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Abstract

In this study, we present the development of a 2D finite element solver for simulating fluids
exhibiting both elastic and plastic constitutive properties. We achieve this by combining the
constitutive models of the Oldroyd-B model for viscoelastic fluids and the Papanastasiou
model for Bingham fluids within a single Eulerian numerical framework. Our aim within
this approach is to approximate the given velocity, pressure, and elastic stresses. We employ
a higher-order finite element method for the velocity-stress approximation and a discontin-
uous pressure element. This specific element pair has proven highly effective for accurately
capturing the behavior of both Oldroyd-B and Bingham fluids, including nonlinear viscosity
functions. Our study consists of two main steps. Firstly, we validate the numerical results
for each module component of the constitutives to ensure the accuracy of the approximations
and calculations. This step is crucial for establishing the reliability and robustness of our ap-
proach. Subsequently, in the second step, we apply the solver to simulate elastoviscoplastic
fluid behavior in a porous medium. By investigating fluid flow and deformation within this
specific context, we aim to demonstrate the capabilities and potential of our methodology.

Keywords: Finite element method, Elastoviscoplastic, Porous media, Oldroyd-B model.

1. INTRODUCTION

Many materials in our everyday life are neither perfectly elastic solids nor simple Newtonian
fluids. Efforts to depict such kinds of materials as either solid or fluid often fail; rather,
they demonstrate both elasticity and plasticity effects together. The most common exam-
ple is bread dough. To make bread, you first need to knead the dough. The bread dough
experiences the flow under your hand as you knead it; however, when you shape it, it main-
tains its shape. At this stage, if you gently press your fingertip into the dough it does not
spring back, but if you keep kneading the dough for a long time it will then acquire some
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elastic properties, and then by doing the poke test it will spring back quickly acting more as
an elastic stuff. This dough is not simply a viscoplastic or viscoelastic material but rather
elastoviscoplastic because it exhibits viscoplasticity as well as a high degree of elasticity due
to the elastic recovery upon the removal of deformation stress. To describe this kind of
complex behavior of fluids, recent elastoviscoplastic models have played a vital role. The
constitutive properties of such complex fluids usually involve a combination of elastic and
plastic behaviors, leading to the development of elastoviscoplastic or viscoelastoplastic fluid
models [1, 2]. Numerous models have been proposed to observe such complex fluid behavior
[3, 4, 1, 2]. In 2007, Saramito [1] introduced an elastoviscoplastic model, which is a combi-
nation of the viscoplastic Bingham and the Oldroyd models, offering an in-depth framework
for understanding these materials. The time-independent Saramito model combined with
the conservation of momentum and mass reads:

λσ̇ +max

(
0,

|σd| − σy
|σd|

)
σ = 2ηmD(u)

ρ (u · ∇u)− div (−pI + 2ηD(u) + σ) = f

∇ · u = 0

u = uΓ on ∂Ω

σ = σΓ on ∂Ω

(1)

in (1) σ̇ reads:

σ̇ = u · ∇σ + σ ·W(u)−W(u) · σ − a(σ ·D(u) +D(u) · σ) (2)

where λ denotes the relaxation parameter, ρ the density, u the velocity. The solvent and
the polymer viscosities are represented by η and ηm respectively. The total viscosity is
η0 = ηm + η, f represents the external force, p the pressure. The rate of deformation is
D(u) = (∇u +∇uT )/2 and the vorticity tensor is represented as W(u) = (∇u−∇uT )/2,
σ represents the stress, σy the yield stress and σd the deviatoric part of the stress σ which
is represented as:

σd = σ − (tr(σ)/N)I (3)

with N as a spatial dimension, |σd| =
√
tr(σd · σd) is the second invariant of deviatoric

stress. In (2), a is the material parameter that is associated to the Gordon–Schowalter’s
derivative [5, 6], a = 1 represents the upper convected derivative and a = −1 represents
the lower convected derivatives. The model represented in (1) behaves as a Kelvin-Voigt
viscoelastic solid before yielding and after yielding it behaves as an Oldroyd viscoelastic
fluid. Additionally, the model acts as viscoplastic when λ = 0, while it exhibits viscoelastic
properties when σy = 0. In 2008, Saramito presented an improved version of this model
[7]. Saramito’s work has been influential in offering a clearer framework for studying the
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behavior of such complex fluids. In the modeling of such types of equations, the numerical
variables depend on the choice of various constitutive models. Many of these constitutive
models involve different numerical frameworks to handle the transition between the solid
and liquid phases, such as the Saramito model. Although these strategies offer improved
accuracy, the numerical treatment becomes significantly more complex, primarily due to
the challenges of identifying the interface between the two phases [8]. To address these
complexities, we propose a similar approach from Chaparian et al [8, 9]. In our work, we
combine the constitutive models of the Oldroyd-B, which has been used as a benchmark
for many different numerical techniques [10], and the Papanastasiou regularized model [11]
for Bingham fluids within a single Eulerian numerical framework. This strategy, which
has recently gained attention in elastoviscoplasticity studies, has demonstrated promising
qualitative results.

