A new generalization of the flux-corrected transport (FCT) methodology to im-
plicit finite element discretizations is proposed. The underlying high-order scheme is
supposed to be unconditionally stable and produce time-accurate solutions to evolu-
tionary convection problems. Its nonoscillatory low-order counterpart is constructed
by means of mass lumping followed by elimination of negative off-diagonal entries
from the discrete transport operator. The raw antidiffusive fluxes, which represent
the difference between the high- and low-order schemes, are updated and limited
within an outer defect correction loop. The upper bound for the magnitude of each
antidiffusive flux is evaluated using a single sweep of the multidimensional FCT lim-
iter at the first outer iteration. This semi-implicit limiting strategy makes it possible
to enforce the positivity constraint in a very robust and efficient manner. Moreover,
the computation of an intermediate low-order solution can be avoided. Numerical
examples are presented for two-dimensional benchmark problems discretized by the
standard Galerkin FEM combined with the Crank-Nicolson time-stepping.

Key Words: high-resolution schemes; flux-corrected transport algorithm;
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1 Introduction

The advent of nonlinear high-resolution schemes for convection-dominated flows traces its
origins to the flux-corrected transport (FCT) methodology introduced in the early 1970s
by Boris and Book [1]. The fully multidimensional generalization proposed by Zalesak [23]
has formed a very general framework for the design of FCT algorithms by representing
them as a blend of linear high- and low-order approximations. Unlike other limiting
techniques, which are typically based on geometric design criteria, flux correction of FCT
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type is readily applicable to finite element discretizations on unstructured meshes [16],[18].
A comprehensive summary of the state of the art can be found in [2],[12],[18],[25].

The design philosophy behind modern front-capturing methods involves a set of phys-
ical or mathematical constraints to be imposed on the discrete solution so as to prevent
the formation of spurious undershoots and overshoots in the vicinity of steep gradients.
To this end, the following algorithmic components are to be specified [12],[25]

• a high-order approximation which may fail to possess the desired properties;

• a low-order approximation which does enjoy these properties but is less accurate;

• a way to decompose the difference between the above into a sum of skew-symmetric
internodal fluxes which can be manipulated without violating mass conservation;

• a cost-effective mechanism for adjusting these antidiffusive fluxes in an adaptive
fashion so that the imposed constraints are satisfied for a given solution.

Classical FCT algorithms are based on an explicit correction of the low-order solution
whose local extrema serve as the upper/lower bounds for the sum of limited antidiffusive
fluxes. In the case of an implicit time discretization, which gives rise to a nonlinear
algebraic system, the same strategy can be used to secure the positivity of the right-hand
side, whereas the left-hand side is required to satisfy the M-matrix property [7],[8].

The rationale for the development of implicit FCT algorithms stems from the fact that
the underlying linear discretizations must be stable. In particular, the use of an unstable
high-order method may give rise to nonlinear instabilities which manifest themselves in
significant distortions of the solution profiles as an aftermath of aggressive flux limiting.
In the finite element context, a proper amount of streamline diffusion can be used to
stabilize an explicit high-order scheme based on the standard Galerkin approximation.
However, the evaluation of extra terms increases the cost of matrix assembly and the
time step must satisfy a restrictive ‘CFL’ condition. On the other hand, unconditionally
stable implicit methods can be operated at large time steps (unless iterative solvers fail
to converge or the positivity criterion is violated) and there is no need for any extra
stabilization. Moreover, the overhead cost is insignificant, since the use of a consistent
mass matrix leads to a sequence of linear systems even in the fully explicit case.

The generalized FEM-FCT methodology introduced in [7],[8] and refined in [9],[10] is
applicable to implicit time discretizations but the cost of iterative flux correction is rather
high if the sum of limited antidiffusive fluxes and the nodal correction factors need to be
updated in each outer iteration. In addition, the nonlinear convergence rates leave a lot to
be desired in many cases. The use of ‘frozen’ correction factors computed at the beginning
of the time step by the standard Zalesak limiter alleviates the convergence problems but
the linearized scheme can no longer be guaranteed to remain positivity-preserving. The
semi-implicit limiting strategy proposed in the present paper makes it possible to overcome
this problem and enforce the positivity constraint at a cost comparable to that of explicit
flux correction. The resulting FEM-FCT algorithm is to be recommended for strongly
time-dependent problems discretized in time by the second-order accurate Crank-Nicolson
scheme. The design of general-purpose flux limiters which are more expensive but do not
suffer from a loss of accuracy at large time steps is addressed in [14].
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2 Algebraic flux correction

In this paper, we adopt an algebraic approach to the design of high-resolution schemes
which consists of imposing certain mathematical constraints on discrete operators, so as
to achieve some favorable matrix properties. A very handy algebraic criterion, which
represents a multidimensional generalization of Harten’s TVD theorem, was introduced
by Jameson [4],[5] who proved that a semi-discrete scheme of the form

dui

dt
=

∑

j 6=i

cij(uj − ui), cij ≥ 0, ∀j 6= i (1)

is local extremum diminishing (LED). After the discretization in time, such schemes re-
main positivity-preserving (PP) provided that each solution update un → un+1 or the
converged steady-state solution un+1 = un satisfy an algebraic system of the form

