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SUMMARY

This paper presents new linearity-preserving nodal limiters for enforcing discrete maximum principles in
continuous (linear or bilinear) finite element approximations to transport problems with steep fronts. In the
process of algebraic flux correction, the oscillatory antidiffusive part of a high-order base discretization is
decomposed into a set of internodal fluxes and constrained to be local extremum diminishing. The proposed
nodal limiter functions are designed to be continuous and satisfy the principle of linearity preservation which
implies the preservation of second-order accuracy in smooth regions. The use of limited nodal gradients
makes it possible to circumvent angle conditions and guarantee that the discrete maximum principle holds on
arbitrary meshes. A numerical study is performed for linear convection and anisotropic diffusion problems
on uniform and distorted meshes in two space dimensions.
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1. INTRODUCTION

Important structural properties of exact solutions to conservation law systems (nonnegativity,
monotonicity, nonincreasing total variation) play an important role in the design of physics-
compatible finite element methods. For example whereas it is easy to derive sufficient conditions
under which a discrete maximum principle (DMP) holds for linear and bilinear elements, even
the standard Galerkin discretization of the Laplace operator may violate these conditions on
a nonuniform mesh. In the case of a hyperbolic transport equation, a linear DMP-conforming
approximation of the convective term can be at most first-order accurate by the Godunov theorem
[12]. The most common approach to avoiding nonphysical undershoots and overshoots in finite
element methods is based on the use of nonlinear shock-capturing terms within the framework of
variationally consistent Petrov-Galerkin methods. These methods often combine nonlinear residual-
based shock-capturing terms and linear stabilization which localizes nonphysical undershoots and
overshoots to a small neighborhood of steep gradients. However the techniques are generally
insufficient to enforce the DMP constraints (for a review and comparative study of existing schemes
see, e.g., [10, 17, 18]).

The design of nonlinear high-resolution schemes backed by the DMP theory typically involves

• construction of linear artificial diffusion operators that lead to algebraic systems satisfying the
relevant DMP criteria for the coefficients of the (semi-)discrete problem;
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2 D. KUZMIN AND J.N. SHADID

• limiting the corresponding edge or element contributions in an adaptive manner.

In this context the algebraic flux correction (AFC) [21] paradigm provides a set of general design
principles for construction of artificial diffusion operators and limiter functions for continuous
(linear or multilinear) finite elements. In particular, various generalizations of the flux-corrected
transport (FCT) algorithm [5, 39] and total variation diminishing (TVD) schemes [15, 16] are
available [19, 20, 25, 27]. A theoretical framework for analysis of AFC schemes was recently
developed in [2, 3]. Alternative approaches to enforcing DMP can be found in [1, 6, 7, 14].
Some proofs of the DMP property impose restrictions on the angles or aspect ratios of mesh
elements (triangulations of weakly acute type [4, 8], rectangular meshes of nonnarrow type [9, 11]).
Other drawbacks of existing schemes include the presence of free parameters and strong numerical
dissipation.

In the present paper, we focus on the design of limiter functions for artificial diffusion operators in
algebraic flux correction schemes and related methods. The objective of this work is to develop new
tools for enforcing DMP and linearity preservation on unstructured meshes. Instead of imposing
upper and/or lower bounds on the sum of antidiffusive edge/element contributions to a given node,
we define the nodal correction factors in terms of solution gradients. It turns out that the limiters
proposed in [1] and [2] can be generalized and improved leading to an algorithm that combines
the most attractive features of existing limiting techniques (simplicity, linearity preservation and
DMP property on arbitrary meshes, continuous dependence on the data, low levels of numerical
dissipation). In this paper, we use it to constrain antidiffusive fluxes in an edge-based algebraic flux
correction scheme but the same limiter functions may be employed in the element-based version
[20] and other nonlinear diffusion operators [2]. The convergence behavior of constrained P1 finite
element approximations is illustrated by a numerical study for linear convection and anisotropic
diffusion problems in 2D. The results for distorted triangular meshes demonstrate the benefit of
using limiters that do not impose any restrictions on the geometric properties of the mesh.

2. GALERKIN DISCRETIZATION

We begin with a brief introduction to the principles of algebraic flux correction for finite element
approximations to the generic convection-diffusion equation

∂u

∂t
+∇ · (vu−D∇u) = 0, (1)

where u is a conserved scalar quantity, v is a given velocity field and D is a (possibly anisotropic)
diffusion tensor. The model problems to be considered in this paper also include the limiting cases
D = 0 (pure convection), v = 0 (pure diffusion), and ∂u

∂t (steady state).
Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a bounded domain with Lipschitz boundary Γ = ∂Ω. The boundary

conditions for our model problem are given by u = g1 on Γ1,
−(D∇u) · n = g2 on Γ2,

(vu−D∇u) · n = g3 on Γ3,
(2)

where n is the unit outward normal and Γ1,Γ2,Γ3 are nonoverlapping subsets of Γ.
If the transient solution to (1) is of interest, we prescribe an initial condition of the form

u(x, 0) = u0(x), x ∈ Ω. (3)

Steady state solutions can be obtained by solving the time-dependent problem until the time
derivative vanishes. In this case, the initial condition may be chosen arbitrarily.
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GRADIENT-BASED NODAL LIMITERS FOR FINITE ELEMENT SCHEMES 3

Substituting the boundary conditions (2) into the weak form of (1) with an admissible test function
w vanishing on the Dirichlet boundary Γ1, one obtains the variational formulation∫

Ω

w
∂u

∂t
dx−

∫
Ω

∇w · (vu−D∇u) dx +

∫
Γ2

wuv · nds

= −
∫

Γ2

wg2ds−
∫

Γ3

wg3ds. (4)

In this paper, we discretize (4) in space using a finite element approximation defined by

uh(x, t) =

N∑
j=1

uj(t)ϕj(x), (5)

where {ϕ1, . . . , ϕN} are the global basis functions for linear or multilinear Lagrange elements and
uj(t) is the time-dependent nodal value associated with a vertex xj of the computational mesh.

