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Abstract

A geometric multigrid solution technique for the incompressible Navier-Stokes equa-
tions in three dimensions is presented, utilizing the concept of discretely divergence-free
finite elements without requiring the explicit construction of a basis on each mesh
level. For this purpose, functions are constructed in an a priori manner spanning the
subspace of discretely divergence-free functions for the Rannacher-Turek finite element
pair under consideration. Compared to mixed formulations, this approach yields smaller
system matrices with no saddle point structure. This prevents the use of complex Schur
complement solution techniques and more general preconditioners can be employed.

While constructing a basis for discretely divergence-free finite elements may pose
significant challenges and its use prevents a structured assembly routine, a basis is
utilized only on the coarsest mesh level of the multigrid algorithm. On finer grids, this
information is extrapolated to prescribe boundary conditions efficiently. Here, special
attention is required for geometries introducing bifurcations in the flow. In such cases,
so called ‘global’ functions with an extended support are defined, which can be used to
prescribe the net flux through different branches.

Various numerical examples for meshes with different shapes and boundary conditions
illustrate the strengths, limitations, and future challenges of this solution concept.

Keywords. incompressible Navier-stokes equations; discretely divergence-free finite elements;
geometric multigrid solver; three-dimensional space

1 Introduction
In this paper, we explore the concept of discretely divergence-free finite elements (DDFFE)
in three dimensions for the Rannacher-Turek finite element pair to solve the incompressible
Navier-Stokes equations. The framework is based on the idea of first eliminating the pressure
unknowns in an a priori manner before discretization. As a result, the total number of
degrees of freedom is significantly reduced compared to the mixed formulation and system
matrices no longer have a saddle point structure, providing the possibility to use more general
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preconditioners in multigrid solution techniques. This makes the approach more flexible
and robust, especially when dealing with high anisotropies in the computational mesh or
differential operators. However, these advantages come at the cost of the resulting system
matrix for the steady Stokes equations behaving like a biharmonic operator, with a condition
number of O(h−4) (cf. [Dör90; Tur94a]).

The idea of DDFFE dates back to the late 1970s and was initially studied for two-
dimensional problems in [Cro76; Tem77; GM79; Gri79; Gri81; For81; Tho81]. While these
publications primarily focus on the construction of basis functions for different discretization
techniques, only a few references have addressed the development of efficient solution strategies.
For instance, Dörfler [Dör90] and Verfürth [Ver89] introduced hierarchical preconditioning
techniques that significantly reduce the condition number of the system matrices. Additionally,
Turek [Tur91; Tur94a; Tur94b] developed efficient multigrid algorithms for the Crouzeix-
Raviart [CR73] and Rannacher-Turek [RT92] finite element pairs, leading to mesh-independent
convergence rates.

In three dimensions, discretely divergence-free finite elements were first studied in [Hec81;
Gri81; For81; Tho81; CSS86], mainly focusing on simply connected domains with Dirichlet
boundary conditions everywhere. More complicated problems, including doughnut-shaped
domains or Neumann boundary conditions, were excluded due to the inherently more
complicated task of constructing a basis in 3D. Furthermore, the design of efficient solution
strategies was out of the scope of these references, making the approach less relevant for
practical applications.

With this paper, we aim to fill this gap and shed new light on the use of discretely
divergence-free finite elements in three dimensions. To this end, we extend the concept
to more general meshes and design geometric multigrid solvers that do not require an
explicit basis on finer mesh levels. On the coarsest level, we introduce a constructional
characterization of a basis, which is particularly useful for designing interpolation operators
by marching over a set of faces and associated edges. Although several design criteria
are summarized, the explicit definition of an algorithm that generates such a basis is left
undefined. For geometries introducing bifurcations in the flow, additional functions with
an extended support are defined. The influence of these functions can be mimicked using
so called “projection methods” without hindering the convergence behavior of the proposed
multigrid algorithm.

To keep things simple, here we mainly focus on sample domains and outline several design
criteria for the construction of a basis. The approach presented below is also restricted to
numerical solutions, which do not exhibit non-vanishing net fluxes on closed boundary parts
of the domain. This restriction ensures that sinks or sources do not exist within holes of the
computational domain. Furthermore, we assume that the family of triangulations consists
solely of meshes with planar faces. This assumption is crucial for the three-dimensional
Rannacher-Turek FE pair to guarantee the optimal convergence of the scheme and to simplify
the explicit construction of a spanning set for the space of discretely divergence-free finite
elements. For other finite element pairs, such as the so called “Q2-P1” FE pair, which will be
investigated in the future, these requirements might not be mandatory and can be avoided
using similar techniques.

The remainder of this article is structured as follows: In the following section, we describe
the concept of discretely divergence-free finite elements for the Rannacher-Turek finite element
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Table 1: Value of Euler characteristics χv and χs for different types of three-dimensional
volume and surface meshes, respectively.

χv volume mesh

1 simply connected mesh
2 mesh with single hole
0 doughnut-shaped mesh

χs surface mesh

2 closed convex polyhedron’s surface
0 torus
1 simply connected two-dimensional mesh
0 two-dimensional mesh with one hole

space in three-dimensions. Special attention is given to the construction of a basis and the
proper enforcement of boundary conditions, facilitating the application of direct numerical
solution techniques for general geometries. Section 3 is dedicated to the construction of
efficient multigrid solvers, which rely solely on the knowledge of a set of basis functions on the
coarsest grid level. Especially, we introduce a prolongation operator that can be efficiently
applied and preserves globally linear functions. Additionally, the treatment of boundary
conditions is addressed in the absence of an explicitly known basis. The performance of the
proposed multigrid algorithm is investigated in Section 4, where test problems with different
geometries are considered. Finally, Section 5 provides a summary of the main findings and
concluding remarks.

2 Discretely divergence-free finite elements
Let Ω be an open, bounded, and connected subdomain of R3 while Th is a triangulation of Ω
consisting of Cv hexahedral cells, Fv faces, Ev edges, and Vv vertices. Then the (volumetric)
Euler characteristic of Th is defined by

χv = Vv − Ev + Fv − Cv,

which is is a toplogical invariant describing the topological space of Ω. Furthermore, we
define its (surface-based) counterpart for a triangulated boundary part of Ω by

χs = Vs − Es + Fs,

where Vs, Es, and Fs are the vertices, edges, and faces located on the boundary part
under consideration. For some sample volume and surface meshes, the values of the Euler
characteristics are summarized in Table 1.

The incompressible Navier-Stokes equations describe the flow behavior of an incompressible
and viscous fluid characterized by its velocity field v : Ω→ Rd and pressure variable p : Ω→ R
and read

αv + ρ(v · ∇)v − µ∆v +∇p = ρg in Ω, (1a)
∇ · v = 0 in Ω, (1b)

v = vD on ΓD, (1c)
−pnΩ + µ(nΩ · ∇)v = ρh on ΓN, (1d)
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where the Lipschitz boundary ∂Ω = ΓD ∪̇ ΓN of Ω is decomposed into its Dirichlet and
Neumann boundary part. Furthermore, the Dirichlet boundary data is given by vD : ΓD → R3,
while g : Ω→ R3 represents the body force density and h : ΓN → R3 is the force acting on
the fluid in the outward normal direction nΩ : ∂Ω → R3 [KH14, Chapter 8]. Finally, the
dynamic viscosity µ and the density ρ are positive constants characterizing the Newtonian
fluid, while the reactive contribution αv for α > 0 can be used to analyze time-dependent
problems after discretization in time. For steady state problems, mainly considered in this
work, we set α = 0.

