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Abstract. In this paper we discuss numerical simulation techniques using a finite element
approach in combination with the fictitious boundary method (FBM) for rigid particulate flow
configurations in 3D. The flow is computed with a multigrid finite element solver (FEAT-
FLOW), the solid particles are allowed to move freely through the computational mesh which
can be static or adaptively aligned by a dynamic grid deformation method allowing structured
as well as unstructured meshes. We explain the details of how we can use the fictitious bound-
ary method to simulate flows with complex geometries, that are hard to describe analytically.
Stationary and time-dependent numerical examples, demonstrating the use of such geometries
are provided. Our numerical results include well-known benchmark configurations showing
that the method can accurately and efficiently handle prototypical particulate flow situations
in 3D with particles of different shape and size.

1 INTRODUCTION

Numerical simulation of rigid particulate flows or the motion of small rigid particles in a
viscous liquid is one of the main focuses of engineering research and still a challenging task
in many applications. Depending on the area of application, these types of problems arise
frequently in numerous settings, such as sedimenting and fluidized suspensions, lubricated
transport, hydraulic fracturing of reservoirs, slurries, understanding solid-liquid interaction or
medical applications. Several numerical simulation techniques for particulate flow have been
developed over the past two decades. In these methods, the fluid flow is governed by the
continuity and momentum equations, while the particles are governed by the equation of mo-
tion for a rigid body. The flow field around each individual particle is resolved so that the
hydrodynamic force between the particle and the fluid can be explicitly obtained. The origins
of finite element based simulations of particulate flows in Newtonian and viscoelastic fluids
can be found in the work of Hu, Joseph and coworkers [18, 19], Galdi [10] and Maury [22].
This approach is based on the use of unstructured grids and an Arbitrary Lagrangian-Eulerian
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(ALE) technique. Both the fluid and solid equations of motion are incorporated into a single
coupled variational equation. At each time step, a new mesh is generated when the old one
becomes too distorted, and the flow field is projected onto the new mesh. In this scheme, the
positions of the particles and grid nodes are updated explicitly, while the velocities of the fluid
and the solid particles are determined implicitly.
A different approach is based on the concept of ’ficitious domains’. The idea of this Eulerian
method is to simulate the presence of an additional domain, the ’fictitious domain’, inside
the computational domain. This in turn implies the existence of a boundary between these
domains, this boundary is realized by adding appropriate terms to the mathematical model.
Applying this concept to particulate flows, the particle domain is treated as a fluid with ad-
ditional constraints to impose proper rigid body motion. Several implementational variants
of this general principle exist, the variants differ mainly in the mathematical realization of
the boundary, the way the rigid motion is imposed on the particle domain or in the numer-
ical solution process of the problem. Apart from these differences, all the methods have in
common that they allow the use of a fixed grid, not depending on remeshing. The idea was
first published by Glowinski, Joseph, Patankar and coauthors [11, 26, 12, 13], who proposed a
approach based on a distributed Lagrange multiplier (DLM)/fictitious domain method for the
direct numerical simulation of large number of rigid particles in fluids. In the DLM method, the
entire fluid-particle domain is assumed to be a fluid and then the particle domain is constrained
to rigid body motion. The fluid-particle coupling is treated implicitly using a combined weak
formulation in which the mutual forces cancel. Pan et al. [27] applied the method in a 3D
simulation with 1204 spheres. The following work by Patankar and Sharma [28, 29] further
enhanced the efficiency and decreased the solution time, which was achieved by an efficient
projection scheme and a fast implementation of the rigid motion constraint. Further recent
publications of 3D particulate flow simulations using the fictitious domain method include
Boenisch [3], Cottet/Coquerelle [6] and Blasco [2]. Our group [34, 35, 36] presented another
multigrid fictitious boundary method (FBM) for the detailed simulation of particulate flows
which is based on a fixed unstructured FEM background grid. The motion of the solid particles
is modeled by the Newton-Euler equations. Based on the boundary conditions applied at the
interface between the particles and the fluid, which can be seen as an additional constraint
to the governing Navier-Stokes equations, the fluid domain can be extended into the whole
domain which covers both fluid and particle domains. An advantage of these fictitious domain
methods over the generalized standard Galerkin finite element method is that the fictitious
domain methods allow a fixed grid to be used, eliminating the need for remeshing, and they can
be handled independently from the flow features. Much progress has been made for adopting
the fictitious domain methods to simulate particulate flows, yet the quest for more accurate
and efficient methods remains active. An underlying problem when adopting the fictitious
domain methods is that the boundary approximation is of low accuracy only. Particularly in
three space dimensions, the ability of the fictitious domain methods to deal with the interac-
tion between fluid and rigid particles accurately is greatly limited. One remedy is to preserve
the mesh topology, for instance as generalized tensorproduct or blockstructured meshes, while
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a local alignment with the physical boundary of the solid particles is achieved by a moving
mesh process, such that the boundary approximation error can be significantly decreased.