Aun+1 = Bun, (2)

where A = {aij} is an M-matrix and B = {bij} has no negative entries. Under these
conditions, the positivity of the old solution carries over to the new one [10],[12]

un ≥ 0 ⇒ un+1 = A−1Bun ≥ 0. (3)

If the underlying spatial discretization is LED, then the off-diagonal coefficients of both
matrices have the right sign, while the positivity condition bii ≥ 0 for the diagonal entries
of B yields a readily computable upper bound for admissible time steps [12]

1 + ∆t(1 − θ) min
i

cn
ii ≥ 0 for 0 ≤ θ < 1. (4)

Of course, the above algebraic constraints are not the necessary but merely sufficient
conditions for a numerical scheme to be local extremum diminishing and/or positivity
preserving. In the linear case, they turn out to be far too restrictive. According to the
well-known Godunov theorem, linear schemes satisfying these criteria are doomed to be
(at most) first-order accurate. On the other hand, a high-order discretization which fails
to satisfy the imposed constraints unconditionally can be adjusted so that it admits an
equivalent representation of the form (1) and/or (2), where the matrix entries may depend
on the unknown solution. This idea makes it possible to construct a variety of nonlinear
high-resolution schemes based on the algebraic flux correction paradigm [12],[14].

To keep the presentation self-contained, we will follow the roadmap displayed in Fig. 1
and explain the meaning of all discrete operators in the next three sections. Roughly
speaking, a high-order Galerkin discretization is to be represented in the form

Aun+1 = Bun + f, (5)

where the matrices A and B satisfy the positivity constraint (2). In order to guarantee
that the extra term f poses no hazard to positivity, it is replaced by its limited counterpart
f ∗ such that the right-hand side remains nonnegative for un ≥ 0. This modification is
mass-conserving provided that both f and f ∗ can be decomposed into skew-symmetric
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1. Semi-discrete high-order scheme (Galerkin FEM)

MC

du

dt
= Ku such that ∃ j 6= i : kij < 0

2. Semi-discrete low-order scheme L = K + D

ML

du

dt
= Lu such that lij ≥ 0, ∀j 6= i

3. Nonlinear FEM-FCT algorithm Aun+1 = Bun + f ∗,

where A = ML − θ∆tL, B = ML + (1 − θ)∆tL

Figure 1: Roadmap of matrix manipulations.

internodal fluxes as defined below. A family of implicit FEM-FCT schemes based on this
algebraic approach was proposed in [7],[8] and combined with an iterative limiting strategy
in [10]. In Section 5.2, we present an alternative generalization of Zalesak’s limiter which
proves much more robust and efficient. The new approach to flux correction of FCT type
is also based on the positivity constraint (2) but enforces it in another way so that the
costly computation of nodal correction factors is performed just once per time step. The
positivity of the resulting semi-implicit FCT algorithm will be proven in Section 5.3.

3 Semi-discrete high-order scheme

As a standard model problem, consider the time-dependent continuity equation for a
scalar quantity u transported by the velocity field v which is assumed to be known

∂u

∂t
+ ∇ · (vu) = 0. (6)

Let the discretization in space be performed by a (Galerkin) finite element method which
yields a DAE system for the vector of time-dependent nodal values

MC

du

dt
= Ku, (7)

where MC = {mij} denotes the consistent mass matrix and K = {kij} is the discrete
transport operator. The latter may contain some streamline diffusion used for stabilization
purposes and/or to achieve better phase accuracy in the framework of Taylor-Galerkin
methods [3]. Its skew-symmetric part 1

2
(K −KT ) is consistent with the properties of the

continuous convective derivative v · ∇ and implies the conservation of kinetic energy in
turbulent flow computations, see [21],[22]. At the same time, the symmetric part given
by 1

2
(K + KT )− diag{K} represents a discrete (anti-)diffusion operator, which results in

a nonphysical but sometimes desirable production or dissipation of kinetic energy.
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4 Semi-discrete low-order scheme

In the linear case, the algebraic constraints (1) and (2) can be readily enforced by means
of ‘discrete upwinding’ as proposed in [7],[8]. For a semi-discrete finite element scheme of
the form (7), the required matrix manipulations are as follows

• replace the consistent mass matrix MC by its lumped counterpart ML = diag{mi},

• render the operator K local extremum diminishing by adding an artificial diffusion
operator D = {dij} so as to eliminate all negative off-diagonal coefficients.

