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1 Introduction

Some partial differential equations of elliptic type are known to possess a remarkable
property: if the source term is nonpositive, then the solution attains its maximum
on the boundary. This statement is known as the maximum principle and provides a
useful criterion for the analysis of numerical approximations. A finite element scheme
that does not generate spurious extrema in the interior of the domain is said to satisfy
the discrete maximum principle (DMP) which makes it possible to prove uniform
convergence of an approximate solution to the exact one [4]. Sufficient conditions
of the DMP can be formulated using the concept of monotone operators and, in
particular, M-matrices which play an important role in numerical linear algebra [3,23].
The inverse of a monotone matrix is nonnegative, and so is the solution of the algebraic
system for any nonnegative right-hand side. A numerical scheme that enjoys this
property is called positivity-preserving. The DMP criterion is more stringent since it
requires that the row sums of the stiffness matrix be zero for all interior nodes.

Monotonicity constraints are difficult to satisfy at the discrete level. In many cases, the
above sufficient conditions impose severe restrictions on the choice of basis functions
and on the geometric properties of the mesh. For a triangulation of acute or nonobtuse
type (all angles smaller than or equal to π/2) the piecewise-linear finite element
approximation of the Poisson equation produces a discrete operator that proves to be
an M-matrix [4,12,13]. In the case of bilinear finite elements, it is sufficient to require
that all quadrilaterals be of nonnarrow type (aspect ratios smaller than or equal to

√
2

[6]). However, the geometric approach to DMP verification fails in the case of higher-
order finite elements [9], singularly perturbed convection-diffusion equations [15], and
anisotropic diffusion problems [17]. As a consequence, nonphysical local extrema can
and do occur when a steep gradient cannot be resolved properly on a given mesh.

An ideal discretization must be conservative, consistent, and more than first-order ac-
curate for smooth data. Moreover, it must satisfy the DMP on arbitrary meshes, even
if convective effects are strong and/or the diffusion tensor is heterogeneous/anisotropic
[17]. Unfortunately, no linear scheme can meet all of these requirements. A possible
remedy is to adjust the coefficients of the discrete problem in an adaptive way. In the
case of hyperbolic conservation laws, this can be accomplished using flux/slope lim-
iters to achieve monotonicity. Many nonlinear high-resolution schemes are based on
this design principle. However, the idea of blending linear approximations of high and
low order cannot be directly transferred to the case of anisotropic diffusion problems
since the structure of numerical fluxes is different from the hyperbolic case.

Flux limiting for diffusion operators was addressed in a number of recent publica-
tions [2,10,24] but many open questions remain. Monotone finite volume schemes
for anisotropic diffusion problems are available [16,17] but they are merely positivity-
preserving and, generally, do not satisfy the DMP. Moreover, their derivation is based
on a design philosophy which is not applicable to finite element approximations. The
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method proposed in [18] is based on constrained optimization and requires a pri-
ori knowledge of the solution bounds. The solution of this constrained optimization
problem can be very expensive as the number of unknowns increases.

The algebraic flux correction paradigm described in [14,15] provides a general frame-
work for the design of monotone discretizations on unstructured meshes. In the present
paper, we extend this methodology to anisotropic diffusion problems and enforce the
DMP using a combination of algebraic and geometric criteria. The new algorithm
constrains an antidiffusive flux using the coefficients of a discrete gradient to derive
the upper and lower bounds. The structure of these bounds resembles that for flux-
corrected transport (FCT) algorithms [15,25] but the limiting process is intended to
control a local slope, as in the case of symmetric limited positive (SLIP) schemes [11].

The outline of this paper is as follows. In Section 2, we formulate the continuous
maximum principle to be emulated at the discrete level. The Galerkin finite element
discretization and the discrete maximum principle are dealt with in Sections 3 and 4,
respectively. The algebraic splitting described in Section 5 leads to the new slope
limiting technique introduced in Section 6. A positivity-preserving defect correction
scheme for the iterative treatment of nonlinear antidiffusive terms is proposed in
Section 7. Numerical experiments and grid convergence studies for several 2D test
problems are performed in Section 8 which is followed by a summary and conclusions.

2 Continuous problem

We consider a mathematical model that describes the steady diffusive transport of a
generic scalar u(x) in a bounded domain Ω ⊂ Rd, where d = 2 or 3, with piecewise
smooth boundary Γ. The rate of transport is given by the vector-valued flux function

v(x) = −D(x)∇u(x), ∀x ∈ Ω, (1)

where D(x) = {dij} is a piecewise-constant (possibly anisotropic) diffusion tensor. In
the context of flows in porous media, the above formula is known as the Darcy law in
which the functions v and u represent the velocity and pressure fields, respectively.

The divergence of v is associated with a linear differential operator L defined by

Lu(x) = ∇ · v = −∇ · (D∇u), ∀x ∈ Ω. (2)

In d space dimensions, the above formula can be written in the equivalent form

Lu(x) = −
d∑

i=1

∂

∂xi

 d∑
j=1

dij
∂u

∂xj

 , ∀x ∈ Ω. (3)

3



The so-defined operator L is called uniformly elliptic in the domain Ω if the diffusion
tensor D(x) is symmetric and positive definite at each point x ∈ Ω. Under this
assumption, the following maximum principle [21] holds for any u ∈ C2(Ω) ∩ C(Ω̄)

Lu(x) ≤ 0, ∀x ∈ Ω ⇒ max
x∈Ω̄

u(x) = max
x∈Γ

u(x). (4)

The basic idea of a proof is as follows [7,13]. Let umax
Γ = maxx∈Γ u(x) and introduce

w = max{u − umax
Γ , 0}. Consider a subdomain Ω∗ ⊂ Ω in which w = u − umax

Γ ≥ 0
and w = 0 on the boundary. Integration by parts using Green’s formula yields∫

Ω∗

w(Lu) dx =
∫
Ω∗

∇w · (D∇u) dx =
∫
Ω∗

∇w · (D∇w) dx. (5)

Since Lu ≤ 0 and w ≥ 0 in Ω, the left-hand side of this relation cannot be positive.
On the other hand, the right-hand side is nonnegative due to the positive definiteness
of D. This can only be the case if w ≡ 0, whence u(x) ≤ umax

Γ , ∀x ∈ Ω̄. �

Applying (4) to the negative of u, one obtains the complementary minimum principle

Lu(x) ≥ 0, ∀x ∈ Ω ⇒ min
x∈Ω̄

u(x) = min
x∈Γ

u(x). (6)

Continuous maximum and minimum principles, as stated above, are valid for second-
order elliptic problems with Dirichlet or mixed boundary conditions [13]. In the former
case, they give an a priori estimate of u ∈ C2(Ω) ∩ C(Ω̄) in terms of the prescribed
boundary data g ∈ C0(Γ). The corresponding boundary value problem is given by−∇ · (D∇u) = q, in Ω,

u = g on Γ,
(7)

where q is a given function that represents a volumetric source or sink of u. By virtue
of (4) and (6), the maximum and minimum principles can be formulated as follows.

