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Abstract

A new generalization of the flux-corrected transport (FCT) methodology to implicit finite element
discretizations is proposed. The underlying high-order scheme is supposed to be unconditionally
stable and produce time-accurate solutions to evolutionary convection problems. Its nonoscillatory
low-order counterpart is constructed by means of mass lumping followed by elimination of negative
off-diagonal entries from the discrete transport operator. The raw antidiffusive fluxes, which represent
the difference between the high- and low-order schemes, are updated and limited within an outer fixed-
point iteration. The upper bound for the magnitude of each antidiffusive flux is evaluated using a single
sweep of the multidimensional FCT limiter at the first outer iteration. This semi-implicit limiting
strategy makes it possible to enforce the positivity constraint in a very robust and efficient manner.
Moreover, the computation of an intermediate low-order solution can be avoided. The nonlinear
algebraic systems are solved either by a standard defect correction scheme or by means of a discrete
Newton approach whereby the approximate Jacobian matrix is assembled edge-by-edge. Numerical
examples are presented for two-dimensional benchmark problems discretized by the standard Galerkin
FEM combined with the Crank-Nicolson time-stepping.
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1. Introduction

The advent of nonlinear high-resolution schemes for convection-dominated flows traces its
origins to the flux-corrected transport (FCT) methodology introduced in the early 1970s by
Boris and Book [1]. The fully multidimensional generalization proposed by Zalesak [29] has
formed a very general framework for the design of FCT algorithms by representing them as a
blend of linear high- and low-order approximations. Unlike other limiting techniques, which are
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typically based on geometric design criteria, flux correction of FCT type is readily applicable
to finite element discretizations on unstructured meshes [20],[21]. A comprehensive summary
of the state of the art can be found in [2],[16],[21],[30].

The design philosophy behind modern front-capturing methods involves a set of physical or
mathematical constraints to be imposed on the discrete solution so as to prevent the formation
of spurious undershoots and overshoots in the vicinity of steep gradients. To this end, the
following algorithmic components are to be specified [16],[30]

• a high-order approximation which may fail to possess the desired properties;
• a low-order approximation which does enjoy these properties but is less accurate;
• a way to decompose the difference between the above into a sum of skew-symmetric

internodal fluxes which can be manipulated without violating mass conservation;
• a cost-effective mechanism for adjusting these antidiffusive fluxes in an adaptive fashion

so that the imposed constraints are satisfied for a given solution.

Classical FCT algorithms are based on an explicit correction of the low-order solution whose
local extrema serve as the upper/lower bounds for the sum of limited antidiffusive fluxes. In
the case of an implicit time discretization, which gives rise to a nonlinear algebraic system, the
same strategy can be used to secure the positivity of the right-hand side, whereas the left-hand
side is required to satisfy the M-matrix property [11],[12].

The rationale for the development of implicit FCT algorithms stems from the fact that the
underlying linear discretizations must be stable. In particular, the use of an unstable high-
order method may give rise to nonlinear instabilities which manifest themselves in significant
distortions of the solution profiles as an aftermath of aggressive flux limiting. In the finite
element context, a proper amount of streamline diffusion can be used to stabilize an explicit
Galerkin scheme. However, the evaluation of extra terms increases the cost of matrix assembly
and the time step must satisfy a restrictive ‘CFL’ condition. On the other hand, unconditionally
stable implicit methods can be operated at large time steps (unless iterative solvers fail to
converge or the positivity criterion is violated) and there is no need for any extra stabilization.
Moreover, the overhead cost is insignificant, since the use of a consistent mass matrix leads to
a sequence of linear systems even in the fully explicit case.

The generalized FEM-FCT methodology introduced in [11],[12] and refined in [13],[14] is
applicable to implicit time discretizations but the cost of iterative flux correction is rather high
if the sum of limited antidiffusive fluxes and the nodal correction factors need to be updated
in each outer iteration. In addition, the nonlinear convergence rates leave a lot to be desired
in many cases. The use of ‘frozen’ correction factors computed at the beginning of the time
step by the standard Zalesak limiter alleviates the convergence problems but the linearized
scheme can no longer be guaranteed to remain positivity-preserving. The semi-implicit limiting
strategy proposed in [18] makes it possible to overcome this problem and enforce the positivity
constraint at a cost comparable to that of explicit flux correction. The resulting FEM-FCT
algorithm is to be recommended for strongly time-dependent problems discretized in time
by the Crank-Nicolson scheme. The design of general-purpose flux limiters which are more
expensive but do not suffer from a loss of accuracy at large time steps is addressed in [17].

In the present paper, we compare the unpublished semi-implicit FCT scheme [18] to its
semi-explicit prototype and focus on the iterative solution of the resulting nonlinear algebraic
systems. As an alternative to the straightforward defect correction scheme employed previously
[18], a discrete Newton method tailored to the peculiarities of FEM-FCT schemes is developed.
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The sparse Jacobian matrix is approximated with second-order accuracy by means of divided
differences and assembled edge-by-edge. The semi-implicit nature of the new FCT limiter
makes the Jacobian assembly particularly efficient, since the sparsity pattern of the underlying
matrices is preserved. A detailed numerical study illustrates the potential of flux-corrected
Galerkin schemes combined with discrete Newton methods for the treatment of nonlinearities.

2. Algebraic flux correction

In this paper, we adopt an algebraic approach to the design of high-resolution schemes
which consists of imposing certain mathematical constraints on discrete operators, so as to
achieve some favorable matrix properties. A very handy algebraic criterion, which represents a
multidimensional generalization of Harten’s TVD theorem, was introduced by Jameson [7],[8]
who proved that a semi-discrete scheme of the form

dui

dt
=

∑

j 6=i

cij(uj − ui), cij ≥ 0, ∀j 6= i (1)

is local extremum diminishing (LED). After the discretization in time, such schemes remain
positivity-preserving (PP) provided that each solution update un → un+1 or the converged
steady-state solution un+1 = un satisfy an algebraic system of the form

Aun+1 = Bun + f, (2)

where A = {aij} is an M-matrix, whereas B = {bij} and f = {fi} have no negative entries.
Under these conditions, the positivity of the old solution carries over to the new one [14],[16]

un ≥ 0 ⇒ un+1 = A−1[Bun + f ] ≥ 0. (3)

If the underlying spatial discretization is LED, then the off-diagonal coefficients of both
matrices have the right sign, while the positivity condition bii ≥ 0 for the diagonal entries
of B yields a readily computable upper bound for admissible time steps [16]

1 + ∆t(1 − θ)min
i

cn
ii ≥ 0 for 0 ≤ θ < 1. (4)

Of course, the above algebraic constraints are not the necessary but merely sufficient conditions
for a numerical scheme to be local extremum diminishing and/or positivity preserving. In the
linear case, they turn out to be far too restrictive. According to the well-known Godunov
theorem, linear schemes satisfying these criteria are doomed to be (at most) first-order
accurate. On the other hand, a high-order discretization which fails to satisfy the imposed
constraints unconditionally can be adjusted so that it admits an equivalent representation of
the form (1) and/or (2), where the matrix entries may depend on the unknown solution. This
idea makes it possible to construct a variety of nonlinear high-resolution schemes based on the
algebraic flux correction paradigm [16],[17].

To keep the presentation self-contained, we will follow the road map displayed in Fig. 1 and
explain the meaning of all discrete operators in the next three sections. Roughly speaking,
a high-order Galerkin discretization is to be represented in the generic form (2), where the
matrices A and B do satisfy the above-mentioned positivity constraint. In order to guarantee
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1. Semi-discrete high-order scheme (Galerkin FEM)

MC
du

dt
= Ku such that ∃ j 6= i : kij < 0

2. Semi-discrete low-order scheme L = K + D

ML
du

dt
= Lu such that lij ≥ 0, ∀j 6= i

3. Nonlinear FEM-FCT algorithm Aun+1 = Bun + f∗,

where A = ML − θ∆tL, B = ML + (1 − θ)∆tL

Figure 1. Roadmap of matrix manipulations.

that the vector f poses no hazard to positivity either, it is to be replaced by its limited
counterpart f∗ such that the right-hand side remains nonnegative for un ≥ 0. This modification
is mass-conserving provided that both f and f∗ can be decomposed into skew-symmetric
internodal fluxes as defined below. A family of implicit FEM-FCT schemes based on this
algebraic approach was proposed in [11],[12] and combined with an iterative limiting strategy
in [14]. In Section 5.2, we present an alternative generalization of Zalesak’s limiter which proves
much more robust and efficient. The new approach to flux correction of FCT type is also based
on the positivity constraint (2) but enforces it in another way so that the costly computation
of nodal correction factors is performed just once per time step. The positivity of the resulting
semi-implicit FCT algorithm will be proven in Section 5.3.