Approximating u by uh and using admissible test functions w ∈ {ϕi : ϕi|Γ1
= 0} in the

variational formulation (4), we obtain a semi-discrete system of the form

MC
du

dt
= Ku+ g, (6)

where u is the vector of unknowns, MC = {mij} is the consistent mass matrix, K = {kij} is the
discrete transport operator and g = {gi} is a vector incorporating the boundary conditions.

Let 0 = t0 < t1 < t2 < · · · < tM = T be a sequence of discrete time levels. Using the two-level
θ-scheme for integration in time, we obtain the fully discrete problem

[MC − θ∆tK]un+1 = [MC + (1− θ)∆tK]un + gn+θ, (7)

where θ ∈ [0, 1] is the degree of implicitness and ∆t = tn+1 − tn is the time step. The forward Euler
(θ = 0) method is unstable for convection-dominated transport problems and gives rise to severe
time step restrictions in the case of dominating diffusion. For this reason, we restrict ourselves to
the unconditionally stable Crank-Nicolson

(
θ = 1

2

)
and backward Euler (θ = 1) time stepping.

3. ALGEBRAIC FLUX CORRECTION

To enforce sufficient conditions for the discrete maximum principle (if applicable) and/or positivity
preservation, we will modify the standard Galerkin discretization (6) by adding some artificial
diffusion. At the semi-discrete level, a numerical approximation of the form

ML
du

dt
= Lu+ g (8)

is positivity-preserving if ML = diag{mi} is a diagonal matrix with positive diagonal entries and
all off-diagonal coefficients of L = {lij} are nonnegative. If the diagonal coefficient is given by
lii = −

∑
j 6=i lij , then the condition lij ≥ 0 for j 6= i is sufficient for the semi-discrete scheme to

be local extremum diminishing (LED). After the discretization in time, the corresponding discrete
maximum principle holds, perhaps under a CFL-like restriction for the time step [21, 25].

Suppose that the Galerkin discretization (6) admits an equivalent representation

ML
du

dt
= Lu+ f(u) + g (9)

such that the matrices ML and L satisfy the conditions of positivity preservation

mi > 0, lij ≥ 0, j 6= i. (10)
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4 D. KUZMIN AND J.N. SHADID

Then the possibly oscillatory antidiffusive part of (6) is represented by the vector

f(u) = (ML −MC)
du

dt
− (L−K)u. (11)

To cast (6) into the form (9), we introduce the lumped mass matrix

ML = diag{mi}, mi =
∑
j 6=i

mij , mij =

∫
Ω

ϕiϕj dx

and an artificial diffusion operator D = {dij} defined by [21, 27]

dii = −
∑
j 6=i

dij , dij = max{−kij , 0,−kji} for j 6= i.

Adding D to the Galerkin transport operator K, we construct the modified transport operator

L = K +D

satisfying the nonnegativity condition (10) for the off-diagonal coefficients. For linear finite
elements in 1D, this modification yields a first-order accurate upwind approximation [21, 27]. Other
approaches to constructing D with desired properties are discussed in [6, 14, 25].

As shown in [25], the semi-discrete scheme (9) is positivity-preserving (LED) if its low-order
counterpart (8) is positivity-preserving (LED) and the antidiffusive term f is LED. Let

umin
i = min

j∈N (i)
uj , umax

i = max
j∈N (i)

uj (12)

denote the local minimum and maximum over the stencilN (i) of node i. Then fi(u) is of LED type
if fi(u) ≤ 0 for u = umax

i and fi(u) ≥ 0 for u = umin
i .

An oscillatory high-order scheme can be repaired by limiting f(u) in a conservative manner. In
edge-based algebraic flux correction schemes [14, 21, 30, 33, 37], the antidiffusive term f(u) is
decomposed into internodal fluxes. The flux from node j into node i is defined by

fij =

(
mij

d

dt
+ dij

)
(ui − uj), j 6= i. (13)

The flux fji has the same magnitude and opposite sign. The limited LED counterpart of

fi(u) =
∑
j 6=i

fij (14)

is given by
f̄i(u) =

∑
j 6=i

αijfij , (15)

where αij ∈ [0, 1] are correction factors such that αji = αij and [25]

cmin
i (umin

i − ui) ≤ f̄i(u) ≤ cmax
i (umax

i − ui) (16)

for some bounded coefficients cmin
i > 0 and cmax

i > 0. To assure that the high-order approximation
is recovered whenever the unconstrained antidiffusive correction is LED, the correction procedure
should be designed to guarantee that αij ≈ 1 whenever f̄i = fi satisfies (16).

In general, an algebraic flux correction scheme can be designed using a decomposition of the
global vector f(u) into subvectors fe(u) associated with sets of neighboring nodes (e.g., vertices
of the same mesh element) and having zero sums. We refer the reader to [24, 25, 31, 32] for
a presentation of element-based limiting techniques in which f̄ is defined in terms of element-
level matrix-vector products and assembled using traditional finite element data structures. In this
development we consider edge-based approaches formulated in terms of fluxes.
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GRADIENT-BASED NODAL LIMITERS FOR FINITE ELEMENT SCHEMES 5

The edge-based correction factors αij for pairs of antidiffusive fluxes (fij , fji) and element-based
correction factors αe for antidiffusive element contributions fe can be defined as the minimum of
nodal correction factors Φi ∈ [0, 1] designed to enforce inequality constraints (16) at a given node.
In the edge-based version (15), we set αij = min{Φi,Φj}. In accordance with the design principles
formulated in [25], the nodal limiter function Φi should possess the following properties:

• Φi ∈ [0, 1] depends continuously on the nodal values uj , j ∈ N (i);
• Φi = 0 at a local maximum (ui = umax

i ) or minimum (ui = umin
i );

• Φi = 1 if uh is linear on the patch of elements Ωi containing node i.