Theorem 1. The solution u ∈ C2(Ω) ∩ C(Ω̄) of problem (7) attains its maxima
(minima) on the boundary Γ if q is nonpositive (nonnegative) in Ω

q ≤ 0 ⇒ max
x∈Ω̄

u(x) = max
x∈Γ

g(x), (8)

q ≥ 0 ⇒ min
x∈Ω̄

u(x) = min
x∈Γ

g(x). (9)

Traditionally, Theorem 1 is called the maximum principle, regardless of the sign of q.
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Corollary 1. If q = 0 then the solution u ∈ C2(Ω) ∩ C(Ω̄) of (7) is bounded by

q = 0 ⇒ min
x∈Γ

g(x) ≤ u(x) ≤ max
x∈Γ

g(x), ∀x ∈ Ω. (10)

Corollary 2. The solution u ∈ C2(Ω)∩C(Ω̄) of problem (7) preserves the sign of the
boundary data g ∈ C0(Γ) if q and g are nonpositive (nonnegative) in Ω

q ≤ 0, g ≤ 0 ⇒ u ≤ 0 in Ω, (11)

q ≥ 0, g ≥ 0 ⇒ u ≥ 0 in Ω. (12)

This criterion is commonly referred to as nonnegativity or positivity preservation. It
ensures that positive sources cannot create negative concentrations or temperatures.
In the case of steady heat conduction with q = 0, a nonuniform temperature distribu-
tion can only be maintained by supplying and removing some heat on the boundary.

A similar maximum principle can be formulated for elliptic equations equipped with
mixed boundary conditions of Dirichlet-Neumann type, whereby the diffusive flux is
prescribed on a boundary part ΓN . For further information on maximum principles
for elliptic boundary value problems we refer to [3,12,13,21].

3 Finite element discretization

The finite element method is based on a weak form of the continuous problem

a(u, w) = (q, w), (13)

where a(·, ·) is a bilinear form, u is the weak solution, w is any admissible test function,
and (·, ·) is the usual shorthand notation for the scalar product in L2(Ω)

(u, w) =
∫
Ω

u(x)w(x) dx. (14)

The bilinear form associated with the weak form of the diffusion equation reads

a(u, w) =
∫
Ω

∇w · (D∇u) dx−
∫
Γ

w n · (D∇u) ds, (15)

where n denotes the unit outward normal to Γ. Let u ∈ V = {v ∈ H1(Ω) | u = g on Γ}
and w ∈ W = {w ∈ H1(Ω) | w = 0 on Γ}. Due to the requirement that w = 0 on Γ,
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the contribution of the surface integral to (15) vanishes, whence

a(u, w) =
∫
Ω

∇w · (D∇u) dx. (16)

Let {ϕi} be a set of piecewise-polynomial basis functions spanning a finite-dimensional
subspace of V . Then an approximate solution uh of problem (13) is given by

uh(x) =
∑
j

ujϕj(x). (17)

Using u = uh and w = ϕi in (13), one obtains a system of linear algebraic equations∑
j

a(ϕj, ϕi)uj = (ϕi, q), ∀i. (18)

This linear system can be written in matrix form as Au = b, where A = {aij} is the
global stiffness matrix and b = {bi} is the load vector with coefficients

aij = a(ϕj, ϕi), bi = (ϕi, q). (19)

Consistency requires that the sum of basis functions be equal to 1 at every point∑
j

ϕj(x) = 1, ∀x ∈ Ω̄. (20)

Due to the fact that a(1, ϕi) ≡ 0, the stiffness matrix A has zero row sums∑
j

aij = 0, ∀i (21)

and the vector of nodal values u = {ui} is defined up to an arbitrary additive constant.
The uniqueness of the solution to the discrete problem is provided by the Dirichlet
boundary conditions to be implemented in a strong sense as explained below.

4 Discrete maximum principle

Consider an arbitrary discretization of the diffusion equation that can be expressed
in terms of m discrete nodal values ui, i = 1, . . . ,m. For the time being, we do not
distinguish between interior and boundary nodes. That is, the global m×m stiffness
matrix A = {aij} is assembled as if Neumann boundary conditions were prescribed.
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If the coefficients of A are given by (16) and (19), then this sparse matrix is symmetric
positive definite with zero row and column sums. Moreover, it is irreducible, which
means that its directed graph is strongly connected ([23], p. 20). In other words, for
any pair of indices i and j there exists a sequence of nonzero matrix entries

aik1 6= 0, ak1k2 6= 0, . . . , aksj 6= 0. (22)

This property is dictated by the nature of elliptic problems in which a disturbance
introduced at a single point may affect the solution in the whole domain.

The sparsity pattern of A depends on the underlying mesh, on the choice of basis
functions, and on the numbering of nodes. Let the points x1, . . . ,xn be located in the
interior of the domain Ω and xn+1, . . . ,xm lie on the boundary Γ. This convention
implies that A and u = [u1, . . . , um]T can be partitioned in block form as

A =

 AΩΩ AΩΓ

AΓΩ AΓΓ

 , u =

 uΩ

uΓ

 . (23)

The subscripts Ω and Γ refer to row/column numbers in the range 1, . . . , n and
n+1, . . . ,m, respectively. For instance, uΩ = [u1, . . . , un]T is the vector of unknowns,
whereas uΓ = [un+1, . . . , um]T is the vector of boundary values such that

uΓ = g. (24)

In view of (24), the algebraic system for the vector of unknowns uΩ can be written as

AΩΩuΩ = bΩ − AΩΓg, (25)

where bΩ denotes the contribution of the source/sink q to equations for internal points.