A discrete Newton approach to the solution of the nonlinear algebraic equations that need
to be solved in each time step is addressed in Section 5.4. Due to the fact that the correction
factors are computed once and for all in the first outer iteration, an efficient assembly of the
approximate Jacobian matrix is feasible for the semi-implicit FCT algorithm.

3. Semi-discrete high-order scheme

As a standard model problem, consider the time-dependent continuity equation for a scalar
quantity u transported by the velocity field v which is assumed to be known

∂u

∂t
+ ∇ · (vu) = 0. (5)

Let the discretization in space be performed by a (Galerkin) finite element method which
yields a DAE system for the vector of time-dependent nodal values

MC
du

dt
= Ku, (6)
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where MC = {mij} denotes the consistent mass matrix and K = {kij} is the discrete transport
operator. The latter may contain some streamline diffusion used for stabilization purposes
and/or to achieve better phase accuracy in the framework of Taylor-Galerkin methods [5]. Its
skew-symmetric part 1

2 (K − KT ) provides a consistent discretization of v · ∇, whereas the
symmetric part 1

2 (K + KT )− diag{K} represents a discrete (anti-)diffusion operator [27],[28].

4. Semi-discrete low-order scheme

In the case of linear discretizations, the algebraic constraints (1) and (2) can be readily enforced
by means of ‘discrete upwinding’ as proposed in [11],[12]. For a semi-discrete finite element
scheme of the form (6), the required matrix manipulations are as follows

• replace the consistent mass matrix MC by its lumped counterpart ML = diag{mi},
• render the operator K local extremum diminishing by adding an artificial diffusion

operator D = {dij} so as to eliminate all negative off-diagonal coefficients.

This straightforward ‘postprocessing’ transforms (6) into its linear LED counterpart

ML
du

dt
= Lu, L = K + D, (7)

where D is supposed to be a symmetric matrix with zero row and column sums. For each pair
of nonzero off-diagonal coefficients kij and kji of the high-order operator K, the optimal choice
of the artificial diffusion coefficient dij reads [12],[16]

dij = max{−kij , 0,−kji} = dji. (8)

Alternatively, one can apply discrete upwinding to the skew-symmetric part 1
2 (K−KT ) of the

original transport operator K, which corresponds to [17]

dij =
|kij − kji|

2
− kij + kji

2
= dji. (9)

In either case, the off-diagonal coefficients of the low-order operator lij := kij + dij are
nonnegative, as required by the LED criterion (1). Due to the zero row sum property of
the artificial diffusion operator D, the diagonal coefficients of L are given by

lii := kii −
∑

j 6=i

dij . (10)

The semi-discretized equation for the nodal value ui(t) can be represented as

mi
dui

dt
=

∑

j 6=i

lij(uj − ui) + ui

∑

j

lij , (11)

where mi =
∑

j mij > 0 and lij ≥ 0, ∀i 6= j. The last term in the above expression represents
a discrete counterpart of −u∇ · v which is responsible for a physical growth of local extrema
[16]. Recall, that the operator D has zero row sums so ui

∑

j lij = ui

∑

j kij in equation (11).
In the semi-discrete case, it is harmless since (cf. [9])

ui(t) = 0, uj(t) ≥ 0, ∀j 6= i ⇒ dui

dt
≥ 0, (12)
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which proves that the low-order scheme (7) is positivity-preserving. For the fully discrete
system to inherit this property, the time step should be chosen in accordance with the CFL-
like condition (4) unless the backward Euler time-stepping (θ = 1) is employed.

5. Nonlinear FEM-FCT algorithm

The high-order system (6) discretized in time by a standard two-level θ-scheme

[MC − θ∆tK]un+1 = [MC + (1 − θ)∆tK]un (13)

admits an equivalent representation in the form (2) amenable to flux correction

[ML − θ∆tL]un+1 = [ML + (1 − θ)∆tL]un + f(un+1, un). (14)

The last term in the right-hand side is assembled from skew-symmetric internodal fluxes fij

which can be associated with the edges of the sparsity graph [16]

fi =
∑

j 6=i

fij , where fji = −fij . (15)

Specifically, these raw antidiffusive fluxes, which offset the discretization error induced by mass
lumping and discrete upwinding, are given by the formula [14],[16]

fij = [mij + θ∆tdn+1
ij ] (un+1

i − un+1
j ) − [mij − (1 − θ)∆tdn

ij ] (un
i − un

j ). (16)

Interestingly enough, the contribution of the consistent mass matrix consists of a truly
antidiffusive implicit part and a diffusive explicit part which has a strong damping effect.
In fact, explicit mass diffusion of the form (MC − ML)un has been used to construct the
‘monotone’ low-order method in the framework of explicit FEM-FCT algorithms [20].

In the case of an implicit time discretization (0 < θ ≤ 1), the nonlinearities inherent to
the governing equation and/or to the employed high-resolution scheme call for the use of an
iterative solution strategy. Let successive approximations to the solution un+1 at the new time
level tn+1 = tn + ∆t be computed step-by-step in the framework of a fixed-point iteration

u(m+1) = u(m) + [C(m)]−1r(m), m = 0, 1, 2, . . . (17)

where C(m) denotes a suitable ‘preconditioner’ (to be defined below) that should be easy to
invert. The corresponding residual vector of the m-th outer iteration is given by

r(m) = b(m) − Au(m). (18)

Here, A represents the ‘monotone’ evolution operator for the underlying low-order scheme

A = ML − θ∆tL, L = K + D (19)

which enjoys the M-matrix property, since the off-diagonal entries of L are nonnegative by
construction. The right-hand side b(m), which needs to be updated in each outer iteration,
consists of a low-order part augmented by limited antidiffusion [16]

b(m) = Bun + f∗(u(m), un), B = ML + (1 − θ)∆tL. (20)
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In order to prevent the formation of nonphysical undershoots and overshoots, the raw
antidiffusive fluxes fij should be multiplied by suitable correction factors so that

f∗
i =

∑

j 6=i

αijfij , where 0 ≤ αij ≤ 1. (21)

This adjustment transforms (14) into a nonlinear combination of the low-order scheme
(αij ≡ 0) and the original high-order one (αij ≡ 1). The task of the flux limiter is to determine
an optimal value of each correction factor αij individually so as to remove as much artificial
diffusion as possible without violating the positivity constraint.

In a practical implementation, the ‘inversion’ of the operator C(m) is also performed by a
suitable iteration procedure for solving the sequence of linear subproblems

C(m)∆u(m+1) = r(m), m = 0, 1, 2, . . . (22)

After a certain number of inner iterations, the increment ∆u(m+1) is applied to the last iterate,
whereby the solution from the previous time step provides a reasonable initial guess

u(m+1) = u(m) + ∆u(m+1), u(0) = un. (23)

A natural choice for the preconditioner C(m) is the monotone low-order operator (19) so that
the iteration procedure (17) yields the standard fixed-point defect correction scheme [25]

Au(m+1) = b(m), m = 0, 1, 2, . . . (24)

As a (potentially) more efficient alternative, let C(m) be the discrete Jacobian matrix

J (m) = − ∂r(u)

∂u

∣

∣

∣

∣

u=u(m)

=
∂[Au − f∗(u, un)]

∂u

∣

∣

∣

∣

u=u(m)

(25)

evaluated at the last iterate u(m) so as to recover Newton’s method from (17). It is well-known
that its convergence behavior is quite sensitive to the initial guess u(0) and the quality of the
solution increment ∆u(m+1). Due to the fact that the linear subproblems (22) are solved by an
iterative technique, the resulting algorithm is categorized as an inexact Newton method [4]. A
simple inexact scheme is based on the following convergence criteria on each linear iteration

‖J (m)∆u(m+1) − r(m)‖ ≤ η‖r(m)‖, (26)

whereby the so-called forcing term η ∈ [0, 1) can be chosen adaptively [6]. Furthermore, some
globalization strategy may be required to compensate the lack of convergence robustness of
Newton’s method. For a detailed description of such techniques which are mainly designed to
guarantee a sufficient decrease of the nonlinear residual (18), the interested reader is referred
to the literature, e.g., [10]. As we are about to see, globalization is less critical due to the fact
that the proposed FEM-FCT algorithm is tailored to the treatment of strongly time-dependent
problems so that the solution from the last time step may serve as a good initial guess.