1.1. Bingham Model

As discussed, our study employs a model to simulate elastoviscoplastic fluids, which combines
the Papanastasiou regularized model for Bingham fluids [11] with the Oldroyd-B model [4].
To gain insight from the Papanastasiou model, it’s worth examining its fundamentals. Bing-
ham originally introduced the constitutive equation that characterizes viscoplasticity [3].
The Bingham fluid states that below a certain yield stress, there will be no flow, and once
that shear yield stress has been exceeded you observe a flow. Mathematically Bingham
viscoplastic fluid can be defined as follows: D(u) = 0, σ ≤ σy

σ =

(
σy

II(D)
+ ηp

)
D(u), σ > σy

(4)

where ηp represents the plastic viscosity. The second invariant of the deformation tensor is
defined as:

II(D) =
√
D : D (5)

It is always a challenging task to simulate viscoplastic models. The reason is very obvious by
looking into the above presented mathematical model (4) which is divided into two distinct
regions. One region is concerned with the no deformation, i.e., D(u) = 0, and the fluid
is not yielded, the other region is concerned with the deformation i.e., D(u) ̸= 0, and the
fluid is yielded. This results in an obvious discontinuity between the two solutions. From
the numerical perspective, there is a jump that numerical solvers do not handle, resulting
either in slowing a simulation down or causing a divergence. To overcome this difficulty a
regularization technique should be implemented. In our work, we are going to implement
the Papanastasiou approach [11]:

σ =

[
σy

II(D)
(1− e−mII(D)) + ηp)

]
D(u) (6)

The regularized Papanastasiou model is a widely used framework for modeling Bingham
fluids, offering a regularization technique to handle the discontinuous viscosity behavior in
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the mathematical model. The idea of the regularization technique is that if the stress goes
above or below the yield stress, we expect a smooth function which is ideal for the numerical
solver, as there is no discontinuity present in the numerical model. In terms of viscosity, it
can be written as:

η(II(D)) =
σy

II(D)

(
1− e−mII(D)

)
+ ηp (7)

In (7), m denotes the stress growth parameter also known as the regularization parameter,
which needs to be sufficiently large. The advantage of the expression (7) is that it can be used
over the whole flow domain, i.e. both yielded and unyielded regions. If the regularization
parameter m is large enough the viscosity tends towards ηp [12]. The lower values of m can
be used at higher values of yield stress and vice versa [13, 14].

1.2. Papanastasiou Regularized Elastoviscoplastic Model

By incorporating the model presented in (7) into the momentum equation and combining
it with the Oldroyd-B model, which captures viscoelastic effects, our approach provides
a comprehensive simulation platform for elastoviscoplastic fluids. The steady-state elasto-
viscoplastic fluid model combines with the conservation of momentum and mass equation
reads:

λ
(
u · ∇σ −∇u · σ − σ · ∇uT

)
+ σ = 2ηmD(u)

ρ (u · ∇u)− div (−pI + 2η(II(D))D(u) + σ) = 0

∇ · u = 0

u = uΓ on ∂Ω

σ = σΓ on ∂Ω

(8)

In our work the parameter a in (2) is set to a = 1 to obtain the Oldroyd-B model, i.e the
upper convective derivative and our σ̇ reads as σ̇ =

(
u · ∇σ −∇u · σ − σ · ∇uT

)
, η(II(D))

can be seen in (7).