In a practical implementation, it is convenient to build the Dirichlet boundary con-
ditions into the global stiffness matrix A and solve the extended linear system

Āu = b, (26)

where the m×m matrix Ā and the right-hand side b are defined as

Ā =

 AΩΩ AΩΓ

0 I

 , b =

 bΩ

g

 . (27)

The first n rows of Ā are the same as those of A, whereas the last m − n rows are
replaced by those of an identity matrix. If the block AΩΩ is nonsingular, then so is Ā.
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A nonsingular matrix Ā is said to be monotone if Ā−1 ≥ 0. Here and below, inequal-
ities are meant to hold elementwise for all indices, unless a range of relevant index
values is specified explicitly. By virtue of (27), the inverse of Ā is given by

Ā−1 =

 A−1
ΩΩ −A−1

ΩΩAΩΓ

0 I

 (28)

and has no negative entries if A−1
ΩΩ ≥ 0 and AΩΓ ≤ 0. If Ā is monotone and āij ≤ 0

for all j 6= i, then Ā is called an M-matrix. Any matrix obtained by setting certain
off-diagonal entries of Ā to zero is also an M-matrix ([23], p. 85).

Clearly, it is usually not feasible to calculate the inverse of Ā or AΩΩ and check the
sign of its coefficients. Instead, the following well-known set of sufficient conditions
can be used to prove monotonicity and the M-matrix property ([23], p. 85).

Theorem 2. If AΩΩ is an irreducibly diagonally dominant n× n matrix with aii > 0
for all i = 1, . . . , n and aij ≤ 0 for all i 6= j, then A−1

ΩΩ > 0.

Note that the last inequality is strict, although A−1
ΩΩ ≥ 0 would suffice for AΩΩ to be

an M-matrix. By definition of an irreducibly diagonally dominant matrix ([23], p. 23),
it is supposed to be irreducible and |aii| ≥

∑
j 6=i |aij| for all i = 1, . . . , n, with strict

inequality for at least one i. Since aij ≤ 0 for all i 6= j, the row sums of AΩΩ should
be nonnegative (

∑
j aij ≥ 0) and strictly positive (

∑
j aij > 0) for at least one row i.

Corollary 3. Under the conditions of Theorem 2, the block AΩΩ is an M-matrix and

AΩΩuΩ ≥ 0 ⇒ uΩ ≥ 0. (29)

The M-matrix property of AΩΩ ensures fast convergence of iterative solvers and makes
it possible to prove a discrete counterpart of the a priori estimates (8)–(9).

We will say that the discrete maximum principle (DMP) holds for problem (26) if

b ≥ 0 ⇒ u ≥ 0, (30)

whereas for bΩ ≤ 0 a positive maximum is attained on the boundary [3,5,13], i.e.,

max
i

ui ≤ max
j
{0, gj}. (31)

In a similar vein, a negative minimum is required to occur on Γ if bΩ ≥ 0. If there are
no sources or sinks (bΩ = 0), then the nodal values are bounded by

min
j
{0, gj} ≤ ui ≤ max

j
{0, gj}, ∀i. (32)
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In the case of linear and bilinear finite elements, the interpolant uh satisfies a local
maximum principle in each cell, i.e., it is bounded by the nodal values associated with
the vertices of the mesh. Therefore, the DMP for nodal values implies that for uh.

Many other definitions of DMP can be found in the literature. One of the most general
formulations, which includes (31) as a special case, is as follows [22]

max
i

ui ≤ max
j∈N+

uj, (33)

where N+ = {1 ≤ j ≤ m | bj > 0}. The right-hand side is taken to be zero if N+ = ∅.

Theorem 3. The discrete maximum principle holds if A−1
ΩΩ ≥ 0, AΩΓ ≤ 0, and

m∑
j=1

aij ≥ 0, i = 1, . . . , n. (34)

A proof of this theorem is as follows. Due to (28), the discrete operator Ā enjoys the
M-matrix property under the above conditions. It follows that Ā−1 ≥ 0 and

b ≥ 0 ⇒ u = Ā−1b ≥ 0. (35)

If bΩ ≤ 0, let umax
Γ = maxj{0, gj}, take w = u− umax

Γ , and invoke (34) to prove that

m∑
j=1

aijwj =
m∑

j=1

aijuj − umax
Γ

m∑
j=1

aij = bi − umax
Γ

m∑
j=1

aij ≤ 0, ∀i = 1, . . . , n. (36)

Since AΩΩ is monotone, it follows that wΩ + A−1
ΩΩAΩΓwΓ ≤ 0. Furthermore, wΓ ≤ 0

and AΩΓ ≤ 0, so wΩ ≤ 0, which implies (31). For a proof of (33) we refer to [22]. �

If the first n rows of the global matrix A have zero row sums, then we can take
w = u − maxj gj. Arguing as above, we deduce that wΩ = A−1

ΩΩ[bΩ − AΩΓwΓ] and,
consequently, a discrete counterpart of a priori estimate (8) holds for bΩ ≤ 0

ui ≤ max
j

gj, ∀i = 1, . . . , n. (37)

The corresponding minimum principle for bΩ ≥ 0 can be proved in the same way.

Theorem 4. The solution of (26) satisfies (37) if bΩ ≤ 0 and the first n rows of the
irreducible stiffness matrix A satisfy the following sufficient conditions

• diagonal coefficients are strictly positive

aii > 0, ∀i = 1, . . . , n, (38)
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• off-diagonal coefficients are nonpositive

aij ≤ 0, ∀j 6= i, 1 ≤ j ≤ m, (39)

• the first n row sums are equal to zero

m∑
j=1

aij = 0, ∀i = 1, . . . , n. (40)

The proof follows from Theorems 2 and 3 reinforced by condition (40) which implies
weak diagonal dominance and consistency. If g = const and bΩ = 0, then u ≡ g and
the exact solution of the boundary value problem (7) is recovered in this case.

Conditions (38)–(40) are rather restrictive but provide a useful tool for the analysis
and design of numerical schemes. In the case of linear and bilinear finite element
approximations of the Poisson equation, they are satisfied automatically on a suitably
designed mesh (triangles of acute/nonobtuse type, quadrilaterals of nonnarrow type
[6,12,13]). However, the involved geometric constraints turn out too restrictive in the
case of problem (7) with an anisotropic diffusion tensor. If the stiffness matrix A
fails to satisfy (38)–(40) on a given mesh, then a violation of the discrete maximum
principle is possible. As a rule, it originates in regions in which the gradients of the
solution are steep and not aligned with the orientation of mesh edges, so that the
discretization method is unable to capture them properly. On the other hand, no
spurious maxima or minima are generated if the numerical solution is well-resolved.