This straightforward ‘postprocessing’ transforms (7) into its linear LED counterpart

ML

du

dt
= Lu, L = K + D, (8)

where D is supposed to be a symmetric matrix with zero row and column sums. For
each pair of nonzero off-diagonal coefficients kij and kji of the high-order operator K, the
optimal choice of the artificial diffusion coefficient dij reads [8],[12]

dij = max{−kij, 0,−kji} = dji. (9)

Alternatively, one can apply discrete upwinding to the skew-symmetric part 1
2
(K − KT )

of the original transport operator K, which corresponds to [14]

dij =
|kij − kji|

2
− kij + kji

2
= dji. (10)

In either case, the off-diagonal coefficients of the low-order operator lij := kij + dij are
nonnegative, as required by the LED criterion (1). Due to the zero row sum property of
the artificial diffusion operator D, the diagonal coefficients of L are given by

lii := kii −
∑

j 6=i

dij. (11)

The semi-discretized equation for the nodal value ui(t) can be represented as

mi

dui

dt
=

∑

j 6=i

lij(uj − ui) + ui

∑

j

kij, (12)

where mi =
∑

j mij > 0 and lij ≥ 0, ∀i 6= j. The last term in the above expression
represents a discrete counterpart of −u∇ · v which is responsible for a physical growth of
local extrema [12]. In the semi-discrete case, it is harmless since (cf. [6])

ui(t) = 0, uj(t) ≥ 0, ∀j 6= i ⇒ dui

dt
≥ 0, (13)

which proves that the low-order scheme (8) is positivity-preserving. For the fully discrete
system to inherit this property, the time step should be chosen in accordance with the
CFL-like condition (4) unless the backward Euler time-stepping (θ = 1) is employed.
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5 Nonlinear FEM-FCT algorithm

The high-order system (7) discretized in time by a standard two-level θ-scheme

[MC − θ∆tK]un+1 = [MC + (1 − θ)∆tK]un (14)

admits an equivalent representation in the form (5) amenable to flux correction

[ML − θ∆tL]un+1 = [ML + (1 − θ)∆tL]un + f(un+1, un). (15)

The last term in the right-hand side is assembled from skew-symmetric internodal fluxes
fij which can be associated with the edges of the sparsity graph [12]

fi =
∑

j 6=i

fij, where fji = −fij. (16)

Specifically, these raw antidiffusive fluxes, which offset the discretization error induced by
mass lumping and discrete upwinding, are given by the formula [10],[12]

fij = [mij + θ∆tdn+1
ij ] (un+1

i − un+1
j ) − [mij − (1 − θ)∆tdn

ij] (un
i − un

j ). (17)

Interestingly enough, the contribution of the consistent mass matrix consists of a truly
antidiffusive implicit part and a diffusive explicit part which has a strong damping effect.
In fact, explicit mass diffusion of the form (MC − ML)un has been used to construct the
‘monotone’ low-order method in the framework of explicit FEM-FCT algorithms [16].

In the case of an implicit time discretization (0 < θ ≤ 1), the nonlinearities inherent
to the governing equation and/or to the employed high-resolution scheme call for the use
of an iterative solution strategy. Let successive approximations to the solution un+1 be
computed step-by-step in the framework of a fixed-point defect correction scheme [12].
Each solution update amounts to solving a linear system of the form (15) which reads

Au(m+1) = b(m), m = 0, 1, 2. . . . (18)

This fixed point iteration is preconditioned by the ‘monotone’ low-order operator

A = ML − θ∆tL (19)

which enjoys the M-matrix property, since the off-diagonal entries of L are nonnegative by
construction. The right-hand side b(m), which needs to be updated in each outer iteration,
consists of a low-order part augmented by limited antidiffusion [12]

b(m) = Bun + f ∗(u(m), un), B = ML + (1 − θ)∆tL. (20)

In order to prevent the formation of nonphysical undershoots and overshoots, the raw
antidiffusive fluxes fij should be multiplied by suitable correction factors so that

f ∗
i =

∑

j 6=i

αijfij, where 0 ≤ αij ≤ 1. (21)

This adjustment transforms (15) into a nonlinear combination of the low-order scheme
(αij ≡ 0) and the original high-order one (αij ≡ 1). The task of the flux limiter is to
determine an optimal value of each correction factor αij individually so as to remove as
much artificial diffusion as possible without violating the positivity constraint.
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5.1 Semi-explicit FCT limiter

The first implicit FCT algorithm for finite element discretizations on unstructured meshes
[7],[8] was based on the following limiting strategy which was eventually superseded by
further extensions proposed in a series of subsequent publications [9],[10]

1. Compute the high-order solution to (15) in an iterative way by solving (18) using
the total amount of raw antidiffusion (αij ≡ 1) to assemble the term f ∗.

2. Evaluate the contribution of the consistent mass matrix to the raw antidiffusive
fluxes (17) using the converged high-order solution as a substitute for un+1.

3. Solve the explicit subproblem MLũ = Bun for the positivity-preserving intermediate
solution ũ which represents an explicit low-order approximation to u(tn+1−θ).

4. Invoke Zalesak’s multidimensional FCT limiter to determine the correction factors
αij so as to secure the positivity of the right-hand side as explained below.