Let us briefly address some strategies for solving the large sparse, non-symmetric systems
of linear equations (22). In our experience, Krylov subspace methods such as BiCGSTAB
and GMRES, combined with preconditioning of ILU type will do. Interestingly enough, the
incomplete LU factorization of the evolution operator (19) unconditionally exists and is unique
due to the M-matrix property [22]. Hence, it is advisable to use A as preconditioner for the
Krylov solver even if the Jacobian matrix (25) is adopted in the outer iteration procedure.
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5.1. Semi-explicit FCT limiter

The first implicit FCT algorithm for finite element discretizations on unstructured meshes
[11],[12] was based on the following limiting strategy which was eventually superseded by
further extensions proposed in a series of subsequent publications [13],[14]

1. Compute the high-order solution to (14) in an iterative way by solving (17) using the
total amount of raw antidiffusion (αij ≡ 1) to assemble the term f∗.

2. Evaluate the contribution of the consistent mass matrix to the raw antidiffusive fluxes
(16) using the converged high-order solution as a substitute for un+1.

3. Solve the explicit subproblem MLũ = Bun for the positivity-preserving intermediate
solution ũ which represents an explicit low-order approximation to u(tn+1−θ).

4. Invoke Zalesak’s multidimensional FCT limiter to determine the correction factors αij

so as to secure the positivity of the right-hand side as explained below.
5. Compute the final solution by solving the linear system Aun+1 = b, where

bi = miũi +
∑

j 6=i

f∗
ij , f∗

ij = αijfij . (27)

In the fully explicit case (θ = 0), we have A = ML so that un+1 = M−1
L b can be computed

explicitly from (24), and the classical FEM-FCT algorithm of Löhner et al. [20],[21] is
recovered. The crux of the above generalization lies in the special choice of the operator A
which guarantees that the positivity of the right-hand side is preserved, whence

ũ ≥ 0 ⇒ b ≥ 0 ⇒ un+1 = A−1b ≥ 0. (28)

The flux correction process starts with an optional ‘prelimiting’ of the raw antidiffusive
fluxes fij . It consists of cancelling the ‘wrong’ ones which tend to flatten the intermediate
solution and create numerical artifacts. The required adjustment is given by [17]

f ′
ij := max{0, pij}(ũi − ũj), pij = fij/(ũi − ũj). (29)

The remaining fluxes are truly antidiffusive and need to be limited. The upper and lower
bounds to be imposed on the net antidiffusive flux depend on the local extrema

ũmax
i = max

j∈Si

ũj , ũmin
i = min

j∈Si

ũj , (30)

where Si = {j | (ϕi, ϕj) 6= 0} denotes the set of nodes which share an element with node i.
In the worst case, all antidiffusive fluxes into node i have the same sign. Hence, it is

worthwhile to treat the positive and negative ones separately, as proposed by Zalesak [29]

1. Evaluate the sums of all positive and negative antidiffusive fluxes into node i

P+
i =

∑

j 6=i

max{0, f ′
ij}, P−

i =
∑

j 6=i

min{0, f ′
ij}. (31)

2. Compute the distance to a local maximum/minimum of the low-order solution

Q+
i = ũmax

i − ũi, Q−
i = ũmin

i − ũi. (32)

3. Calculate the nodal correction factors which prevent overshoots/undershoots

R+
i = min{1,miQ

+
i /P+

i }, R−
i = min{1,miQ

−
i /P−

i }. (33)
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4. Check the sign of f ′
ij and apply R±

i or R∓
j , whichever is smaller, so that

αij =

{

min{R+
i , R−

j }, if f ′
ij > 0,

min{R−
i , R+

j }, otherwise.
(34)

This symmetric limiting strategy guarantees that the corrected right-hand side (27) satisfies
the constraint ũmin

i ≤ bi/mi ≤ ũmax
i . Due to the fact that the low-order operator A was

designed to be an M-matrix, the resulting scheme proves positivity-preserving [12],[16].

It is worth mentioning that the constituents of the sums P±
i vary with ∆t, while the

corresponding upper/lower bounds Q±
i are fixed. Consequently, the correction factors αij

produced by Zalesak’s limiter depend on the time step. This dependence, which is typical
of FCT methods, turns out to be a blessing and a curse at the same time. On the one hand,
a larger portion of the raw antidiffusive flux fij may be retained as the time step is refined.
On the other hand, the accuracy of FCT algorithms deteriorates as ∆t increases, since the
positivity constraint (2) becomes too restrictive. The iterative limiting strategy proposed in
[14] alleviates this problem to some extent by adjusting the correction factors αij in each outer
iteration so as to recycle the rejected antidiffusion step-by-step. However, the cost of iterative
flux correction is rather high and severe convergence problems may occur. Therefore, other
limiting techniques such as the general-purpose (GP) flux limiter introduced in [17] are to be
preferred for marching the solution to a steady state.

5.2. Semi-implicit FCT limiter

For truly time-dependent problems, the use of moderately small time steps is dictated by
accuracy considerations so that flux limiting of FCT type is appropriate. In this case, the
underlying time-stepping method should provide (unconditional) stability and be at least
second-order accurate in order to capture the evolutionary details. For this reason, we favor
an implicit time discretization of Crank-Nicolson type (θ = 1/2) and mention the strongly
A-stable fractional-step θ−scheme [25] as a promising alternative.

The semi-explicit limiting strategy presented in the previous section can be classified as an
algorithm of predictor-corrector type since the implicit part of the raw antidiffusive flux (16) is
evaluated using the converged high-order solution in place of un+1. This handy linearization,
which can be traced back to the classical FEM-FCT procedure [20], makes it possible to
perform flux correction in a very efficient way, since Zalesak’s limiter is invoked just once per
time step. However, a lot of CPU time needs to be invested in the iterative solution of the
ill-conditioned high-order system and the convergence may even fail if the time step is too
large. Moreover, the final solution fails to satisfy the nonlinear algebraic system (17) upon
substitution. On the other hand, an update of the auxiliary quantities P±

i , Q±
i , and R±

i in
each outer iteration would trigger the cost of flux limiting and compromise the benefits of
implicit time-stepping. In order to circumvent this problem, let us introduce a semi-implicit
FCT algorithm [18] which can be implemented as follows:

• At the first outer iteration (m = 1), compute a set of antidiffusive fluxes f̃ij which
provide an explicit estimate for the admissible magnitude of f∗

ij = αijfij

1. Initialize all auxiliary arrays by zeros: P±
i ≡ 0, Q±

i ≡ 0, R±
i ≡ 0.
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2. Compute the positivity-preserving intermediate solution of low order

ũ = un + (1 − θ)∆tM−1
L Lun. (35)

3. For each pair of neighboring nodes i and j, evaluate the raw antidiffusive flux

fn
ij = ∆tdn

ij(u
n
i − un

j ) (36)

and add its contribution to the sums of positive/negative edge contributions

P±
i := P±

i +
max
min

{0, fn
ij}, P±

j := P±
j +

max
min

{0,−fn
ij}. (37)

4. Update the maximum/minimum admissible increments for both nodes

Q±
i :=

max
min

{

Q±
i , ũj − ũi

}

, Q±
j :=

max
min

{

Q±
j , ũi − ũj

}

. (38)

5. Relax the constraint R±
i ≤ 1 for the nodal correction factors and compute

R±
i := miQ

±
i /P±

i . (39)

6. Multiply the raw antidiffusive fluxes fn
ij by the minimum of R±

i and R∓
j

f̃ij =

{

min{R+
i , R−

j }fn
ij , if fn

ij > 0,

min{R−
i , R+

j }fn
ij , otherwise.

(40)

• At each outer iteration (m = 1, 2, . . . ), assemble f∗ and plug it into (20)

1. Update the target flux (16) using the solution from the previous iteration

fij = [mij + θ∆td
(m)
ij ](u

(m)
i − u

(m)
j )

− [mij − (1 − θ)∆tdn
ij ] (un

i − un
j ). (41)

2. Constrain each flux fij so that its magnitude is bounded by that of f̃ij

f∗
ij =

{

min{fij ,max{0, f̃ij}}, if fij > 0,

max{fij ,min{0, f̃ij}}, otherwise.
(42)

3. Insert the limited antidiffusive fluxes f∗
ij into the right-hand side (20)

b
(m)
i := b

(m)
i + f∗

ij , b
(m)
j := b

(m)
j − f∗

ij . (43)

Due to the fact that fn
ij is not the real target flux but merely an explicit predictor used to

estimate the maximum amount of admissible antidiffusion, the multipliers R±
i are redefined so

that the ratio f̃ij/fn
ij may exceed unity. However, the effective correction factors αij := f∗

ij/fij

are bounded by 0 and 1, as required for consistency.
Instead of computing the optimal upper/lower bounds (32) for a given time step, it is also

possible to use some reasonable fixed bounds and adjust the time step if this is necessary
to satisfy a CFL-like condition (as in the case of TVD methods). For instance, the auxiliary
quantities Q±

i can be computed using un instead of ũ

Q+
i = max

j∈Si

un
j − un

i , Q−
i = min

j∈Si

un
j − un

i . (44)
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The corresponding nodal correction factors R±
i should be redefined as [17]

R±
i = (mi − mii)Q

±
i /P±

i , (45)

where mi−mii =
∑

j 6=i mij is the difference between the diagonal entries of the consistent and
lumped mass matrices. This modification eliminates the need for evaluation of the intermediate
solution ũ in (35) and leads to a single-step FCT algorithm.