5 Algebraic splitting

In the present paper, we treat the sufficient DMP conditions (39)–(40) as algebraic
constraints to be imposed at the discrete level. The basic idea is to check the coeffi-
cients of A and adjust them, if necessary, subject to the following design principles

• perturbation to the residual of (26) admits a conservative flux decomposition;
• the discrete maximum principle holds for the solution of the perturbed system;

The methodology to be presented is based on the algebraic flux correction paradigm
that was originally developed for convection-dominated transport problems [15].

As already mentioned, the Galerkin approximation based on (16) and (19) gives rise
to a symmetric stiffness matrix A = {aij} with zero row and column sums

aij = aji,
∑

i

aij =
∑
j

aij = 0. (41)
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The coefficients of this matrix satisfy (40) but may violate conditions (38) and (39)
if the computational mesh and/or the diffusion tensor D are anisotropic.

Following Stoyan [22], we split A so as to extract the ‘bad’ part A+ = {a+
ij} with

a+
ij := max{0, aij}, ∀j 6= i. (42)

The diagonal coefficients of A+ are defined so that it has zero row and column sums

a+
ii := −

∑
j 6=i

a+
ij. (43)

The complement A− := A− A+ represents the ‘good’ part of the stiffness matrix

A = A+ + A−. (44)

By virtue of (41)–(43), the i−th element of the vector A±u is given by

(A±u)i =
∑
j

a±ijuj =
∑
j 6=i

a±ij(uj − ui), ∀i = 1, . . . , n (45)

and can be expressed in terms of numerical fluxes from one node into another

(A±u)i = −
∑
j 6=i

f±ij , f±ij = a±ij(ui − uj). (46)

Adopting the convention that is commonly used in the context of 1D conservation
laws, we will call a flux of the form fij = aij(ui−uj) diffusive if aij ≤ 0 and antidiffusive
if aij ≥ 0. The fluxes f±ij and f±ji have the same magnitude and opposite signs

f±ij + f±ji = 0. (47)

This property provides discrete conservation. Every pair of fluxes can be associated
with an edge of the graph of A, i.e., with a pair of nonzero off-diagonal coefficients.

The i−th element of the residual vector r = b− Au admits the representation

ri = bi +
∑
j 6=i

[f+
ij + f−ij ], i = 1, . . . , n. (48)

In order to enforce the discrete maximum principle, the contribution of positive off-
diagonal coefficients to the residual vector (48) may need to be reduced. To this end,
every raw antidiffusive flux f+

ij is replaced by its limited counterpart

f̄+
ij = αija

+
ij(ui − uj), 0 ≤ αij ≤ 1. (49)
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The solution-dependent correction factors αij = αji should be chosen so that there
exist a pair of nonnegative coefficients βij ≥ 0 and βji ≥ 0 such that

f̄+
ij = βij(uk − ui), f̄+

ji = βji(ul − uj) (50)

for a pair of nodes k 6= i and l 6= j. In essence, this representation means that the
limited antidiffusive fluxes f̄+

ij and f̄+
ji have the same effect as diffusive fluxes from

other nodes. Assuming that the modified matrix remains irreducible, criterion (50)
implies the discrete maximum principle for the solution of the perturbed system.
A practical approach to the construction of skew-symmetric fluxes f̄+

ij = −f̄+
ji that

satisfy the above monotonicity constraint is presented in the next section.

In essence, the correction step (49) corresponds to the following modification of A+

ā+
ii := −

∑
j 6=i

ā+
ij, ā+

ij = αija
+
ij, ∀j 6= i. (51)

The original matrix A+ is recovered for αij ≡ 1, whence the correction factors should
be as close to 1 as possible without violating the discrete maximum principle. The
flux-corrected scheme remains consistent if αij → 1 as the mesh size h goes to zero.

6 Slope limiting

Slope limiting amounts to reducing the magnitude of the solution difference ui − uj

so as to enforce the DMP. Let s̄ij be a limited counterpart of ui − uj such that

f+
ij = a+

ij s̄ij, s̄ij = αij(ui − uj). (52)

To find the right value of s̄ij, we need the (approximate) solution gradients at nodes i
and j. In the case of linear or bilinear finite elements, a continuous approximation to
nodal gradients can be obtained, e.g., using the lumped-mass L2-projection, cf. [19]

∇̂ui =
1

mi

∑
k

cikuk, (53)

where mi = (1, ϕi) is a diagonal entry of the lumped mass matrix and cik = (ϕi,∇ϕk).

If the degrees of freedom are associated with edges/faces of the computational mesh,
then the nodal gradients can be recovered in a similar way, e.g., using the Crouzeix-
Raviart /Rannacher-Turek elements to approximate ∇u. Alternatively, they can be
defined as an average of the mean values for the two cells sharing the edge/face [19].
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Due to (20) the gradients of basis functions have zero sum at every point x ∈ Ω̄, so
that cii = −∑

k 6=i cik and the right-hand side of (53) can be written as

∇̂ui =
1

mi

∑
k 6=i

cik(uk − ui). (54)

For any pair of nodes i and j, a usable approximation to the difference ui − uj is

sij = (xi − xj) · ∇̂ui. (55)

Introducing the maximum and minimum nodal values of u over the stencil of i

umax
i = max{0, ui + max

j 6=i
(uj − ui)}, (56)

umin
i = min{0, ui + min

j 6=i
(uj − ui)}, (57)

the extrapolated slope sij can be estimated in terms of the steepest gradients

µij(u
min
i − ui) ≤ sij ≤ µij(u

max
i − ui), (58)

µij =
1

mi

∑
k 6=i

|cik · (xi − xj)|. (59)

A similar estimate is obtained for the one-sided approximation

sji = (xj − xi) · ∇̂uj. (60)

The final formula for s̄ij incorporates some features of symmetric limited positive
(SLIP) schemes [11], flux-corrected transport (FCT) algorithms [15,25], and geometric
high-resolution schemes based on the Barth-Jespersen slope limiter [1]. We take

s̄ij =

 min{2µij(u
max
i − ui), ui − uj, 2µji(uj − umin

j )}, if ui > uj,

max{2µij(u
min
i − ui), ui − uj, 2µji(uj − umax

i )}, if ui < uj.
(61)

As the mesh is refined, the difference between the local slopes shrinks and s̄ij ap-
proaches ui − uj which corresponds to a consistent finite element approximation.
Moreover, the slope limiter is designed to be linearity preserving, i.e., s̄ij = ui − uj

if u is a linear function. The discrete maximum principle follows from the fact that
f̄ij = a+

ij s̄ij can be written in the form (50), where uk = umax
i or uk = umin

i and

0 ≤ βij ≤ 2µija
+
ij. (62)
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Likewise, the limited antidiffusive flux f̄ji = −f̄ij admits an equivalent representation
of the form (50) with 0 ≤ βji ≤ 2µjia

+
ji and ul = umin

j or ul = umax
j .

