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Abstract

A multiphase Lattice Boltzmann (LB) scheme coupled with a level set interface capturing module is used for
the simulation of multiphase flows, and in particular, rising bubbles under moderate and high density and
viscosity ratios. We employ a consistent, robust discretization of the pressure forces along with using multiple
relaxation time (MRT) form of the collision in the LB equation which enables us to preserve stability and
accuracy. We first present the solution for the standard test of a static bubble in order to show the accuracy
of the solution with respect to the Laplace law for pressure and conserving the spurious velocity level.
We present quantitative benchmark computations and error analysis for the 2D rising bubble test cases,
introduced in [16], which are further compared with the solutions from the so-called Shan-Chen diffused
interface LB models as well as with high precision finite element solutions. The accuracy of the present
scheme is shown to be competitive with that of the finite element approach, while the nice characteristics of
general LB solutions are preserved.

1 Introduction

The use of the lattice Boltzmann method (LBM) has long been a major field of interest for the simulation of
multiphase flows [27, 6]. The LBM’s mesoscopic nature allows for incorporating the so-called intermolecular
forces to the right hand side of the LBE causing the two different phases to reach equilibrium in single or
multi-component disciplines [31, 30, 29]. As contrary to the conventional Navier-Stokes approaches, such
an implicit interface realization eliminates the need for explicit capturing or tracking of the interface, often
assigned to a second equation as in volume of fluid or level set methods [27, 28, 33]. Eventually, diffused
interface LB models could generally recover phase change phenomena and do not have to treat topological
difficulties in the case of complex bubble or droplet deformations. Such computational characteristics, along
with the easy implementation of complex boundary conditions and high scalability for parallel computations
has made LBM a favourable candidate for multiphase flow simulations.

Consequently, there has been a number of proposals for schemes to model the relevant intermolecular forces
in LBM. Among the most popular diffused interface LB schemes is the Shan-Chen model [31] extensively used
in both academic and commercial LBM software packages e. g. PowerFlow [1], OpenLb [2] and Palabos [3].
The model relates the interface force to the intermolecular potential ψ which defines the non-ideal deviation
from LBM’s ideal gas equation of state (EOS) for the pressure. In fact the EOS controls the phase segregation
as it defines the pressure change profile with the change of density based on the Maxwell’s equal area rule
at certain temperatures [38]. The EOS has also a critical impact on the maximum permissible density ratio
between the phases. While the original EOS of the Shan-Chen model in [31] becomes notoriously unstable at
density ratios larger than 20, more robust EOS like the R-K or C-S equations allow for density ratios as high
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as 1000 in single component two phase problems (e. g. water and its vapour), yet at the price of relatively
large spurious velocities around the interface [38].

Nevertheless, in the case of a two component, two phase flow where the viscosities might also be significantly
different, even the use of the most sophisticated EOS could not be effective in simulating strictly immiscible
mixtures at large density/viscosity differences as the solution has to reach asymptotically zero concentration
of the second fluid in the first fluid and vice-versa [4]. Moreover, one has to solve for two sets of LBEs on
the entire domain in each time step since each component has its own specific properties.

A major enhancement to the class of diffused interface LB models is proposed by Lee and Lin [20, 18, 19],
where they replaced Shan-Chen’s interaction force with the Cahn-Hilliard chemical potential and a pressure
evolution LBE is solved for the pressure and momentum instead of density and momentum. Therefore, no
EOS has to be adopted to link the pressure and density profiles and the interface is diffusely captured via
solving a second LBE for the order parameter (density). Unlike the Shan-Chen model, they were successful
in gaining high density and viscosity ratios and low spurious velocities. However, their scheme requires high
number of derivatives as needed for the Cahn-Hilliard chemical potential and needs to solve a second LBE
(almost as costly as the first one) while the resolution of the interface still depends on that of the underlying
mesh for the LBE.

A new trend in the development of multiphase LB models is to confine the LBE to solve for the flow and let a
second PDE track the interface. The idea is motivated from the fact that in single bubble or droplet problems,
a sharp realization of the instantaneous position of the interface at very high density/viscosity differences
and large Eo numbers is of paramount importance. Thommes et al. [35] and later Becker et al. [5] followed
this strategy for 3D simulations using a two-fluid approach, where each fluid is solved on its own domain, and
the interface forces are imposed explicitly by modifying the bounce-back boundary condition on the curved
interface such that it includes the surface tension forces. The interface is then captured through solving level
set equation. Finally, the method has to go through a re-filling step to re-distribute the two fluid nodes
as the boundary between the two fluid changes position in each time step. While their new sophisticated
boundary condition is successful in reaching high density differences and capturing sharp interfaces, one has
to construct two different mesh spacings on each fluid side in the case of large viscosity ratios, resulting in
more mathematical complexity and higher computational costs [35].

As contrary to the two-fluid approach in [35], Mehravaran and Hannani [23, 22] tried to extend the one-fluid
approach, widely used in the Navier-Stokes based solutions, towards LBE, i. e. to solve for the momentum
using LBE for a single virtual fluid on the entire domain and treat the interface boundary conditions as local
smeared-out force terms in the right hand side of the LBE. Similar to [35], they also proposed to capture the
interface by solving the level set equation. Nevertheless, their model leaves the calculation of the pressure
to a third PDE and hence they do not provide any discussions regarding the accuracy in the pressure field
or the spurious velocity level. Furthermore, one could not find validations against the established static or
rising bubble solutions and the comparisons are rather restricted to qualitative ones.