For a given time step, the multipliers (45) will typically be smaller than those defined by (39).
However, in either case the denominator P±

i is proportional to ∆t. Therefore, the difference
between the effective correction factors αij will shrink and eventually vanish as the time step
is refined. As long as ∆t is sufficiently small, the accuracy of both FCT techniques depends
solely on the choice of the underlying high-order scheme.

5.3. Positivity proof

The positivity proof for the semi-implicit FCT algorithm (35)–(43) follows that for the classical
Zalesak limiter, see [12],[16]. In the nontrivial case f∗

i 6= 0, the i−th component of the right-
hand side (20) admits the following representation

b∗i = miũi + f∗
i = (mi − αi)ũi + αiũk, (46)

where the coefficient αi = f∗
i /(ũk − ũi) is defined in terms of the local extremum

ũk =

{

ũmax
i , if f∗

i > 0,

ũmin
i , if f∗

i < 0.
(47)

This definition implies that f∗
i = αiQ

±
i , where αi > 0. By virtue of (46), the sign of the

intermediate solution ũ is preserved if the inequality mi − αi ≥ 0 holds.
In the case f∗

i < 0, the antidiffusive correction to node i is bounded from below by

miQ
−
i ≤ R−

i P−
i ≤

∑

j 6=i

min{0, f̃ij} ≤ f∗
i = αiQ

−
i . (48)

Likewise, a strictly positive antidiffusive correction f∗
i > 0 is bounded from above by

αiQ
+
i = f∗

i ≤
∑

j 6=i

max{0, f̃ij} ≤ R+
i P+

i ≤ miQ
+
i . (49)

It follows that 0 ≤ αi ≤ mi, which proves that b∗i ≥ 0 provided that ũi ≥ 0 and ũk ≥ 0.
In light of the above, the semi-implicit FCT limiter is positivity-preserving as long as the

diagonal coefficients of the matrix B as defined in (20) are nonnegative. The corresponding
CFL-like condition (4) for the maximum admissible time step reads

(1 − θ)∆t ≤ min
i

|mi/lii|. (50)

The positivity of the single-step algorithm based on the slack bounds (44)–(45) can be proven
in a similar way using the following representation of the right-hand side

b∗i = (mi − αi)u
n
i + αiu

n
k + (1 − θ)∆t

∑

j

liju
n
j . (51)
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In this case, the limited antidiffusive correction to node i can be estimated as follows

(mi − mii)Q
−
i ≤ f∗

i ≤ (mi − mii)Q
+
i (52)

so that mi − αi ≥ mii. Thus, the right-hand side given by (51) preserves the sign of un if the
time step satisfies the positivity constraint for all diagonal coefficients

(1 − θ)∆t ≤ min
i

|mii/lii|. (53)

Under the above conditions, the M-matrix property of the low-order operator (19) is sufficient
to guarantee that each solution update is positivity-preserving if the fixed-point iteration (17)
is preconditioned by C(m) = A, ∀m. On the other hand, only the fully converged solution is
certain to remain positive if Newton’s method (C(m) = J (m), ∀m) is employed.

5.4. Calculation of Jacobians

So far, the evaluation of the Jacobian matrix necessary for Newton’s method has not
been addressed. The formal definition (25) requires the ‘differentiation’ of the antidiffusive
contribution (21) which is constructed at the fully discrete level, see (27)–(34) and/or (35)–(43).
Due to the lack of a continuous counterpart that could be differentiated ‘by hand’ no analytical
expression for the Jacobian matrix is available. Furthermore, the derivative of the low-order
operator A(u)u needs to be considered if the governing equation is nonlinear.

To this end, let us split the Jacobian operator J into its low-order part T = {tij} and the
contribution of the nonlinear flux limiter T ∗ = {t∗ij}, which yields

J = T + T ∗ + O(σ2), tij ≃ ∂(A(u)u)i

∂uj
, t∗ij ≃ −∂f∗

i (u, un)

∂uj
. (54)

Here, σ is a small scalar to be specified below. For our purposes, it is worthwhile to introduce
the central difference operator Dk[ · ] for a generic function f : R

n → R according to

Dk[f(u)] :=
f(u + σek) − f(u − σek)

2σ
, (55)

where ek denotes the k-th unit vector. As a result, each entry of the differentiated evolution
operator A(u)+A′(u)u can be approximated with second-order accuracy by tik = Dk[(A(u)u)i].
Recall that the right-hand side of equation (11) represents the convective contribution to node
i which results from the application of the modified transport operator L to the vector of nodal
values u. Substitution of the decomposed matrix-vector product (L(u)u)i into the approximate
derivative (54) and some tedious algebraic manipulations lead to [23]

tik = δikmi − θ∆tµik − θ∆t
∑

j

Dk[lij(u)]uj , (56)

where δik ∈ {0, 1} denotes the standard Kronecker delta symbol and the auxiliary quantity µik

stands for the average of the perturbed evolution coefficients resulting from discrete upwinding

µik =
lik(u + σek) + lik(u − σek)

2
, ∀ k 6= i. (57)

Moreover, it follows from (10) that the average term on the diagonal of T is given by

µii =
kii(u + σei) + kii(u − σei)

2
−

∑

j 6=i

dij(u + σei) + dij(u − σei)

2
. (58)
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Interestingly enough, expression (56) is very similar to that obtained by applying the central
difference approximation (55) directly to the differentiated evolution operator A(u) + A′(u)u.
This can be readily seen by considering the following sequence of equations

∂(A(u)u)i

∂uk
= aik +

([

∂A

∂uk

]

u

)

i

(59)

= δikmi − θ∆tlik − θ∆t
∑

j

[

∂L

∂uk

]

ij

uj . (60)

The main difference between equations (60) and (56) consists in the treatment of the second
term on the right-hand side. Note that it is also possible to abstain from averaging of the
perturbed low-order coefficients in expression (56) and employ µij = lij . In any case, it is
noteworthy that the above definition of the approximate Jacobian matrix for the low-order
evolution operator A automatically reduces to T = A if the governing equation is linear.

It remains to consider the contribution of the antidiffusive fluxes. In essence, the k-th column
of T ∗ = {t∗ij} could be readily constructed by taking the difference between the corrected fluxes
(21) evaluated at u + σek and u − σek and scale the result by 2σ. However, this approach is
prohibitively expensive since it does not exploit the sparsity of the Jacobian matrix which
is known a priori [23]. As a rule, node-oriented flux limiters give rise to some fill-in of the
Jacobian, i.e., the stencil of T ∗ is wider than that of A. In particular, this turns out to be the
case for fully implicit algebraic flux correction schemes of FCT and TVD type [15],[16],[17] but
the semi-implicit limiting strategy (35)–(43) is free of this drawback (see below). The semi-
explicit algorithm based on (27)–(34) is of predictor-corrector type and yields a non-converged
solution, so that Newton’s method is not applicable at the flux correction step.

Let X = G(A) ∈ {0, 1}n×n denote the adjacency graph of the global stiffness matrix A.
Consequently, xij = 1 iff the finite element basis functions ϕi and ϕj have overlapping supports,
that is, if there exists an edge ij. Despite the fact that A is a non-symmetric matrix, its sparsity
pattern X is symmetric so that xij = xji. To construct the approximate Jacobian J , let us
perturb the solution vector u at some node, say k, and evaluate the corrected fluxes (21) for
u + σek following the semi-explicit limiting strategy presented in section 5.1. By construction,
the nodal correction factors R±

i defined in (33) may be affected by the perturbation for
all i ∈ Sk. As a result, the final correction factors αij may differ from their unperturbed
counterparts if at least one of the nodes i and j belongs to Sk. With this observation in mind,
the enlarged sparsity pattern of J satisfies the following relation

G(J) = G(Y ), where Y = X2 ∈ {0, 1, 2}n×n. (61)

It is easy to verify that yij > 0 if and only if there exists a path of edges with length not
greater than two such that node i is reachable from j and vice versa

yij =
∑

k

xikxkj > 0 ⇔ ∃k : xik = 1 ∧ xkj = 1. (62)