2. FINITE ELEMENT APPROXIMATION

2.1. Variational Formulation

To obtain the approximate solution to the specified problem in (8), we employ the finite
element method [15, 16]. The reason to employ this method is because of its strong math-
ematical background that has its roots in functional analysis which helps give us all the
analysis for the stable nature of the finite element scheme and the well-posedness. The fi-
nite element technique starts by formulating the weak form of equation (8). Our objective
within this framework is to approximate the velocity, pressure, and elastic stresses in space
where we utilize a higher order finite element method for the velocity-stress approximation
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and incorporate a discontinuous pressure element. This specific combination of elements has
demonstrated exceptional effectiveness in accurately capturing the behavior of both Oldroyd-
B and Bingham fluids, including nonlinear viscosity functions [17]. Before presenting the
weak form of the problem, let us introduce the Lebesgue and the Sobolev spaces:

L2(Ω) =

{
u : Ω → R

∣∣∣∣ ∫
Ω

|u(x)|2 dx <∞
}

(9)

H1(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂u∂xi ∈ L2(Ω), i = 1, . . . , d

}
(10)

H1
0 (Ω) =

{
u ∈ H1(Ω)

∣∣ u = 0 on ∂Ω
}

(11)

We introduce the functional spaces S := L2(Ω)d×d
sym, V := H1

0 (Ω) and Q := L2(Ω) in which
stress velocity and pressure reside. The variational form is then derived using the test func-
tions s ∈ S, v ∈ V and q ∈ Q and then multiply them with equation (8) over the domain Ω
with respect to the spatial coordinates x = (x1, x2) and do the integration. The weak form
is then read as:

To find (u,σ, p) ∈ X = S× V ×Q such that:∫
Ω

[
λ
(
u · ∇σ −∇u · σ − σ · ∇uT

)
+ σ − 2ηmD(u)

]
s dx = 0 ∀ s ∈ S

∫
Ω

[ρ (u · ∇u)−∇ · (−pI + 2η(II(D))D(u) + σ)]v dx = 0 ∀ v ∈ V

∫
Ω

(∇ · u)q dx = 0 ∀ q ∈ Q

(12)

Further integrating by parts yields:∫
Ω

[
λ
(
u · ∇σ −∇u · σ − σ · ∇uT

)
+ σ − 2ηmD(u)

]
s dx = 0 ∀ s ∈ S

∫
Ω

[ρ(u · ∇u]v dx−
∫
Ω

[(−pI + 2η(II(D))D(u) + σ)]∇v dx = 0 ∀ v ∈ V

∫
Ω

(∇ · u)q dx = 0 ∀ q ∈ Q

(13)

Introducing here a pair of finite-dimensional approximation spaces Sh = span{χ1, . . . , χZ},
Vh = span{ψ1, . . . , ψN} andQh = span{φ1, . . . , φM}. The discretized solution is decomposed
as follows:
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uh =
N∑
i=1

uiψi, ph =
M∑
j=1

pjϕj, σh =
Z∑

k=1

σkχk (14)

finally, the discrete system of equations to be solved can be expressed as a typical saddle-
point problem: F M B

H L 0
BT 0 0

u
σ
p

 =

rurσ
rp

 (15)

with

F = fij =

∫
Ω

(ρψj∇ψj − 2ηsD(ψj)) : D(ψi) dx ∀ i, j = 1, . . . , N

M = mij =

∫
Ω

χj : D(ψi) dx ∀ i = 1, . . . , N, j = 1, . . . , Z

B = bij =

∫
Ω

ϕj∇ · ψi dx ∀ i = 1, . . . , N, j = 1, . . . ,M

H = hij =

∫
Ω

(−2ηmD(ψj)) : D(χi) dx ∀ i = 1, . . . , Z, j = 1, . . . , N

L = lij =

∫
Ω

λ
(
(ψk · ∇)χj −∇ψk · χj − χj · ∇ψT

k + χj

)
χi dx

∀ i, j = 1, . . . , Z, k = 1, . . . , N

(16)

In the context of the finite element method (FEM) applied to (13), the choice of spaces for
velocity, pressure, and stress variables is crucial for achieving accurate and stable numerical
solutions. The selection of these spaces is motivated by various considerations, including
the mathematical properties of the problem, the desired accuracy of the approximation,
and computational efficiency. In particular choice of the above finite-dimensional spaces for
velocity and pressure is subjected to the LBB condition [18], where its discrete version reads:

sup
u∈Vh

∫
Ω
(∇ · u)q dx
∥u∥1,Ω

≥ α∥q∥0,Ω ∀ q ∈ Qh (17)

Concerning the approximated spaces Vh and Sh a similar kind of condition has been studied
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in [10] and this is subjected to more complex analysis

sup
σ∈Sh

∫
Ω
(∇ · σ)u dx
∥σ∥0,Ω

≥ γ∥u∥1,Ω ∀ u ∈ Vh (18)

Figure 1: Q2/P1 element for velocity/stress and pressure.