In this paper we follow the general idea in the one-fluid approach of Mehravaran and Hannani [22], except
that we introduce a consistent discretization of the force and in particular the pressure gradient term. We
show that the accurate realization of the pressure jumps across the interface is the key to a reliable solution
in case of high density and viscosity differences. As a result, the simple linear EOS of the LB method is
demonstrated to remain valid in recovering the correct pressure field even at critical jump conditions. To
keep the scheme stable at very low viscosities as well as to minimize the spurious velocities, we employ the
multiple relaxation time (MRT) collision scheme. We go trough rigorous comparisons and error analysis for
the static bubble at different density and viscosity ratios and then evaluate the performance of the model
by extensive benchmark comparisons against the finite element solutions for the rising bubble problems as
provided using the FeatFLOW package in [16]. The rest of the paper is organized as follows; we present the
derivation and discretization of the one-fluid coupled multiphase LB model as well as its multiple relaxation
time implementation in section 2. Section 3 elaborates the solution of the level set equation as the interface
capturing module. The numerical results and validations for the static and rising bubbles are then provided
in section 4. Finally, the paper is closed with conclusions and discussions in section 5.
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2 The coupled LB-level set model

2.1 The lattice Boltzmann Equation

The lattice Boltzmann equation describes the evolution of distribution functions in the discretized phase
space, i. e. descrete velocity space e. g. in the D2Q9 model in two dimensions, having 9 microscopic velocities
ek, k = 0, ..., 8 [11, 13, 21]. Assuming a single relaxation time (SRT) approximation for the collision of the
distribution functions, He and Shan et. al [14] proposed the following LB equation in the presence of the
external force F

∂fk
∂t

+ ek.∇fk =
1

τ
(fk − feqk ) +

(ek − ui) · Fi
ρc2s

feqk (1)

where cs = 1/
√

3 is the lattice speed of sound and ρ and u are the macroscopic density and velocity obtained
by the zero and first-oder moments of distribution functions, respectively

ρ =
∑
k

fk , ρui =
∑
k

ei,kfk (2)

and feqk is the Maxwell equilibrium ,

feqk = ωkρ

[
1 +

ek · u
c2s

+
(ek · u)

2

2c4s
+

(u · u)

2c2s

]
. (3)

Starting from equation (1) and going through the Chapman-Enskog expansion [10] one could recover the
Navier-Stokes equations in the nearly incompressible limit:

∂t(ρu) + ∂i(ρc
2
sδij + ρuiuj)−

1

3

(
τ − 1

2

)
∂i [∂j(ρui) + ∂i(ρuj)] = Fj (4)

∂t(ρ) + ∂i(ρui) = 0 (5)

A comparison to the standard Navier-Stokes equations reveals that the viscosity is evaluated as ν = (τ−0.5)/3
and that the pressure could be recovered as a simple EOS

P = ρc2s. (6)

For equation (6) to be valid, the flow must remain in the nearly-incompressible regime meaning that the
density changes have to be moderate so as to model the pressure gradients within the flow field [32].

2.2 One-fluid multiphase formulation

The one-fluid approach also known as the continuum surface force (CSF) approach for multiphase flow
problems consists of solving the Navier-Stokes equations along with the surface tension boundary conditions
as local smeared out forces acting on the interface Γ . In that sense, Sussman et al. proposed the following
form of the governing equations [34]
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ρ(φ)∂tu + ρ(φ)u · ∇u +∇P −∇ ·
(
µ(φ)(∇u +∇uT )

)
= −σκ(φ)δε(φ)n(φ) (7)

∇ · u = 0 (8)

where σ is the surface tension coefficient, δ is the Dirac delta function and κ and n are the mean curvature
and normal vector to the interface, respectively. Equation (7) is then coupled with the level set equation
for the advection of the level set function φ, initially assumed to be a signed distance function, with fluid
velocity u, while φ = 0 indicates the interface Γ

∂tφ+ u · ∇φ = 0. (9)

As such, the bulk fluid properties could be related to the individual properties of each phase as functions of
the signed distance function {

ρ(φ) = ρlH(φ) + ρg(1−H(φ))

µ(φ) = µlH(φ) + µg(1−H(φ))
(10)

where H(φ) is a regularized Heaviside function such as

H(φ) =


0 φ < −ε
1
2

[
1 + φ

ε + 1
π sin(πφε )

]
|φ| ≤ −ε

1 φ > ε

(11)

and ε is the interface thickness on each side. Consequently, a smoothed realization of the delta function
would be of the form [34]

δ(φ) =
dH

dφ
=


0 φ < −ε
1
2

[
1
ε + cos(πφε )

]
|φ| ≤ −ε

0 φ > ε

(12)

Furthermore, the curvature as well as the normal vector to the interface could be obtained using the level
set function φ as

n(φ) =
∇φ
|∇φ|

, κ(φ) = ∇ · n = ∇ ·
(
∇φ
|∇φ|

)
. (13)