If ΓN,1∪̇ . . . ∪̇ΓN,Ns
, Ns ∈ N, is a separated decomposition of ΓN, then the Neumann

boundary condition (1d) can be replaced by a flux boundary condition∫
ΓN,i

nΩ · v ds = fN,i (2)

for some net fluxes fN,1, . . . , fN,Ns
through the surfaces ΓN,1, . . . ,ΓN,Ns

, where

Ns∑
i=1

fN,i +

∫
ΓD

nΩ · vD ds =

∫
∂Ω

nΩ · v ds =

∫
Ω

∇ · v dx = 0 (3)

must be satisfied by virtue of the continuity equation (1b). Note that a similar flow
behavior can be achieved by enforcing a suitable auxiliary pressure condition for some values
p1, . . . , pNs

∈ R (cf. [HRT96]), where the force h acting on the fluid is defined by

h = ρ−1nΩ

Ns∑
i=1

piχΓN,i

using the characteristic function χΓN,i
: ∂Ω → {0, 1}. This boundary condition can even

be employed for discretely divergence-free finite elements, where the pressure variable is
eliminated in an a priori manner. However, this approach does not yield further insight in
the solution procedure and, hence, will be omitted in this paper for the sake of brevity.

Let us now introduce the finite element spaces of the Rannacher-Turek finite element pair.
For this purpose, we first define the non-conforming rotated trilinear finite element space Vh

in its non-parametric form [RT92]

Vh =
{
v ∈ L2(Ω) : v|K ∈ Q̃1(K) ∀K ∈ Th,

γK1∩K2(v|K1) = γK1∩K2(v|K2) ∀K1,K2 ∈ Th,K1 ∩K2 ∈ Fh

}
,

where Fh is the set of faces of the triangulation Th, the interfacial mean value functional γF (·)
reads

γF (v) = |F |−1

∫
F

v ds ∀F ∈ Fh (4)

and
Q̃1(K) = span{1, x1, x2, x3, x

2
1 − x2

2, x
2
2 − x2

3}, x = (x1, x2, x3)
⊤ ∈ K.
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Obviously, the dimension of Vh coincides with the total number of faces Fv and a unique
basis φ1, . . . , φFv

∈ Vh is characterized by

|F1| · γF1(φF2) =

∫
F1

φF2 ds = δF1,F2 ∀F1, F2 ∈ Fh. (5)

For the Rannacher-Turek finite element pair, each component of the velocity field is sought
in Vh, while the pressure variable is approximated by piecewise constant functions, i.e.,

Qh =
{
q ∈ L2(Ω) : v|K ≡ c ∀K ∈ Th, c ∈ R

}
.

Therefore, the integral mean value of the divergence vanishes on each cell for the discrete
velocity solution to the incompressible Navier-Stokes equations and the space of discretely
divergence-free finite element functions reads

Vh =
{
vh ∈ (Vh)

3 :

∫
K

∇ · vh dx = 0 ∀K ∈ Th
}
.

This space can be decomposed into a subset of so called ‘tangential’ FE functions Vt,h

and functions with non-trivial normal components on the faces, denoted by Vn,h. These
subspaces read

Vt,h =
{
vh ∈ Vh : γF (vh · nF ) = 0 ∀F ∈ Fh

}
,

Vn,h =
{
vh ∈ Vh : γF (vh × nF ) = 0 ∀F ∈ Fh

}
,

where nF ∈ R3 is a constant, but ambiguously defined unit normal vector of the face F
under consideration. Then the finite element spaces have the following dimensions:

dim(Vh) = 3Fv − Cv, dim(Vt,h) = 2Fv, dim(Vn,h) = Fv − Cv =: Sv

Basis functions of Vt,h can be easily defined by introducing two unique tangential vectors
t1, t2 per face (cf. [Hec81; Tho81]). However, the construction of a basis for the subspace Vn,h

is a non-trivial task. One common approach is to first create a spanning set for Vn,h consisting
of one function associated with each edge of the mesh. Afterwards Ev − (Fv − Cv) functions
associated with a spanning tree of the triangulation Th are successively removed [Hec81].
Unfortunately, this graph-based approach to construct a basis only works for simply connected
domains and, especially, fails for doughnut-shaped domains as we will see below. Therefore,
another process for the construction of a basis has to be considered, which is discussed in
what follows.

2.1 Construction of spanning set
For the sake of completeness, we first construct a basis of Vt,h using two unique tangential
vectors for each face of the triangulation. The definition is only based on local mesh
information and, hence, can be performed in an element-based fashion as usually preferred
in the context of finite elements. For this purpose, let x1, . . . ,xVv

∈ R3 be the vertices of the
mesh ordered in an arbitrary, but unique manner. Then each face F ∈ Fh coincides with the
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t∗F,1

t∗F,2
tF,1

tF,2

mF

x1

x7

x10

x12

Figure 1: Construction of unique tangential
vectors tF,1 and tF,2 for a face F
with edges x1, x7, x10, and x12.

Figure 2: Streamlines of FE function ψE cor-
responding to edge plotted in blue.
Associated normal vectors nE,F are
plotted in white.

convex hull of four vertices xi1 , . . . ,xi4 for i1, . . . , i4 ∈ {1, . . . , Vv} and the midpoint mF of
F is defined by

mF = 1
4 (xi1 + . . .+ xi4),

where mF ∈ F holds true due to the fact that F is planar. Based on this definition, two
orthonormal tangential vectors can be introduced by (cf. Fig. 1)

t∗F,1 = xij −mF , j = argmin
ℓ=1,...,4

iℓ,

t∗F,2 = xk −mF , k = min{imod(j,4)+1, imod(j+2,4)+1},

tF,1 =
t∗F,1

∥t∗F,1∥2
, t̃∗F,2 = t∗F,2 − (t∗F,2 · tF,1)tF,1, tF,2 =

t̃∗F,2

∥t̃∗F,2∥2

and a basis (ϕF,1,ϕF,2)F∈Fh
of Vt,h is uniquely defined by the condition∫

F

tF1,k · ϕF2,ℓ ds = δk,ℓδF1,F2 ∀F1, F2 ∈ Fh, k, ℓ ∈ {1, 2}

leading to
ϕF,ℓ = tF,ℓφF ∀F ∈ Fh, ℓ ∈ {1, 2}.