To achieve high accuracy and efficiency in approximating (σ,u, p), we discretize the solutions
in the following discrete spaces:

Sh = {sh ∈ S | sh|T ∈ (Q2(T ))
2×2 for all T ∈ Th} (19)

Vh = {vh ∈ V | vh|T ∈ (Q2(T ))
2 for all T ∈ Th,vh|∂Ωh

= 0} (20)

Qh = {qh ∈ Q | qh|T ∈ P1(T ) for all T ∈ Th} (21)

2.2. Numerical Solver

The system of the equations represented in (15) is then solved using the Newton-Raphson
method [19] by setting R(x) = 0, where R = (u,σ, p). This method is known for its robust-
ness in solving the nonlinear systems of equations. However, it does have some limitations.
One significant drawback is the computational cost associated with forming and inverting
the Jacobian matrix, especially for large systems. Additionally, finding an appropriate initial
guess that leads to convergence can be challenging. To address these challenges and enhance
the method’s efficiency, various strategies can be employed. One approach is to use a line
search method and an optimal damping factor is calculated for the outer iteration:

xn+1 = xn + ωn

[
∂R(xn)

∂xn

]
R(xn) (22)

such that R(xn+1) ·xn+1 ≤ R(xn) ·xn, which helps stabilize the convergence and can reduce
the computational time required for convergence. Furthermore, instead of computing the
exact Jacobian matrix, an approximation can be used to reduce the computational burden.
The finite difference method, particularly the divided difference method, is commonly em-
ployed to approximate the Jacobian matrix [20]. This approximation provides a reasonable
estimate of the Jacobian without the need to compute the exact derivatives analytically.
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By incorporating these strategies, the Newton-Raphson method can be made more efficient
and practical for solving large-scale nonlinear systems of equations, addressing some of its
inherent limitations.

3. Numerical Results

In the numerical analysis section, we thoroughly investigate and validate our mathematical
formulations and establish the performance and authentication of our solver. We first begin
with the numerical validation of the viscoplastic component by simulating unidirectional flow
within a channel. Following this, our focus will be to validate the viscoelastic properties of
the fluid. For this purpose, we are going to perform the benchmark simulations for the flow
around a cylinder. Lastly, we will check the credibility of the elastoviscoplastic component by
conducting simulations based on a porous media benchmark for symmetric and unsymmetric
parts.

3.1. Validating Bingham Part

This section is concerned with the validation of the viscoplastic part of our model by con-
sidering a unidirectional flow in a unit square channel and also figuring out the insights of
the regularization parameter m by computing the errors for different values of m.

3.1.1. Dirichlet Boundary Condition

The initial validation case focuses on validating the viscoplastic component described by (8).
In this assessment, we exclude the relaxation parameter and the polymer viscosity terms to
identify the viscoplastic behavior. In this part, we analyze a unit square domain. The
velocity field in a channel flow is given by

ux = u(y) uy = 0 (23)

and is supposed to occur between two parallel plates separated by distance h. The analytical
solution for this specific problem is referenced in the literature [21, 22, 23, 24].

[ux, 0]
T = u (y) =



1

8
{(1− 2σy)

2 − (1− 2σy − 2y)2} 0 ≤ y <
1

2
− σy

1

8
(1− 2σy)

2
1

2
− σy ≤ y ≤

1

2
+ σy

1

8
{(1− 2σy)

2 − (2y − 2σy − 1)2}
1

2
+ σy < y ≤ 1

(24)

The rigid (or the plug) region lies in the region y ∈ [1/2 − σy, 1/2 + σy] and moving at a
constant velocity, the distance between the parallel plates is considered to be 1. Dirichlet
conditions in terms of analytical solution are applied at the left and right walls, and the no-
slip condition is set on the upper and lower walls. In this simulation, we set the yield stress
value to be σy = 0.25 and iterate over a different range of the regularization parameter m

8



and the refinement levels. A creeping flow is considered in the simulations by setting ρ = 0.
Furthermore, comprehensive calculations are carried out to assess the results obtained.

(a) Velocity magnitude (b) Pressure

Figure 2: Visualization of velocity magnitude and pressure distribution at σy = 0.25.

Table 1: The relationship between the L-2 norm velocity error and the regularization parameter m observed
at different refinement levels.