A direct mapping of the CSF approach, as described above, to the LBM would lead to severe numerical errors
since the simple EOS in equation (6) would break down in case of any density changes across the interface
and thus may produce non-physical pressure values. Moreover, in the viscous force term in 7 one still has to
apply the divergence to the variable viscosity µ(φ), and this does not comply with the LBM-derived form
in equation (4). In order to remove such unfavourable features, we rewrite the momentum equation (7) in a
suitable form for the LBM. Going along the lines of [22], we divide equation (7) by ρ(φ)

∂tu + u · ∇u +
∇P
ρ(φ)

−
∇ ·
(
µ(φ)(∇u +∇uT )

)
ρ(φ)

= −σκ(φ)n(φ)δε(φ)

ρ(φ)
. (14)

By introducing a virtual density ρ̄ = 1 to the convective terms, adding ∇P terms to the both sides and
expanding the viscous term as
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∇ ·
(
µ(φ)(∇u +∇uT )

)
ρ(φ)

= −µ(φ)∇ · (∇u +∇uT )

ρ(φ)
− ∇µ(φ) · (∇u +∇uT )

ρ(φ)
(15)

we end up with a new form of the momentum equation

ρ̄(φ)∂tu + ρ̄(φ)u · ∇u +∇P − µ̄(φ)∇ · (∇u +∇uT ) = F̄ (16)

where µ̄ = µ(φ)/ρ(φ) is the virtual viscosity. The modified force term F̄ is obtained as

F̄ = −σκ(φ)n(φ)δε(φ)

ρ(φ)
+
∇µ(φ) · (∇u +∇uT )

ρ(φ)
+∇P

(
1− 1

ρ(φ)

)
. (17)

Using equations (10) and (12) we have ∇µ(φ) = (µl − µg)δε(φ)∇φ and hence

F̄ = −σκ(φ)n(φ)δε(φ)

ρ(φ)
+

(µl − µg)δε(φ)

ρ(φ)

[
∇φ · (∇u +∇uT )

]
+∇P

(
1− 1

ρ(φ)

)
. (18)

The above reformulation means that the virtual density ρ̄ is decoupled from the variable physical density. As
this virtual density is assumed to be only nearly incompressible, the LBM’s EOS is expected to be valid to
obtain the pressure as P = ρ̄c2s. One could also see that F̄ comes with two new terms; the first one accounts
for the jump in the viscose force term, while the second one adds the effect of the pressure jump across the
interface through the ∇P term.

2.3 LBE discretization

2.3.1 Time integration

The new form of the momentum equation (16) along with ρ̄ and µ̄ is now suitable to be casted into an
LBE-like equation (1) which carries a new force term F̄ on the right hand side. Starting from equation (1),
we use a forward Euler time integration for the collision term along with the CrankNicolson scheme for the
force term to have [24]

fk(x+ ek∆t, t+∆t)− fk(x, t) = −
∑
j

Λk,j(fj(x, t)− feqj (x, t)) +
∆t

2
Sk

∣∣∣∣
(x,t)

+
∆t

2
Sk

∣∣∣∣
(x+ek∆t,t+∆t)

(19)

where Λ is the generalized relaxation matrix and Sk is defined as

Sk =
(ek,i − ui) · F̄i

ρ̄c2s
feqk . (20)

To render the LBE into an explicit form we use the transformation gk = fk − ∆t
2 Sk suggested by Premnath

and Abraham [26]

gk = fk −
∆t

2
Sk (21)

geqk = feqk −
∆t

2
Sk (22)
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to obtain

gk(x+ ek∆t, t+∆t) = gk(x, t)−
∑
j

Λk,j(gj(x, t)− geqj (x, t)) + (I − 1

2
Λk,j)Sj(x, t). (23)

In the practical implementation, the above equation is carried out in two steps, namely the on-site collision
step

g∗k(x, t) = gk(x, t)−
∑
j

Λk,j(gj(x, t)− geqj (x, t)) + (I − 1

2
Λk,j)Sj(x, t) (24)

followed by streaming to the neighbouring nodes

gk(x+ ek∆t, t+∆t) = g∗k(x, t) (25)

As a result of the transformation, we recover the fluid pressure and velocity using the zero- and first-order
moments of the new distribution function gk, respectively,

ρ̄ui =
∑
k

ek,igk + 0.5F̄i , P = c2sρ̄ = c2s
∑
k

gk. (26)

2.3.2 Force discretization

Considering equation (18) for the force F̄ , we need to discretize the derivatives ∇P for the pressure force
term, ∇u as in the viscous force term, and ∇φ for calculating n(φ) and κ(φ) = ∇ · n in the surface tension
force, respectively (see equation (13)). The most straightforward, second order accurate approach to obtain
the first derivatives (∇a in general) would be to use the central differencing scheme along the main X and
Y directions

∇xa(x, y) = a(x+h,y)−a(x−h,y)
2h

∇ya(x, y) = a(x,y+h)−a(x,y−h)
2h

(27)

where h is the mesh spacing. This simple differencing, however, may result in low degree of isotropy, and
therefore less accuracy particularly in the pressure field if applied to ∇P . In fact, a closer look at Sk in
equation (20) reveals that the term ek · F̄ comprises the directional derivatives of pressure; ek ·∇P . Moreover,
due to the EOS, we have that O(ek · ∇P ) ≈ O(ek · ∇fk), and hence the term ek · ∇P contributes to the
convection term in the left hand side of the LBE. These observations bring us to the following conclusions