The first property is needed to secure the well-posedness of the modified discrete problem. Existing
theory [2, 3] guarantees convergence of fixed-point iterations for the nonlinear system under the
assumption that the limited antidiffusive term f̄(u) is a Lipschitz-continuous function of u.

The second property guarantees that the sum of antidiffusive element contributions to node i is
local extremum diminishing by (16) (see Section 8). The third property is commonly referred to as
linearity preservation [2, 20, 21, 26] and is essential for maintaining consistency of the constrained
Galerkin scheme in applications to anisotropic diffusion problems [26]. In the context of hyperbolic
conservation laws, linearity preservation is not mandatory but highly desirable because it implies
that the high order of the unconstrained approximation is recovered in smooth regions.

4. GRADIENT-BASED NODAL LIMITERS

In this paper, we consider limiting techniques based on generalizations of one-dimensional linearity-
preserving limiters for uniform meshes. Given the one-sided gradient approximations

∂−x ui =
ui − ui−1

h
, ∂+

x ui =
ui+1 − ui

h
, (17)

the nodal jump [[·]] and average {·} are defined by

[[∂xui]] = ∂+
x ui − ∂−x ui, {∂xui} =

∂+
x ui + ∂−x ui

2
. (18)

A gradient-based limiter function Φi satisfying the above design criteria is given by

Φi =

{
1− |[[∂xui]]|

2{|∂xui|} if {|∂xui|} 6= 0,

0 otherwise.
(19)

This limiter is demonstrated to be both LED and linearity-preserving by observing

1. The case {|∂xui|} = (|∂+
x ui|+ |∂−x ui|)/2 = 0 corresponds to ui−1 = ui = ui+1 and thus

ui = umax
i = umin

i . Since Φi = 0 by (19) the appropriate behavior of the limiter is obtained
for this case.

2. Considering the case {|∂xui|} = (|∂+
x ui|+ |∂−x ui|)/2 > 0

• If ui = umax
i or ui = umin

i then the one sided gradients have opposite signs and it follows
that

Φi = 1− h |∂
+
x ui − [−sign(∂+

x ui)]∂
−
x ui|

|ui+1 − ui|+ |ui − ui−1|
= 1− |ui+1 − ui|+ |ui − ui−1|

|ui+1 − ui|+ |ui − ui−1|
= 0.

• If ui 6= umax
i and ui 6= umin

i then the one sided gradients have the same sign and

0 ≤ Φi = 1− |ui+1 − 2ui + ui−1|
|ui+1 − ui|+ |ui − ui−1|

≤ 1.

That is, the value of Φi depends on the ratio of the discretized first and second derivatives
at node i in this case.
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6 D. KUZMIN AND J.N. SHADID

Finally linearity preserving is demonstrated by observing that

• If {|∂xui|} = 0 then ui = umax
i = umin

i and again Φi = 0 as is required.
• If {|∂xui|} > 0, then the one-sided gradients coincide and, therefore by (19), the above

formula yields Φi = 1.

Hence, the limiter function defined by (19) is both LED and linearity-preserving.

4.1. Generalizations to Multidimensions

In edge-based finite element schemes, slope limiting is commonly performed using reconstruction
of one-dimensional stencils [30, 33, 34, 35, 36, 37]. This approach leads to straightforward
generalizations of 1D slope limiters like (19) which may or may not guarantee the LED property,
depending on the employed reconstruction procedure [34]. Badia and Hierro [1] generalize
(19) using the maxima of nodal jumps and averages over all directional derivatives. While
this definition complies with the three fundamental design principles (continuity, LED criterion,
linearity preservation), the programming effort and computational cost associated with its use for
computation of Φi on unstructured meshes seem to be rather high.

As an alternative generalization of (19), we consider the gradient-based smoothness sensor

Φi =

 1−
∣∣∣∫∂Ωi

n·∇uhds
∣∣∣∫

∂Ωi
|n·∇uh|ds

if
∫
∂Ωi
|n · ∇uh|ds 6= 0,

0 otherwise,
(20)

where n is the unit outward normal to the outer boundary ∂Ωi of the element patch Ωi containing
node i. On a uniform mesh of 1D linear finite elements, definition (20) is equivalent to (19) and to
the limiters considered in [1, 6]. In the multidimensional case, the integration of normal derivatives
can be performed in a loop over elements, which makes (20) a handy and efficient alternative to
generalizations based on nodal jumps and averages of directional derivatives. However this limiter
is not LED for arbitrary meshes.

Suppose that uh is linear on the patch Ωi. By the divergence theorem and linearity of uh, we have∫
∂Ωi

n · ∇uhds =

∫
Ωi

∆uhds = 0

and, therefore, Φi = 1. Thus, the limiter function defined by (20) is linearity preserving.
For linear finite elements on simplex meshes, the unit outward normal n is given by

n = − ∇ϕi
‖∇ϕi‖

,

whence∫
∂Ωi

n · ∇uhds = −
∑
j

uj

∫
∂Ωi

∇ϕi · ∇ϕj
‖∇ϕi‖

ds =
∑
j 6=i

(ui − uj)
∫
∂Ωi

∇ϕi · ∇ϕj
‖∇ϕi‖

ds.