Indeed, these functions are discretely divergence-free due to∫
K

∇ · ϕF,ℓ dx =

∫
∂K

nK · ϕF,ℓ ds =

∫
∂K

(nK · tF,ℓ)︸ ︷︷ ︸
=0

φF ds = 0,

where nK is the unit outward normal vector of cell K ∈ Th.
To construct a spanning set of Vn,h, we first introduce ‘normal’ vectors nE,F for all

edges E and faces F ∈ Fh

nE,F =

{
sE×(mF−mE)

∥sE×(mF−mE)∥2
: E ⊆ F,

0 : E ⊈ F,
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where sE = xk −mE is the vector pointing from the midpoint mE = 1
2 (xi1 + xi2) of edge E

with vertices xi1 ,xi2 to the vertex xk with k = min{i1, i2}. We then define ψE ∈ Vn,h

associated with an edge E by (cf. Fig. 2)

ψE =
∑

F∈Fh

nE,FφF .

These functions have a local support supp(ψE) =
⋃

K∈Th, E⊂K K and satisfy∫
F

nF ·ψE ds =
∑

F ′∈Fh

(nF · nE,F ′)

∫
F

φF ′ ds︸ ︷︷ ︸
=δF,F ′

= nE,F · nF ∀F ∈ Fh

This guarantees that ψE is discretely divergence-free because∫
K

∇ ·ψE dx =

∫
∂K

nK ·ψE ds =
∑

face F⊂∂K

∫
F

nK ·ψE ds

=

∫
F1

nK ·ψE ds+

∫
F2

nK ·ψE ds = (nE,F1
· nK) + (nE,F2

· nK) = 0

for all elements K ∈ Th with E ⊂ K, where the faces F1, F2 ∈ Fh are defined so that
F1, F2 ⊂ K and F1 ∩ F2 = E.

For the sake of simplicity, we also refer to the FE function ψE using the notation ψi,
where i is the index of edge E. The functions ψ1, . . . ,ψEv

then span a subspace

V∗
n,h = span{ψ1, . . . ,ψEv

} ⊆ Vn,h,

where equality is valid only for simply connected meshes. In case of arbitrary triangulations,
this is not true because all functions in the subspace V∗

n,h have vanishing net fluxes on each
closed boundary part of the domain. More precisely, the incompressibility condition∮

∂ϖ

nϖ · vh ds = 0 ∀ϖ ⊂ R3, ∂ϖ ⊆
⋃

F∈Fh

F (6)

is satisfied for all vh ∈ V∗
n,h, where ϖ ⊂ R3 does not necessarily have to be a subset of Ω.

For functions vh ∈ Vn,h, property (6) is only true for ϖ ⊆ Ω and we have

V∗
n,h =

{
vh ∈ Vn,h : vh satisfies condition (6)

}
.

Therefore, the dimension S∗
v of V∗

n,h is equal to Sv minus the number of holes in the domain
(cf. Fig. 3 and Table 2). In the following section, we will construct a basis of the subspace of
discretely divergence-free finite element functions V∗

h = Vt,h⊕V∗
n,h by eliminating functions

from the spanning set ψ1, . . . ,ψEv
∈ V∗

n,h.
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(a) Mesh I (uniform). (b) Mesh II (with hole). (c) Mesh III (doughnut-like).

Figure 3: Illustration of sample meshes with different topologies.

Table 2: Different quantities of sample meshes. Value of Hv−1 describes number of separated
holes and coincides with Sv − S∗

v = dim(Vh)− dim(V∗
h).

Vv Ev Fv Cv χv Hv Sv S∗
v

Mesh I 64 144 108 27 1 1 81 81
Mesh II 64 144 108 26 2 2 82 81
Mesh III 64 144 104 24 0 1 80 80

2.2 Construction of basis
Some results for the construction of a basis can be found, e.g., in [GH83; For81; Gri81], while
a very promising approach based on graph theory was published in [Hec81] for tetrahedral
triangulations of simply connected domains. Therein, the author proved that functions ψE

associated with edges E of a spanning tree have to be removed to create a basis. The
spanning tree of a connected graph has Vv − 1 edges and is defined as the minimal graph
connecting all vertices of a mesh without closed paths. Unfortunately, this idea only works
for simply connected domains and, especially, not for doughnut-shaped domains. In the
latter case, the functions after the elimination process are still linearly dependent and, hence,
not a basis. This can be easily verified by dimension counting arguments: We first notice
that V∗

n,h = Vn,h is valid because the entire boundary is connected. Therefore, in total
Ev−Sv functions have to be removed from the spanning set, where Sv = Fv−Cv = dim(Vn,h).
On the other hand, the number of edges of the spanning tree coincides with

Vv − 1 = Vv − 1− χv = Ev − Fv + Cv − 1 = Ev − Sv − 1

due to the fact that the Euler characteristic χv = Vv − Ev + Fv − Cv is equal to 0 for
doughnut-shaped domains. Therefore, another basis function associated with an additional
edge Ê has to be removed. Adding this extra edge to the spanning tree must result in a
closed path around the ‘hole’ of the domain. However, finding Ê is a non-trivial task and
requires knowledge about the minimal graph and the topology of the mesh.

The algorithm proposed in [Hec81] constructing the spanning tree is summarized in
Algorithm 1. It just expoits the connectivity graph of the triangulation without any knowledge
about the cells and faces of the mesh. While the algorithm also seems to work perfectly for
meshes with holes, the procedure fails for doughnut-shaped domains. Especially, the different
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Algorithm 1 Construction of basis (ψE)E/∈H to V∗
n,h for simply connected domain as

described in [Hec81; Tho81].

Ensure: Output H
Initialize H ← ∅
for i← 1 to Vv do
M(i)← i

end for
for edge E ⊂ ∂Ω do

Call SP(E)
end for
for all other edges E do

Call SP(E)
end for

Procedure: SP(E)
i, j ← vertices of edge E
if M(i) ̸= M(j) then
H ← H∪ {E}
mj ←M(j)
for k ← 1 to Vv do

if M(k) = mj then
M(k)←M(i)

end if
end for

end if

shapes of the meshes illustrated in Fig. 3 are not ‘recognized’ and lead to the same spanning
tree. Based on this graph, it is hardly possible to find an additional edge Ê for Mesh III,
which results in a basis for V∗

n,h. Therefore, we discuss another approach to define a basis,
which is motivated by a constructional way to uniquely represent some function vh ∈ V∗

n,h

in terms of the discretely divergence-free FE functions ψ1, . . . ,ψEv

vh =

Ev∑
i=1

viψi =
∑

edge E

vEψE ,

where v1, . . . , vEv ∈ R or (vE)edge E are the degrees of freedom to be defined. For this
purpose, we note that vh ∈ V∗

n,h is uniquely determined by the normal flux through all faces
F ∈ Fh

fF =

∫
F

nF · vh ds ∀F ∈ Fh.