2 3 4 5 6

m = 101 2.83182e− 3 2.80536e− 3 2.80385e− 3 2.80802e− 3 2.80380e− 3
m = 102 4.77711e− 4 5.54487e− 4 5.35859e− 4 5.35504e− 4 5.35404e− 4
m = 103 7.95147e− 5 8.09976e− 5 9.17084e− 5 8.69674e− 5 8.48112e− 5
m = 104 8.67548e− 6 8.83069e− 6 8.97524e− 6 9.33456e− 6 9.88019e− 6
m = 105 8.75649e− 7 8.98809e− 7 9.23477e− 7 9.52896e− 7 9.71171e− 7

The error reduction presented in Table 1 is influenced by the choice of the regularization
parameter m, an increase in the number of regularization parameters leads to a substantial
decrease in the error. It is evident from the above table that the larger values of m result in
a significant reduction of the error and help capture the true behavior of viscoplastic fluids.

3.1.2. Pressure Gradient

A linear pressure is a solution to equations (8), with the corresponding Bingham constitutive
relation in equation (6). However, the pressure field in Figure 2 shows a discontinuity in the
region around the rigid zone. This lack of smoothness arises because, within the Bingham
constitutive model, alternative pressure solutions may exist in the unyielded region, which
in this case lies in the central area. The remedy is straightforward: a pressure difference
between inflow and outflow is imposed along the inflow or outflow boundaries, such that
uy = 0 and σ · n = 0 in the outward normal direction of the numerical domain. This
approach smooths the pressure distribution, as shown in Figure 3.
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Figure 3: Visualization of a smooth pressure field.

3.2. Validating Viscoelastic Part

3.2.1. Planar Flow Past a Cylinder

Upon successfully validating the viscoplastic component, our subsequent focus shifts to val-
idate the viscoelastic component by setting the yield stress, σy, to zero in (8). To validate
the viscoelastic component, we selected the flow around a cylinder benchmark to investigate
drag across different Weissenberg numbers. Despite having no singularities in the geometry
of the flow around a cylinder, achieving convergence at high elasticity is always a challenging
task.

3.2.2. Problem Description

The computational domain under consideration for this benchmark problem consists of a
rectangular region with a centrally located semi-circular cylinder. We considered the half
domain in our simulations due to the symmetric problem. The domain spans a length along
the x-axis ranging from x ∈ [−20, 20], and a height along the y-axis from y ∈ [a, b] = [0, 2].
Within this domain, a centrally located semi-circular cylinder has a radius r = 1. The ratio
between H (channel height) and r is to be considered as 2 or simply H = 2r. A visual
representation of this geometry is illustrated in the accompanying figure. This setup serves
as the basis for our viscoelastic validation study. Concerning the boundary conditions, a

Figure 4: Flow around cylinder coarse mesh (half of the domain).

fully developed velocity profile is specified at the inlet and outlet, aiming for a mean velocity
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of Umean = 1.0. For the Oldroyd-B model, the corresponding parabolic profile at the inlet is
expressed as:

ux =
3

2
Umean

(
1−

( y
H

)2
)
, uy = 0 (25)

The upper and lower walls are defined as no-slip boundaries in terms of velocity. The
dimensionless parameters governing the problem are the Weissenberg number We = λU/r
and the viscosity ratio β = η/η0, where U = 1. In this study, the viscosity ratio β is set to
be 0.59, ηm = 1 to have resemblance with the other benchmarks [25, 26, 27]. A creeping flow
is considered in the simulations by setting ρ = 0. The drag coefficient is calculated over the
surface of a cylinder with the help of the following expression:

Cdrag = 2

∫
s

(σ · n) ds (26)

Our focus lies on determining the drag coefficient on the cylinder surface for various re-
laxation times. A strong agreement between our computational results and the reference
findings [26] affirms the accuracy of our numerical implementation. More accuracy can be
obtained by increasing the mesh refinement. NI represents the number of iterations in the
below table.

We= 0.1 We= 0.2

Level Drag NI Ref. [26] Drag NI Ref. [26]

3 130.063 3 - 126.361 3 -
4 130.283 3 - 126.551 3 -
5 130.342 3 130.366 126.606 3 126.628

We= 0.3 We= 0.4

Level Drag NI Ref. [26] Drag NI Ref. [26]

3 122.969 3 - 120.416 3 -
4 123.105 3 - 120.527 3 -
5 123.171 3 123.194 120.572 3 120.593

We= 0.5 We= 0.6

Level Drag NI Ref. [26] Drag NI Ref. [26]

3 118.730 4 - 117.730 4 -
4 118.766 4 - 117.717 4 -
5 118.809 4 118.828 117.758 4 117.779

Table 2: Validation of the solver against drag values of the flow over a cylinder in a rectangular channel for
different Weissenberg numbers and β = 0.59.
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3.3. Validating Elastoviscoplastic Part

In the final phase of our validation process, we will evaluate the elastoviscoplastic component
by examining its behavior. For this, we will perform our simulations in a porous media as a
test case [9]. This particular test case serves as a comprehensive benchmark to evaluate the
performance and accuracy of our mathematical formulations.