Under the angle conditions known from proofs of the discrete maximum principle for the Laplace
operator [4, 8], we have ∇ϕi · ∇ϕj < 0 for j 6= i. Suppose that the angle conditions hold and ui is
a local maximum (ui ≥ uj for all j 6= i) or minimum (ui ≤ uj for all j 6= i). Then we have∣∣∣∣∫

∂Ωi

n · ∇uhds

∣∣∣∣ =

∫
∂Ωi

|n · ∇uh|ds

and, therefore, Φi = 0. Thus, the limiter function defined by (20) is local extremum diminishing on
simplex meshes satisfying the angle conditions.

To circumvent the angle conditions, one may replace (20) by the formula

Φi =

 1−
∣∣∣∫∂Si

(x−xi)·∇uhds
∣∣∣∫

∂Si
|(x−xi)·∇uh|ds

, if
∫
∂Si
|(x− xi) · ∇uh|ds 6= 0,

0 otherwise,
(21)
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GRADIENT-BASED NODAL LIMITERS FOR FINITE ELEMENT SCHEMES 7

where Si is a sphere of radius ri = minj ‖xj − xi‖ centered at the point xi. This approach would
guarantee both linearity preservation and the LED property on arbitrary meshes. An obvious
drawback is the overhead cost associated with numerical integration over ∂Si.

If linearity preservation is not essential, the LED constraint can be easily enforced using

Φi =

 1−
∣∣∣∫∂Ωi

(x−xi)·∇uhds
∣∣∣∫

∂Ωi
|(x−xi)·∇uh|ds

, if
∫
∂Ωi
|(x− xi) · ∇uh|ds 6= 0,

0 otherwise.
(22)

Due to the fact that (x− xi) · ∇uh = uh(x)− ui for linear finite elements, this definition guarantees
that Φi = 0 at a local extremum. If uh is linear on Ωi, then we have∫

∂Ωi

(x− xi) · ∇uhds = ∇uh ·
∫
∂Ωi

(x− xi)ds.

Hence, the limiter defined by (22) is linearity preserving if

xi =
1

|∂Ωi|

∫
∂Ωi

xds.

As another multidimensional generalization of (19), consider the formula [2]

Φi =

{
1− |

∑
j 6=i(ui−uj)|∑
j 6=i |ui−uj | if

∑
j 6=i |ui − uj | 6= 0,

0 otherwise.
(23)

It is easy to verify that this limiter is LED on any mesh but the proof of linearity preservation
requires that the triangulation be symmetric with respect to its internal nodes [2].

The above discussion indicates that it is easy to construct nodal limiters which are

• LED on regular meshes and linearity preserving on any mesh or
• LED on any mesh and linearity preserving on uniform meshes.

The main result of this paper is a new gradient-based nodal limiter which is linearity preserving
and LED on arbitrary meshes. The proposed limiter function is defined by

Φi =

{
1− |

∑
j 6=i wij(ui−uj−δuij)|∑

j 6=i wij |ui−uj | if
∑

j 6=i wij |ui − uj | 6= 0,

0 otherwise,
(24)

where wij are nonnegative weights with wij > 0 for j ∈ N (i) and δuij is an approximation to
ui − uj which is exact for linear functions and vanishes at a local extremum. We define

δuij := ḡi · (xi − xj) (25)

in terms of a limited nodal gradient ḡi such that ḡi = ∇uh(xi) for uh ∈ P1(Ωi) and ḡi = 0 for
ui = umax

i or ui = umin
i . To ensure the nonnegativity of Φi, we also require that

|ui − uj − ḡi · (xi − xj)| ≤ |ui − uj | ∀j 6= i. (26)

An algorithm for calculating ḡi satisfying the above requirements is presented in the next section.
If the numerical solution uh is linear on the patch Ωi, then we have

δuij = ∇uh(xi) · (xi − xj) = ui − uj ,

whence Φi = 1. At a local extremum, we have ḡi = 0 and, therefore δuij = 0. It follows that

Φi = 1−

∣∣∣∑j 6=i wij(ui − uj)
∣∣∣∑

j 6=i wij |ui − uj |
= 0

(2016)
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8 D. KUZMIN AND J.N. SHADID

because all solution differences ui − uj , j 6= i have the same sign at a local extremum. Hence, the
limiter defined by (24) is linearity-preserving and LED under the above assumptions regarding ḡi.

Note that formula (23) corresponds to (24) with wij = 1 and δuij = 0 for all j 6= i. However
with this choice of δuij the proof of linearity preservation restricts the mesh geometry to symmetric
triangulations [2]. Our specific choice above of δuij and the condition placed on gij remove this
restriction. In the numerical study below, we use the coefficients wij = mij of the consistent mass
matrix MC as weights and define the linearity-preserving slope correction δuij using (25).

To reduce the amount of numerical dissipation, a linearity-preserving limiter may be configured
to produce Φi = 1 not only if uh is linear on the patch Ωi but also for approximations which are
sufficiently close to a linear function on Ωi. To this end, any nodal limiter of the form

Φi = 1− Pi
Qi

(27)

with 0 ≤ Pi ≤ Qi > 0 can be modified as follows (cf. [25], Section 5.4):

Φi = 1− max{0, Pi − βQi}
(1− β)Qi

, β ∈ [0, 1). (28)

This modification preserves the property that Φi = 0 for Pi = Qi and Φi = 1 for Pi = 0.
Choosing a larger value of β makes the limiter less diffusive but increases the number of fixed-

point iterations when it comes to solving the nonlinear system associated with the constrained
Galerkin discretization. In the numerical study below, we use β = 3

4 . This setting yields a marked
improvement of accuracy (compared to β = 0) without causing convergence problems.