On the other hand, the normal flux through a face F ∈ Fh satisfies∫
F

nF · vh ds =
∑

edge E

vE

∫
F

nF ·ψE ds =
∑

edge E⊂∂F

vE (nE,F · nF )︸ ︷︷ ︸
=±1

∀F ∈ Fh (7)

for any function vh ∈ V∗
n,h represented by the set of discretely divergence-free functions

ψ1, . . . ,ψEv
and, hence, coincides with a (weighted) sum over the adjoined four edges

(cf. [Gri81]). Therefore, the condition

fF =
∑

edge E⊂∂F

vE(nE,F · nF ) (8)

must be satisfied for all faces F ∈ Fh in order to represent a function vh ∈ V∗
n,h in terms

of the functions ψ1, . . . ,ψEv
. According to (6), this identity is automatically true for a

face F ∈ Fh if it is valid for faces F1, . . . , Fk ∈ Fh, k ∈ N, such that F ∪ F1 ∪ . . . ∪ Fk is a
closed surface. Inspired by these ideas, a basis of V∗

n,h can be characterized as follows:
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Let F1, . . . , FS∗
v
∈ Fh be a list of faces so that

⋃S∗
v

i=1 Fi does not contain a closed
surface and let the edges E1, . . . , EEv be ordered so that

Ei ⊂ ∂Fi ⊂
( i⋃
j=1

Ej

)
∪
( Ev⋃
j=S∗

v+1

Ej

)
∀i ∈ {1, . . . , S∗

v}. (9)

Then the functions ψ1, . . . ,ψS∗
v

associated with the edges E1, . . . ES∗
v

form a
basis of V∗

n,h.

The maximum number of faces S∗
v not creating a closed surface can be easily verified by

considering the complement of the spanning tree for a graph, whose nodes and edges are
given by the cells and faces of the mesh, respectively. Furthermore, additional nodes have to
be included for each separated void of the domain (holes and surrounded area). Then the
spanning tree has Gv − 1 edges, where Gv is the number of nodes, i.e., number of cells Cv

plus number of connected components of Ωc, denoted by Hv. Thus, the total number of
faces S∗

v not creating a closed surface is given by

S∗
v = Fv − (Gv − 1) = Fv − Cv −Hv + 1 = Sv −Hv + 1.

If the list of faces F1, . . . , FS∗
v

and edges E1, . . . , EEv satisfies the above statement, then we
can iterate over the faces and define the degrees of freedom v1, . . . , vS∗

v
one after the other

by (8), while vS∗
v+1, . . . , vEv

can be chosen arbitrarily. Indeed, the definitions of

vi = (nFi
· ni,Fi

)−1
(
fFi
−

i−1∑
e=1

(nFi
· ne,Fi

)ve

)
∀i ∈ {1, . . . , S∗

v}

and vS∗
v+1 = . . . = vEv = 0 guarantee that

∫
Fi

nFi
· vh ds =

S∗
v∑

e=1

ve

∫
Fi

nFi
·ψe ds

=

S∗
v∑

e=1

ve(nFi · ne,Fi) =

i∑
e=1

ve(nFi · ne,Fi) = fFi ∀i ∈ {1, . . . , S∗
v}

due to the fact that all faces are planar. Furthermore,∫
Fi

nFi
· vh ds = fFi

∀i ∈ {S∗
v + 1, . . . , Fv}

is trivially satisfied due to the fact that
(⋃S∗

v
j=1 Fj

)
∪ Fi contains a closed surface for all

i = S∗
v + 1, . . . , Fv.

2.3 Boundary conditions
After the definition of a basis for the spaces of discretely divergence-free finite element
functions Vt,h and V∗

n,h, we now discuss how Dirichlet boundary conditions can be prescribed
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and why geometries introducing bifurcations require a special treatment. The enforcement of
boundary conditions for the tangential subspace Vt,h can be performed in a straightforward
manner. Therefore, we solely focus on the normal contribution of the boundary data, which is
associated with the subspace V∗

n,h. For a simply connected domain with Dirichlet boundary
conditions prescribed on the entire boundary, Hecht [Hec81] mentioned that the number of
basis functions corresponding to edges located on the boundary part of the domain should
be minimized. This design criterion is already taken into account in the construction process
of a spanning tree using Algorithm 1 by first considering the edges located on the boundary
of Ω. It guarantees that the total number of degrees of freedom associated with the Dirichlet
boundary part coincides with the number of prescribed normal components∫

F

nF · vD ds =

∫
F

nF · vh ds ∀F ∈ Fh, F ∩ ΓD ̸= ∅.

This can be easily verified using the Euler characteristic for a surface of a closed convex
polyhedron

χs = Vs − Es + Fs = 2,

where Vs, Es, and Fs denote the number of vertices, edges, and faces located on the Dirichlet
boundary part. Then Es − (Vs − 1) = Fs − 1 basis functions are associated with edges
located on the boundary ∂Ω due to the fact that the spanning tree of the boundary part has
Vs − 1 edges. This is indeed the number of independent normal contributions, which have to
be prescribed, because the boundary part ΓD consists of Fs faces and one normal contribution
is automatically determined by the others due to the incompressibility condition (6) for
ϖ = Ω.

This concept for prescribing Dirichlet boundary conditions also holds true for simply
connected domains with one connected Neumann boundary part. In this case, the Euler
characteristic of ΓD reads

χs = Vs − Es + Fs = 1

and Es − (Vs − 1) = Fs degrees of freedom can be uniquely determined by Fs conditions for
the flow through the faces on the Dirichlet boundary part.

In the numerical examples, we will also consider the flow through a “y-pipe” featuring two
separate Neumann boundary parts ΓN,1 and ΓN,2. In this case, the strategy mentioned above
fails without further modifications although the mesh itself is simply connected. This is due
to the fact that the Euler characteristic of the Dirichlet boundary part ΓD = ∂Ω\(ΓN,1∪ΓN,2)
satisfies

χs = Vs − Es + Fs = 0

leading to (at least) Es − (Vs − 1) = Fs + 1 basis functions associated with the Dirichlet
boundary part, while only Fs normal contributions have to be prescribed. This apparent
discrepancy stems from the fact that the net fluxes through ΓN,1 and ΓN,2 are solely
determined by edges located on ΓN,1 ∩ ΓD and ΓN,2 ∩ ΓD, respectively. Therefore, setting
all solution coefficients associated with ΓD also prescribes the fluxes through the Neumann
boundary parts. To enable the independent enforcement of flux or Neumann boundary
conditions without modifying the normal contributions on ΓD, we introduce a so called
‘global’ function ψN,1 ∈ V∗

n,h. For this purpose, let F1, . . . , FFs be the faces located on the
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Dirichlet boundary part of the domain and ψ1, . . . ,ψFs+1 be the basis functions associated
with edges located on ΓD. Then ψN,1 =

∑Fs+1
i=1 vi,1ψi is defined by∫

Fi

nΩ ·ψN,1 ds = 0 ∀i ∈ {1, . . . , Fs},
∫
ΓN,1

nΩ ·ψN,1 ds = 1. (10)

We now replace ψi0 for some i0 ∈ {1, . . . , Fs + 1} satisfying vi0,1 ̸= 0 with ψN,1 and achieve
another basis of V∗

n,h. Thus, flux boundary conditions can be prescribed by setting the
solution coefficient vN,1 associated with ψN,1. This process is particularly simple, if ψi0 is
the only basis function associated with an edge Ei0 located on ΓN,1 ∩ ΓD. Then the flux
through ΓN,1 collapses to

∫
ΓN,1

nΩ · vh ds = vN,1

∫
ΓN,1

nΩ ·ψN,1 ds︸ ︷︷ ︸
=1

+

S∗
v∑

i=1,i̸=i0

vi

∫
ΓN,1

nΩ ·ψi ds︸ ︷︷ ︸
=0

= vN,1 (11)

and the boundary condition (2) can readily be enforced by setting vN,1 = fN,1.
On the other hand, the ‘global’ basis function ψN,1 is treated as an ‘inner’ basis function

when the Neumann boundary condition (1d) is prescribed. This is due to the fact that ψN,1

does not contribute to the normal contributions on the Dirichlet boundary part. Note that
in iterative solution procedures there is no need to assemble the discrete problem using this
‘global’ function. Instead, a suitable “projection method” can be employed to recover the
validity of the correct boundary conditions in each iteration [CSS86].