3.3.1. Flow in Porous Media

Studying the dynamics of the fluid that flows through porous media is of great importance
in many fields of engineering, and natural science, including other areas such as soil sciences,
hydrology, solid mechanics, and polymer property measurement[28, 29]. The purpose of this
study is to investigate the complex fluid possessing elastic, viscous, and plastic properties
through the porous media. Flow of complex fluid, in our case elastoviscoplastic, materials
through porous media has been the key interest for many researchers. By considering the
complex interactions and flow dynamics within a porous medium, we aim to ensure that our
model can effectively capture the elastoviscoplastic behavior in a realistic and challenging
setting. This rigorous validation approach will further enhance the credibility and robustness
of our computational model, providing confidence in its ability to accurately simulate and
analyze elastoviscoplastic fluids in various practical applications. Before diving into the
problem description and numerical investigation of fluid through porous media, let’s define
what porous media is.

3.3.2. Porous Media

A porous medium is defined as a solid structure, often referred to as a porous matrix, that
contains interconnected voids known as pores. It is a region consisting of at least two material
components, supposed to be homogenous, presenting identifiable interfaces between them,
with at least one of the constituents remaining fixed or slightly deformable or simply the solid
structure with interconnected voids [28]. The key properties of a porous medium consist of
porosity and permeability.

3.3.3. Porosity and Permeability

Porosity is defined as the ratio of the volumes of the void to the total volume of the material.
Mathematically it is written as:

ϕ =
Vp
Vt

(27)

where ϕ is the porosity. Here Vt = Vp + Vs, Vp representing the void volume, Vs as the solid
material volume and Vt the total volume. The expression (27) can be rewritten as:

ϕ =
Vt − Vs
Vt

(28)

note that zero porosity means there is no space for flow, while non-zero porosity indicates
that a material can flow. The greater the porosity, the more space there is for the material to
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flow. Porosity usually varies from 0 to 1. After defining the porosity of the porous media the
next important term is permeability. Permeability, represented by κ, indicates the ability of
the fluid to flow through the porous medium. It depends on the distribution or connectivity
of the pores, no pores space leads to non-permeability and in that case, κ = 0 means the
medium is impermeable, whereas if κ is infinite it shows the medium offers no resistance to
flow [30, 31, 32, 33]. The flow through the porous media is numerically treated by Darcy’s
law [34] which is a linear relationship between the velocity and the gradient of the pressure.
This law is only valid for Newtonian fluids with low Reynolds numbers.

3.3.4. Problem Description (Symmetric and Unsymmetric case)

In this simulation, a symmetric configuration of cylinders is arranged within a square box of
length 2.25 units. Four cylinders are positioned at each corner of the square, with a radius
of 1 unit and with a porosity of 0.38 in a symmetric case, and three cylinders with a radius
of 1 are placed on the bottom corner and upper part of the box with the same porosity 0.38.
This geometry leads the elastoviscoplastic fluid to continuously experience contraction and
expansion. The domain can be seen in Figure 5.

Figure 5: Computational domain for symmetric and unsymmetric porous media.

The interesting aspect of these simulations is that both the symmetric and unsymmetric
arrangements of cylinders represent two extreme configurations of an ideal porous medium.
In the symmetric configuration along the centerline, within a reference frame moving with
the flow, the flow is nearly entirely extensional. In contrast, the unsymmetric geometry is
anticipated to exhibit shear-dominated deformation nearly everywhere, and the porous media
is expected to have such flow patterns [35]. To capture the yielded/unyielded region and to
align our results with [9], the second invariant of the deformation tensor is observed. In the
symmetric case, the domain is subjected to a velocity-driven flow entering from the left pore,
while a no-slip boundary condition is enforced on the surface of the cylinder. Conversely, in
the unsymmetric geometry, a pressure-driven flow is applied at the inlet, and the surface of
the solid cylinders adheres to the no-slip condition. The key parameters considered in this
setup include:
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Re =
ρUr