5. CALCULATION OF LIMITED NODAL GRADIENTS

To define the limited nodal gradient ḡi, we consider the continuous lumped-mass L2 projection

gi :=
1

mi

∑
j

cijuj , (29)

where mi is a positive diagonal entry of the lumped mass matrix ML, and cij is a vector-valued
coefficient of the discrete gradient operator C = {cij} defined by

cij =

∫
Ω

ϕi∇ϕj dx. (30)

If uh is linear on Ω, then the above reconstruction of gi from ∇uh is exact since

mi =
∑
j

mij =

∫
Ω

ϕi

(∑
j

ϕj

)
dx =

∫
Ω

ϕi dx

and therefore

gi =
1

mi

∫
Ω

ϕi∇uh dx = ∇uh
(

1

mi

∫
Ω

ϕi dx

)
= ∇uh. (31)

However, the recovered nodal gradient gi may fail to satisfy the requirement that gi = 0 at a local
extremum. Therefore, it may need to be limited in the same manner as reconstructed gradients in
finite volume and discontinuous Galerkin methods [22, 23]. Introducing the correction factors

ψij =

{
min

{
1,

2(ui−uj)
gi·(xi−xj)

}
if (ui − uj)gi · (xi − xj) > 0,

0 otherwise,

we define
Ψi = min

j∈N (i)\{i}
ψij , ḡi = Ψigi. (32)

It is easy to verify that ḡi satisfies all design criteria formulated at the end of Section 4.
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GRADIENT-BASED NODAL LIMITERS FOR FINITE ELEMENT SCHEMES 9

6. GRADIENT-BASED BACKGROUND DISSIPATION

To improve the phase accuracy of the constrained Galerkin approximation, some high-order
dissipation may be added to the raw antidiffusive fluxes fij defined by (13). Following the approach
used to construct background dissipation in [25], we generalize (13) as follows:

fij =

(
mij

d

dt
+ dij

)
(ui − uj) + f stab

ij , j 6= i, (33)

where
f stab
ij = ωdij

[gi + gj
2

· (xi − xj)− (ui − uj)
]
. (34)

The amount of background dissipation is controlled using the blending factor ω ∈ [0, 1]. In the case
ω = 0, the antidiffusive flux fij reduces to (13). Setting ω = 1 corresponds to replacing ui − uj by
the smooth approximation in terms of the (unlimited) averaged gradients. If uh is locally linear, then
the nodal gradients are exact, whence f stab

ij = 0 for any value of ω. On a uniform mesh of 1D linear
finite elements, the stabilizing flux f stab

ij introduces fourth-order artificial dissipation [30].

7. LIMITING THE TIME DERIVATIVES

In applications to unsteady transport equations, we decompose the antidiffusive flux (33) into

fMij = mij
d

dt
(ui − uj) (35)

and
fKij = dij(ui − uj) + f stab

ij . (36)

Whereas the LED property can be enforced using the correction factor αij := min{Φi,Φj} for both
components, the flux fMij may become dominant and produce significant phase errors. To balance
fMij and fKij , we will handle fMij using an edge-based version of the algorithm developed in [25].

Let u̇ denote the vector of nodal time derivatives that corresponds to

u̇C = M−1
L (Lu+ g + f̄), (37)

where f̄ is assembled edge-by-edge from limited antidiffusive element contributions

f̄i =
∑
j 6=i

(min{αij , βij}fMij + αijf
K
ij ), (38)

where βij ∈ [0, 1] is a time derivative limiter to be defined below. Setting βij equal to zero, one
obtains the lumped-mass approximation

u̇L = M−1
L (Lu+ g + f̄K), f̄Ki =

∑
j 6=i

αijf
K
ij (39)

such that
u̇C = u̇L +M−1

L f̄M , f̄Mi =
∑
j 6=i

min{αij , βij}fMij . (40)

Hence, f̄M can be interpreted as a high-order correction to u̇L. To constrain the changes of the time
derivative due to this correction, we choose βij so as to enforce the inequality constraints

u̇min
i ≤ u̇C ≤ u̇max

i ,

where u̇min
i and u̇max

i denote the local maxima and minima of u̇L, i.e.,

u̇min
i = min

j∈N (i)
u̇Lj , u̇max

i = max
j∈N (i)

u̇Lj . (41)
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10 D. KUZMIN AND J.N. SHADID

Substituting u̇L for the time derivative in the raw antidiffusive flux

fMij := mij(u̇
L
i − u̇Lj ),

we use the edge-based version [21, 30] of the multidimensional FCT algorithm

P+
i =

∑
j 6=i

max{0, fMij }, P−i =
∑
j 6=i

min{0, fMij }, (42)

Q+
i = mi(u̇

max
i − u̇Li ), Q−i = mi(u̇

min
i − u̇Li ), (43)

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
(44)

to calculate the correction factors

βij =

{
min{R+

i , R
−
j } if fMij > 0,

min{R−i , R
+
j } if fMij < 0.

(45)

8. PROOF OF THE LED PROPERTY

To verify the LED property, we need to show that estimates of the form (16) hold for the proposed
choice of the correction factors αij = min{Φi,Φj}. At an interior node i, we have

f̄i =
∑
j 6=i

(min{αij , βij}fMij + αijf
K
ij ), 0 ≤ αij ≤ Φi,

where Φi is a nodal limiter such that Φi = 0 at a local extremum. It follows that

Φif
−
i ≤ f̄i ≤ Φif

+
i , (46)

where
f+
i =

∑
j 6=i

max{0, fMij }+
∑
j 6=i

max{0, fKij },

f−i =
∑
j 6=i

min{0, fMij }+
∑
j 6=i

min{0, fKij }.