The idea described above can be easily extended to problems, where ΓN is a decompo-
sition of Ns > 2 separated boundary parts ΓN,1, . . . ,ΓN,Ns . In this case, Ns − 1 ‘global’
functions ψN,1, . . . ,ψN,Ns−1 have to be introduced due to the fact that the net flux through
ΓN,Ns

is automatically fulfilled by condition (3). Even doughnut-shaped domains can be
considered in this way by introducing two auxiliary Neumann boundary parts, which split Ω
into two simply connected subdomains. Finally, boundary conditions on several separated
boundary parts can obviously be enforced by treating each of them in a segregated manner.

As mentioned above, the choice of the basis functions plays a crucial rule when it comes
to the treatment of boundary conditions. Even in case of a simply connected domain with
Dirichlet boundary conditions everywhere, it is important to minimize the number of basis
functions associated with edges located on the boundary of the domain [Hec81]. Consequently,
the construction of a set of basis functions must carefully take into account the boundary
conditions to be prescribed. One promising strategy for more general meshes is to adapt
Algorithm 1 by first treating the edges located on ΓD ∩ ΓN. This guarantees that flux
boundary conditions can be easily prescribed using (11). Furthermore, the construction of
the list of faces as mentioned in (9) should be directly included in the algorithm. Here, closed
surfaces can be avoided by using the spanning tree of a graph, whose nodes and edges are
given by the cells and faces of the mesh, respectively. By considering the edges and faces in
an element-wise manner, the graph-based approach exploited in Algorithm 1 remains valid as
long as the union of the cells treated so far is simply connected. Finally, the set of functions
only has to be reduced if Ω is not simply connected.
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3 Multigrid solution technique
In this section, we introduce a geometric multigrid solution technique for the incompressible
Navier-Stokes equations discretized by discretely divergence-free FE functions. The algorithm
presented below mainly exploits the spanning set as introduced in Section 2.1, although more
efficient approaches might be possible if the total number of degrees of freedom is reduced. A
set of basis functions is only employed on the coarsest grid of the mesh hierarchy, while this
information is extrapolated to finer grids for the enforcement of boundary conditions. Another
nontrivial component of the multigrid solver is the prolongation operator, which should
preserve at least globally linear, divergence-free functions to ensure a rapid convergence while
avoiding excessive computational costs.

3.1 Intergrid transfer operator
The intergrid transfer operators play a crucial role in the design of efficient multigrid solution
techniques. While the restriction operator is readily defined as the adjunct prolongation
operator, the latter one should be as accurate as possible and preserve at least globally linear
functions. For discretely divergence-free functions, the construction of an operator satisfying
the above mentioned design criterion is quite intricate due to the fact that the trilinear
finite element space under investigation is non-conforming, i.e., Vh ⊈ V2h. Furthermore, a
discretely divergence-free FE function defined on a coarse grid triangulation T2h is generally
not discretely divergence-free with respect to Th. In this paper, we follow an idea proposed in
[Tur94a; Tur94b] for the two-dimensional Rannacher-Turek FE space, which highly exploits
a prolongation operator for the FE function in its mixed form. In this process, the degrees
of freedom of the fine grid velocity field are computed using the interfacial mean value
functional γF for each cell and a subsequent averaging process if cells share a common
interface.

Inspired by [Tur94a; Tur94b], the prolongation process to project a discretely divergence-
free FE function v2h ∈ V∗

2h into V∗
h then reads as follows:

1. Compute projection ṽh ∈ (Vh)
3 of coarse grid function v2h ∈ V∗

2h.

2. Determine tangential components (vt1h , vt2h ) of ṽh for all faces of fine grid.

3. Calculate normal coefficients vnh using normal fluxes of ṽh through faces of fine grid.

We now focus on the last step of the prolongation procedure, which is most involved due to
the fact that the interpolated fine grid solution is generally not discretely divergence-free
with respect to Th. For this purpose, we subdivide the normal coefficients vnh into three
categories: The ones associated with edges located on macro edges, on macro faces, and
in the interior of the macro elements, as illustrated in Fig. 4a. Then the coefficients are
computed one after the other as follows:

a) The degrees of freedom associated with edges located on an edge Ē of the coarse
grid T2h are set to (cf. Fig. 4b)

vnh,E = 1
2 sign(sE · sĒ)v

n
2h,Ē ∀edge E of Th, E ⊂ Ē.
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Figure 4: Classification of different edges after uniform refinement and illustration of prolon-
gation process including absolute weights of edge/face contributions to coefficient
vector.

b) For each face of the coarse grid F̄ ∈ F2h, we create the linear system (cf. Fig. 4c)∑
edge E⊂∂F\∂F̄

vE(nE,F · nF ) =

∫
F

nF · ṽh ds−
∑

edge E⊂∂F̄

vE(nE,F · nF )

∀F ∈ Fh, F ⊂ F̄ .

Then the coefficients associated with edges located on the face F̄ are computed by
solving the problem using the Moore-Penrose pseudoinverse.

c) For the degrees of freedom corresponding to edges located in the interior of a macro
cell K̄ ∈ T2h, the associated linear system reads (cf. Fig. 4d)∑

edge E⊂∂F\∂K̄
vE(nE,F · nF ) =

∫
F

nF · ṽh ds−
∑

edge E⊂∂K̄

vE(nE,F · nF )

∀F ∈ Fh, F ⊂ K̄ \ ∂K̄,

whose solution is approximated by exploiting again the Moore-Penrose pseudoinverse.

Step a) guarantees that the normal flux through the faces of the coarse grid is preserved∫
F̄

nF · vh ds =

∫
F̄

nF · ṽh ds =

∫
F̄

nF · v2h ds ∀F̄ ∈ F2h.

This property is actually satisfied for all faces F ∩ F̄ with F ∈ Fh, F̄ ∈ F2h by virtue of
Step b). Note that the solution to this problem exists, but is not unique. Therefore, you
can either arbitrarily specify one degree of freedom per face F̄ or use the Moore-Penrose
pseudoinverse to determine a unique solution. The remaining six coefficients associated with
edges in the interior of each macro cell K̄ ∈ T2h are chosen so that the normal flux through
the inner 12 faces is preserved in a least squares sense by Step c). Note that this problem is
overdetermined and generally no solution exists due to the fact that ṽh does not have to be
discretely divergence-free with respect to Th. However, if ṽh ∈ V∗

h, then the above mentioned
procedure guarantees that vh = ṽh and, especially, we have vh = v2h for all v2h ∈ V∗

2h ∩V∗
h.
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Figure 5: Finding basis of normal contribution associated with Dirichlet boundary part
after one uniform grid refinement step. Edges associated with basis functions are
highlighted in color.