• The contribution to the convective term justifies the semi-implicit Crank-Nicolson time integration

• The differencing for ek ·∇P has to be carried out along the lattice directions instead of the main directions

• As the pressure jumps across the interface, one has to pick a discretization mechanism for ek · ∇P which
is robust enough to capture the sharp jumps and is at least second order accurate

While using a second order upwind differencing leads to fluctuations in the pressure field, a simple central
differencing imposes strong dissipation error and hence could not capture the rather sharp pressure jumps
across the interface. Consequently, we choose the following averaged scheme which combines the effect of a
second order upwinding (w.r.t the −ek direction) with the central differencing
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(ek · ∇P )avg =
(ek · ∇P )C + (ek · ∇P )U

2
(28)

where the directional central and upwind derivations are calculated as:

(ek · ∇P )C = P (x+ek∆t)−P (x−ek∆t)
2

(ek · ∇P )U = −P (x+2ek∆t)+4P (x+ek∆t)−3P (x)
2 .

(29)

It will be further shown in section 4 that such an averaged directional approach for ek · ∇P results in
significant improvement over the simple central differencing for recovering the correct pressure field and
w.r.t. lower spurious velocities in case of high density ratios. A similar effect is reported in the chemical
potential model of Lee and Lin [20] for the gradients of the macroscopic density, where they prove through
extensive numerical experiments for 1D model problems, that the averaged differencing delivers the optimal
numerical efficiency.

To find non-directional derivatives of the pressure ∇P , as required for example in the calculation of u · ∇P
in Sk (see equation (20)) we make use of the following weighted summation over the central directional
derivatives of the pressure [20]

∂iP =
∑
k

wk
ek,i · (ek · ∇P )C

c2s∆t
. (30)

We summarise that using the above discretization scheme in two dimension, one needs to compute a total
of 6 central derivatives for ∇φ, ∇ · n and ∇u, plus 8 directional derivatives for ek · ∇P . On the other hand,
one may only require 8 central differences in case of using the naive central derivatives for all the gradients.

2.4 Multiple relaxation time collision

It is now widely-known that the use of the SRT scheme introduced in equation (1), though being computa-
tionally cheap, is the source of numerical oscillations in the pressure and velocity field. Such oscillations may
specially end up in complete divergence in the case of very low viscosities, as may occur in the gas phase in
multiphase flows. The destructive influence of the SRT scheme on the magnitude of the spurious velocities is
also well studied in the works of Yu and Fan [37] and Fakharri and Lee [9]. Such unfavourable effects emerge
from the fact that in the single relaxation time collision, all the moments of the distribution function are
forced to relax towards equilibrium through the same relaxation time τ which is a function of viscosity ν. A
well-established remedy is to let the different moments of the flow relax through a multiple relaxation time
(MRT) mechanism. To this end, one has to first transform the distribution functions from the phase space
g = (g0, ..., g8)T to their hydrodynamic counterparts in the moments space ĝ as

ĝ = Mg = (ρ, η, η2, ρux, qx, ρuy, qy, γxx, γyy)T (31)

where the transformation matrix M for the D2Q9 model in two dimensions is given [17] as:
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M =



1 1 1 1 1 1 1 1 1
−4 −1 2 −1 2 −1 2 −1 2

4 −2 1 −2 1 −2 1 −2 1
0 1 1 0 −1 −1 −1 0 1
0 −2 1 0 −1 2 −1 0 1
0 0 1 1 1 0 −1 −1 −1
0 0 1 −2 1 0 −1 2 −1
0 1 0 −1 0 1 0 −1 0
0 0 1 0 −1 0 1 0 −1


(32)

The new moments in equation (31) are the kinetic energy η, momentum flux q and the diagonal components
of the surface tension tensor γ. Considering the general relaxation operator Λ in the phase space in equation
(38), the transformed relaxation matrix Λ̂ = MΛM−1 has the diagonal form

Λ̂ = diag{s0, s1, s2, s3, s4, s5, s6, s7, s8}. (33)

The moments ĝk could then get relaxed through their individual relaxation times using sk. In practice, one
carries out the collision part of the LBM in the moment space and then uses the inverse transform M−1 to
obtain the post-collision values gk so as to perform the streaming part in the phase space

gk(x+ ek∆t, t+∆t) = gk(x, t)−M−1

∑
j

Λ̂k,j(ĝj(x, t)− ĝeqj (x, t)) + (I − 1

2
Λ̂k,j)Ŝj(x, t)

 (34)

A general choice for the relaxation times sk, tuned for stability is discussed in [17] and further investigated
by [9] and [37] for multiphase flows. Eventually, a primary setting is suggested as

Λ̂ = diag{1, s1, s2, 1, s4, 1, s4, 1/τ, 1/τ}. (35)

where the surface tension relaxations s7, s8 are related to the viscosity through τ = 3(µ̄/ρ̄)+0.5. The general
rule of thumb for s1, s2 and s4 is to keep their values near 1.0. However, since s1 is associated with the
kinetic energy mode, its selection strongly affects the obtained velocity field. We will discuss in section 4
that setting s1 < 0.5 , gives the optimal results in the problems concerned in this paper.