Suppose that f̄i > 0. Then we must have ui < umax
i because ui = umax

i implies Φi = 0 and,
therefore, f̄i = 0 in contradiction to the assumption that f̄i > 0. Thus

f̄i ≤ Φif
+
i =

Φif
+
i

umax
i − ui

(umax
i − ui).

In the case f̄i < 0, a similar argument yields a lower bound for the limited antidiffusive term

f̄i ≥ Φif
−
i =

Φif
−
i

umin
i − ui

(umin
i − ui).

This proves the existence of the two-sided LED estimate (16) with coefficients

cmin
i =

Φif
−
i

umin
i − ui

, cmax
i =

Φif
+
i

umax
i − ui

.

By continuity of Φi, the values of cmin
i and cmax

i remain bounded as ui approaches umin
i = uk or

umax
i = uk for k 6= i. For any ε > 0, substitution of ui = umax

i − ε into (24) and evaluation of cmax
i

(2016)
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yields

cmax
i =

f+
i

ε

∑
j 6=i wij |umax

i − uj − ε| −
∣∣∣∑j 6=i wij(u

max
i − uj − ε− δuij)

∣∣∣∑
j 6=i wij |ui − uj |

. (47)

Let k 6= i be the number of a neighbor node at which the local maximum uk = umax
i is attained. By

construction, the linearity-preserving gradient correction δuij satisfies

|δuij | = |Ψigi · (xi − xj)| ≤ 2εγij , ε+ δuij ≤ ε(1 + 2γij),

γij =

{
|gi·(xi−xj)|
|gi·(xi−xk)| if |gi · (xi − xk)| 6= 0,

0 otherwise.

It follows that for sufficiently small ε > 0 we have∣∣∣∣∣∣
∑
j 6=i

wij(u
max
i − uj − ε− δuij)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j 6=i

wij(u
max
i − uj)−

∑
j 6=i

wij(ε+ δuij)

∣∣∣∣∣∣
=
∑
j 6=i

wij(u
max
i − uj)−

∑
j 6=i

wij(ε+ δuij).

The first sum in the numerator of (47) can be estimated thus:∑
j 6=i

wij |umax
i − uj − ε| ≤

∑
j 6=i

wij(u
max
i − uj) + ε

∑
j 6=i

wij ,

whence

cmax
i ≤ 2f+

i

∑
j 6=i wij(1 + γij)∑
j 6=i wij |ui − uj |

. (48)

The proof of boundedness for the LED coefficient cmin
i is similar.

9. TIME DISCRETIZATION

The constrained semi-discrete finite element scheme is given by the nonlinear ODE system

ML
du

dt
= Lu+ g + f̄ . (49)

We discretize this system in time using the two-level θ method

ML
un+1 − un

∆t
= θ(Lun+1 + gn+1 + f̄n+1) + (1− θ)(Lun + gn + f̄n). (50)

In the case θ = 1, the fully discrete scheme is unconditionally positivity-preserving by the M-matrix
property of the low-order operator ML + ∆tL and definition of f̄ . In the case of θ < 1, the fully
discrete scheme is positivity preserving if the coefficient associated with the nodal value uni is
nonnegative [21, 25]. This requirement leads to the CFL-like positivity condition

1

∆t
≥ (1− θ)

∑
j 6=i

lij + ci

 ∀i = 1, . . . , N, (51)

where ci = max{cmin
i , cmax

i } is defined by the above analysis of the LED property for f̄i.
We remark that the proposed limiting strategy can also be used in conjunction with other time

discretizations including strong stability preserving (SSP) Runge-Kutta schemes [13].
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12 D. KUZMIN AND J.N. SHADID

Due to the dependence of the correction factors αij and βij on the unknown solution, the algebraic
system (50) is nonlinear. It can be solved using the fixed-point iteration

u(m+1) = u(m) +

[
1

∆t
ML − θL

]−1

r(m), m = 0, 1, 2, . . . (52)

r(m) = θ(Lu(m) + gn+1 + f̄ (m)) + (1− θ)(Lun + gn + f̄n)−ML
u(m) − un

∆t
. (53)

In applications to anisotropic diffusion problems, the rates of convergence to steady state solutions
can be greatly improved using Anderson acceleration for fixed-point iterations [20, 38].

10. NUMERICAL EXAMPLES

In this section, we perform a numerical study of algebraic flux corrections schemes equipped with
the gradient-based limiters (20) and (24) (to be referred to as GL1 and GL2, respectively) for pure
convection and anisotropic diffusion problems discretized using linear finite elements on uniform
and nonuniform triangular meshes. Given a uniform grid with spacing h, its distorted counterpart is
generated by applying random perturbations to the Cartesian coordinates of internal nodes

xi := xi + αhξi yi := yi + αhηi, (54)

where ξi, ηi ∈ [−0.5, 0.5] are random numbers. The parameter α ∈ [0, 1] quantifies the degree of
distortion. In this numerical study, we use α = 0.75 to generate grid deformations strong enough to
violate the angle conditions under which the GL1 limiter satisfies the LED principle.

Given a reference solution u, we measure the errors in numerical approximations uh on
successively refined meshes using the discrete L1 norm defined by [19, 20, 21]

E1(h) :=
∑
i

mi|u(xi)− ui| ≈
∫

Ω

|u− uh|dx =: ‖u− uh‖1, (55)

where mi =
∫

Ω
ϕi dx is a diagonal coefficient of the lumped mass matrix ML. The convergence

behavior of GL1 and GL2 is illustrated by the experimental order of convergence [28]

p = log2

(
E1(2h)

E1(h)

)
. (56)

Additionally, the largest and smallest nodal values are presented for each mesh to detect possible
violations of the discrete maximum principle (for GL1) and quantify numerical dissipation.