3.2 Boundary conditions
In Section 2.3, a procedure to enforce different kinds of boundary conditions was presented,
which highly exploits the explicit knowledge about a basis for the space of discretely divergence-
free FE functions. Unfortunately, the construction of such a set of basis functions is a complex
task and should be avoided on finer mesh levels. Therefore, we now outline a strategy to
prescribe boundary conditions, which only exploits the basis on the coarsest level of a mesh
hierarchy and extrapolates this information to finer grids. This procedure provides a set
of linear independent functions on the Dirichlet boundary part of the domain so that the
normal coefficients can be determined uniquely. For the sake of simplicity, we describe the
idea just for two consecutive meshes, that is, Th is obtained after one uniform refinement of
the coarse grid T2h. However, it can easily be extended to more than two mesh levels.

First of all, we define a set of linear independent functions, which are associated with
the boundary part of the domain and provide a unique way to determine the corresponding
coefficients using the Dirichlet boundary data. For this purpose, we first assume that each
face F̄ ∈ F2h located on the Dirichlet boundary part of the domain, i.e., F̄ ⊆ ΓD, is
associated with an edge Ē ⊂ ∂F̄ by (9). In the refinement process, the face F̄ and edge Ē
are decomposed into four faces F1, . . . , F4 and two edges E0 and E4, respectively. Without
loss of generality, let us assume that E4 ⊂ ∂F4. Then there exist edges E1, E2, and E3

so that the coefficients associated with E1, . . . , E4 can uniquely be determined using the
normal fluxes through the faces F1, . . . , F4 and the associated basis functions are linearly
independent (cf. Fig. 5). In this way, all edges associated with faces F ∈ Fh for F ⊆ ΓD can
be treated one after the other and only coefficients associated with ‘global’ basis functions
remain undefined.

The concept of ‘global’ functions is required to either prescribe Neumann and flux boundary
conditions or is used to determine the correct flow through doughnut-shaped domains
(cf. Section 4.3). Such a function ψ̄N,i ∈ V∗

n,2h is defined by property (10) and, roughly
speaking, controls the flux through an interface ΓN,i without influencing the Dirichlet
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boundary data of the FE solution. This property is preserved only approximately when ψ̄N,i

is projected to Th using the prolongation procedure described in Section 3.1. To exactly
guarantee vanishing normal fluxes through the faces F ∈ Fh of the fine grid, Step b) of the
prolongation process has to be adapted accordingly. Finally, the support of the resulting
function ψN,i can be minimized by setting degrees of freedom not associated with edges
located on boundary to zero. In an iterative solution process, the solution coefficients
associated with these functions are then either known due to flux boundary conditions or by
a suitable initial guess. In the latter case, the net flux through ΓN,i is finally corrected in
each iteration using an adequate projection technique.

4 Numerical examples
In this section, we evaluate the concept of discretely divergence-free finite elements in three
dimensions and, especially, the behavior of the multigrid solution technique introduced
above. For this purpose, we investigate several test cases for different computational domains
(cf. Fig. 6). We restrict ourselves to linear problems and either consider the incompressible
Stokes or Oseen equations, where the velocity field of the convective term coincides with
the solution to the incompressible Navier-Stokes equations. If not mentioned otherwise,
we are focusing on the steady-state versions of the governing equations by neglecting the
reactive term, that is, α = 0. Note that the accuracy of the solution is solely determined
by the Rannacher-Turek FE pair and is not affected by the solution technique utilizing
discretely divergence-free finite elements. Therefore, results illustrating the accuracy of the
discretization are omitted in this work and we refer to [ST94; Tur99] for detailed numerical
studies.

The multigrid solver is always executed using an F -cycle, where the coarsest level corre-
sponds to mesh level lvl = 0 and the initial guess is given by a random vector with values
uniformly distributed in [0, 1]. For pre- and post-smoothing, we either perform ν (damped)
Richardson iterations (denoted by ‘Richardson smoother’) or a GMRES method using a fixed
number of ν iterations (denoted by ‘GMRES smoother’). In both cases, we employ the Jacobi
or Gauß-Seidel preconditioner with a relaxation parameter of ω = 0.5 or ω = 1, respectively.
According to the use of non-conforming finite elements, a step length control is optionally
applied in the coarse grid correction [PB87; BV90; Tur94a], where the solution update is
scaled by αt ∈ [0.001, 2] to minimize the energy of the solution (denoted by ‘adaptive coarse
grid correction’). Otherwise, the coarse grid solution is added to the iterate without any
scaling (denoted by ‘full coarse grid correction’).

To investigate the convergence behavior of the multigrid method, we perform a maximum
number of 50 iterations and estimate the (asymptotic) rate of convergence by analyzing
the last five iterates before the norm of the residual ri reaches 100 · rmin, where rmin is the
minimal norm of the residual attained in the solution process, i.e., rmin = mini∈{1,...,50} ri.
More precisely, we define the experimental rate of convergence ϱ by

ϱ = δt

√
rt0

rt0−δt
, t0 = max

{
t ∈ {2, . . . , T} : rt ≥ 100 · rT

}
, δt = min(4, t0 − 2).
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(a) Flow around cube. (b) Flow around cylinder. (c) Flow through y-pipe.

Figure 6: Coarse grid for different test cases. Neumann boundary parts are marked in red.

Table 3: Lid driven cavity: Comparison of total number of degrees of freedom and nonzero
matrix entries for discretely divergence-free finite elements and mixed formulation.

mesh information DDFFE mixed form.

Vv Ev Fv Cv dim(V∗
h) #dofs nnz #dofs nnz

lvl = 0 27 54 36 8 100 126 3.97e3 116 2.77e3
lvl = 1 125 300 240 64 656 780 3.05e4 784 2.17e4
lvl = 2 729 1944 1728 512 4672 5400 2.38e5 5696 1.72e5
lvl = 3 4913 13 872 13 056 4096 35 072 39 984 1.88e6 43 264 1.37e6

asympt. 3Vv 3Vv Vv 8Vv 9Vv 471Vv 10Vv 333Vv

4.1 Lid driven cavity
We start our numerical investigations by considering the well-known watertight lid driven
cavity test case, where the domain Ω = (0, 1)3 is uniformly decomposed into 8lvl+1 cells on
mesh level lvl ∈ {0, 1, 2, . . .}. Each mesh has asymptotically 3Vv edges, 3Vv faces, and Vv cells
resulting in 6Vv and 3Vv functions spanning Vt,h and V∗

n,h, respectively. The corresponding
(singular) system matrix using discretely divergence-free finite elements consists of 471Vv

nonzero entries, which is about 50% larger than in case of a mixed formulation assuming
that all components of the velocity field interact with each other (cf. Table 3).