Let us remark, that the impact of ‘joggling’ the solution value at some node k usually
propagates along two edges by virtue of the correction factors which need to be recalculated
in each iteration. As we are about to see, this is not the case for the semi-implicit FEM-FCT
algorithm introduced in Section 5.2 which will turn out to be the method of choice within
a discrete Newton approach. Recall that the antidiffusive fluxes f̃ij are computed once and
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for all at the beginning of each time step, see (35)–(40). In fact, they are used to constrain
the target fluxes (16) instead of adopting some multiplier αij which depends on the solution
u(m). As a consequence, the sparsity pattern of the global evolution operator A is inherited by
the Jacobian matrix J . This leads to substantial savings in terms of memory requirement as
compared to the extended sparsity pattern (61). Even more important is the increase of total
efficiency which follows from the fact, that both the assembly of J and its application within a
matrix-vector multiplication requires less CPU time. Let us present an efficient algorithm for
assembling the operator T ∗ for the semi-implicit FCT limiter in an edge-based fashion:

• At each outer iteration (m = 1, 2, . . . ), initialize T ∗ ≡ 0 and rebuild it in a loop over
edges ij. In each step, let k = i, j one after the other:

1. Evaluate the explicit antidiffusive contribution which does not depend on u(m)

fn
ij = [mij − (1 − θ)∆tdn

ij ](u
n
i − un

j ) (63)

2. Compute the auxiliary coefficients using the solution from the previous iteration

ak
ij = mij + θ∆tdij(u

(m) + σek), bk
ij = mij + θ∆tdij(u

(m) − σek) (64)

3. Update the perturbed target fluxes (16) depending on the index k

gk
ij =

{

ak
ij(u

(m)
i − u

(m)
j + σ) + fn

ij if k = i,

ak
ij(u

(m)
i − u

(m)
j − σ) + fn

ij otherwise,
(65)

hk
ij =

{

bk
ij(u

(m)
i − u

(m)
j − σ) + fn

ij if k = i,

bk
ij(u

(m)
i − u

(m)
j + σ) + fn

ij otherwise.
(66)

4. Constrain each flux gk
ij and hk

ij so that its magnitude is bounded by that of f̃ij

g∗ij =

{

min{gk
ij ,max{0, f̃ij}}, if gk

ij > 0,

max{gk
ij ,min{0, f̃ij}}, otherwise,

(67)

h∗
ij =

{

min{hk
ij ,max{0, f̃ij}}, if hk

ij > 0,

max{hk
ij ,min{0, f̃ij}}, otherwise.

(68)

5. Compute the divided difference and insert it into the Jacobian matrix T ∗

f∗
ij =

g∗ij − h∗
ij

2σ
→

{

t∗ii := t∗ii − f∗
ij , t∗ji := t∗ji + f∗

ij if k = i,

t∗ij := t∗ij − f∗
ij , t∗jj := t∗jj + f∗

ij otherwise.
(69)

The last three steps call for further explanation. Following expression (41), the target fluxes
(65)–(66) are evaluated with respect to the perturbed solution difference (ui±σek)−(uj±σek)
whereby k equals i and j one after the other. Obviously, this yields four combinations of
ui−uj±σ multiplied by ak

ij and bk
ij , respectively. Furthermore, the magnitude of the unilaterally

perturbed raw antidiffusive fluxes is bounded by that of the threshold f̃ij . Finally, the limited
central difference approximation is built into the Jacobian matrix rather than applying it to
the right-hand side (20). Note that (69) corresponds to inserting f∗

ij into the i-th and j-th row
of the k-th column of T ∗ following the algorithmic step (43) but with opposite sign.
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The above algorithm is applicable to linear and nonlinear governing equations alike. It is
worth mentioning that in the linear case the auxiliary quantities aij and bij are the same for
both k = i and k = j, whereas the perturbed fluxes satisfy the following relation

gi
ij = fij + σ[mij + θ∆tdij ] = hj

ij , (70)

gj
ij = fij − σ[mij + θ∆tdij ] = hi

ij . (71)

Here, the unperturbed target flux fij is defined as in (41). Hence, it suffices to compute the
divided difference (69) only for one index, say i, and update the Jacobian matrix as follows

t∗ii := t∗ii − f∗
ij t∗ji := t∗ji + f∗

ij ,
t∗jj := t∗jj − f∗

ij t∗ij := t∗ij + f∗
ij .

(72)

Roughly speaking, the calculation of the matrix T ∗ can be considered to be approximately twice
as expensive as augmenting the right-hand side (20) by the antidiffusive fluxes, see (41)–(43).
As we are about to see, this extra cost clearly pays off in terms of total efficiency when it
comes to time accurate simulation of transient flows. Remarkably, this improvement is already
observed if the evolution operator A = ML − θ∆tL is constant and can be assembled once and
for all at the beginning of the simulation so that the standard defect correction approach (24)
does not require further matrix evaluations. The benefits of Newton’s method become even
more significant if the preconditioner (19) needs to be updated in each outer iteration due to a
nonlinear governing equation or a linear but time-dependent velocity field v = v(x, t) so that
the costs for assembling the operators T and T ∗ may be neglected.

5.5. Convergence behavior

A remark is in order regarding the convergence behavior of the fixed-point iteration (17). The
converged solution un+1 is supposed to satisfy a nonlinear algebraic system of the form

A∗un+1 = Bun, (73)

where A∗ is the nonlinear FCT operator which includes some built-in antidiffusion

A∗un+1 := Aun+1 − f∗. (74)

Clearly, the rate of convergence will depend on ||A∗−C||, that is, the approximation property
of the preconditioner C. On the one hand, the operator A as defined in (19) is linear and
easy to ‘invert’ because it is an M-matrix. On the other hand, it represents a rather poor
approximation to the original Galerkin operator MC − θ∆tK which is recovered in the limit
αij → 1. As a result, the convergence of a highly accurate FCT algorithm based on the standard
defect correction approach is likely to slow down as the high-order solution is approached.

In light of the above, the lumped-mass version, which is obtained by setting mij = 0 in
the definition of the raw antidiffusive flux, converges much faster than the one based on the
consistent target flux (16). However, mass lumping may have a devastating effect on the
accuracy of a time-dependent solution, as demonstrated by the numerical study performed
in the next section. At the same time, the high phase accuracy provided by the consistent
mass matrix comes at the cost of slower convergence, due to the fact that the ‘monotone’
preconditioner A is based on ML rather than MC . The original high-order system (13) which
corresponds to αij ≡ 1 is particularly difficult to solve, even though it is linear (see below).
Moreover, the number of outer iterations tends to increase as the mesh is refined.
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In general, there is a trade-off between the accuracy of the numerical solution and
convergence of the fixed-point iteration (24). Any modification of the flux limiter which makes
it possible to accept more antidiffusion has an adverse effect on the nonlinear convergence
rates. Conversely, more diffusive schemes converge much better but their accuracy leaves a
lot to be desired. To overcome this shortcoming, the use of the discrete Newton method is
advisable. The number of outer iterations required to drive the residual to some prescribed
tolerance is drastically reduced and becomes largely independent of the grid refinement level.
However, one should keep in mind that the Jacobian matrix (25) does not feature the M-matrix
property so that intermediate solutions are not necessarily positivity-preserving.

6. Numerical examples

In order to evaluate the performance of the new algorithm, we apply it to several
time-dependent benchmark problems discretized using the standard Galerkin method and
the second-order accurate Crank-Nicolson time-stepping. After flux limiting, the order of
approximation (in space and time) may vary depending on the local smoothness of the solution.
The goal of this numerical study is to examine the accuracy of the resulting high-resolution
scheme as well as the convergence behavior of the fixed-point iteration (17) and the implications
of mass lumping. To this end, the semi-implicit FCT method (35)–(43) is compared to its
semi-explicit prototype (29)–(34) and to the standard Galerkin discretization. Moreover, the
standard defect correction scheme (24) and the discrete Newton approach are compared with
respect to their nonlinear convergence rates as well as computational efficiency, that is, the total
CPU time required to solve the nonlinear algebraic system (14) up to a prescribed tolerance.

6.1. Convection skew to the mesh

In order to study the convergence behavior of the semi-implicit and semi-explicit FEM-FCT
algorithms as compared to that of the underlying Galerkin scheme, let us solve equation (5)
with v = (1, 1) so that the initial profile is translated along the diagonal of the computational
domain Ω = (0, 1) × (0, 1). The numerical study is to be performed for two different initial
configurations centered at the reference point (x0, y0) = (0.3, 0.3)

TP1 The first test problem corresponds to the discontinuous initial condition

u(x, y, 0) =

{

1 if max{|x − x0|, |y − y0|} ≤ 0.1,
0 otherwise.

(75)

TP2 The second test problem deals with translation of a smooth function defined as

u(x, y, 0) =
1

4
[1 + cos(10π(x − x0))][1 + cos(10π(y − y0))] (76)

within the circle
√

(x − x0)2 + (y − y0)2 ≤ 0.1 and equal to zero elsewhere.