The primary objective of this paper is to give a formulation of the multigrid fictitious
boundary method (FBM) in 3D, to describe the details of how complex geometry can be
used with the FBM and to show the validity of the methodology applying it to benchmark
configurations. In these benchmarks, we will use the FBM to simulate an incompressible flow
with stationary and moving rigid bodies. In this context our focus lies on the calculation of the
forces acting on the rigid bodies, which are highly important for the study of the interaction
between the fluid and the rigid bodies. In particular, these forces are the drag, lift and torque
forces, which act on the surface of the rigid body. This gives rise to some problems, that have
to be overcome in order to effectively use the FBM. These problems are that the surface of the
rigid body is implicitly represented by a fixed mesh, so the quality of the surface approximation
and consequently the accuracy of the drag/lift calculations depends on the refinement level of
the grid. Furthermore, the surface is represented implicitly, so the surface integral formulation
of the drag and lift forces cannot be used directly in the FBM framework. In the 2D case our
remedy for the latter problem was to integrate over the area occupied by the rigid body rather
than integrating over the boundary of the rigid body. In the 3D case this generalizes to a volume
integral formulation. The remaining problem of surface approximation we intend to solve by
a grid deformation method [16], which was shown to significantly improve results in the 2D
case [36]. Another important topic concerning particulate flows is the treatment of collisions,
which can be a highly difficult task in case of multiple moving rigid bodies of complex shape
in 3D. For our current work we use the collision model presented in [34], which was extended
to 3D and non-spherical geometries. In future work we consider using more sophisticated
collision models based on the work of Maury [23], Ardekani/Rangel [1] or Lefebvre [20]. The
organization of the paper is as follows: In Section 2, the physical models, our technique for
complex geometries together with collision and agglomeration models for rigid particulate flows
are described. The detailed numerical schemes including the multigrid FBM method are given
in Section 3. Numerical experiments are implemented and their computational results will be
presented in Section 4. The concluding remarks will be given in Section 5. In the appendix
we present stationary results of the multigrid FBM combined with grid deformation.

2 DESCRIPTIONS OF THE PHYSICAL MODELS

2.1 Governing Equations

In our numerical studies of particle motion in a fluid, we will assume that the fluids are
immiscible and Newtonian. The particles are assumed to be rigid. Let us consider the unsteady
flow of N particles with mass Mi (i = 1, . . . , N) in a fluid with density ρf and viscosity ν.
Denote Ωf (t) as the domain occupied by the fluid at time t, and Ωi(t) as the domain occupied
by the ith particle. So, the motion of an incompressible fluid is governed by the following
Navier-Stokes equations in Ωf (t),
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ρf

(
∂ u

∂ t
+ u · ∇u

)
−∇ · σ = 0 , ∇ · u = 0 ∀ t ∈ (0, T ), (1)

where σ is the total stress tensor in the fluid phase defined as

σ = −p I + µf
[
∇u + (∇u)T

]
. (2)

Here, I is the identity tensor, µf = ρf · ν, p is the pressure and u is the fluid velocity. Let
ΩT = Ωf (t) ∪ {Ωi(t)}Ni=1 be the entire computational domain which shall be independent of
t. Dirichlet- and Neumann-type boundary conditions can be imposed on the outer boundary
Γ = ∂Ωf (t). Since Ωf = Ωf (t) and Ωi = Ωi(t) are always depending on t, we drop t in all
following notations. The equations that govern the motion of each particle are the Newton-
Euler equations, i.e., the translational velocities Ui and angular velocities ωi = (ωx, ωy, ωz) of
the ith particle satisfy

Mi
dUi

d t
= (∆Mi)g + Fi + F′i , Ii

dωi
d t

+ ωi × (Ii ωi) = Ti , (3)

where Mi is the mass of the ith particle; Ii is the moment of inertia tensor of the ith particle
about its center of mass; ∆Mi is the mass difference between the mass Mi and the mass of
the fluid occupying the same volume; g is the gravity vector; F′i are collision forces acting on
the ith particle due to other particles which come close to each other. We assume that the
particles are smooth without tangential forces of collisions acting on them; the details of the
collision model will be discussed in the following subsection. Fi and Ti are the resultants of
the hydrodynamic forces and the torque about the center of mass acting on the ith particle
which are calculated by

Fi = (−1)
∫
∂Ωi

σ · n dΓi , Ti = (−1)
∫
∂Ωi

(X−Xi)× (σ · n) dΓi, (4)

where σ is the total stress tensor in the fluid phase defined by Eq. (2), Xi is the position of the
mass center of the ith particle, ∂Ωi is the boundary of the ith particle, n is the unit normal
vector on the boundary ∂Ωi pointing outward to the flow region. The position Xi of the ith
particle is obtained by integration of the kinematic equation

dXi

d t
= Ui. (5)

The angular velocity ωi and the angle θi = (θx, θy, θz) are calculated from the angular accel-
eration ai and torque Ti of the ith particle using the following equations:

Ti = Iiai (6)

dωi
dt

= ai (7)

dθi
dt

= ωi (8)
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We plug Eq. (7) into Eq. (6), then multiply by the moment of inertia tensor I−1
i and integrate

the torque to get the angular velocity ωi.The angle θi can hence be calculated by integrating
the angular velocity. No-slip boundary conditions are applied at the interface ∂Ωi between the
ith particle and the fluid, i.e., for any X ∈ Ω̄i, the velocity u(X) is defined by

u(X) = Ui + ωi × (X−Xi) . (9)