For the problem under investigation, Dirichlet boundary data

vD(x) =

{
(1, 0, 0)⊤ : x2 = 1, x1, x3 ∈ (0, 1),

(0, 0, 0)⊤ : otherwise

are strongly enforced on the entire boundary ΓD = ∂Ω. Furthermore, the viscosity parame-
ter µ is set to 0.01 while the convective term of the momentum equation is neglected resulting
in the incompressible Stokes equations mimicking a Reynolds number of Re = 0. For this
setup, the convergence behavior of a basic multigrid algorithm employing a Richardson
smoother with Jacobi preconditioning and no adaptive coarse grid correction is illustrated
in Fig. 7. Even for this simple multigrid configuration, the convergence behavior does not
depend on the level of refinement and the experimental rate of convergence is close to ϱ = 0.3
before the residual stagnates. Note that the absolute value of the residual grows with respect
to the level of refinement according to the scaling of the basis functions defined in (5).
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Figure 7: Stokes equations for lid driven cavity: History of norm of residual for multigrid
solver employing ν = 8 Richardson smoothing steps with Jacobi preconditioning
and full coarse grid correction.

By increasing the number of smoothing steps, the rate of convergence improves and less
iterations are required to reach a desired stopping criterion (cf. Table 4). However, the
use of more smoothing steps does not necessarily reduce the total computational time,
because each multigrid iteration becomes more expensive. Instead, the convergence behavior
can be improved without substantial additional effort by utilizing the adaptive coarse grid
correction. Especially for ν = 8 smoothing steps, each iteration of the multigrid algorithm
using the step length control results in a similar convergence behavior as two iterations of
the method employing αt = 1. Another improvement can be achieved by using Gauß-Seidel
preconditioning. The application of this preconditioner is obviously more expensive, but the
rate of convergence improves nearly for all choices of ν and mesh levels lvl.

4.2 Flow around cube
The next test case is given by the flow around cube problem, where the domain Ω =
(0, 2.5)× (0, 0.41)2 \ [0.45, 0.55]× [0.15, 0.25]2 is decomposed into 19 · 32 − 1 = 170 cuboidal
cells on the coarsest mesh level (cf. Fig. 6a). Here and in all subsequent test problems, a
vanishing external force h is acting on the fluid on the Neumann boundary part ΓN of the
domain specified by

ΓN =
{
s ∈ ∂Ω : nΩ = (1, 0, 0)⊤

}
. (12)

Furthermore, we always enforce a parabolic inflow boundary profile

vD(x) =
(

1
0
0

)
umax

4x2(0.41− x2)

0.412
4x3(0.41− x3)

0.412
, umax = 0.45

on Γin = {0} × (0, 0.41)2 and prescribe wall boundary conditions vD = 0 on the remaining
boundary part ∂Ω \ (ΓN ∪ Γin). Finally, the viscosity parameter is set to ν = 0.001 for the
incompressible Stokes equations under investigation.

In this problem, the computational domain contains a hole and the Dirichlet boundary part
is a union of two separated boundary parts. These parts can be treated independently when
applying Dirichlet boundary conditions and do not significantly affect the rate of convergence
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Table 4: Stokes equations for lid driven cavity: Experimental rate of convergence for multigrid
algorithm employing Richardson smoother.

full coarse
grid correction

adaptive coarse
grid correction

ν = 4 ν = 8 ν = 16 ν = 4 ν = 8 ν = 16

Ja
co

bi

lvl = 3 0.437 0.346 0.262 0.276 0.168 0.164
lvl = 4 0.386 0.313 0.251 0.311 0.101 0.099
lvl = 5 0.383 0.311 0.250 0.312 0.125 0.127
lvl = 6 0.380 0.309 0.249 0.315 0.109 0.108
lvl = 7 0.378 0.307 0.248 0.316 0.105 0.114

G
au

ß-
Se

id
el lvl = 3 0.273 0.207 0.136 0.191 0.162 0.111

lvl = 4 0.259 0.204 0.158 0.115 0.110 0.108
lvl = 5 0.259 0.204 0.156 0.129 0.097 0.045
lvl = 6 0.258 0.203 0.156 0.106 0.110 0.059
lvl = 7 0.257 0.203 0.155 0.140 0.080 0.048

(cf. Table 5). While the value of ϱ slightly deteriorates on finer meshes for ν = 4 iterations of
the Richardson smoother and Jacobi preconditioning, the solution procedure even improves
for higher mesh resolutions when employing the Gauß-Seidel preconditioner. On the other
hand, performing more than ν = 8 or ν = 4 smoothing steps only slightly reduces the
experimental rate of convergence ϱ for Jacobi or Gauß-Seidel preconditioning, respectively.
For the latter preconditioner, even the use of a GMRES smoother automatically determining
‘optimal’ relaxation parameters only pays off on coarser mesh levels for many smoothing steps.
On the other hand, the use of this smoothing strategy drastically accelerates the convergence
of the multigrid algorithm for a few smoothing steps in case of Jacobi preconditioning.

4.3 Flow around cylinder
The three-dimensional flow around cylinder benchmark was originally proposed by Schäfer
et al. [Sch+96] and simulates the flow of an incompressible and viscous fluid around a
cylindrical obstacle Ωob =

{
(x, y, z)⊤ ∈ R3 : (x − 0.5)2 + (y − 0.2)2 < 0.052

}
. For this

test case, the domain reads Ω = (0, 2.5)× (0, 0.41)2 \ Ωob (cf. Fig. 6b), while the boundary
conditions are defined as introduced in Section 4.2. Furthermore, in the refinement process,
the boundary of the unstructured mesh is adapted near the obstacle to accurately approximate
its cylindrical surface. Note that Algorithm 1 does not cover the construction of a basis for
this doughnut-shaped geometry and more sophisticated strategies are necessary to satisfy
all requirements formulated in Sections 2.2 and 2.3. Additionally, a ‘global’ function has to
be introduced to determine the correct net fluxes on both sides of the obstacle. All these
aspects slightly hinder the convergence behavior of the multigrid algorithm and justify the
use of a few additional smoothing steps (cf. Table 6). However, good convergence behaviors
can already be observed for a few smoothing steps and the Gauß-Seidel preconditioner. For
ν = 4 GMRES iterations, a single iteration of this multigrid algorithm reduces the norm of
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Table 5: Stokes equations for flow around cube: Experimental rate of convergence for multigrid
algorithm employing adaptive coarse grid correction.

Richardson GMRES

ν = 4 ν = 8 ν = 16 ν = 4 ν = 8 ν = 16

Ja
co

bi

lvl = 1 0.325 0.220 0.225 0.228 0.177 0.033
lvl = 2 0.363 0.157 0.125 0.131 0.139 0.152
lvl = 3 0.436 0.183 0.078 0.105 0.055 0.049
lvl = 4 0.449 0.170 0.078 0.113 0.063 0.037

G
au

ß-
Se

id
. lvl = 1 0.241 0.213 0.155 0.166 0.034 0.001

lvl = 2 0.142 0.141 0.145 0.150 0.155 0.083
lvl = 3 0.086 0.060 0.051 0.058 0.053 0.056
lvl = 4 0.085 0.064 0.041 0.059 0.034 0.031

Table 6: Flow around cylinder: Experimental rate of convergence for multigrid algorithm
employing GMRES smoother and adaptive coarse grid correction.