η0
, We =

λU

r
and Bi =

σyr

η0U
(29)

where Re, We, and Bi denote the Reynold, Weissenberg, and Bingham numbers. Through-
out the simulation, we maintain fixed Reynolds and Weissenberg numbers at 0.8 and 0.01
respectively. A sequence of simulations is conducted, varying the Bingham numbers across
values of 0.1, 1, 5, and 10, while the parameter β remains constant at 0.5. This approach
allows us to explore the influence of different Bingham numbers on the flow behavior while
keeping other factors constant for comparative analysis. The visualization of deformation,
as depicted in Figure 7 and 9, provides crucial insights into the behavior of the fluid within
porous media under symmetric conditions.
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Notably, the presence of black spots within the visual representation signifies regions of
unyielding material. It is observed that as the Bingham number increases, these black re-
gions expand in size. This observation aligns with expectations and accurately portrays the
inherent characteristics of the fluid. Moreover, it’s essential to note that the black region
within the red moving region signifies the moving yield surface. Conversely, the black re-
gions situated at the top and bottom of the simulation represent the static unyielded regions.

a: Bi = 0.1 b: Bi = 1 c: Bi = 5 d: Bi = 10

Figure 7: Visualization of the deformation in the EVP fluid within the model porous medium for the
symmetric arrangement of cylinders at Re = 0.8, We = 0.01, with varying Bingham numbers.
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a: Bi = 0.1 b: Bi = 1 c: Bi = 5 d: Bi = 10

Figure 8: Visualization of the velocity contours in the EVP fluid within the model porous medium for the
symmetric arrangement of cylinders at Re = 0.8, We = 0.01, with varying Bingham numbers. The blue lines
in the middle represent the moving yield surfaces. The top and bottom black region is the static unyieldied
region.

The blue line present in the middle in Figure 8 represents the moving yielding surface, as
expected that the higher Bingham number results in the big unyielded region. The simulation
we performed for the symmetric part of the porous media shows a strong agreement with
the data available in the literature [9].

a: Bi = 0.1 b: Bi = 1 c: Bi = 5 d: Bi = 10

Figure 9: Visualization of the deformation in the EVP fluid within the model porous medium for the
unsymmetric arrangement of cylinders at Re = 0.8, We = 0.01, with varying Bingham numbers.

The blue lines in the middle of the geometry in terms of small patterns for the unsymmet-
ric case can be witnessed in Figure 10 represent the moving yielding surface. Like in the
symmetric case the same pattern is expected for the unsymmetric part i.e., the higher the
Bingham number is the bigger the unyielded region is. The top and bottom region is the
static unyieldied region. The simulation for the unsymmetric part of the porous media also
shows a strong agreement with reference results [9].
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a: Bi = 0.1 b: Bi = 1 c: Bi = 5 d: Bi = 10

Figure 10: Visualization of the velocity contours in the EVP fluid within the model porous medium for
the unsymmetric arrangement of cylinders at Re = 0.8, We = 0.01, with varying Bingham numbers. The
blue lines in the middle represent the moving yield surfaces. The top and bottom black region is the static
unyieldied region.

3.3.5. Flow Topology

We will now shift our focus towards the flow topology. The motivation is to figure out how
the shear, rotational, and shear flow has evolved and distributed inside the symmetric and
unsymmetric domains. We will achieve this with the help of a parameter Q. This parameter
is known as the flow topology parameter and it is defined as:

Q =
II2(D)− II2(W)

II2(D) + II2(W)
(30)

where II2(D) = (D : D) and II2(W) = (W : W). Here, Q = −1 corresponds to pure
rotational flow, while Q = 0 and Q = 1 represent pure shear and pure elongational flow,
respectively. From Figure 11 one can observe the distribution of shear, rotational, and
elongational flows in the symmetric geometry of the porous medium. The figure clearly
shows that shear-dominated flow occurs near the cylinder walls, rotational flow is observed
at dead ends due to the presence of vortices, and the elongational pattern changes with
increasing Bingham number [35].

a: Bi = 0.1 b: Bi = 1 c: Bi = 5 d: Bi = 10

Figure 11: Visualization of the flow topology in the EVP fluid within the model porous medium.
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4. Conclusion