2.2 Collision and Agglomeration Models

Following existing modeling approaches, we examine a special collision model with a new
definition of short range repulsive forces which can not only prevent the particles from getting
too close, it can also deal with the case of particles overlapping each other when numerical
simulations bring the particles very close due to unavoidable numerical truncation errors. For
the particle-particle collisions, the corresponding repulsive force is determined as

FP
i,j =


0, for di,j > Ri +Rj + ρ,

1
ε′P

(Xi −Xj)(Ri +Rj − di,j), for di,j < Ri +Rj,

1
εP

(Xi −Xj)(Ri +Rj + ρ− di,j)2, for Ri +Rj ≤ di,j ≤ Ri +Rj + ρ,

(10)

where Ri and Rj are the radius of the ith and jth particle, Xi and Xj are the coordinates of
their mass centers, di,j = |Xi−Xj| is the distance between their mass centers, ρ is the range
of the repulsive force (usually ρ = 0.5 ∼ 2.5∆h, ∆h is the mesh size), εP and ε′P are small
positive stiffness parameters for particle-particle collisions. If the fluid is sufficiently viscous,
and ρ ' ∆h as well as ρi/ρf are of order 1 (ρi is the density of the ith particle, ρf is the fluid
density), then we can take εP ' (∆h)2 and ε′P ' ∆h in the calculations. For the particle-wall
collisions, the corresponding repulsive force reads

FW
i =


0, for d′i > 2Ri + ρ,

1
ε′W

(Xi −X′i)(2Ri − d′i), for d′i < 2Ri,

1
εW

(Xi −X′i)(2Ri + ρ− d′i)2, for 2Ri ≤ d′i ≤ 2Ri + ρ,

(11)

where X′i is the coordinate vector of the center of the nearest imaginary particle P ′i located
on the boundary wall Γ w.r.t. the ith particle, d′i = |Xi − X′i| is the distance between the
mass centers of the ith particle and the center of the imaginary particle P ′i , εW is a small
positive stiffness parameter for particle-wall collisions, usually it can be taken as εW = εP/2
and ε′W = ε′P/2 in the calculations. Then, the total repulsive forces exerted on the ith particle
by the other particles and the walls can be expressed as follows,

F′i =
N∑

j=1,j 6=i
FP
i,j + FW

i . (12)

Future plans for this research include also the development of an agglomeration model. As
a first step in this direction, we perform a ‘trick’ to the described collision model such
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that we obtain a prototypical agglomeration model. In Eq.(10) we multiply by −1 for
Ri + Rj ≤ di,j ≤ Ri + Rj + ρ, in this manner the repulsive forces become attractive forces.
The result is that the particles will not separate when they touch each other, but they will
stick together. At the end of this paper, we will provide preliminary results for this simple
agglomeration model while the development of more sophisticated agglomeration models is
part of current research.

3 NUMERICAL METHOD

3.1 Multigrid FEM Fictitious Boundary Method

The multigrid FEM fictitious boundary method (FBM) [33, 30, 31] is based on a multigrid
FEM background grid which covers the whole computational domain ΩT and can be chosen
independently from the particles of arbitrary shape, size and number. It starts with a coarse
mesh which may already contain many of the geometrical details of Ωi (i = 1, . . . , N), and
it employs a fictitious boundary indicator (see [33]) which sufficiently describes all fine-scale
structures of the particles with regard to the fluid-particle matching conditions of Eq. (9).
Then, all fine-scale features of the particles are treated as interior objects such that the
corresponding components in all matrices and vectors are unknown degrees of freedom which
are implicitly incorporated into all iterative solution steps (see [30]). Hence, by making use of
Eq. (9), we can perform calculations for the fluid in the whole domain ΩT . The considerable
advantage of the multigrid FBM is that the total mixture domain ΩT does not have to change
in time, and can be meshed only once. The domain of definition of the fluid velocity u is
extended according to Eq. (9), which can be seen as an additional constraint to the Navier-
Stokes equations (1), i.e.,

∇ · u = 0 (a) for X ∈ ΩT ,

ρf
(
∂ u
∂ t

+ u · ∇u
)
−∇ · σ = 0 (b) for X ∈ Ωf ,

u(X) = Ui + ωi × (X−Xi) (c) for X ∈ Ω̄i, i = 1, . . . , N.