Stokes Oseen

ν = 4 ν = 8 ν = 16 ν = 32 ν = 4 ν = 8 ν = 16 ν = 32

Ja
co

bi

lvl = 1 0.270 0.242 0.250 0.132 0.723 0.505 0.280 0.216
lvl = 2 0.525 0.214 0.135 0.139 0.625 0.732 0.351 0.237
lvl = 3 0.552 0.299 0.088 0.048 0.392 0.220 0.192 0.184
lvl = 4 0.526 0.326 0.167 0.051 0.305 0.206 0.108 0.074

G
au

ß-
Se

id
. lvl = 1 0.268 0.249 0.110 0.001 0.493 0.247 0.274 0.224

lvl = 2 0.161 0.138 0.141 0.131 0.605 0.266 0.251 0.244
lvl = 3 0.238 0.058 0.047 0.049 0.208 0.192 0.190 0.191
lvl = 4 0.293 0.220 0.094 0.060 0.153 0.087 0.070 0.069

the residual roughly as much as two iterations of the solution strategy employing Jacobi
preconditioning.

If the convective term is included in the momentum equation, the Stokes equations are
generalized to the Oseen equations, resulting in a Reynolds number of Re = 20. In this
case, more multigrid iterations are generally required to reach a desired stopping criterion.
This behavior can be particularly observed on coarser mesh levels, where convection plays a
more dominant role. As a result, Jacobi preconditioning now becomes competitive for ν = 4
smoothing steps, achieving a similar experimental rate of convergence as for Gauß-Seidel
preconditioning. For more smoothing steps, the rate of convergence decreases across all
mesh levels and both preconditioning techniques, and the discrepancy between the solution
strategies under investigation diminishes.
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(a) Homogeneous Neumann boundary condition. (b) Flux boundary condition.

Figure 8: Illustration of Stokes solutions for flow through y-pipe using different boundary
conditions.

Table 7: Stokes equations for flow through y-pipe: Experimental rate of convergence for
multigrid algorithm employing GMRES smoother with Jacobi preconditioning and
adaptive coarse grid correction.

Neumann boundary Flux boundary

ν = 4 ν = 8 ν = 16 ν = 4 ν = 8 ν = 16

lvl = 1 0.184 0.143 0.014 0.148 0.021 0.001
lvl = 2 0.169 0.174 0.195 0.179 0.189 0.084
lvl = 3 0.220 0.134 0.076 0.199 0.114 0.119
lvl = 4 0.241 0.128 0.050 0.246 0.108 0.052

4.4 Flow through y-pipe
Finally, the flow through a y-pipe is considered, where the rectangular channel is split into
two branches at x1 = 41

72 , while the upper and lower pipes end at x1 = 41
18 and x1 = 41

30 ,
respectively (cf. Fig. 6c). Therefore, the Neumann boundary part ΓN defined by (12) is
decomposed into two separated segments ΓN,1 and ΓN,2 making again the construction of a
‘global’ function mandatory. For this problem, we either enforce a flux condition splitting
the flow into two equally distributed parts or prescribe homogeneous Neumann boundary
conditions as mentioned above (cf. Fig. 8). The latter configuration approximately leads to a
vanishing pressure variable on both outflow boundary parts, resulting in different pressure
drops in the channels and a splitting of the total flux in a ratio of about 2 : 1. However, the
choice of the outflow boundary condition has nearly no impact on the convergence behavior
of the multigrid algorithm employing a GMRES smoother with Jacobi preconditioning and
the adaptive coarse grid correction (cf. Table 7). Only on coarser meshes and for larger values
of ν, the solution procedure converges significantly faster if the flux boundary condition is
employed.

In Table 8, we focus on the convergence behavior of the Stokes equations augmented by the
reactive term, which can be exploited to investigate the performance of the multigrid solution
strategy for time-dependent problems. As expected, the experimental rate of convergence ϱ
is in good agreement with the results presented in Table 7 for small values of α and with
the adaptive coarse grid correction enabled. As the reactive contribution becomes more
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Table 8: Stokes equations for flow through y-pipe using Neumann boundary condition: Ex-
perimental rate of convergence for multigrid algorithm employing ν = 8 GMRES
smoothing steps with Jacobi preconditioning.

α = 109 α = 106 α = 103 α = 1 α = 10−3

full coarse
grid correction

lvl = 1 0.023 0.023 0.022 0.057 0.530
lvl = 2 0.051 0.051 0.049 0.605 0.364
lvl = 3 0.058 0.058 0.045 0.403 0.297
lvl = 4 0.053 0.053 0.076 0.333 0.293

adaptive coarse
grid correction

lvl = 1 0.063 0.063 0.063 0.023 0.197
lvl = 2 0.272 0.272 0.270 0.110 0.147
lvl = 3 0.307 0.307 0.305 0.179 0.109
lvl = 4 0.304 0.304 0.269 0.088 0.128

dominant, the governing equations converge to the incompressible Darcy equations and the
rate of convergence slightly deteriorates, but is still bounded above approximately by 0.3.
In this case, the multigrid algorithm performs better when the full coarse grid correction is
employed. However, this behavior can only be observed for large values of α and the adaptive
coarse grid correction particularly pays off for less dominant reactive contributions.

5 Conclusions
Discretely divergence-free finite elements provide an attractive option for developing solution
algorithms for the incompressible Navier-Stokes equations, as they eliminate the need for
specialized Schur complement techniques. This makes the approach particularly appealing for
problems with high anisotropies in the mesh or differential operators, which require advanced
preconditioning strategies. While this methodology has been extensively established in two
dimensions, there are only a few references addressing three-dimensional applications. These
publications primarily focus on simple geometries without Neumann boundary conditions
and ignore the construction of efficient solution techniques per sé.

In this paper, we demonstrate the feasibility of using discretely divergence-free finite
elements for more complex and highly resolved three-dimensional problems making the
approach practically more relevant. However, this comes with challenges, including the
construction of a basis for the coarsest grid level, the development of accurate intergrid
transfer operators, and the special handling of boundary conditions. Once these issues
are addressed, highly efficient multigrid solvers become available, making this approach
particularly attractive for future research.

Open questions are, for example, the design of efficient and robust algorithms for creating
a basis. Additionally, a structured and hierarchical method for eliminating certain functions
from the spanning set could further reduce the problem size and improve the efficiency
of solvers. On the other hand, practical applications may require the use of higher order
finite elements. In this regard, the methodology should be extended to other discretization
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techniques such as the well-known “Q2-P1” finite element pair, which uses continuous, piece-
wise triquadratic velocity fields with discontinuous, piecewise linear pressure approximations
(cf. [BF91]). This extension would not be limited to meshes with planar faces and could
potentially lead to even more stable multigrid solvers. Finally, the efficient treatment of
time-dependent problems as well as the development of postpressing techniques to recover
the pressure unknown in a marching fashion (cf. [GM79; Tur91]) should be considered in
order to make this approach competitive with other three-dimensional flow solvers.
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