3 Solving the level set equation

In order to solve the level set equation (9) for capturing the interface, we use the following second order
Runge-Kutta time integration. Assuming that φnij and unij are the values of the level set function and the
velocity at node (i, j) and time n, we have

φ∗ij = φnij −∆tunij∇φnij (36)

which gives the predictive value of φ∗ij , followed by a correction solution

φn+1
ij = φnij −

∆t

2

(
−unij∇φnij + unij∇φ∗ij

)
. (37)

To discretize the convective term uij∇φij , we use the weighted essentially non-oscillatory (WENO) scheme
as described in [25] which extends the first-order accurate upwind differencing to fifth-order spatial accuracy
based on the smoothest possible interpolation for the function φ. It is worth noting that although the level
set function is generally known to have smooth variations in the computational field, the use of the WENO
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scheme ensures that the interface is accurately convected in the case that sharp kinks or edges of the bubble
might locally disturb the signed distance property of the level set functions which eventually produces steep
changes in the value of φ. As such local effects could only be moderated to some extend by reinitializing the
level set function (see section 3.1), it is reasonable to employ the smoothest approximation for the spacial
derivatives of φ. We note that at this stage of the work the same computational mesh as for the LBM is
used for the discretization of the level set equation, meaning that ∆t = 1, ∆x = 1. Since the velocities
obtained from LBM are in the incompressible range of umax � 1, one could be sure that the CFL condition
of ∆t < ∆x/u is always satisfied for this choice of ∆t,∆x.

3.1 Level set reinitialization

As the solution of equation (9) advances in time, the level set function deviates from the signed distance
property as initially assumed in section 2.2. Therefore, one needs to reinitialize the level set function to be
close to the signed distance function. At this stage of the work, a brute force method is employed to find
φdist which calculates the minimum distances from the nodes to the linear edges which approximate the
interface [? ]. Eventually, we use the following smoothed reinitialization, previously introduced in [? ]

φnew = αφdist + (1− α)φold (38)

where 0 6 α 6 1, and α = 0 means no reinitialization, while α = 1 results in full redistancing. Care must
be taken to prevent the φ = 0 level set from changing position and thus loss of mass during the interface
reconstruction. Our numerical experiments suggest that using 0.1 6 α 6 0.15 leads to minimum mass loss
and best accuracy in capturing the interface.

4 Numerical results

In all the numerical tests in this section we make use of the two numerical discretization approaches de-
scribed in section 2.3, namely Approach-1 and Approach-2; Approach-1 refers to adopting the simple central
differencing for all the gradients including the pressure, whereas Approach-2 uses the averaged directional
formulation for the gradient of pressure and the central differencing for the rest of the gradients.

Since we eventually aim to compare our rising bubble simulations against the FEM solutions by Hysing et
al. [16], we choose the parameter settings as defined for the two rising bubble test-cases in that work and
apply the corresponding LB-converted parameters to both static and rising bubble simulations in the present
study. A summary of the configurations in LBM units is given in Table 1.

Table 1: Physical parameters and dimensionless numbers for test case 1 and 2, applied to static and rising
bubble

test case ρl ρg µl µg Re Eo ρl/ρg µl/µg
Test case 1 10 1 0.1 0.01 35 10 10 10

Test case 2 500 0.5 2 0.02 35 125 1000 100

LBM’s density and viscosity could be chosen to tune the relaxation values s7, s8 to achieve higher stability,
while the rest of the parameters, e. g. surface tension σ, gravity g and time t have to be calculated in
accordance to the non-dimensional numbers e. g. Eo and Re as well as the non-dimensional time T which
are defined as below
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Eo =
4ρlgr

2
0

σ
(39)

Re =
ρ1
√
g(2r0)3/2

µl
(40)

T =

√
gt

r0
(41)

where r0 is the bubble radius and is measured as the number of lattice units which the radius occupies.

4.1 Static bubble

We start our validation tests with the static bubble problem. The bubble has the radius of r0 = 0.25 and
an interface thickness of ε = 0.05, placed in the centre of a 1 × 1 computational domain with periodic
boundary conditions on all the entities. We aim to check the solutions against the Laplace law which, for a
two dimensional static bubble, describes the pressure difference due to the surface tension effect as

Pin − Pout =
σ

r0
. (42)

We will also examine the magnitudes of the spurious velocities which usually form around the interface as a
result of the force descretization error and lack of isotropy [18, 37].

The first test mimics the parameter configuration for test case 1 in Table 1. The simulation is run up to t = 3
(corresponding to T = 3.43) and we use both Approach 1 and 2 as well as the MRT-based Shan-Chen diffused
interface LB model with eight order force calculations [37]. Table 2 compares the error in the pressure as well
as the spurious velocity on different mesh levels. One could see that the maximum of the spurious velocity
is in average improved upon the Shan-Chen model by one and two orders of magnitude using Approach
1 and 2 of the coupled LBM-Level set scheme, respectively. Unlike the LB model where the velocity error
decreases by refining the lattice, the Shan-Chen model tends to increase the spurious velocities since the
actual interface thickness becomes thinner, making the jumps more sharp and hence the force approximation
less accurate.