(13)

For the study of interactions between the fluid and the particles, the calculation of the
hydrodynamic forces acting on the moving particles is very important. From Eq. (4), we can
see that surface integrals over the surfaces of the particles appear in the calculation of the
forces Fi and Ti. However, in the presented multigrid FBM method, the shapes of the surfaces
of the moving particles are implicitly imposed in the fluid field. If we reconstruct the shapes
of the surface of the particles, it is not only a time consuming work, but also the accuracy is
only of first order due to a piecewise constant interpolation from our indicator function. In
order to resolve the shape, we perform the hydrodynamic force calculations using a volume
based integral formulation. To replace the surface integral in Eq. (4) we introduce a function
αi,
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αi(X) =

 1 for X ∈ Ωi,

0 for X ∈ ΩT \ Ωi

(14)

where X denotes the coordinates. The importance of such a definition can be seen from the
fact that the gradient of αi is zero everywhere except at the surface of the ith particle, and
approximates to the normal vector ni of surface of the ith particle defined on the grid, i.e.,
ni ≈ ∇αi. Then, the hydrodynamic forces acting on the ith particle can be computed by

Fi = −
∫

ΩT

σ · ∇αi dΩ, Ti = −
∫

ΩT

(X−Xi)× (σ · ∇αi) dΩ . (15)

The integral over each element covering the whole domain ΩT can be exactly calculated
with a standard Gaussian quadrature of sufficiently high order. Since the gradient ∇αi is non-
zero only near the surface of the ith particle, thus the volume integrals need to be computed
only in one layer of mesh cells around the ith particle, which leads to a very efficient treatment.

3.2 Representation of Complex Geometry

Traditionally the geometry used in particulate flow simulations is restricted to shapes that
can easily be described analytically. We decided to part with this restriction and to allow general
complex shapes, for that an analytical description is not easily available. This is accomplished
by representing the geometry as a surface triangulation, which is basically a piecewise linear
approximation of the geometry’s surface (see Fig. 1). This type of geometry is widely used
in CAD, CAGD and computer graphics in general. In preliminary work our group developed
efficient techniques for solving the geometric problems related to the use of such geometry in a
FEM-FBM framework and analyzed the error of the geometry discretization [25, 24, 17]. The
result of this work showed, that the geometry discretization error has no significant influence
on the error of the numerical solution of the fluid-solid flow as a whole, because the error due
to the spatial discretization of the domain is significantly larger than the error of the geometry
discretization. Furthermore, we address how to calculate the function αi in Eq. (15) for a
geometry given as a surface triangulation. In terms of our numerical scheme this task can be
rephrased as: how can we acquire the volume information needed to calculate Eq. (15) from
the surface representation. In order to solve this task, we developed an algorithm based on the
Jordan curve theorem. The Jordan curve theorem basically states (for the sake of simplicity
we assume the 2D case), that a closed Jordan curve divides the plane into two distinct regions,
the exterior and the interior region. From this we can follow that every ray, whose origin is in
the interior region of the curve has an uneven number of intersections with the curve. This
observation is the basis of our algorithm to compute the volume information we need. So
we calculate the number of intersections of the ray with the complex geometry and based on
this number, we decide whether a point is located in the interior region or the exterior region.
This task can eventually be computationally expensive, so we additionally incorporate efficient
hierarchical structures like bounding volume hierarchies to significantly reduce computation
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(a) Surface triangulation of an el-
lipse

(b) Complex non-convex object

Figure 1: Examples of surface triangulations

time [25]. Our choice of geometry representation demands additional adjustements of the
calculation of some physical parameters of the particles, in particular these parameters are the
moment of inertia tensor and the mass centre of the particle. The moment of inertia tensor
is a diagonal matrix, if the geometry is symmetric about the axes of rotation: Ixx 0 0

0 Iyy 0
0 0 Izz


Here Ixx, Iyy and Izz are the principal moments of inertia. If the geometry is not symmetric
about all principal axes the tensor will have non-zero entries on the off-diagonals Ixx −Ixy −Ixz

−Ixy Iyy −Iyz
−Ixz −Iyz Izz


The off-diagonal entries are called the products of inertia. The principal moments are calcu-
lated by:

Ixx =
∫
P

(
y2 + z2

)
δ (x, y, z) dP (16)

Iyy =
∫
P

(
x2 + z2

)
δ (x, y, z) dP (17)

Izz =
∫
P

(
x2 + y2

)
δ (x, y, z) dP (18)

Here δ (x, y, z) is the density distribution of the particle. The products of inertia are calculated
likewise:

Ixy =
∫
P
xyδ (x, y, z) dP (19)
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Ixz =
∫
P
xzδ (x, y, z) dP (20)

Iyz =
∫
P
yzδ (x, y, z) dP (21)

In practice, we calculate these integrals using the same ’alpha technique’ (see Eq. 15), that
we employ in the volume integration for the drag and lift forces.

The algorithm of the multigrid FEM fictitious boundary method for solving the coupled
system of fluid and particles can be summarized as follows:

1. Given the positions and velocities of the particles, solve the fluid equations Eqs. (13)
(a) and (b) in the corresponding fluid domain involving the position of the particles for
the fictitious boundary conditions.

2. Calculate the corresponding hydrodynamic forces and the torque acting on the particles
by using Eq. (15). In the case of complex geometries apply the techniques described in
this section and compute the collision forces by Eq. (12).

3. Solve Eq. (3) to get the translational and angular velocities of the particles to obtain
the new positions and velocities of the particles by Eq. (3).

4. Use Eq. (13) (c) to set the new fluid domain and fictitious boundary conditions, and
then advance to solve for the new velocity and pressure of the fluid phase as described
in step 1.