Figure 2 displays the approximate solutions at t = 0.5 computed using ∆t = 10−3 on a
quadrilateral mesh consisting of 128× 128 bilinear elements. The left diagrams were produced
by the consistent-mass semi-implicit FCT algorithm which yields nonoscillatory solutions
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bounded by 0 and 1. The underlying high-order scheme remains stable but gives rise to
nonphysical undershoots and overshoots, as seen in the right diagrams.

In either case, the numerical solution was computed in an iterative way using the fixed-point
defect correction scheme (17) preconditioned by the low-order operator (19). The stopping
criterion was based on the Euclidean norm of the residual vector

r = Aun+1 − Bun − f∗, ||r|| =
√

rT r (77)

which was required to satisfy the inequality ||r|| ≤ 10−4. The difference between the exact
solution u and its finite element approximation uh was measured in the L1-norm

||u − uh||1 =

∫

Ω

|u − uh|dx ≈
∑

i

mi|u(xi, yi) − ui| (78)

FEM-FCT Galerkin scheme

Figure 2. Convection skew to the mesh: 128 × 128 Q1−elements, t = 0.5.
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standard defect correction

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

semi-implicit FCT / consistent mass matrix

6 4,225 2,500 1.1737e-2 6.2176e-2 0.0 1.0
7 16,641 2,461 7.3688e-3 4.8577e-2 0.0 1.0
8 66,049 2,489 4.7039e-3 3.8715e-2 0.0 1.0

semi-implicit FCT / lumped mass matrix

6 4,225 751 1.9356e-2 8.4294e-2 0.0 0.9988
7 16,641 1,000 1.2402e-2 6.5356e-2 0.0 1.0000
8 66,049 1,014 7.8511e-3 5.1182e-2 0.0 1.0000

Galerkin scheme / consistent mass matrix

6 4,225 4,666 3.6283e-2 7.4952e-2 -0.2557 1.4505
7 16,641 7,379 2.7340e-2 5.8124e-2 -0.2743 1.3797
8 66,049 13,852 2.3000e-2 5.2536e-2 -0.4437 1.4080

Galerkin scheme / lumped mass matrix

6 4,225 1,000 6.5181e-2 1.3073e-1 -0.4022 1.5608
7 16,641 1,423 4.7055e-2 9.8663e-2 -0.4340 1.5732
8 66,049 1,500 3.5126e-2 8.0298e-2 -0.3713 1.5628

semi-explicit FCT / consistent mass matrix

6 4,225 3,190 9.3328e-3 5.4115e-2 0.0 1.0
7 16,641 3,220 5.4794e-3 4.1218e-2 0.0 1.0
8 66,049 3,590 3.3680e-3 3.2369e-2 0.0 1.0

semi-explicit FCT / lumped mass matrix

6 4,225 1,500 1.9098e-2 8.3498e-2 0.0 0.9989
7 16,641 1,501 1.2422e-2 6.5348e-2 0.0 1.0000
8 66,049 1,540 7.8662e-3 5.1167e-2 0.0 1.0000

Table I. Convection skew to the mesh: discontinuous initial data.

as well as in the L2-norm defined by the following formula

||u − uh||22 =

∫

Ω

|u − uh|2 dx ≈
∑

i

mi|u(xi, yi) − ui|2, (79)

where mi =
∫

Ω
ϕi dx are the diagonal coefficients of the lumped mass matrix. Furthermore,

the global minimum umin = mini ui and maximum umax = maxi ui of the discrete solution uh

were compared to their analytical values 0 and 1.
Tables I and II illustrate the convergence behavior of the iterative flux/defect correction

scheme as applied to the test problems TP1 and TP2 on three successively refined meshes.
The first three columns in each table display the refinement level NLEV, the number of
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vertices/nodes NVT and the total number of outer iterations NDC required to compute
the numerical solution at t = 0.5. The different performance of the six algorithms under
consideration supports the arguments presented in Section 5.5. In particular, it can readily
be seen that the use of the consistent mass matrix results in a much better accuracy but the
convergence slows down, whereas the lumped-mass version is less accurate but much more
efficient. If the difference ||un+1−un|| is large, mass antidiffusion affects the convergence rates
even stronger than the convective part of the antidiffusive flux. Since the latter is proportional
to ∆t, the mass lumping error plays a dominant role at small time steps such that A ≈ ML.
On the other hand, the linear convergence rates improve since the condition number of A
decreases and its diagonal dominance is enhanced as the time step is refined.

Note that the consistent-mass Galerkin scheme faces severe convergence problems and the
error may even increase in the course of mesh refinement (see Table II). By contrast, the results
computed by the semi-implicit FCT algorithm exhibit a monotone grid convergence as well
as some improvement of the convergence rates. Even the consistent-mass version converges
slowly but surely to a nonoscillatory time-accurate solution. For large time steps, the single-
step implementation based on (44)–(45) would be more diffusive and converge faster. However,
for time steps as small as the one employed in this section, it would be just as accurate
and converge at the same rate as the algorithm (35)–(43). The values of umax in Table II
reveal that flux correction may lead to undesirable ‘peak clipping’, which is a well-known
phenomenon discussed, e.g., in [16],[29]. On the other hand, the associated high-order solution
is corrupted by undershoots and overshoots which are particularly large for discontinuous initial
data (Table I) and less pronounced for the smooth cosine hill (Table II). These nonphysical
oscillations result in a dramatic loss of accuracy and slow/no convergence, so that the results
are inferior to those produced by the semi-implicit FCT algorithm using the same settings.

It is not unusual that semi-explicit flux correction (29)–(34) as applied at the end of each time
step to the converged high-order predictor requires less outer iterations than the underlying
Galerkin scheme (see Tables I and II). However, the residual of the flux-corrected solution
can no longer be controlled and the total number of defect correction steps is considerably
greater than that for the semi-implicit FCT limiter, whereas the accuracy of the resulting
solutions is comparable. Of course, the linear system (13) could be solved in one step (without
resorting to defect correction) but this straightforward approach would inevitably lead to a
severe deterioration of the linear convergence rates. Indeed, the high-order operator MC−θ∆tK
is much harder to ‘invert’ than the preconditioner A which enjoys the M-matrix property. In
many cases, the high-order solution may prove prohibitively expensive or even impossible to
compute in such a brute-force way, unless a direct solver is employed. Hence, even linear
high-order systems of the form (14) call for the use of iterative defect correction [12].

In order to obtain a better insight into the error reduction rate, Figure 3 displays the L1-
errors (top) and L2-errors (bottom) of all six methods for both benchmark configurations. For
each discretization, the solid line denotes the consistent mass matrix whereas the ‘lumped’
version is indicated by dashed lines. Obviously, the rate of convergence is the same for the
implicit (circular markers) and explicit (square markers) FCT algorithm whereby the norm
of the error is slightly smaller for the latter one if the consistent mass matrix is adopted.
Interestingly enough, both FCT algorithms produce nearly the same results if mass lumping
is performed. On the other hand, the solution produced by the high-order Galerkin scheme
denotes by triangular markers is less accurate which manifests itself in greater error norms.
Moreover, it suffers from severe convergence problems if the consistent mass matrix is adopted

19



and fails completely for the second test problem if the mesh is successively refined.

The marginally better accuracy of the semi-explicit FEM-FCT scheme as compared to its
semi-implicit counterpart can be attributed to the better phase characteristics of the high-order
Galerkin scheme employed at the predictor step. On the other hand, the involved splitting error
may become pronounced in other settings, especially as the time step is increased. Moreover,
the linear and/or nonlinear convergence rates leave a lot to be desired so that the semi-implicit
approach combined with the discrete Newton method is preferable in many cases.

standard defect correction

NLEV NVT NDC ||u − uh||1 ||u − uh||2 umin umax

semi-implicit FCT / consistent mass matrix

6 4,225 2,486 1.4799e-3 9.2813e-3 0.0 0.8562
7 16,641 1,833 4.3436e-4 2.7820e-3 0.0 0.9418
8 66,049 2,867 1.7887e-4 1.2032e-3 0.0 0.9740

semi-implicit FCT / lumped mass matrix

6 4,225 1,000 4.2704e-3 2.7827e-2 0.0 0.7308
7 16,641 1,000 1.7834e-3 1.1294e-2 0.0 0.9218
8 66,049 736 7.6982e-4 4.6142e-3 0.0 0.9612

Galerkin scheme / consistent mass matrix

6 4,225 2,500 1.3961e-3 2.6234e-3 -0.0158 0.9890
7 16,641 6,437 1.8892e-3 3.9001e-3 -0.0480 0.9925
8 66,049 13,700 2.3237e-3 8.1553e-3 -0.1363 1.0012

Galerkin scheme / lumped mass matrix

6 4,225 1,000 1.0904e-2 4.2409e-2 -0.1911 0.8809
7 16,641 1,000 3.4837e-3 1.4234e-2 -0.0811 1.0098
8 66,049 1,000 1.3092e-3 4.3179e-3 -0.0322 1.0046

semi-explicit FCT / consistent mass matrix

6 4,225 2,651 1.0770e-3 7.6799e-3 0.0 0.8555
7 16,641 2,328 2.8414e-4 2.1692e-3 0.0 0.9471
8 66,049 3,434 1.3188e-4 9.8597e-4 0.0 0.9775

semi-explicit FCT / lumped mass matrix

6 4,225 1,500 4.2671e-3 2.7760e-2 0.0 0.7296
7 16,641 1,500 1.7751e-3 1.1237e-2 0.0 0.9211
8 66,049 1,500 6.4767e-4 3.8591e-3 0.0 0.9653

Table II. Convection skew to the mesh: smooth initial data.
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6.2. Swirling flow

Let us proceed to another two-dimensional benchmark problem proposed by LeVeque [19]. It
deals with a swirling deformation of initial data by the incompressible velocity field given by

vx = sin2(πx) sin(2πy)g(t), vy = − sin2(πy) sin(2πx)g(t).