10.1. Solid body rotation

The solid body rotation benchmark [28] is a standard test for numerical advection schemes. Its
use in this numerical study enables direct comparison with other types of algebraic flux correction
[19, 20, 21, 25] and residual-based shock capturing techniques [18]. The governing equation (1) with
v(x, y) = (0.5− y, x− 0.5) and D = 0 is solved in Ω = (0, 1)× (0, 1) subject to homogeneous
Dirichlet boundary conditions on the inflow boundary Γ1 = {(x, y) ∈ Γ : v · n < 0}. The exact
solution u corresponds to counterclockwise rotation of the initial profile u0 shown in Fig. 1(a) about
the point (0.5, 0.5). For a detailed description of this benchmark, we refer to [18, 21, 28].

Figures 1(b)-(c) display numerical solutions at the final time T = 2π calculated using the
low-order method (αij = 0 for all j 6= i) and GL2 on triangular meshes consisting of 32, 768
linear elements. The results for GL1 are similar (not shown here). However, the violation of
angle conditions for GL1 gives rise to significant undershoots and overshoots at early stages of
computation (see Fig. 2). The convergence history for GL1 and GL2 is presented in Tables I-IV.
The GL2 solutions satisfy the discrete maximum principle on all meshes, and the values of E1 tend
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Prepared using fldauth.cls Preprint



GRADIENT-BASED NODAL LIMITERS FOR FINITE ELEMENT SCHEMES 13

to be smaller that those for GL1. The nodal limiter based on (21) is LED on all meshes but is less
accurate than GL1 and GL2 and does not guarantee linearity preservation on general meshes. For
this reason, it represents a usable but inferior alternative to the methods considered in this study.

The results for Q1 finite element approximations are similar. The solutions calculated using GL2
on uniform and perturbed meshes of 128× 128 rectangular elements are shown in Fig. 3.

(a) (b)

(c) (d)

Figure 1. Solid body rotation: (a) initial data / exact solution, uniform mesh, (b) low-order solution,
uniform mesh, (c) GL2 solution, uniform triangular mesh, (d) GL2 solution, perturbed triangular mesh,

Discretization: 2× 128× 128 P1 elements, Crank-Nicolson time-stepping, ∆t = 10−3, T = 2π.

(a) (b)

Figure 2. Solid body rotation: (a) GL1 vs. (b) GL2 on the perturbed triangular mesh at T = π
2 .

(2016)
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14 D. KUZMIN AND J.N. SHADID

(a) (b)

Figure 3. Solid body rotation: GL2 on (a) uniform and (b) perturbed quadrilateral meshes. Discretization:
128× 128 Q1 elements, Crank-Nicolson time-stepping, ∆t = 10−3, T = 2π.

h E1 EOC minuh maxuh
1/32 0.589e-01 0.0 0.748
1/64 0.374e-01 0.66 0.0 0.852

1/128 0.180e-01 1.06 0.0 0.996
1/256 0.964e-02 0.90 0.0 1.0

Table I. Solid body rotation: GL1, uniform mesh, T = 2π.

h E1 EOC minuh maxuh
1/32 0.679e-01 -9.286e-3 0.699
1/64 0.429e-01 0.66 -4.247e-3 0.839
1/128 0.254e-01 0.76 -1.104e-3 0.978
1/256 0.147e-01 0.79 -1.170e-3 0.999

Table II. Solid body rotation: GL1, perturbed mesh, T = 2π.

h E1 EOC minuh maxuh
1/32 0.578e-01 0.0 0.763
1/64 0.371e-01 0.64 0.0 0.859

1/128 0.181e-01 1.04 0.0 0.996
1/256 0.961e-02 0.91 0.0 1.0

Table III. Solid body rotation: GL2, uniform mesh, T = 2π.

h E1 EOC minuh maxuh
1/32 0.675e-01 0.0 0.678
1/64 0.430e-01 0.65 0.0 0.799

1/128 0.247e-01 0.80 0.0 0.964
1/256 0.139e-01 0.83 0.0 0.999

Table IV. Solid body rotation: GL2, perturbed mesh, T = 2π.
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10.2. Circular convection

In the second test, we solve the steady convection equation ∇ · (vu) = 0 with v(x, y) = (y,−x)
in Ω = (0, 1)× (0, 1). The exact solution is constant along the circular streamlines. The inflow
boundary condition and the exact solution at any point in Ω̄ are defined by

u(x, y) =


1, if 0.15 ≤ r(x, y) ≤ 0.45,

cos2
(

10π r(x,y)−0.5
3

)
, if 0.55 ≤ r(x, y) ≤ 0.85,

0, otherwise,

where r(x, y) =
√
x2 + y2 denotes the distance to the corner point (0, 0).

Stationary numerical solutions calculated using 32, 768 linear elements are presented in Fig. 4.
The results produced by GL1 and GL2 look alike but the GL1 solutions exhibit undershoots and
overshoots on perturbed meshes. The low-order solution is bounded by 0 and 1 but strongly smeared
by numerical diffusion. The range of solution values, discrete L1 errors, and convergence rates for
the two gradient-based limiters on uniform and perturbed meshes are presented in Tables V–VIII.

h E1 EOC minuh maxuh
1/32 0.271e-01 0.0 1.0
1/64 0.114e-01 1.25 0.0 1.0

1/128 0.515e-02 1.15 0.0 1.0
1/256 0.269e-02 0.94 0.0 1.0

Table V. Circular convection: GL1, uniform mesh.