3.3 Time Discretization by Fractional-Step-θ Scheme

The fractional-step-θ scheme is a strongly A-stable time stepping approach which possesses
the full smoothing property being important in the case of rough initial or boundary data. It
also contains only very little numerical dissipation which is crucial in the computation of non-
enforced temporal oscillations. A more detailed discussion of these aspects can be found in
[37, 38]. We first semi-discretize the Eqs. (13) (a) and (13) (b) in time by the fractional-step-θ
scheme. Given un and the time step K = tn+1 − tn, then solve for u = un+1 and p = pn+1.
In the fractional-step-θ-scheme, one macro time step tn → tn+1 = tn + K is split into three
consecutive substeps with θ̃ := αθK = βθ′K,

[I + θ̃N(un+θ)]un+θ + θK∇pn+θ = [I − βθKN(un)]un

∇·un+θ = 0 ,

[I + θ̃N(un+1−θ)]un+1−θ + θ′K∇pn+1−θ = [I − αθ′KN(un+θ)]un+θ

∇·un+1−θ = 0 ,

[I + θ̃N(un+1)]un+1 + θK∇pn+1 = [I − βθKN(un+1−θ)]un+1−θ

∇·un+1 = 0 ,

(22)

where θ = 1−
√

2
2
, θ′ = 1− 2θ, and α = 1−2θ

1−θ , β = 1− α, N(v)u is a compact form for the
diffusive and convective part,
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N(v)u := −ν ∇ ·
[
∇u + (∇u)T

]
+ v · ∇u . (23)

Therefore, from Eq. (22), in each time step we have to solve nonlinear problems of the
following type,

[I + θ1KN(u)]u + θ2K∇p = f , f := [I − θ3KN(un)]un , ∇·u = 0 . (24)

For the Eq. (13) (c), we simply take an explicit expression, that means

un+1 = Un
i + ωni × (Xn −Xn

i ) . (25)

3.4 Space Discretization by Finite Element Method

If we define a pair {u, p} ∈ H := H1
0(Ω) × L := L2

0(Ω), and bilinear forms a(u,v) :=
(∇u,∇v) and b(p,v) := −(p,∇·v), a weak formulation of the Eq. (24) reads as follows:{

(u,v) + θ1K [ a(u,v) + n(u,u,v) ] + θ2K b (p,v) = (f ,v) ∀v ∈ H
b (q,u) = 0 ∀ q ∈ L (26)

Here, L2
0(Ω) and H1

0(Ω) are the usual Lebesgue and Sobolev spaces, n(u,u,v) is a trilinear
form defined by

n(u,v,w) :=
∫

Ω
[ui − (Wm)i]

(
∂vj
∂xi

+
∂vi
∂xj

)
wj dx . (27)

To discretize Eq. (26) in space, we introduce a regular finite element mesh Th consisting of
hexahedrons to cover the whole computational domain, where h characterizes the maximum
edge length of the elements of Th. To obtain the fine mesh Th from a coarse mesh T2h,
we simply apply a regular refinement to the hexahedral cells that splits each hexahedron into
8 new hexahedrons. We choose the Q̃1/Q0 element pair which uses rotated bilinear shape
function for the velocity spanned by 〈x2−y2, x2−z2, x, y, z, 1〉 in 3D and piecewise constants
for the pressure in cells. The nodal values are the mean values of the velocity vector over the
element edges, and the mean values of the pressure over the elements. The nonconforming
Q̃1/Q0 element pair has several important features. It satisfies the Babus̆ka–Brezzi condition
without any additional stabilization, and the stability constant is independent of the shape
and size of the element. In particular on meshes containing highly stretched and anisotropic
cells, the stability and the approximation properties are always satisfied [37].

If we choose finite-dimensional spaces Hh and Lh and define a pair {uh, ph} ∈ Hh × Lh,
the discrete problem of Eq. (26) reads,

(uh,vh) + θ1K [ ah(uh,vh) + ñh(uh,uh,vh) ]
+ θ2K bh(ph,vh) = (f ,vh) , ∀vh ∈ Hh

bh(qh,uh) = 0 , ∀ qh ∈ Lh
(28)
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where ah(uh,vh) :=
∑
T∈Th a(uh,vh)|T and bh(ph,vh) :=

∑
T∈Th b(ph,vh)|T . Note that

ñh(uh,uh,vh) is a new convective term which includes streamline-diffusion stabilizations de-
fined by

ñh(uh,vh,wh) :=
∑
T∈Th

n(uh,vh,wh)|T +
∑
T∈Th

δT (uh · ∇vh,uh · ∇wh)|T . (29)

Here δT is a local artificial viscosity which is a function of a local Reynolds number ReT ,

δT := δ∗ · hT
||u||Ω

· 2ReT
1 +ReT

, ReT =
||u||T · hT

ν
, (30)

where ||u||Ω means the maximum norm of velocity in ΩT , ||u||T is an averaged norm of velocity
over T , hT denotes local mesh size of T , and δ∗ is an additional free parameter which can
be chosen arbitrarily (δ∗ = 0.1 is used in our calculations, also see [37]). Obviously, for small
local Reynolds numbers, with ReT → 0, δT is decreasing such that we reach in the limit case
the standard second order central discretization. Vice versa, for convection dominated flows
with ReT >> 1, we add an anisotropic diffusion term of size O(h) which is aligned to the
streamline direction uh.