5. Compute the final solution by solving the linear system Aun+1 = b, where

bi = miũi +
∑

j 6=i

f ∗
ij, f ∗

ij = αijfij. (22)

In the fully explicit case, we have A = ML so that un+1 = M−1
L b can be computed

explicitly, and the classical FEM-FCT algorithm of Löhner et al. [16],[18] is recovered.
The crux of the above generalization lies in the special choice of the preconditioner A
which guarantees that the positivity of the right-hand side is preserved, whence

ũ ≥ 0 ⇒ b ≥ 0 ⇒ un+1 = A−1b ≥ 0. (23)

The flux correction process starts with an optional ‘prelimiting’ of the raw antidiffusive
fluxes fij. It consists of cancelling the ‘wrong’ ones which tend to flatten the intermediate
solution and create numerical artifacts. The required adjustment is given by [14]

fij := max{0, pij}(ũi − ũj), pij = fij/(ũi − ũj). (24)

The remaining fluxes are truly antidiffusive and need to be limited. The upper and lower
bounds to be imposed on the net antidiffusive flux depend on the local extrema

ũmax
i = max

j∈Si

ũj, ũmin
i = min

j∈Si

ũj, (25)

where Si = {j |mij 6= 0} denotes the set of nodes which share an element/edge with
node i so that the basis functions ϕi and ϕj have overlapping supports.

In the worst case, all antidiffusive fluxes into node i have the same sign. Hence, it is
worthwhile to treat the positive and negative ones separately, as proposed by Zalesak [23]

1. Evaluate the sums of all positive and negative antidiffusive fluxes into node i

P+
i =

∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}. (26)
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2. Compute the distance to a local maximum/minimum of the low-order solution

Q+
i = ũmax

i − ũi, Q−
i = ũmin

i − ũi. (27)

3. Calculate the nodal correction factors which prevent overshoots/undershoots

R+
i = min{1,miQ

+
i /P+

i }, R−
i = min{1,miQ

−
i /P−

i }. (28)

4. Check the sign of fij and apply R±
i or R∓

j , whichever is smaller, so that

αij =

{

min{R+
i , R−

j }, if fij > 0,
min{R−

i , R+
j }, otherwise.

(29)

This symmetric limiting strategy guarantees that the corrected right-hand side (22) sat-
isfies the constraint ũmin

i ≤ bi/mi ≤ ũmax
i . Due to the fact that the preconditioner A was

designed to be an M-matrix, the resulting scheme proves positivity-preserving [8],[12].

It is worth mentioning that the constituents of the sums P±
i vary with ∆t, while the

corresponding upper/lower bounds Q±
i are fixed. Consequently, the correction factors αij

produced by Zalesak’s limiter depend on the time step. This dependence, which is typical
of FCT methods, turns out to be a blessing and a curse at the same time. On the one
hand, a larger portion of the raw antidiffusive flux fij may be retained as the time step is
refined. On the other hand, the accuracy of FCT algorithms deteriorates as ∆t increases,
since the positivity constraint (2) becomes too restrictive. The iterative limiting strategy
proposed in [10] alleviates this problem to some extent by adjusting the correction factors
αij in each outer iteration so as to recycle the rejected antidiffusion step-by-step. However,
the cost of iterative flux correction is rather high and severe convergence problems may
occur. Therefore, other limiting techniques such as the general-purpose (GP) flux limiter
introduced in [14] are to be preferred for marching the solution to a steady state.

5.2 Semi-implicit FCT limiter

For truly time-dependent problems, the use of moderately small time steps is dictated by
accuracy considerations so that flux limiting of FCT type is appropriate. In this case,
the underlying time-stepping method should provide (unconditional) stability and be at
least second-order accurate in order to capture the evolutionary details. For this reason,
we favor an implicit time discretization of Crank-Nicolson type (θ = 1/2) and mention
the strongly A-stable fractional-step θ−scheme [19] as a promising alternative.

The semi-explicit limiting strategy presented in the previous section can be classified
as an algorithm of predictor-corrector type since the implicit part of the raw antidiffusive
flux (17) is evaluated using the converged high-order solution in place of un+1. This handy
linearization, which can be traced back to the classical FEM-FCT procedure [16], makes
it possible to perform flux correction in a very efficient way, since Zalesak’s limiter is
invoked just once per time step. However, a lot of CPU time needs to be invested in the
iterative solution of the ill-conditioned high-order system and the convergence may even
fail if the time step is too large. Moreover, the final solution fails to satisfy the nonlinear
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algebraic system (18) upon substitution. On the other hand, the update of P±
i , Q±

i , and
R±

i in each outer iteration would trigger the cost of flux limiting and compromise the
benefits of implicit time-stepping. In order to circumvent this problem, let us introduce
an efficient semi-implicit FCT algorithm which can be implemented as follows:

• At the first outer iteration (m = 1), compute a set of antidiffusive fluxes f̃ij which
provide an explicit estimate for the admissible magnitude of f ∗

ij = αijfij

1. Initialize all auxiliary arrays by zeros: P±
i ≡ 0, Q±

i ≡ 0, R±
i ≡ 0.