If i is an interior node and j is a node on the boundary, i.e., 1 ≤ i ≤ n < j ≤ m,
then the coefficients a+

ji and a+
jj belong to the blocks AΓΩ and AΓΓ, respectively. These

blocks pose no hazard to the DMP since the last m rows are replaced by rows of the
identity matrix in (27). Therefore, only the antidiffusive flux f+

ij into node i needs to
be constrained and the following one-sided slope limiting strategy is in order

s̄ij =

 min{2µij(u
max
i − ui), ui − uj}, if ui > uj,

max{2µij(u
min
i − ui), ui − uj}, if ui < uj.

(63)

Remark. It is worth mentioning that the quality of the slope-limited Galerkin scheme
depends on that of the underlying gradient recovery method. In the case of a hetero-
geneous diffusion tensor, the gradient is discontinuous but the standard lumped-mass
L2 projection (53) samples data from both sides of an internal interface, which may re-
sult in slow grid convergence (see below). Alternatively, problems with discontinuous
coefficients can be treated using a special (ENO-like) gradient recovery technique.

Example. In one space dimension, the diffusion tensor D reduces to a scalar coeffi-
cient and cannot be anisotropic. In this case, the piecewise-linear Galerkin approxi-
mation on a uniform mesh of size h satisfies the DMP unconditionally, i.e., A+ ≡ 0
and f+

ij ≡ 0. Although slope limiting is redundant, it is instructive to derive the 1D
counterpart of (61) to illustrate the implications of the proposed limiting strategy.

The lumped-mass L2−projection (53) with mi = h and ci±1/2 = ±1/2 reduces to the
second-order accurate central difference approximation of the nodal gradient

u′i =
1

2

[
ui − ui−1

h
+

ui+1 − ui

h

]
. (64)

The local maxima and minima of the grid function u are given by

umax
i = max{ui−1, ui, ui+1}, umin

i = min{ui−1, ui, ui+1}. (65)

Estimate (58) with µij = 1 and j = i + 1 yields the upper and lower bounds

umin
i − ui ≤ hu′i ≤ umax

i − ui. (66)

The one-dimensional version of formula (61) can be written as follows

s̄ij = minmod{2(ui−1 − ui), ui − ui+1, 2(ui+1 − ui+2)}, (67)
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where three-parameter minmod function is defined as [11]

minmod{a, b, c} =


min{a, b, c}, if a > 0, b > 0, c > 0,

max{a, b, c}, if a < 0, b < 0, c < 0,

0, otherwise.

(68)

If ui or ui+1 is a local maximum or minimum then the corresponding slope ratio is
negative and s̄ij = 0. Otherwise, the slope limiter returns ui − ui+1 or a slope of the
same sign and smaller magnitude. Hence, it is activated only if two neighboring slopes
have opposite signs and/or their magnitudes differ by a factor of 2 and more.

7 Defect correction

After slope limiting, the corrected antidiffusive flux f̄+
ij = a+

ij s̄ij is added to the sum

f̄+
i =

∑
j 6=i

f̄+
ij , ∀i = 1, . . . , n. (69)

The resulting vector f̄+
Ω represents the admissible contribution of A+ to the residual

r̄Ω = bΩ − A−
ΩΩuΩ − A−

ΩΓg + f̄+
Ω , (70)

and the slope-limited solution uΩ is implicitly defined by the requirement that r̄Ω = 0.

Since the correction factors αij = s̄ij/(ui−uj) ∈ [0, 1] depend on the a priori unknown
slopes, the corresponding algebraic system is nonlinear and must be solved iteratively.
Consider a sequence of approximations u(l), l = 0, 1, . . . , L. The current iterate u(l)

can be used to update the residual r̄
(l)
Ω and compute u

(l+1)
Ω as follows

 u
(l+1)
Ω

u
(l+1)
Γ

 =

 u
(l)
Ω

u
(l)
Γ

 +

 Ā
(l)
ΩΩ Ā

(l)
ΩΓ

0 I


−1  r̄

(l)
Ω

0

 , (71)

where Ā(l) is a suitable ‘preconditioner’ to be defined below. Each cycle of this fixed-
point defect correction scheme involves the solution of the auxiliary linear system Ā

(l)
ΩΩ Ā

(l)
ΩΓ

0 I


 v

(l+1)
Ω

v
(l+1)
Γ

 =

 r̄
(l)
Ω

0

 (72)
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followed by the explicit solution update u(l+1) = u(l) + v(l+1). The iteration process
continues until the norm of the nonlinear residual r(l+1) becomes small enough.

At the first outer iteration, we take u
(0)
Ω = 0, u

(0)
Γ = g, and Ā(0) = A− or Ā(0) = A.

The latter choice yields the unconstrained Galerkin solution that may violate the
discrete maximum principle. On the other hand, the operator Ā

(0)
ΩΩ = A−

ΩΩ enjoys the

M-matrix property, so the DMP holds but the initial guess u
(1)
Ω may be very poor.

The simplest preconditioner for l = 1, . . . , L is, again, the linear operator Ā(l) = A−.
It does not need to be reassembled, and the auxiliary system (72) can be solved

efficiently due to the M−matrix property of Ā
(l)
ΩΩ. However, the convergence of outer

iterations tends to be very slow, or even fail, if the anisotropy effects are too strong.
Moreover, only the fully converged solution is guaranteed to satisfy the DMP.

The convergence behavior of the defect correction scheme (71) can be improved using
underrelaxation ([20], p. 67). Let the diagonal entries of Ā(l) be redefined as

ā
(l)
ii := ā

(l)
ii /ωi, ∀i = 1, . . . , n, (73)

where 0 < ωi < 1 is a free parameter that makes Ā(l) strictly diagonally dominant.

Implicit underrelaxation of the form (73) speeds up the convergence of inner iterations
for the linear system (72) and makes it possible to constrain the solution changes so
as to stabilize the residual (70) of the nonlinear problem. If fixed-point iteration (71)
converges then the final solution u = u(L) does not depend on the choice of Ā(l) and
ωi but the convergence history and the properties of intermediate approximations do.
The best value of the relaxation parameter ωi is problem-dependent and must be
determined by trial and error, which restricts the practical utility of this approach.