4 NUMERICAL RESULTS

As our first numerical example, we examine the case of a single sedimenting particle in a
fluid to validate the accuracy and efficiency of the FEM-FBM method. As a second example,
we demonstrate the drafting, kissing and tumbling phenomenon involving two balls in a chan-
nel. Further results of our collision and agglomeration models are provided to show that the
presented method can easily be applied to particulate flows with several particles. Finally, we
show examples of flows with complex objects. The first example is a sedimenting particle of a
’bean-like’ shape, represented as a surface triangulation. Then, in the appendix of this paper
we present preliminary results of a combination of the FEM-FBM with complex objects and
grid deformation in the stationary case.

4.1 Numerical Simulation of a Freely Sedimenting Sphere in a Channel

In this section, we consider the the numerical simulation of a sphere freely falling in a
tube with a circular cross-section. The configuration of this simulation is based on a well
documented experiment [5]. We will calculate the terminal velocities of the particle with
the FEM-FBM, this allows us to validate our method by comparing these values with the
experimental data. The computational domain in this case is a channel Ω with a circular
cross-section and the dimensions Ω = (0, 1) × (0, 1) × (0, 2.5). A ball is initially placed at
(0.5, 0.5, 0.5) and is allowed to fall freely under gravitiy. For this case, we use the infinite
reference frame formulation of the Navier-Stokes equations, thus the channel has basically
infinite length. Initially, the fluid velocity and the velocity of the ball are zero. The fluid
density is ρf = 1.0. The viscosity of the fluid takes the values νf = 0.2, 0.1, 0.05, 0.02, 0.01.
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(a) Coarse grid of the falling
sphere benchmark configuration

(b) Flow field of the falling sphere

Figure 2: Configuration and flow field of the benchmark

The density of the ball is either ρs = 1.02 or 1.14, the diameter d of the ball can take the values
0.2 and 0.3. The time step for this simulation is ∆t = 0.0005. In the simulation we used a
mesh with 671.744 elements at level 4. The coarse grid of the benchmark (1312 elements) is
shown in Fig. 4.1. As the results in table 1 - table 4 show, our computed terminal velocites are
in good agreement with the experimental values [5]. For any configuration, the relative error
of our numerical solution is less than 10 percent. Our results are comparable with Glowinski’s
and Pan’s results [13], except for the fact that our method does not produce a significantly
higher error in the case of ν = 0.01. In fact, our code produces accurate results even in this
case. The results in table 5 show the validity of the multigrid framework. The underlying
assumption is that the computed results should approximate the reference values better on
a higher resolution mesh. So for fixed values of viscosity ν, particle density ρs and particle
diameter d we calculated the terminal velocity on different refinement levels. As expected we
get better results as the refinement level increases.

Table 1: Comparison of terminal velocities in simulation and experiment (ρs = 1.02 d = 0.2)

ν Ufeatflow Uexp Relative error (%)

0.01 1.4660 1.4110 3.90
0.02 0.9998 0.9129 9.52
0.05 0.4917 0.4603 6.82

0.1 0.2637 0.2571 2.57
0.2 0.1335 0.1317 1.37

4.2 Drafting, Kissing and Tumbling of Two Spheres in a Channel

In the following two numerical experiments, we will analyze the case of several moving
particles in a fluid. When two particles are dropped closely to each other, they interact by
undergoing ”drafting, kissing and tumbling” [9], which is often chosen to examine the complete
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Table 2: Comparison of terminal velocities in simulation and experiment (ρs = 1.02 d = 0.3)

ν Ufeatflow Uexp Relative error (%)

0.01 2.167 2.107 2.84
0.02 1.495 1.436 4.11
0.05 0.809 0.749 8.01

0.1 0.402 0.404 0.44
0.2 0.218 0.216 1.02

Table 3: Comparison of terminal velocities in simulation and experiment (ρs = 1.14 d = 0.2)

ν Ufeatflow Uexp Relative error (%)

0.02 4.370 4.334 0.83
0.05 2.699 2.489 8.44

0.1 1.649 1.552 6.25
0.2 0.946 0.870 8.74

Table 4: Comparison of terminal velocities in simulation and experiment (ρs = 1.14 d = 0.3)

ν Ufeatflow Uexp Relative error (%)

0.02 5.885 6.283 6.33
0.05 4.133 3.972 4.05

0.1 2.588 2.426 6.66
0.2 1.492 1.401 6.50

Table 5: Comparison of terminal velocities for different refinement levels (ν = 0.02 ρs = 1.02 d = 0.2)

LV L Ufeatflow Uexp Relative error (%)