The initial condition to be prescribed is a discontinuous function of the spatial coordinates
which equals unity within a circular sector of π/2 radians and zero elsewhere:

u(x, y, 0) =

{

1 if (x − 1)2 + (y − 1)2 < 0.8,

0 otherwise.

TP3 For the first test problem, let us employ a constant velocity profile which corresponds to

g(t) ≡ 1.

TP4 For the second test problem, we adopt a more ‘agile’ velocity field and let

g(t) = cos(πt/T ), 0 ≤ t ≤ T.

TP1: discontinuous initial data
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Figure 3. Convection skew to the mesh: error reduction.
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TP3: Q1−/P1−elements, t = 2.5 TP4: t = 0.75/t = 1.5, T = 1.5

Figure 4. Swirling deformation: semi-implicit FEM-FCT, 128 × 128 finite elements.

For both benchmark configurations, the mass distribution assumes a complex spiral shape in
the course of deformation. Figure 4 displays the numerical solutions calculated by the semi-
implicit FCT algorithm (35)–(43) with consistent mass matrix using the time step ∆t = 10−3.

Recall that for TP3, the low-order evolution operator A remains constant and can be
assembled once and for all at the beginning of the simulation. The numerical results at
time t = 2.5 are computed on a uniform mesh of 128 × 128 bilinear finite elements and
depicted in Figure 4 (top-left). The use of a piecewise-linear finite element approximation
on a triangular mesh with the same number of nodes yields virtually the same solution, see
Figure 4 (bottom-left). For the difference between the underlying triangulations to be visible,
both profiles were output on a coarser mesh consisting of 4,225 vertices. In either case, the
resolution of discontinuities is seen to be remarkably crisp. These results compare well to those
presented in [16] using algebraic flux correction schemes of TVD type.

On the other hand, the velocity vector is strongly time-dependent for benchmark TP4. Right
after the startup, the flow slows down and reverses at t = T/2 such that the initial profile is
recovered as exact solution at the final time t = T , that is, u(x, y, T ) = u(x, y, 0). The value
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NLEV NVT CPU NN NN/∆t NL NL/NN umin umax

‖r‖ ≤ 10−4

5 1,089 6 2,500 1.0 2,500 1.0 0.0 1.0
6 4,225 23 2,500 1.0 5,000 2.0 0.0 1.0
7 16,641 95 2,500 1.0 5,000 2.0 0.0 1.0
8 66,049 422 2,500 1.0 5,000 2.0 0.0 1.0

‖r‖ ≤ 10−8

5 1,089 52 46,809 18.72 46,820 1.0 0.0 1.0
6 4,225 200 47,046 18.82 49,546 1.05 0.0 1.0
7 16,641 896 44,827 17.93 51,858 1.17 0.0 1.0
8 66,049 4,212 43,405 17.36 63,425 1.46 0.0 1.0

‖r‖ ≤ 10−12

5 1,089 148 142,586 57.03 142,597 1.0 0.0 1.0
6 4,225 676 160,254 64.10 162,754 1.01 0.0 1.0
7 16,641 3,311 177,602 71.04 184,550 1.04 0.0 1.0
8 66,049 15,875 192,895 77.16 212,495 1.10 0.0 1.0

Table III. TP3: semi-implicit FCT with consistent mass matrix, defect correction.

T = 1.5 is used which corresponds to performing 1, 500 time steps of size ∆t = 10−3. The
numerical solutions at t = 0.75 and t = 1.5, which are displayed in Figure 4 (right), were
calculated on a mesh of 128× 128 bilinear finite elements by the semi-implicit FCT algorithm
with the consistent mass matrix. The solution profiles resulting from the application of the
lumped mass matrix are slightly more diffusive but ‘look’ quite similar.

For these two benchmark configurations, we performed an in-depth convergence study on
four successively refined quadrilateral meshes. A detailed comparison between the standard
defect correction method and the discrete Newton approach is presented in Tables III–V.

As before, the first two columns display the refinement level NLEV and the number of
vertices/nodes NVT. All tests were performed on an Intel Core Duo T2400 (1.83 GHz, FSB
667 MHz) processor with 1024 MB (553 MHz) of system memory. The code was compiled with
the Intel Fortran 9.1 Compiler for Linux making use of the -fast switch which yields the best
results for this setup. The total CPU time (in seconds) required to reduce the norm of the
nonlinear residual to the prescribed tolerance in each time step is given in the third column. In
the next four columns, the total number of nonlinear iterations (NN), the number of nonlinear
iterations per time step (NL/∆t), the total number of linear iterations (NL) and the number
of linear iterations per nonlinear iteration (NL/NN) are displayed in successive order. Due to
the lack of an exact solution for this benchmark configuration only the global minimum and
maximum of the discrete solution uh are compared to their analytical values 0 and 1.

It can be seen from Table III that the convergence behavior of the standard defect correction
scheme deteriorates significantly if the tolerance for the residual norm is reduced from 10−8

to 10−12. Moreover, for the latter one, the number of outer iterations increases if the mesh is
successively refined. On the other hand, the minimal and maximal solution values perfectly
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NLEV NVT CPU NN NN/∆t NL NL/NN umin umax

‖r‖ ≤ 10−4

5 1,089 7 2,500 1.0 2,500 1.0 -1.789e-02 1.026
6 4,225 24 2,500 1.0 2,500 1.0 -9.153e-03 1.054
7 16,641 102 2,500 1.0 2,500 1.0 -3.906e-02 1.121
8 66,049 442 2,500 1.0 2,500 1.0 -5.087e-02 1.202

‖r‖ ≤ 10−8

5 1,089 32 9,891 3.96 44,547 4.50 -1.319e-11 1.0
6 4,225 138 9,917 3.97 48,379 4.88 -1.430e-09 1.0
7 16,641 611 9,294 3.72 49,464 5.32 -5.427e-12 1.0
8 66,049 2,736 8,974 3.59 50,991 5.68 -8.505e-09 1.0

‖r‖ ≤ 10−12

5 1,089 84 25,640 10.26 123,412 4.81 0.0 1.0
6 4,225 369 26,538 10.62 141,645 5.34 0.0 1.0
7 16,641 1,674 25,061 10.02 146,212 5.83 0.0 1.0
8 66,049 7,113 22,287 8.91 139,868 6.28 0.0 1.0

Table IV. TP3: semi-implicit FCT with consistent mass matrix, Newton’s method, η = 10−4.

match their analytical bounds 0 and 1 due to the M-matrix property of A.

The convergence behavior of the discrete Newton approach making use of a constant forcing
term η = 10−4 as suggested in [3] is displayed in Table IV. This choice is quite restrictive
and requires uniformly close approximations of Newton steps in each nonlinear iteration. It
reportedly yields local q-linear convergence in some special norm [6]. As compared to the defect
correction approach, the number of outer iterations is drastically reduced for all prescribed
tolerances and, in addition, it does not increase for finer grids. Based on the moderate number
of linear sub-iterations we believe that the ILU-decomposition of the monotone evolution
operator A constitutes an appropriate preconditioner for the employed BiCGSTAB algorithm.
We would like to emphasize that convergence of the fixed-point iteration is a prerequisite for the
Newton method to remain positivity-preserving. This is best illustrated by the unsatisfactory
minimal and maximal solution values for the loose residual tolerance 10−4.