2. Compute the positivity-preserving intermediate solution of low order

ũ = un + (1 − θ)∆tM−1
L Lun. (30)

3. For each pair of neighboring nodes i and j, evaluate the raw antidiffusive flux

fn
ij = ∆tdn

ij(u
n
i − un

j ) (31)

and add its contribution to the sums of positive/negative edge contributions

P±
i := P±

i +
max
min

{0, fn
ij}, P±

j := P±
j +

max
min

{0,−fn
ij}. (32)

4. Update the maximum/minimum admissible increments for both nodes

Q±
i :=

max
min

{

Q±
i , ũj − ũi

}

, Q±
j :=

max
min

{

Q±
j , ũi − ũj

}

. (33)

5. Relax the constraint R±
i ≤ 1 for the nodal correction factors and compute

R±
i := miQ

±
i /P±

i . (34)

6. Multiply the raw antidiffusive fluxes fn
ij by the minimum of R±

i and R∓
j

f̃ij =

{

min{R+
i , R−

j }fn
ij, if fn

ij > 0,
min{R−

i , R+
j }fn

ij, otherwise.
(35)

• At each outer iteration (m = 1, 2, . . .), assemble f ∗ and plug it into (20)

1. Update the target flux (17) using the solution from the previous iteration

fij = [mij + θ∆td
(m)
ij ](u

(m)
i − u

(m)
j )

− [mij − (1 − θ)∆tdn
ij] (un

i − un
j ). (36)

2. Constrain each flux fij so that its magnitude is bounded by that of f̃ij

f ∗
ij =

{

min{fij, max{0, f̃ij}}, if fij > 0,

max{fij, min{0, f̃ij}}, otherwise.
(37)
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3. Insert the limited antidiffusive fluxes f ∗
ij into the right-hand side (20)

b
(m)
i := b

(m)
i + f ∗

ij, b
(m)
j := b

(m)
j − f ∗

ij. (38)

Due to the fact that fn
ij is not the real target flux but merely an explicit predictor used

to estimate the maximum amount of admissible antidiffusion, the multipliers R±
i are

redefined so that the ratio f̃ij/f
n
ij may exceed unity. However, the effective correction

factors αij := f ∗
ij/fij are bounded by 0 and 1, as required for consistency.

Instead of computing the optimal upper/lower bounds (27) for a given time step, it
is also possible to use some reasonable fixed bounds and adjust the time step if this is
necessary to satisfy a CFL-like condition (as in the case of TVD methods). For instance,
the auxiliary quantities Q±

i can be computed using un instead of ũ

Q+
i = max

j∈Si

un
j − un

i , Q−
i = min

j∈Si

un
j − un

i . (39)

The corresponding nodal correction factors R±
i should be redefined as [14]

R±
i = (mi − mii)Q

±
i /P±

i , (40)

where mi−mii =
∑

j 6=i mij is the difference between the diagonal entries of the consistent
and lumped mass matrices. This modification eliminates the need for evaluation of the
intermediate solution ũ in (30) and leads to a single-step FCT algorithm.

For a given time step, the multipliers (40) will typically be smaller than those defined
by (34). However, in either case the denominator P±

i is proportional to ∆t. Therefore,
the difference between the effective correction factors αij will shrink and eventually vanish
as the time step is refined. As long as ∆t is sufficiently small, the accuracy of both FCT
techniques depends solely on the choice of the underlying high-order scheme.

5.3 Positivity proof

The positivity proof for the semi-implicit FCT algorithm (30)–(38) follows that for the
classical Zalesak limiter, see [8],[12]. In the nontrivial case f ∗

i 6= 0, the i−th component
of the right-hand side (20) admits the following representation

b∗i = miũi + f ∗
i = (mi − αi)ũi + αiũk, (41)

where the coefficient αi = f ∗
i /(ũk − ũi) is defined in terms of the local extremum

ũk =

{

ũmax
i , if f ∗

i > 0,

ũmin
i , if f ∗

i < 0.
(42)

This definition implies that f ∗
i = αiQ

±
i , where αi > 0. By virtue of (41), the sign of the

intermediate solution ũ is preserved if the inequality mi − αi ≥ 0 holds.
In the case f ∗

i < 0, the antidiffusive correction to node i is bounded from below by

miQ
−
i ≤ R−

i P−
i ≤

∑

j 6=i

min{0, f̃ij} ≤ f ∗
i = αiQ

−
i . (43)
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Likewise, a strictly positive antidiffusive correction f ∗
i > 0 is bounded from above by

αiQ
+
i = f ∗

i ≤
∑

j 6=i

max{0, f̃ij} ≤ R+
i P+

i ≤ miQ
+
i . (44)

It follows that 0 ≤ αi ≤ mi, which proves that b∗i ≥ 0 provided that ũi ≥ 0 and ũk ≥ 0.
In light of the above, the semi-implicit FCT limiter is positivity-preserving as long

as the diagonal coefficients of the matrix B as defined in (20) are nonnegative. The
corresponding CFL-like condition (4) for the maximum admissible time step reads

(1 − θ)∆t ≤ min
i

|mi/lii|. (45)

The positivity of the single-step algorithm based on the slack bounds (39)–(40) can
be proven in a similar way using the following representation of the right-hand side

b∗i = (mi − αi)u
n
i + αiu

n
k + (1 − θ)∆t

∑

j

liju
n
j . (46)

In this case, the limited antidiffusive correction to node i can be estimated as follows

(mi − mii)Q
−
i ≤ f ∗

i ≤ (mi − mii)Q
+
i (47)

so that mi − αi ≥ mii. Thus, the right-hand side given by (46) preserves the sign of un if
the time step satisfies the positivity constraint for all diagonal coefficients

(1 − θ)∆t ≤ min
i

|mii/lii|. (48)

Under the above conditions, the M-matrix property of the preconditioner A is sufficient
to guarantee that each solution update is positivity-preserving.