It is also worth nothing that the higher isotropy in Approach 2 has resulted in one order of magnitude lower
spurious velocity as compared to Approach 1. Nevertheless, the rather low density and viscosity differences
in this case introduce no major error in recovering the pressure, and the errors in the Laplace equation are
of the same level using both approaches.

Next we increase the density and viscosity ratios to 1000 and 100 respectively in accordance to parameters for
the test case 2. As the Shan-Chen model is not capable to incorporate such high density/viscosity differences
into its two-component variant, we only present the results using the coupled LBM-level set scheme. As
depicted in Table 3, Approach 1 almost fails to recover the correct pressure even up to a lattice as fine as
h = 1/160 with a pressure error of 13%, whereas the corresponding error for Approach 2 is less than 1% at
nearly one order of magnitude lower spurious velocities.

Figure 1 provides the pressure profile obtained using both discretization approaches on different lattice levels.
The simple central differencing approach leads to an overly-smoothed pressure profile which could not reach
the correct values of pressure even up to h = 1/160 as required by the Laplace law. In contrast, the averaged
directional technique of Approach 2 has succeeded in preserving the sharp pressure jump across the interface
and the pressure values arrive at the expected levels in a length of almost 2ε.
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Table 2: pressure and velocity errors for the static bubble test case 1 using different lattice levels

1/h 40 80 160 320

Shan-Chen LB Model

Umax 6.5e-5 1.4e-4 3.00e-4 6.24e-4
|∆P − σ/r0| /(σ/r0) 0.0453 0.0172 0.0017 0.0023

LBM-Level Set, Approach 1

Umax 5.8e-5 3.00e-5 9.8e-6 7.4e-6
|∆P − σ/r0| /(σ/r0) 0.0108 0.0126 0.0087 0.0058

LBM-Level Set, Approach 2

Umax 1.93e-5 8.2e-6 4.6e-6 2.6e-6

|∆P − σ/r0| /(σ/r0) 0.0277 0.0147 0.0086 0.0060

Table 3: pressure and velocity erros for the static bubble test 2 using different lattice levels

1/h 40 80 160 320

LBM-Level Set, Approach 1

Umax 4.7e-6 5.0e-6 3.0e-6 2.1e-6

|∆P − σ/r0| /(σ/r0) 0.7520 0.4250 0.1331 0.0249

LBM-Level Set, Approach 2

Umax 5.7e-6 4.1e-6 8.4e-7 3.6e-7

|∆P − σ/r0| /(σ/r0) 0.1611 0.0211 0.0080 0.0060
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App. 1, h=1/320

Fig. 1: Pressure profile for the static bubble test 2

4.2 Rising bubble

The rising bubble problem consists of a bubble of radius r0 = 0.25 placed in a rectangular domain of size
1× 2 as illustrated in Figure 2. The no-slip boundary condition is considered for the horizontal walls using
the second order bounceback scheme [36], while we impose periodic boundary conditions on the vertical
boundaries which, in this particular geometry, implies the slip boundary condition (u · n = 0) as in [16].
Initially the bubble is stationary and is then allowed to rise by adding the buoyancy force Fb = g(ρ(φ)− ρl)
to F̄ /ρ(φ) in equation (18). which only acts on the lighter fluid inside the bubble. Two test cases are carried
out according to the configurations given at the beginning of section 4. For both test cases the interface
thickness is set to ε = 0.03 and the level set is reinitialized every N = 5 time steps for the base mesh of
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h = 1/40 and N would be increased by a factor of 4 by refining the lattice spacing from h to h/2 (since
∆t ∝ h2 in LBM).

In order to provide a quantitative insight into the bubble dynamics, the temporal values of the different
bubble metrics are considered as benchmark quantities and will be calculated in time for each test case. Here
we use the temporal values of the bubble centroid position yc, bubble rise velocity uc and its circularity 
defined as

yc =

∫
Ωb
ydx∫

Ωb
1dx

(43)

uc =

∫
Ωb

u dx∫
Ωb

1 dx
(44)

 =
Pa
Pb

=
perimeter of area-equivalent circle

perimeter of bubble
=
πda
Pb

(45)

where Ωb refers to the subspace of the lattice cells with coordinate x = (x, y) where φ(x, y) < 0, i. e. they
fall inside the bubble.

Fig. 2: Initial configuration and boundary conditions for the rising bubble problem [16]

4.2.1 Test case 1

In the first test known as test case 1 in [16], we choose the corresponding parameters as in Table 1 where the
density and viscosity ratios are both set to 10. As the time elapses the bubble is expected to gain a stable
ellipsoidal shape. An illustration of the time evolution of the bubble shape is depicted in Figure3 for a lattice
of h = 1/160 using the Shan-Chen LBM, Approach 1 and 2 of the coupled scheme and the finite element
solution obtained by the FeatFlow package [16]. While the interface obtained by the LBM-Level Set scheme
closely resembles that by the FeatFLOW, the Shan-Chen model produces more noticeable discrepancies from
the reference shapes.