Our current study has provided a comprehensive insight into the mathematical model for
the elastoviscoplastic fluid, finite element approximation, and the behavior of fluids within
different geometries including porous media. Initially, a robust mathematical framework was
introduced for the elastoviscoplastic fluids, depicting the true rheological behavior of complex
fluids such as elastviscoplastic fluid by incorporating the Oldroyd B model and the Papanas-
tasiou regularized model into the momentum equation. The present mathematical model
is then approximated using the finite element technique (mixed formulation) that incorpo-
rates Q2 element for velocity stress and a discontinuous P1 element for the approximation
of pressure. To solve the resulting nonlinear system of equations arising from the finite ele-
ment discretization, we applied Newton’s method. This iterative approach is particularly a
perfect tool for dealing with the nonlinearities inherent in elastoviscoplastic fluid behavior.
The finite element framework and simulating fluid behavior through different geometries
was quite challenging because of the inclusion of viscous, elastic, and plastic terms. To keep
things simple and well structured we divided the numerical simulations into three parts. The
first part dealt with the viscoplastic behavior of the fluid by eliminating the elastic effects.
The challenge was to examine the effectiveness and convergence behavior of our numerical
solver as well as to observe the optimal value of the regularization parameter to capture the
viscoplastic model more accurately. The next part was to simulate the viscoelastic effects
by eliminating the viscoplastic term from the mathematical model. The simulation was per-
formed for the flow around a cylinder to find the drag over the cylinder. Our results show
good agreement with the reference results. In the last part, the model was tested for viscous,
plastic, and elastic terms by simulating it through a porous media with the symmetric and
unsymmetric arrangement of cylinders within a domain and examining the behavior of the
fluid, particularly concerning the influence of Bingham numbers. As we look ahead, our
future investigations will extend beyond solely increasing the Weissenberg number. We aim
to encompass a broader spectrum of Bingham numbers, ranging from small to large values.
By incorporating a comprehensive range of Bingham numbers alongside higher Weissenberg
numbers, we anticipate gaining a more detailed understanding of how both viscoelastic and
yield stress effects interact within porous media. This expanded exploration will offer valu-
able insights into the complex interplay between material properties and flow dynamics. This
will be done by incorporating the Bingham Papanastasiou regularized model with the other
viscoelastic models, such as PTT, and FENE-P to capture the high Weissenberg number.
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[20] J. Nordström, F. Laurén, and O. Ålund, “An explicit Jacobian for Newton’s method
applied to nonlinear initial boundary value problems in summation-by-parts form,”
AIMS Mathematics, vol. 9, no. 9, pp. 23291–23312, 2024.

[21] N. B. A. Ouazzi and S. Turek, “Newton-multigrid FEM solver for the simulation of
quasi-Newtonian modeling of thixotropic flows,” in WCCM-ECCOMAS2020, vol. 700
of Numerical Methods and Algorithms in Science and Engineering, Scipedia, 2021.

[22] A. Aposporidis, E. Haber, M. A. Olshanskii, and A. Veneziani, “A mixed formulation of
the Bingham fluid flow problem: Analysis and numerical solution,” Computer Methods
in Applied Mechanics and Engineering, vol. 200, no. 29, pp. 2434–2446, 2011.

[23] A. Fatima, S. Turek, A. Ouazzi, and M. A. Afaq, “An adaptive discrete Newton method
for regularization-free Bingham model,” 07 2021.

[24] G. C. G. Raja R. Huilgol, Fluid mechanics of viscoplasticity. Springer Cham, 15 April
2022.

[25] O. M. Coronado, D. Arora, M. Behr, and M. Pasquali, “A simple method for simulating
general viscoelastic fluid flows with an alternate log-conformation formulation,” Journal
of non-Newtonian Fluid Mechanics, vol. 147, no. 3, pp. 189–199, 2007.

[26] H. Damanik, J. Hron, A. Ouazzi, and S. Turek, “A monolithic FEM approach for the
log-conformation reformulation (LCR) of viscoelastic flow problems,” Journal of Non-
Newtonian Fluid Mechanics, vol. 165, no. 19, pp. 1105–1113, 2010.

[27] S. Wittschieber, L. Demkowicz, and M. Behr, “Stabilized finite element methods for a
fully-implicit logarithmic reformulation of the Oldroyd-B constitutive law,” Journal of
Non-Newtonian Fluid Mechanics, vol. 306, p. 104838, 2022.

[28] Z. Heinemann and G. Mittermeir, Fluid flow in porous media. PHDG textbook series,
PHDG, 2 ed., Feb. 2013.

[29] H. J. Seybold, U. Eberhard, E. Secchi, R. L. C. Cisne, J. Jiménez-Mart́ınez, R. F. S.
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