5.4 Convergence behavior

A remark is in order regarding the convergence behavior of the iterative defect correction
scheme (18) preconditioned by the low-order operator (19). The converged solution un+1

is supposed to satisfy a nonlinear algebraic system of the form

A∗un+1 = Bun, A∗un+1 := Aun+1 − f ∗, (49)

where A∗ is the nonlinear FCT operator which includes some built-in antidiffusion. Clearly,
the rate of convergence will depend on the approximation property of the preconditioner,
i.e., on the norm ||A∗ − A||. On the one hand, the operator A as defined in (19) is linear
and easy to ‘invert’ because it is an M-matrix. On the other hand, it represents a rather
poor approximation to the original Galerkin operator MC − θ∆tK which is recovered in
the limit αij → 1. As a result, the convergence of a highly accurate FCT algorithm is
likely to slow down as the high-order solution is approached.

In particular, the lumped-mass version, which is obtained by setting mij = 0 in the
definition of the raw antidiffusive flux, converges much faster than the one based on the
consistent target flux (17). However, mass lumping may have a devastating effect on the
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accuracy of a time-dependent solution, as demonstrated by the numerical examples in the
next section. At the same time, the high phase accuracy provided by the consistent mass
matrix comes at the cost of slower convergence, due to the fact that the preconditioner
A is based on ML rather than MC . The high-order system (14) which corresponds to
αij ≡ 1 is particularly difficult to solve, even though it is linear (see below).

In general, there is a tradeoff between the accuracy of the numerical solution and
convergence of the fixed-point iteration (18). Any modification of the flux limiter which
makes it possible to accept more antidiffusion has an adverse effect on the convergence
rates. Conversely, more diffusive schemes converge better but their accuracy leaves a lot
to be desired. The only way to accelerate convergence without sacrificing some accuracy
is to use a sophisticated preconditioner which should include limited antidiffusion but
remain an M-matrix. In the context of TVD-like methods such nonlinear operators can be
assembled from the solution-dependent coefficients involved in the positivity proof [6],[14].
In fact, driving the residual of time-dependent problems to machine zero is hardly worth
the effort. Indeed, a half-converged time-accurate solution is probably better than a fully
converged one obtained at a much higher cost or using a less accurate discretization.

6 Numerical examples

In order to illustrate the performance of the semi-implicit FCT algorithm, we apply it
to a number of time-dependent benchmark problems discretized in space by the stan-
dard Galerkin method on a quadrilateral or triangular mesh. The time discretization is
performed by the second-order accurate Crank-Nicolson scheme. All numerical solutions
were computed by the algorithm (30)–(38) since the single-step version based on (39)–(40)
yields virtually identical results in the range of time steps considered below. The goal of
this numerical study is to investigate the accuracy of the proposed discretization tools as
well as the convergence behavior of the iterative flux/defect correction scheme (18).

6.1 Solid body rotation

Let us start with the two-dimensional benchmark problem proposed by LeVeque [15]
which makes it possible to assess the ability of a high-resolution scheme to preserve both
smooth and discontinuous profiles. To this end, a slotted cylinder, a sharp cone and
a smooth hump are exposed to the nonuniform velocity field v = (0.5 − y, x − 0.5) and
undergo a counterclockwise rotation about the center of the unit square Ω = (0, 1)×(0, 1).
Each solid body lies within a circle of radius r0 = 0.15 centered at a point with Cartesian
coordinates (x0, y0). In the rest of the domain, the solution is initialized by zero. The
shapes of the three bodies as depicted in Fig. 2 can be expressed in terms of the normalized
distance function for the respective reference point (x0, y0) thus:

r(x, y) =
1

r0

√

(x − x0)2 + (y − y0)2.

The center of the slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its geometry in
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Figure 2: Solid body rotation: initial data / exact solution.

the circular region r(x, y) ≤ 1 is given by

u(x, y, 0) =

{

1 if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,

0 otherwise.

The corresponding analytical expression for the conical body reads

u(x, y, 0) = 1 − r(x, y), (x0, y0) = (0.5, 0.25),

whereas the shape and location of the hump at t = 0 are as follows

u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})], (x0, y0) = (0.25, 0.5).

After one full revolution (t = 2π) the exact solution of the continuity equation (6)
coincides with the initial data. The numerical solutions presented in Fig. 3 were produced
by the semi-implicit FCT algorithm on a uniform mesh of 128×128 bilinear finite elements
using the time step ∆t = 10−3. The upper diagram demonstrates the detrimental effect of
mass lumping which manifests itself in significant amplitude and phase errors. The lower
diagram was computed using the consistent target flux (17) including the contribution
of mass antidiffusion. In this case, the shape of the rotating bodies is reproduced very
well and even the narrow bridge of the slotted cylinder is largely preserved. This example
confirms that time-dependent problems call for the use of a time-accurate high-order
scheme based on the consistent mass matrix. A further improvement of phase accuracy
is possible in the framework of (semi-implicit) Taylor-Galerkin methods.
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FEM-FCT, lumped mass matrix

FEM-FCT, consistent mass matrix

Figure 3: Solid body rotation: numerical solutions at t = 2π.
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6.2 Swirling flow

The second benchmark problem, which was also introduced in [15], deals with a swirling
deformation of the initial data by the incompressible velocity field given by

vx = sin2(πx) sin(2πy), vy = − sin2(πy) sin(2πx).