In order to secure the convergence of outer iterations, it is worthwhile to design
the preconditioner Ā(l) so that every solution update is positivity-preserving. In ac-
cordance with one of Patankar’s ‘four basic rules’ ([20], pp. 36–39), we treat the
antidiffusive flux f̄+

ij = βij(uk − ui) as a source term and linearize it as follows

f̄+
ij = β

(l)
ij (u

(l)
k − u

(l+1)
i ). (74)

Since β
(l)
ij ≥ 0, this ‘negative-slope linearization’ [20] preserves positivity if we take

Ā(l) = A− + diag{σ(l)
i }, σ

(l)
i =

∑
j 6=i

β
(l)
ij . (75)
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Note that it is necessary to update the diagonal part of the preconditioner Ā(l) at
each outer iteration. Alternatively, we can invoke estimate (62) and consider

Ā(l) = A− + diag{σi}, σi = 2
∑
j 6=i

µija
+
ij. (76)

Both definitions enhance the diagonal dominance of Ā(l) and can be interpreted as
‘relaxation through inertia’ [20] for A− or selective lumping for A. To prove positivity
preservation, let us cast the linear system associated with (71) into the form Ā

(l)
ΩΩ Ā

(l)
ΩΓ

0 I


 u

(l+1)
Ω

u
(l+1)
Γ

 =

 b̄
(l)
Ω

g

 . (77)

Due to (70) and (71) the right-hand side b̄
(l)
Ω of this linear system is given by

b̄Ω = r̄Ω + Ā
(l)
ΩΩuΩ + Ā

(l)
ΩΓg = bΩ + diag(Ā

(l)
ΩΩ − A−

ΩΩ)uΩ + f̄+
Ω . (78)

By construction, the i−th element of b̄
(l)
Ω admits the representation

b̄
(l)
i = bi + u

(l)
i

∑
j 6=i

(β̄
(l)
ij − β

(l)
ij ) + umax

i

∑
ui>uj

β
(l)
ij + umin

i

∑
ui<uj

β
(l)
ij , (79)

where β̄
(l)
ij = β

(l)
ij or β̄

(l)
ij = 2µija

+
ij ≥ β

(l)
ij for (75) and (76), respectively. As a result,

all coefficients in (79) are nonnegative. Since Ā
(l)
ΩΩ is an M-matrix and Ā

(l)
ΩΓ ≤ 0

bΩ ≥ 0, u(l) ≥ 0 ⇒ b̄Ω ≥ 0 ⇒ u(l+1) ≥ 0. (80)

Positivity preservation is a valuable asset since intermediate solutions remain free of
undershoots and residuals converge to the machine zero in a monotone fashion. How-
ever, since the column sums of Ā(l) are nonzero, only the final solution is guaranteed
to be conservative. This is in contrast to preconditioning by Ā(l) = A− or Ā(l) = A,
whereby each solution update is conservative but may fail to be positivity-preserving.

Remarkably, the sign of u(l) is preserved even if the preconditioner Ā(l) is taken to be
the diagonal part of (75) or (76). In this case, the i−th equation can be written as

ā−iiu
(l+1)
i = r̄

(l)
i + (ā

(l)
ii − a−ii)u

(l)
i = b̄i −

∑
j 6=i

a−iju
(l)
j , (81)

where r̄
(l)
i and b̄i are given by equations (70) and (79), respectively. By definition, the

coefficients a−ij are nonnegative, so positivity preservation follows from that for b̄Ω.
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The use of a diagonal preconditioner Ā(l) leads to a fully explicit solution strategy but
the convergence of outer iterations is very slow. The implicit version equipped with
(75) or (76) converges faster but, nevertheless, thousands of flux/defect correction
steps may be required to achieve the prescribed tolerance on a fine mesh. As in
the case of linear systems which result from the discretization of elliptic problems,
convergence rates deteriorate as the mesh is refined. In many cases, the nonlinearity
of the slope-limited finite element discretization results in a high overhead cost.

In light of the above, a nonlinear full approximation storage / full multigrid (FAS-
FMG) solution strategy lends itself to the numerical treatment of the problem at
hand. The slowly converging fixed-point iteration (71) constitutes a usable smoother
that can be preconditioned by the diagonal or upper/lower triangular part of Ā(l).
The use of an ILU decomposition (in conjunction with appropriate renumbering) is

also feasible, and its existence is guaranteed by the M-matrix property of Ā
(l)
ΩΩ.

8 Numerical examples

In this section, we test the ability of the proposed method to enforce the DMP for
problem (7) with an anisotropic diffusion tensor. Also, we present a grid convergence
study for test problems with smooth and discontinuous data. The difference between
the numerical solution uh and the exact solution u is measured in the norms

||u− uh||2 =
√∑

i

mi|u(xi)− ui|2, ||u− uh||∞ = max
i
|u(xi)− ui|, (82)

where mi = (1, ϕi) denotes a diagonal coefficient of the lumped matrix or, equiva-
lently, the area of the control volume associated with the mesh point xi. The defect
correction scheme preconditioned by (75) is employed in all numerical tests.

8.1 Nonsmooth solutions

To begin with, we consider two examples that represent a challenge to the conventional
Galerkin discretization and illustrate the benefits of slope limiting. The computational
domain for the first test problem (TP1) is Ω = (0, 1)2\[4/9, 5/9]2, as depicted in
Fig. 1a. The outer and inner boundary of Ω are denoted by Γ0 and Γ1, respectively.
Let the following Dirichlet boundary conditions be imposed on Γ = Γ0 ∪ Γ1

u = −1 on Γ0, u = 1 on Γ1. (83)
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The diffusion tensor D is a symmetric positive definite matrix given by the formula

D = R(−θ)

 k1 0

0 k2

R(θ), R(θ) =

 cos θ sin θ

− sin θ cos θ

 , (84)

where k1 = 100 and k2 = 1 are the diffusion coefficients associated with the axes of
the Cartesian coordinate system rotated by the angle θ = −π/6. The source term is
taken to be zero (q ≡ 0). By the continuous maximum principle, the (unknown) exact
solution to problem (7) is bounded by the Dirichlet boundary values (83). However,
the diffusion tensor (84) is highly anisotropic, which may result in a violation of the
discrete maximum principle even on a regular mesh of acute/nonnarrow type.