h E1 EOC minuh maxuh
1/32 0.285e-01 -3.579e-2 1.022
1/64 0.116e-01 1.30 -4.647e-2 1.004
1/128 0.632e-02 0.88 -1.842e-2 1.055
1/256 0.345e-02 0.87 -3.351e-2 1.045

Table VI. Circular convection: GL1, perturbed mesh.

h E1 EOC minuh maxuh
1/32 0.248e-01 0.0 1.0
1/64 0.111e-01 1.16 0.0 1.0

1/128 0.507e-02 1.13 0.0 1.0
1/256 0.265e-02 0.94 0.0 1.0

Table VII. Circular convection: GL2, uniform mesh.

h E1 EOC minuh maxuh
1/32 0.335e-01 0.0 1.0
1/64 0.148e-01 1.18 0.0 1.0

1/128 0.722e-02 1.04 0.0 1.0
1/256 0.394e-02 0.87 0.0 1.0

Table VIII. Circular convection: GL2, perturbed mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Circular convection: (a) low-order solution, uniform mesh, (b) low-order solution, perturbed mesh,
(c) GP1 solution, uniform mesh, (d) GP1 solution, perturbed mesh, (e) GP2 solution, uniform mesh, (f) GP2

solution, perturbed mesh. Discretization: 2× 128× 128 P1 elements.

11. ANISOTROPIC DIFFUSION

In the third example, we consider a steady diffusion equation of the form −∇ · (D∇u) = 0. The
domain Ω = (0, 1)2\[4/9, 5/9]2 is a square with a square hole in the middle [20, 26, 29]. The outer
and inner boundary of Ω are denoted by Γ0 and Γ1, respectively (see Fig. 5(a)).

The following Dirichlet boundary conditions are prescribed in this test:

u(x, y) =

{
−1 if (x, y) ∈ Γ0,

1 if (x, y) ∈ Γ1.
(57)

The diffusion tensor D is a symmetric positive definite matrix defined as

D = R(−θ)
(
k1 0
0 k2

)
R(θ), (58)
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where k1 and k2 are the positive eigenvalues and R(θ) is a rotation matrix

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (59)

The eigenvalues of D represent the diffusion coefficients associated with the axes of the Cartesian
coordinate system rotated by the angle θ. In this numerical example, we use

k1 = 100, k2 = 1, θ = −π
6
.

By the continuous maximum principle, the exact solution to the Dirichlet problem is bounded by
the prescribed boundary data. However, the diffusion tensor (58) is highly anisotropic, which may
result in a violation of the DMP even if a mesh satisfying the angle conditions is employed.

Since no exact solution is available, the reference solution depicted in Fig. 5(b) was calculated
using the standard Galerkin method on a fine mesh (h = 1/1152). Even this solution has a small
undershoot (minΩ uh = −1.0015). The solutions produced by the unconstrained Galerkin method
and its GL2-constrained counterpart on uniform triangular meshes with spacing h = 1/144 are
displayed in Fig. 5(c),(d). The Galerkin solution has an undershoot of 1.8%, whereas the GL2
solution is within the range [−1, 1] of admissible values. The results of a grid convergence study
for both methods are summarized in Tables IX and X. As the mesh is refined, the undershoots
produced by the unconstrained Galerkin method become smaller. The GL2-constrained version
exhibits similar rates of convergence and the discrete maximum principle holds on all meshes.

Interestingly enough, even the limiter based on (23) produces reasonable results on perturbed
meshes on which it is not provably linearity preserving. The corresponding solutions (labeled GL3)
are compared to GL2 solutions in Fig. 6. For a better comparison, the weights wij = 1 were used
in the GL2 version based on (24). The GL2 results are less diffusive but the use of limited gradient
reconstruction makes it more difficult to achieve convergence of the nonlinear solver.

h E1 EOC minΩ uh maxΩ uh
1/36 0.513e-01 -1.055 1.0
1/72 0.299e-01 0.78 -1.039 1.0

1/144 0.157e-01 0.93 -1.018 1.0
1/288 0.712e-02 1.14 -1.001 1.0

Table IX. Anisotropic diffusion: Galerkin, uniform mesh.

h E1 EOC minΩ uh maxΩ uh
1/36 0.430e-01 0.0 1.0
1/72 0.253e-01 0.77 0.0 1.0

1/144 0.143e-01 0.82 0.0 1.0
1/288 0.723e-02 0.98 0.0 1.0

Table X. Anisotropic diffusion: GL2, uniform mesh.

12. CONCLUSIONS

The proposed generalizations of a one-dimensional slope limiter based on jumps and averages
of one-sided nodal gradients lead to robust high-resolution finite element schemes for stationary
and time-dependent transport problems. In particular, the use of limited averaged gradients makes
it possible to enforce the discrete maximum principle and guarantee linearity preservation on
arbitrary meshes. An element-based version of the presented algebraic flux correction scheme can
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(a) (b)

(c)

−1.018 ≤ uh ≤ 1.0

(d)

−1.0 ≤ uh ≤ 1.0

Figure 5. Anisotropic diffusion on a uniform triangular mesh: (a) computational domain, (b) Galerkin
solution, h = 1/1152, (c) Galerkin solution, h = 1/144, (d) GP2 solution, h = 1/144.

be constructed using the new limiting strategy to constrain antidiffusive element contributions in
the algorithm presented in [25]. The relationship to gradient-based limiters developed in [2, 6]
may be exploited to provide further theoretical justification, e.g., by proving Lipschitz continuity
or modifying the new limiters in a way which makes it possible to prove Lipschitz continuity.
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32. R. Löhner, K. Morgan, M. Vahdati, J.P. Boris, D.L. Book, FEM-FCT: combining unstructured grids with high

resolution. Commun. Appl. Numer. Methods 4 (1988) 717–729.
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