The initial condition to be prescribed is a discontinuous function of the spatial coordinates
which equals unity within a circular sector of π/2 radians and zero elsewhere:

u(x, y, 0) =

{

1 if (x − 1)2 + (y − 1)2 < 0.64,

0 otherwise.

In the course of deformation, the mass distribution assumes a complex spiral shape
which is nicely resolved by the semi-implicit FCT algorithm. The numerical solution at
time t = 2.5 calculated using the same mesh and time step as in the previous example
is displayed in Fig. 4. The use of a piecewise-linear finite element approximation on a
triangular mesh with the same number of nodes yields virtually the same results, see Fig. 5.
For the difference between the underlying triangulations to be visible, both solutions were
output on coarser meshes consisting of 4,225 vertices. In either case, the evolution details
are captured with high precision and the resolution of discontinuities is remarkably crisp.
These results compare well to those computed in [12] using flux limiters of TVD type.

6.3 Convection skew to the mesh

In order to compare the convergence behavior of the semi-implicit FEM-FCT algorithm
to that of the underlying Galerkin scheme, let us solve equation (6) with v = (1, 1)
so that the initial profile is translated along the diagonal of the computational domain
Ω = (0, 1) × (0, 1). The numerical study is to be performed for two different initial
configurations centered at the reference point (x0, y0) = (0.3, 0.3)

TP1 The first test problem corresponds to the discontinuous initial condition

u(x, y, 0) =

{

1 if max{|x − x0|, |y − y0|} ≤ 0.1,
0 otherwise.

(50)

TP2 The second test problem deals with translation of a smooth function defined as

u(x, y, 0) =
1

4
[1 + cos(10π(x − x0))][1 + cos(10π(y − y0))] (51)

within the circle
√

(x − x0)2 + (y − y0)2 ≤ 0.1 and equal to zero elsewhere.

Figure 6 displays the approximate solutions at t = 0.5 computed using ∆t = 10−3 on
a quadrilateral mesh consisting of 128 × 128 bilinear elements. The left diagrams were
produced by the consistent-mass FCT algorithm which yields nonoscillatory solutions
bounded by 0 and 1. The underlying high-order scheme remains stable but gives rise to
nonphysical undershoots and overshoots, as seen in the right diagrams.
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Figure 4: Swirling deformation on a quadrilateral mesh, t = 2.5.

Figure 5: Swirling deformation on a triangular mesh, t = 2.5.
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FEM-FCT Galerkin scheme

Figure 6: Convection skew to the mesh: 128 × 128 Q1−elements, t = 0.5.

In either case, the numerical solution was computed in an iterative way using the
defect correction scheme (18) preconditioned by the low-order operator (19). The stopping
criterion was based on the Euclidean norm of the residual vector

r = Aun+1 − Bun − f ∗, ||r|| =
√

rT r (52)

which was required to satisfy the inequality ||r|| ≤ 10−4. The difference between the exact
solution u and its finite element approximation uh was measured in the L1-norm

||u − uh||1 =

∫

Ω

|u − uh| dx ≈
∑

i

mi|u(xi, yi) − ui| (53)

as well as in the L2-norm defined by the following formula

||u − uh||22 =

∫

Ω

|u − uh|2 dx ≈
∑

i

mi|u(xi, yi) − ui|2, (54)

where mi =
∫

Ω
ϕi dx are the diagonal coefficients of the lumped mass matrix. Further-

more, the global minimum umin = mini ui and maximum umax = maxi ui of the discrete
solution uh were compared to their analytical values 0 and 1.
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Tables 1 and 2 illustrate the convergence behavior of the iterative flux/defect correction
scheme as applied to the test problems TP1 and TP2 on three successively refined meshes.
The first three columns in each table display the refinement level NLEV, the number of
vertices/nodes NVT and the total number of outer iterations NDC required to compute
the numerical solution at t = 0.5. The different performance of the four algorithms under
consideration supports the arguments presented in Section 5.4. In particular, it can readily
be seen that the use of the consistent mass matrix results in a much better accuracy but the
convergence slows down, whereas the lumped-mass version is less accurate but much more
efficient. In the difference ||un+1 −un|| is large, mass antidiffusion affects the convergence
rates even stronger than the convective part of the antidiffusive flux. Since the latter is
proportional to ∆t, the mass lumping error plays a dominant role at small time steps such
that A ≈ ML. Note that the consistent-mass Galerkin scheme faces severe convergence
problems and the error may even increase as the mesh is refined (see Table 2).