(a) (b) (c)

Γ
0

Γ
1

Fig. 1. TP1: (a) computational domain Ω, (b) triangular mesh, (c) quadrilateral mesh.

The verification of the DMP property is performed for linear and bilinear finite ele-
ment discretizations on two uniform meshes (see Fig. 1b-c). In both cases, the total
number of nodes is 1,360. The number of mesh elements equals 2,560 for the trian-
gular mesh and 1,280 for the quadrilateral one. The numerical solutions computed
on these meshes by the standard Galerkin method are displayed in Fig. 2. Both of
them attain correct maximum values but exhibit spurious minima that fall below the
theoretical lower bound umin = −1 by about 5%. Although the undershoots are rel-
atively small, they might be totally unacceptable in some situations. For example, if
the scalar variable u is responsible for phase transitions, such undershoots can trigger
a nonphysical process. Since it is rather difficult to ‘repair’ a DMP-violating solution
[18], it is worthwhile to use a scheme that does not produce undershoots/overshoots
in the first place. The constrained Galerkin solutions computed on the same meshes
using the slope limiter proposed in this paper are presented in Fig. 3. Both of them
satisfy the DMP perfectly, and no other side effects are observed. Note that nonlinear
schemes which force the solution to be positive are not applicable to this test problem.

The second test problem (TP2) stems from a benchmark suite for anisotropic diffusion
problems on general grids ([8], Test 9: anisotropy and wells). The diffusion tensor is
given by (84) with k1 = 1, k2 = 10−3, and θ = 67.5◦. As before, the source term is
zero. The computational domain Ω = (0, 1)2\(Ω̄4,6 ∪ Ω̄8,6) has two square holes that
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(a) umin = −1.055, umax = 1.0 (b) umin = −1.054, umax = 1.0

Fig. 2. TP1: unconstrained solutions, (a) triangular mesh, (b) quadrilateral mesh.

(a) umin = −1.0, umax = 1.0 (b) umin = −1.0, umax = 1.0

Fig. 3. TP1: constrained solutions, (a) triangular mesh, (b) quadrilateral mesh.

correspond to cells (4, 6) and (8, 6) of a uniform grid with 11× 11 cells. The Dirichlet
boundary conditions prescribed on Γ1 = ∂Ω̄4,6 and Γ2 = ∂Ω̄8,6 are as follows

u = 0 on Γ1, u = 1 on Γ2. (85)

Homogeneous Neumann boundary conditions are applied at the outer boundary Γ0

of Ω. For a detailed description of this benchmark problem we refer to [8].
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(a) umin = −0.139 umax = 1.139 (b) umin = 0.0 umax = 1.0

Fig. 4. TP2: bilinear elements, (a) unconstrained solution, (b) constrained solution.

The numerical solutions obtained with 11 × 11 bilinear finite elements are shown in
Fig. 4. On such a coarse mesh, the unconstrained Galerkin method produces under-
shoots and overshoots of about 14%. Other discretization methods presented and com-
pared in [8] behave in the same way, whereas our slope-limited solution is uniformly
bounded by the Dirichlet boundary values, as required by the maximum principle.

8.2 Smooth solutions

In this subsection, we study the approximation properties of the proposed technique
as applied to problems with smooth solutions. Usually even the conventional Galerkin
scheme does not violate the discrete maximum principle for this type of problems.
Thus, no slope limiting is actually required for smooth data. The goal of the numerical
experiments to be performed is to compare the accuracy and convergence behavior of
the constrained nonlinear scheme to those of the underlying Galerkin discretization.

21



The diffusion tensor and source term for the third test problem (TP3) are given by

D =

 100 0

0 1

 , q(x, y) = 50.5 sin(πx) sin(πy). (86)

With these parameter settings, the exact solution to the Dirichlet problem (7) is

u(x, y) =
1

2π2
sin(πx) sin(πy). (87)

In accordance with this formula, homogeneous Dirichlet boundary conditions are im-
posed. The problem is solved on a sequence of distorted triangular and quadrilateral
meshes. Given a uniform grid with spacing h, its distorted counterpart is generated
by applying random perturbations to the Cartesian coordinates of internal nodes

x := x + αξxh y := y + αξyh, (88)

where ξx and ξy are random numbers with values in the range from −0.5 to 0.5. The
parameter α ∈ [0, 1] quantifies the degree of distortion. The default value α = 0.4
was adopted to introduce sufficiently strong grid deformations without tangling.

In this test, the results produced by the standard Galerkin scheme and by its slope-
limited counterpart are optically indistinguishable. The two diagrams in Fig. 5 show
the solutions computed using linear and bilinear finite elements with h = 1/16. The
corresponding grid convergence study is presented in Tables 1–2. On coarse meshes,
the slope limiter tends to ‘clip’ smooth peaks, which is a well-known drawback of
such methods [15]. To alleviate the undesirable decay of admissible local extrema, the
sufficient conditions of DMP should be replaced by a weaker monotonicity constraint.

(a) umin = 0.0, umax = 0.05 (b) umin = 0.0, umax = 0.05

Fig. 5. TP3: numerical solutions, (a) triangular mesh, (b) quadrilateral mesh.
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Table 1
TP3: grid convergence study for the unconstrained Galerkin scheme.

triangular meshes quadrilateral meshes

h ||u− uh||2 ||u− uh||∞ ||u− uh||2 ||u− uh||∞

1/16 0.158E-03 0.576E-03 0.113E-03 0.396E-03

1/32 0.445E-04 0.154E-03 0.270E-04 0.113E-03

1/64 0.112E-04 0.473E-04 0.693E-05 0.351E-04

1/128 0.320E-05 0.140E-04 0.176E-05 0.789E-05

1/256 0.820E-06 0.467E-05 0.441E-06 0.231E-05

Table 2
TP3: grid convergence study for the constrained Galerkin scheme.

triangular meshes quadrilateral meshes

h ||u− uh||2 ||u− uh||∞ ||u− uh||2 ||u− uh||∞

1/16 0.293E-03 0.136E-02 0.265E-03 0.103E-02

1/32 0.656E-04 0.407E-03 0.616E-04 0.337E-03

1/64 0.146E-04 0.121E-03 0.104E-04 0.847E-04

1/128 0.321E-05 0.140E-04 0.204E-05 0.211E-04

1/256 0.826E-06 0.467E-05 0.468E-06 0.642E-05

As the mesh is refined and resolution improves, the slope limiter is gradually deac-
tivated, and the error norms approach those for the linear Galerkin discretization.
The results presented in Tables 1–2 indicate that slope limiting does not degrade the
order of convergence, and peak clipping becomes less pronounced on finer meshes.