3 1.0820 0.9129 18.64
4 0.9998 0.9129 9.52
5 0.9601 0.9129 5.17

computational model of particulate flows, including the prevention of collisions. Therefore,
we also study the sedimentation of two spherical particles in a three-dimensional channel.
The computational domain is a channel of dimension Ω = (0, 2) × (0, 1) × (0, 2). Two rigid
spheres with diameter d = 0.25 and density ρp = 1.5 are located at (1, 0.5, 1) (sphere No.1)
and (1, 0.5, 1.5) (sphere No.2) at time t = 0, and they are falling down under gravity in
an incompressible fluid with density ρf = 1 and viscosity ν = 0.01. The timestep size is
∆t = 0.005. We suppose that the spheres and the fluid are initially at rest. The simulation is
carried out on a regular mesh at refinement level 7 with 274625 nodes and 262144 elements.
Fig. 3 . From these figures, we can see that the particle in the wake (No.1 particle) falls more
rapidly than the particle No.2 in front since the fluid forces acting on it are smaller. The gap
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between them decreases, and they almost touch (”kiss”) each other at time t = 0.185. After
touching, the two particles fall together until they tumble (t = 0.235) and subsequently they
separate from each other (t = 0.285). The tumbling of the particles takes place because the
configuration, when both are parallel to the flow direction, is unstable.

4.3 Agglomeration results

As we have described earlier, we also provide numerical results regarding the proposed
simple agglomeration model. We use the following domain Ω = (0, 2) × (0, 2) × (0, 2) with
260.644 cells and apply an infinite channel technique. In this simulation the following fluid
parameters are used: density ρf = 1 and viscosity ν = 0.001. The timestep size is ∆t = 0.005.
We place two spheres (d = 0.25, ρ = 2.5) with density ρp = 1.5 very close one to each
other, in the middle part of the channel at (1.0, 1.0, 1.0) and (1.3, 1.0, 1.0). An intial particle
velocity of up1=0.2 and up2=−0.2 is prescribed to ensure that the particles quickly collide.
Figures. 4(a)-4(f) show the behaviour of the particles and illustrate the forces acting on the
particles. Futhermore, Fig. 4 displays for each timestep the velocity field, the agglomeration
forces (blue) and the total velocity of each particle (green). We can observe, that the particles
during t = 0 and t = 0.075 quickly come very close to each other, but the agglomeration
forces are inactive, as intended. Then, in timestep t = 0.075 they are so close, that the
agglomeration forces start to act. They move and rotate according to the flow field, while
the agglomeration forces keep them connected. While this model fullfills the task of keeping
particles connected, we intend to incorporate much more sophisticated models. In particular
we favor the model proposed by Lefebvre [20], a variant of which we want to integrate into
our particulate flow framework.

4.4 Sedimentation of a complex particle

Our last example is a particulate flow configuration with a complex geometry represented
by a surface triangulation using the techniques described in section 3.2. We use the ’bean-
shaped’ particle shown in Fig. 1(b) for this simulation. The computational domain Ω =
(0, 2.2)× (0, 0.41)× (0, 0.41) is covered by a grid with 81.920 elements at refinement level 4,
as in the preceeding examples a infinite channel technique is applied. This technique allows us
to use a higher resolution around the particle and in its wake, while using a lower resolution
in regions that have only little influence on the particle motion. Figures 5 and 6 show how
the particle freely sediments according to the computed velocity field. The depicted sequence
shows the evolution of the particle from t = 3.8 to t = 4.5 in steps of ∆t = 0.1, the timeline
proceeds from left to right and from top to bottom.

5 Conclusions

We have presented a 3D FBM-FEM technique for the direct simulation of moving bound-
aries. The method has been tested in various prototypical particulate flow configurations. We
showed how complex geometry can easily be used in the FBM-FEM context. In the single
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particle case our method proved to yield accurate results in the terminal velocity benchmark
configurations. In these examples, we did not observe a loss of significant loss of accurracy as
was observed in other codes. The numerical example of drafting, kissing and tumbling shows,
that our method is able to model the interaction between the particles and the fluid and to re-
produce the expected behaviour. Our prototypical study of particle agglomeration shows that
these phenomena can easily and efficiently be included into the FBM-FEM framework. Thus,
the extension to a more realistic agglomeration model does not require significant changes in
the numerical solution scheme. The next steps in improving our method focus on improving
the accuracy and numerical efficiency.
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Figure 3: Drafting, Kissing and Tumbling for t = 0.05 , t = 0.15, t = 0.185, t = 0.235, t = 0.285, t = 0.4,
t = 0.56, column: front view, right column: side view
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(a) Particles at t = 0 (left),t = 0.075 (right)

(b) Particles at t = 0.25

(c) Particles at t = 0.325

(d) Particles at t = 0.4

(e) Particles at t = 0.55

(f) Particles at t = 0.7

Figure 4: Behaviour of two particles with agglomeration forces. Left column: particles and the flow field,
center column: blue vectors at the particles show the agglomeration forces only, right column: green vectors
on the particles show the total velocity of the particles
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Figure 5: Particulate flow with a complex geometry from t = 3.8 to t = 4.5. Time advancement from left to
right and from top to bottom
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Figure 6: Sedimentation of a complex particle t = 3.8 to t = 4.8 from a different angle of view.
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6 Appendix: Grid Deformation

In this section we want to provide further evidence for our assumptions that adaptive grid
deformation can improve the accuracy of computation results and geometry approximation in
particulate flow simulations. We do this by presenting results of stationary simulations using
the grid deformation method described in the following section.