On the other hand, the results computed by the semi-implicit FCT algorithm exhibit
a monotone grid convergence as well as some improvement of the convergence rates. Even
the consistent-mass version converges slowly but surely to a nonoscillatory time-accurate
solution. For large time steps, the single-step implementation based on (39)–(40) would be
more diffusive and converge faster. However, for time steps as small as the one employed

FEM-FCT algorithm / consistent mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 2,500 1.1737e-2 6.2176e-2 0.0 1.0
7 16,641 2,461 7.3688e-3 4.8577e-2 0.0 1.0
8 66,049 2,489 4.7039e-3 3.8715e-2 0.0 1.0

FEM-FCT algorithm / lumped mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 751 1.9356e-2 8.4294e-2 0.0 0.9988
7 16,641 1,000 1.2402e-2 6.5356e-2 0.0 1.0000
8 66,049 1,014 7.8511e-3 5.1182e-2 0.0 1.0000

Galerkin scheme/ consistent mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 4,666 3.6283e-2 7.4952e-2 -0.2557 1.4505
7 16,641 7,379 2.7340e-2 5.8124e-2 -0.2743 1.3797
8 66,049 13,852 2.3000e-2 5.2536e-2 -0.4437 1.4080

Galerkin scheme / lumped mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 1,000 6.5181e-2 1.3073e-1 -0.4022 1.5608
7 16,641 1,423 4.7055e-2 9.8663e-2 -0.4340 1.5732
8 66,049 1,500 3.5126e-2 8.0298e-2 -0.3713 1.5628

Table 1: Convection skew to the mesh: discontinuous initial data.
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FEM-FCT algorithm / consistent mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 2,486 1.4799e-3 9.2813e-3 0.0 0.8562
7 16,641 1,833 4.3436e-4 2.7820e-3 0.0 0.9418
8 66,049 2,867 1.7887e-4 1.2032e-3 0.0 0.9740

FEM-FCT algorithm / lumped mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 1,000 4.2704e-3 2.7827e-2 0.0 0.7308
7 16,641 1,000 1.7834e-3 1.1294e-2 0.0 0.9218
8 66,049 736 7.6982e-4 4.6142e-3 0.0 0.9612

Galerkin scheme / consistent mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 2,500 1.3961e-3 2.6234e-3 -0.0158 0.9890
7 16,641 6,437 1.8892e-3 3.9001e-3 -0.0480 0.9925
8 66,049 13,700 2.3237e-3 8.1553e-3 -0.1363 1.0012

Galerkin scheme / lumped mass matrix

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

6 4,225 1,000 1.0904e-2 4.2409e-2 -0.1911 0.8809
7 16,641 1,000 3.4837e-3 1.4234e-2 -0.0811 1.0098
8 66,049 1,000 1.3092e-3 4.3179e-3 -0.0322 1.0046

Table 2: Convection skew to the mesh: smooth initial data.

in this section, it would be just as accurate and converge at the same rate as the algorithm
(30)–(38). The values of umax in Table 2 reveal that flux correction may lead to undesirable
‘peak clipping’, which is a well-known phenomenon discussed, e.g., in [12],[23]. On the
other hand, the associated high-order solution is corrupted by undershoots and overshoots
which are particularly large for discontinuous initial data (Table 1) and less pronounced for
the smooth cosine hill (Table 2). These nonphysical oscillations result in a dramatic loss of
accuracy and slow/no convergence, so that the results are inferior to those produced by the
FEM-FCT algorithm using the same parameter settings. Since the latter converges faster
than the Galerkin scheme, it is more efficient than semi-explicit flux correction (24)–(29)
which represents a positivity-preserving postprocessing of the high-order predictor.

Of course, the linear system (14) could be solved in one step without resorting to defect
correction. However, this straightforward approach would lead to a severe deterioration
of linear convergence rates. Indeed, the high-order operator MC − θ∆tK is much harder
to ‘invert’ than the preconditioner A which enjoys the M-matrix property. In many cases,
the high-order solution may prove prohibitively expensive or even impossible to compute
in such a brute-force way, unless a direct solver is employed. Hence, even linear high-order
systems of the form (15) call for the use of iterative defect correction [8].
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7 Conclusions

The semi-implicit approach to flux correction of FCT type leads to a robust and efficient
special-purpose algorithm for time-dependent problems discretized in space by the finite
element method. The accuracy of the resulting scheme improves as the time step is refined
and the consistent mass matrix can be included in a positivity-preserving fashion. The
new limiting strategy makes it possible to avoid a repeated computation of the nodal
correction factors at each outer iteration. Therefore, the use of an implicit time-stepping
method pays off inspite of the CFL-like condition to be satisfied by the time step in the
case θ < 1. For sufficiently small time steps, the new algorithm is more accurate and/or
efficient than the algebraic flux correction schemes proposed in [8],[10]. On the other
hand, it is not to be recommended for steady-state computations which call for the use
of large time steps. In this case, it is worthwhile to redefine the underlying constraints as
explained in [14] and switch to an upwind-biased limiting strategy. A promising direction
for further research is the design of characteristic FCT limiters for the Euler equations
[25] on the basis of (39)–(40). Indeed, the use of upper/lower bounds depending on the
local extrema of un rather than ũ makes it possible to decouple the discrete Jacobian
operators and limit them separately as in the case of characteristic TVD methods [13].
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[12] D. Kuzmin and M. Möller, Algebraic flux correction I. Scalar conservation laws. In:
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