Let us briefly address the phenomenon of oversolving [6] the linear subproblems. To this
end, we relax the forcing term η = 10−1 and leave all other parameters unchanged. The results
computed by the discrete Newton method are shown in Table V. The nonlinear convergence
behavior is quite similar to that observed for the more restrictive choice η = 10−4. However,
the number of inner iterations is reduced by a factor of 2.5 − 3, which results in a significant
reduction of the overall CPU time. Our experiments with different strategies for choosing the
forcing term η adaptively [6] and even solving the linear subproblems directly [26] revealed
the fact, that the simplest choice η = 10−1 yields the most competitive results in terms of
overall performance for this class of time-dependent flows. On the one hand, the time step
∆t = 10−3 was chosen moderately small to resolve the temporal evolution with high precision.
On the other hand, the amount of antidiffusion accepted by the FCT flux limiter is inversely
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NLEV NVT CPU NN NN/∆t NL NL/NN umin umax

‖r‖ ≤ 10−4

5 1,089 7 2,500 1.0 2,500 1.0 -1.789e-02 1.026
6 4,225 24 2,500 1.0 2,500 1.0 -9.153e-03 1.054
7 16,641 104 2,500 1.0 2,500 1.0 -3.906e-02 1.121
8 66,049 443 2,500 1.0 2,500 1.0 -5.085e-02 1.202

‖r‖ ≤ 10−8

5 1,089 22 10,008 4.0 17,436 1.74 -4.087e-10 1.0
6 4,225 85 9,997 4.0 17,574 1.76 -1.165e-09 1.0
7 16,641 370 9,938 3.98 17,944 1.81 -9.854e-09 1.0
8 66,049 1,597 9,472 3.79 18,005 1.90 -1.797e-07 1.0

‖r‖ ≤ 10−12

5 1,089 56 26,448 10.75 45,770 1.70 0.0 1.0
6 4,225 223 27,697 11.08 48,512 1.75 0.0 1.0
7 16,641 939 25,922 10.37 49,030 1.89 0.0 1.0
8 66,049 3,787 22,540 9.02 47,634 2.11 0.0 1.0

Table V. TP3: semi-implicit FCT with consistent mass matrix, Newton’s method, η = 10−1.

proportional to ∆t so that the computed solution profiles become more diffusive if larger time
steps are employed. Consequently, the convergence rates of the defect correction method and
of the discrete Newton algorithm improve but the solution is smeared by numerical diffusion.

It is well known that choosing an appropriate perturbation parameter σ is a delicate task.
In our simulations we employed σ = [(1 + ‖u‖)ǫ]1/3, where ǫ denotes the machine precision,
as proposed by Pernice et al. and successfully used in the NITSOL package [24]. In order to
investigate the influence of this ‘free’ parameter we repeated the simulation on mesh level
7 for fixed parameter values σ = ǫ and σ = 0.01, respectively. Figure 5 (left) displays
the nonlinear convergence behavior for the different solution strategies. The creeping defect
correction method is marked by stars whereas circles stand for the most rapidly converging
Newton method (η = 10−1, σ = ǫ). Using machine precision as perturbation parameter works
for this test case, but it is likely to diverge in other situations due to round-off errors and,
hence, not to be recommended in general. The strategy proposed by Pernice et al. (square
markers) requires slightly more nonlinear steps but turns out to be more robust. Furthermore,
the devastating effect of choosing the perturbation parameter too large, e.g., σ = 0.01, is
illustrated by the fourth curve (triangles). If σ is increased even further, the convergence of
Newton’s method slows down until it resembles that of the defect correction approach.

Another quantity of interest is the computing time per time step spent for each vertex, which
is illustrated in Figure 5 (right). Here, the circles correspond to the standard defect correction
approach whereas triangles and squares stand for Newton’s method making use of the forcing
term η = 10−4 and η = 10−1, respectively. The three curves plotted for each method denote
the different tolerances for the nonlinear residual. It is worth mentioning that for the least
restrictive choice η = 10−1, the nodal CPU time remains nearly constant if the number of
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Figure 5. TP3: influence of σ, t ∈ [1.0, 1.0 + ∆t] / nodal CPU time.

vertices is increased, whereas a systematic growth is observed for both other methods.

Table VI illustrates the convergence behavior of the different solution methods and the
errors of the finite element approximation uh at time t = 1.5 for our benchmark configuration
TP4. For all computations, a moderate stopping criterion ‖r‖ ≤ 10−8 was used and the
approved forcing strategy η = 10−1 was adopted for Newton’s method. Moreover, the
perturbation parameter σ was computed as proposed by Pernice et al. [24] and utilized for
the divided difference approximation. All other parameter settings, e.g., the configuration of
the linear solver, remain unchanged. It can be readily seen that the discrete Newton approach
outperforms the standard defect correction scheme in all situations.

Figure 6 (left), illustrates the CPU time spent per node in each time step which remains
nearly constant for all mesh levels. As before, the circular markers correspond to the standard
defect correction method, whereas squares are used for the discrete Newton approach. Here,
the dashed lines represent the lumped-mass versions of the two algorithms. The significant
overhead costs of the slowly converging defect correction method are clearly visible. The
solution errors, which are virtually the same for both nonlinear solution strategies, exhibit
a monotone reduction on sufficiently fine meshes as illustrated in Figure 6 (right).

7. Conclusions

The semi-implicit approach to flux correction of FCT type leads to a robust and efficient
special-purpose algorithm for time-dependent problems discretized in space by the finite
element method. The accuracy of the resulting scheme improves as the time step is refined and
the consistent mass matrix can be included in a positivity-preserving fashion. The new limiting
strategy makes it possible to avoid a repeated computation of the nodal correction factors at
each outer iteration. Therefore, the use of an implicit time-stepping method pays off in spite
of the CFL-like condition to be satisfied by the time step in the case θ < 1. For sufficiently
small time steps, the new algorithm is more accurate and/or efficient than the algebraic flux
correction schemes proposed in [12],[14]. On the other hand, it is not to be recommended for
steady-state computations which call for the use of large time steps. In this case, both the
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Figure 6. TP4: nodal CPU time / error reduction.

NLEV NVT CPU NN NN/∆t NL NL/NN ‖u − uh‖1 ‖u − uh‖2

defect correction / consistent mass matrix

5 1,089 89 24,136 16.09 24,136 1.0 2.7748e-2 8.8019e-2
6 4,225 333 22,694 15.13 23,488 1.03 1.5630e-2 6.7038e-2
7 16,641 1,293 19,883 13.26 21,954 1.10 8.8456e-3 5.0641e-2
8 66,049 5,203 17,959 11.97 22,812 1.27 5.1680e-3 3.8747e-2

defect correction / lumped mass matrix

5 1,089 17 2,720 1.81 2,720 1.0 4.5446e-2 1.1689e-1
6 4,225 57 2,738 1.83 3,481 1.27 2.9877e-2 9.4992e-2
7 16,641 259 2,804 1.87 3,818 1.36 1.9192e-2 7.5658e-2
8 66,049 1,186 2,953 1.97 4,777 1.62 1.2250e-2 5.9934e-2

Newton’s method / consistent mass matrix

5 1,089 28 5,506 3.67 9,501 1.73 2.7743e-2 8.8007e-2
6 4,225 106 5,241 3.94 9,074 1.73 1.5624e-2 6.7021e-2
7 16,641 442 4,831 3.22 8,342 1.73 8.8374e-3 5.0609e-2
8 66,049 1,844 4,506 3.0 7,802 1.73 5.1604e-3 3.8719e-2

Newton’s method / lumped mass matrix

5 1,089 12 1,510 1.01 1,510 1.0 4.5441e-2 1.16882e-1
6 4,225 42 1,513 1.01 1,513 1.0 2.9868e-2 9.4975e-2
7 16,641 188 1,572 1.05 1,572 1.0 1.9175e-2 7.5623e-2
8 66,049 910 1,803 1.20 1,803 1.0 1.2231e-2 5.9887e-2

Table VI. TP4: semi-implicit FCT, ‖r‖ ≤ 10−8, η = 10−1.
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limiting strategy and the underlying constraints need to be redefined as explained in [17].

In order to solve the nonlinear algebraic systems, a discrete Newton approach was devised
making use of the fact that the underlying sparsity pattern is known a priori. The Jacobian
matrix was assembled edge-by-edge using numerical differentiation as applied to the low-order
operator and to the vector of limited antidiffusive fluxes. The use of a new semi-implicit limiting
strategy makes it possible to assemble the Jacobian matrix in a particularly efficient way, which
results in a significant reduction (by a factor of 2.5− 3.5) of the total CPU time as compared
to standard defect correction. The semi-explicit FCT algorithm was found to provide a slightly
better accuracy for the test cases considered in the present paper. However, the high-order
system to be solved at the predictor step is extremely ill-conditioned, which calls for the use
of a slowly converging defect correction scheme preconditioned by the low-order operator.
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Springer, 2005; 29-78.

29