The convergence behaviour of the coupled scheme with Approach 2 for the eventual interface shape is
illustrated in Figure 4. The convergence trend is further examined in time for the bubble quantities in Figure
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Fig. 3: Time evolution of the bubble shape for the Test Case 1

5. The differences between the curves of h = 1/80, h = 1/160 and h = 1/320 are quite small, while the curve
of the coarsest lattice of h = 1/40 has clear deviation from the fine grid solutions and experiences difficulty in
retaining the ellipsoidal shape of the bubble after t = 2 as reflected in the circularity curves. The main reason
is that the quality of our interface reconstruction degrades largely at coarser lattices which also provokes
intermittent jumps in the circularity curve due to the periodic reinitialization of a weakly reconstructed
interface. Table 4 contains the time-integrated errors in the rise velocity in different norm spaces measured
relative to the reference lattice of h = 1/320. The calculated rates of convergence (from h/2 to h) (ROC)
show that the overall accuracy of the coupled scheme in L1 and L2 norm spaces is in between 1.5 and 2
which confirms the second order accuracy in both Approach 1 and 2.

Finally, Figure 6 shows a quantitative comparison between different schemes on the finest level of h = 1/320.
Again, a very close agreement is discerned between the solutions from the coupled LBM-level set scheme
(using both approaches) and those produced by FeatFLOW. Although the Shan-Chen model is able to
capture the overall temporal trend, it exhibits apparent deviations especially in the bubble velocity, where
the velocities are in average lower than the reference solution. As also pointed out for the static case, Approach
1 is successful in recovering the correct pressure field for such moderate density and viscosity differences and
therefore we did not expect it to introduce any noticeable error in the dynamic test as well.

Table 4: Errors in the bubble rise velocity and the rates of convergence (ROC) for the test case 1

LBM-Level Set, Approach 1

1/h ‖ e1 ‖ ROC1 ‖ e2 ‖ ROC2 ‖ e∞ ‖ ROC∞
40 0.076750 0.149206 0.177204

80 0.028549 1.426712 0.053590 1.477261 0.055123 1.684686
160 0.007367 1.954169 0.013609 1.977321 0.024643 1.161464

LBM-Level Set, Approach 2

1/h ‖ e1 ‖ ROC1 ‖ e2 ‖ ROC2 ‖ e∞ ‖ ROC∞
40 0.096958 0.051369 0.046389

80 0.042549 1.188226 0.021663 1.245647 0.020337 1.189679

160 0.013890 1.615036 0.000692 1.644344 0.000757 1.424072
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Fig. 6: Temporal values of bubble metrics using different numerical schemes for the test case 1, (a) bubble
circularity (b) centroid position (c) rise velocity

4.2.2 Test case 2

In the second test case we increase the bubble density and viscosity ratios to more demanding values of 1000
and 100 respectively while the rest of the parameters are chosen as in Table 1. By assuming the same Re
number as in the test case 1, the bubble velocity is almost kept constant. However, the increase in the Eo
number from 10 in the previous test to 125 means that the surface tension is decreased. According to the
bubble shape map, proposed by Clift et al. [7], the bubble is expected to attain the shape of a dimpled cap. As
illustrated in Figure 7 (for a mesh of h = 1/160), the coupled LB-level set scheme is successful in recovering
the time evolution of the bubble shape which closely resembles the one predicted by the FeatFLOW finite
element solution in [16]. One could also see that the level set equation discretized with the WENO finite
differencing is capable of resolving very sharp corners and thin filaments as necessary for such a high Eo
number simulation. We note that the Shan-Chen model could not be used in this test case, as also pointed
out for the high density ratio static bubble test case.

In fact the major distiction between different approaches, seen in Figure 7, is the separation of the trailing
edge filaments predicted by FeatFLOW, whereas they remain attached to the bulk body of the cap-shaped
bubble in the LBM calculations. The separation could be a result of special parameterization in the level
set module or the interface reconstructions techniques used by FeatFLOW. In fact, there exists no reference
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solution for this test case after t = 2 since other FEM solutions e. g. the FreeLIFE package [8] do not report
such a phenomenon for the same benchmark. This could be examined quantitatively using the temporal values
of bubble metrics as in Figure 8 where the agreement between the circularity values given by FeatFLOW,
FreeLIFE and the coupled LBM-level set breaks up at around t = 2.3 and one could spot an abrupt jump
of the circularity in the curve obtained by FeatFLOW in Figure 8. Nevertheless, a fairly good agreement
keeps up for the centroid position up to t = 2. For the rise velocity the agreement stays up to t = 1 where
the deviation from the FEM solutions grows slowly up to t = 3. Such a deviation could most probably be
associated with the relatively larger pressure gradients produced by the motion of the bubble in the case
of large density differences which consequently affects the velocity field. In fact the approximation of the
pressure by the ideal gas EOS (6) is not very accurate to recover such large dynamic pressure gradients.