8.3 Heterogeneous diffusion

The last example (TP4) is designed to test the ability of a discretization technique
to handle problems with discontinuous coefficients. Let the diffusion tensor D be a
piecewise-constant function defined in the square domain Ω = (0, 1)2 as follows

D(x, y) =

D1, if x < 0.5,

D2, if x > 0.5,
D1 =

 1 0

0 1

 , D2 =

 10 3

3 1

 . (89)
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This heterogeneous diffusion tensor has a jump in value and direction of anisotropy
across the line x = 0.5. The source term q is also discontinuous

q(x, y) =

 4.0, if x < 0.5,

−5.6, if x > 0.5.
(90)

For D and q defined as above, the analytical solution of problem (7) is given by

u(x, y) =

 1− 2y2 + 4xy + 2y + 6x, if x ≤ 0.5,

b2y
2 + c2xy + d2x + e2y + f2, if x > 0.5.

(91)

Substitution into (7) yields the following values of the involved coefficients

b2 = −2, c2 =
4(D2(1, 2) + 1)

D2(1, 1)
, d2 =

6− 4D2(1, 2)

D2(1, 1)
, (92)

e2 =
4D2(1, 1)− 2D2(1, 2)− 2

D2(1, 1)
, f2 =

4D2(1, 1) + 2D2(1, 2)− 3

D2(1, 1)
. (93)

Again, the discretization is performed using linear and bilinear finite elements on dis-
torted meshes. These meshes are constructed as explained in the previous subsection
but nodes that belong to the line x = 0.5 are shifted in the y−direction only. The
unconstrained Galerkin solutions for h = 1/16 are presented in Fig. 6. Their con-
strained counterparts look the same but a comparison of the error norms presented
in Tables 1–2 reveals significant differences between the convergence histories of the
slope-limited version on triangular and quadrilateral meshes. Although the solution
consists of two smooth patches, its gradient is discontinuous across the internal in-
terface x = 0.5. Moreover, the corresponding kink in the solution profile makes the
outcome of the slope limiting procedure highly mesh-dependent. Note that the solu-
tion is smooth along the y-axis and piecewise-smooth along the x−axis. This is why
the constrained and unconstrained solutions coincide on quadrilateral meshes.

On the other hand, some edges of the triangular mesh are directed skew to the kink
so that the corresponding solution differences are large, whereas the distance to the
nearest local maximum or minimum, as defined in (56)–(57), is small. This places
a heavy burden on the slope limiter which is forced to reject a large percentage of
the antidiffusive flux in accordance with (61). The approximation of discontinuous
gradients by means of the standard L2 projection (53) can also be responsible for
the relatively slow convergence on distorted triangular meshes. In summary, this test
problem turns out to be very easy or rather difficult, depending on the orientation
of mesh edges. It was included to identify the limitations of the proposed limiting
strategy, discuss their ramifications, and illustrate the need for further research.
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(a) umin = 1.0, umax = 6.5 (b) umin = 1.0, umax = 6.5

Fig. 6. TP4: numerical solutions, (a) triangular mesh, (b) quadrilateral mesh.

Table 3
TP4: grid convergence study for the unconstrained Galerkin scheme.

triangular meshes quadrilateral meshes

h ||u− uh||2 ||u− uh||∞ ||u− uh||2 ||u− uh||∞

1/16 0.101E-02 0.337E-02 0.473E-03 0.167E-02

1/32 0.328E-03 0.133E-02 0.154E-03 0.636E-03

1/64 0.841E-04 0.374E-03 0.426E-04 0.242E-03

1/128 0.211E-04 0.107E-03 0.109E-04 0.514E-04

1/256 0.551E-05 0.351E-04 0.286E-05 0.166E-04

Table 4
TP4: grid convergence study for the constrained Galerkin scheme.

triangular meshes quadrilateral meshes

h ||u− uh||2 ||u− uh||∞ ||u− uh||2 ||u− uh||∞

1/16 0.244E-02 0.155E-01 0.473E-03 0.167E-02

1/32 0.161E-02 0.187E-01 0.154E-03 0.636E-03

1/64 0.101E-02 0.109E-01 0.426E-04 0.242E-03

1/128 0.281E-03 0.438E-02 0.109E-04 0.514E-04

1/256 0.140E-03 0.214E-02 0.286E-05 0.166E-04
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9 Summary and conclusions

The objective of the present paper was to review some important qualitative proper-
ties of exact solutions to elliptic problems and preserve these properties at the discrete
level. After a brief overview of continuous maximum principles, linear and bilinear
finite element discretizations of the stationary diffusion equation were considered.
Sufficient conditions of the discrete maximum principle were formulated. The resid-
ual of the algebraic system was decomposed into internodal fluxes associated with
positive and negative coefficients of the global stiffness matrix. Flux correction was
performed using a new slope limiter based on gradient reconstruction. The resulting
nonlinear problem was solved by an iterative defect correction scheme equipped with
a positivity-preserving preconditioner. A numerical study was performed for several
2D test problems with anisotropic diffusion tensors and discontinuous coefficients.

The presented computational results demonstrate that the new approach to slope
limiting rules out the formation of spurious undershoots and overshoots, while pre-
serving the accuracy and consistency of the underlying discretization in the case of
sufficiently smooth data. An extension to quadratic and/or mixed finite elements ap-
pears to be feasible and will be addressed in future work. Further research is required
to accelerate the slowly converging defect correction scheme and reduce the signif-
icant overhead cost incurred by the nonlinearity of the constrained approximation.
Another important open problem is the design of optimal slope limiters for problems
that feature smooth local extrema and/or jumps across internal interfaces.
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[6] I. Faragó, R. Horváth, S. Korotov, Discrete maximum principle for linear parabolic
problems solved on hybrid meshes, Appl. Numer. Math. 53 (2005) 249–264.

[7] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd
edition), Grudlehren der Mathematischen Wissenschaften 224, Springer, 1983.

[8] R. Herbin and F. Hubert, Benchmark on discretization methods for anisotropic diffusion
problems on general grids, in: R. Eymard, J.-M. Herard (Eds.), Finite Volumes for
Complex Applications V, 2008, pp. 659–692.
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