6.1 Grid Deformation Algorithm

We briefly describe the grid deformation method which we combined with our stationary
Multigrid-FBM Navier-Stokes solver. The details of the grid deformation method can be found
in Ref. [15]. The moving mesh problem can be equated to constructing a transformation ϕ,
x = ϕ(ξ) from computational space (with coordinate ξ) to physical space (with coordinate x).
There are two basic types of grid deformation methods, generally computing x by minimizing
a variational form or computing the mesh velocity v = xt using a Lagrangian like formulation.
The applied grid deformation method belongs to the velocity based methods, which is based
on Liao’s [4, 39, 21, 7] and Moser’s work [8]. This method has several advantages: only linear
Poisson problems on fixed meshes are needed to be solved, monitor functions can be obtained
directly from error distributions or distance functions, mesh tangling can be prevented, and
the data structure for the mesh nodes is always the same as for the starting mesh.

Suppose g(x) (area function) to be the area distribution on the undeformed mesh, while
f(x) (monitor function) describes the absolute mesh size distribution of the target grid, which
is independent of the starting grid and chosen according to the need of physical problems.
Then, the transformation ϕ can be computed via the following four steps:

1. Compute the scale factors cf and cg for the given monitor function f(x) > 0 and the
area function g using

cf

∫
Ω

1

f(x)
dx = cg

∫
Ω

1

g(x)
dx = |Ω|, (31)

where Ω is the computational domain, and f(x) ≈ local mesh area. Let f̃ and g̃ denote
the reciprocals of the scaled functions f and g, i.e.,

f̃ =
cf
f
, g̃ =

cg
g
. (32)

2. Compute a grid-velocity vector field v : Ω → Rn by satisfying the following linear
Poisson problem

−div(v(x)) = f̃(x)− g̃(x), x ∈ Ω, and v(x) · n = 0, x ∈ ∂Ω, (33)

where n being the outer normal vector of the domain boundary ∂Ω, which may consist
of several boundary components.
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3. For each grid point x, solve the following ODE system

∂ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x, (34)

with

η(y, s) :=
v(y)

sf̃(y) + (1− s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (35)

4. Get the new grid points via

ϕ(x) := ϕ(x, 1). (36)

In order to adapt the grid to an object, we have to choose the monitor function f(x) ac-
cordingly. In the formulation of the grid deformation algorithm the cell size distribution is the
quantity of interest, because it allows us to control the grid deformation. We want cells of a
small size near the object and we can allow bigger cells in regions located far from the object.
Taking these observations into account, a reasonable choice for the monitor function is the
distance of the nodes of the grid to the surface of the object, which is our choice for the
following examples. In the case of surface triangulations the question arises how to calculate
the distance function in an efficient way. Efficient algorithms for this task are Fast Marching or
Fast Sweeping methods [24], additionally we developed an efficient Branch & Bound algorithm
[25].

6.2 Numerical Examples

We apply the grid deformation in a stationary simulation of a flow around a torusknot, which
is represented as surface triangulation. The computational grid has the following dimensions
Ω = (0, 2.2)× (0, 0.41)× (0, 0.41), the number of nodes, elements and degrees of freedom at
refinement level 4 are 75.625, 69.120 and 213.696. We compare results with grid deformation
to those without grid deformation (see Fig. 7) in terms of quality of geometry approximation.
Furthermore, we compare the results on level 4 with grid deformation to results on level 5
without grid deformation. As Fig. 9 shows, the geometry approximation is clearly better in the
case of the adapted mesh. Even the level 5 result does not have the smoothness of the level
4 result with grid deformation. This visual observation is supported by the number of degrees
of freedom that are used to model the inside of the object. Without grid deformation at level
4 only 1617 DOFs are located inside the object, with grid deformation 16109 DOFs are inside
the object, at level 5 without grid deformation 13038 are inside.

6.3 Concluding Remarks

The results in this chapter show that the described grid deformation method provides a
much better geometry approximation. For the presented case the grid deformation method
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provides an increase in geometry approximation that is comparable to the increase that an
additional level in grid refinement would yield. Our results in the stationary case suggest
that we can expect to see the same beneficiary behaviour in instationary particulate flow
simulations. The increase in geometry resolution in turn is expected to yield an accuracy
improvement in the drag, lift and torque calculations. In our approach to the particulate flow
problem these are the main quantities governing the movement of the particles. Hence, we
expect to observe an overall improvement of our method. The topic of our following work will
be to analyze the combination of the FBM-FEM and grid deformation in much more detail
and more quantitatively than we have done in this article.
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(a) Length section of the grid at level 4 with grid deformation

(b) Length section of the grid at level 4 without grid deformation

Figure 7: The figure shows the original surface triangulation, the adapted mesh and in contrast the non-adapted
mesh
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Figure 8: Geometry approximation and flow field at level 4 without grid deformation

Figure 9: Geometry approximation and flow field at level 4 with grid deformation

Figure 10: Geometry approximation and flow field at level 5 (578641 nodes) without grid deformation
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