Another key observation is that the use of the coupled scheme with force discretization of Approach 1 for this
test case would result in totally incorrect predictions of the bubble quantities as well as its shape (as depicted
in Figure 9 for different lattice levels). This was rather expected from the high pressure errors emerging in
the high density ratio static bubble test. The large deviations from the reference solutions are thus due to
the errors in the pressure field which tend to grow drastically on coarser lattices. In contrary, Approach 2
manifests a smooth convergence from coarser lattices to finer ones in both the benchmark quantities (as
shown in Figure 10) and the interface shape. The overshoots of the rise velocity at the early times is again
produced by the high dynamic pressure gradient which forms around the bubble as the bubble starts to
rise in the surrounding stationary liquid. Nevertheless, using finer lattices eventually enhances the pressure
gradient accuracy to some extent and removes the starting overshoots.
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Fig. 7: Time evolution of the bubble in the test case 2 for h = 1/160 using (a) LB-level set scheme
Approach 2 (b) FeatFLOW
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Fig. 8: Temporal values of the bubble quantities using different numerical schemes for test case 2, (a)
bubble circularity (b) centroid position (c) rise velocity
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(a) Approach 1 (b) Approach 2
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Fig. 10: Temporal values of the bubble quantities for test case 2 on different lattice levels using the coupled
LB-level set scheme with Approach 2, (a) bubble circularity (b) centroid position (c) rise velocity

4.3 Relaxation time calibration

As previously mentioned in section 3, one has to take special care in choosing the right relaxation value s1
for the energy mode η. In order to investigate the effect of different values of s1 on the numerical results,
in Figure 11a we have measured the temporal values of the mean kinetic energy η̄ in the static bubble
problem at density and viscosity ratio equal to 1000 and 100 respectively. It is evident from Figure 11(a)
that by over-relaxing the s1 values to be larger than 1, the kinetic energy experiences large oscillations before
converging to its final level. To dissipate the oscillations one may try to under-relax the energy mode using
s1 < 1 such that the convergence becomes fairly smooth for s1 = 0.3. The observation is also prevalent in
the dynamic problem of the rising bubble test case 2 as depicted in Figure 11(b) for the bubble rise velocity.
It is seen that the rise velocity would not become smooth unless choosing to under-relax the energy moment.
Such a phenomenon is believed to become more pronounced and effective in dynamic problems as the Eo
number increases, i. e. the inertial effects may dominate the surface tension forces. A similar deduction is
pointed out in [9] for the MRT implementation of the chemical potential model where the use of s1 = 0.5 for
bubble problems and s1 = 1.0 for Kelvin-Helmholtz instability simulations has resulted in higher stability
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properties. This is, however, in contrast with the general advise in the literature to have 1.5 < s1 < 1.7
[17, 24, 37].
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Fig. 11: Effect of choosing different relaxation values s1 on (a) static bubble kinetic energy (b) the rise
velocity of the rising bubble test case 2. In both cases the lattice spacing is h = 1/160

4.3.1 Summary and conclusions

A second order coupled LB-level set scheme was designed for multiphase flow problems based on the one-fluid
formulation of the governing equations. The averaged directional pressure force discretization enables us to
capture the correct pressure field for static and rising bubble problems with density and viscosity ratios
as high as 1000 and 100, respectively. In particular, qualitative and quantitative benchmarking against the
finite element solution of rising bubble problems (as available in [16]) proves the accuracy of the coupled
scheme at both moderate and high density and viscosity ratios. While the present model outperforms the
classical Shan-Chen model in the static and rising bubble tests, it removes the Shan-Chen model limitation
to low density or viscosity ratios. The use of the one-fluid formulation further eliminates the need to impose
explicit boundary conditions on the interface or to have different lattice spacings in the case of large viscosity
differences as necessary in [35]. Moreover, it requires less computational effort as compared to the chemical
potential LB models e. g. [20] since it includes less derivatives in the force evaluation and replaces the second
D2Q9 LBE for interface capturing in [20] with a 2D PDE for solving the level set function. We note that
since the model is originally designed based on the ideal gas EOS to evaluate the pressure, its application
to problems with large dynamic pressure gradients may result in non-accurate pressure and velocity fields.
As a remedy, one could exclude the ideal gas contribution from the total pressure and redesign the LBE to
solve for the dynamic pressure as suggested by [12].

The level set interface capturing is demonstrated to be a promising tool for capturing complex bubble de-
formations at high Eo numbers when being added to a lattice Boltzmann flow solver. As this study was
mainly focused on implementing the coupled approach and evaluating the overall performance and accuracy,
we have employed the most basic numerical tools available as reinitialization and surface reconstruction
modules which might be neither the most computationally efficient nor numerically accurate. Yet, we expect
a significant improvement in the interface capturing quality through employing more sophisticated reinitial-
ization schemes e. g. the fast marching method or make use of the polynomial recovery approximations for
evaluating the surface normals and curvature.
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The level set equation is currently using an identical mesh spacing as for the LBM. However, since one
is only interested to solve the level set function accurately in the vicinity of the interface, the use of a
fine mesh could be avoided in the far field by employing a separate, locally refined mesh for the level set,
resulting in considerable savings in the computational cost. An even further advanced technique, widely used
in Navier-Sotkes-based solvers, is to solve the level set equation using finite element schemes on unstructured
meshes adaptively refined around the interface which provide higher interface resolutions, yet at the price of
sacrificing the scalability of parallel implementations.

Finally, considering the renowned capability of LB solutions for parallelization and the fact that the ex-
tension of the method to three dimensions is straightforward, the authors believe that the present coupled
scheme could show off its competitive functionality by benefiting from parallel implementation, and in par-
ticular GPUs for large scale three dimensional multiphase flow simulations. A major milestone in this regard
would be to minimize the computational overhead due to interface reinitialization and reconstruction. Early
results regarding the use of more robust pressure approximations, advanced numerical tools for the interface
reconstruction, and finally efficient parallel implementation are very promising and are subject to our future
publications.
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