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Abstract

In this article we present a new implicit numerical scheme for reaction-

diffusion-advection equations on an evolving in time hypersurface Γ(t).
The partial differential equations together with a level set equation φ are

solved on a stationary quadrilateral mesh. The zero level set of the time

dependent indicator function φ(t) implicitly describes the position of Γ(t).
The dominating convective-like terms, which are due to the presence of

chemotaxis, transport of the cell density and surface evolution may lead to

the non-positiveness of a given numerical scheme and in such a way cause

appearance of negative values and give rise of nonphysical oscillations in

the numerical solution. The proposed finite element method is constructed

to avoid this problem: implicit treatment of corresponding discrete terms

in combination with the algebraic flux correction (AFC) techniques make

it possible to obtain a sufficiently accurate solution for reaction-diffusion-

advection PDEs on evolving surfaces.

Keywords: level set, evolving surfaces, FEM, FCT, TVD, membrane,

pattern-formation

1. Introduction

Current applications in biomathematics demand fast, efficient and accurate

solvers for systems of reaction-diffusion-advection PDEs. For example, pat-

tern formations and colouring of the animals coat [23, 24, 25, 39], dynam-
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ics of the yeast cell polarity [12, 29] and other processes are modeled by

reaction-diffusion equations of Turing type instability. Chemotaxis models

are widely used to describe bacteria/cell aggregation and formation pro-

cesses [2, 22, 36, 37, 38], modeling of tumor invasion and metastasis pro-

cesses before a proliferation dominated stage [5, 7, 8, 9, 10], modeling of

vasculogenesis [4, 11, 30], etc. Here, besides diffusion and reaction one

deals with the advection-like term which is due to specie-specie or specie-

agent interactions.

During the last years there are tendencies to extend these mathematical mod-

els to more complex, but on the other hand more physically reasonable sys-

tems by coupling them with PDEs, which are defined on an evolving-in-

time manifold Γ(t), see, e.g., [1, 6, 13] for reaction-diffusion patterns on

growing surfaces, [42, 41] for chemotaxis processes on stationary and de-

forming manifolds, [12, 29] for protein dynamics on a cell’s membrane, etc.

Mathematically, aforementioned physical models can be described by the

following system of reaction-advection-diffusion equations

∂ci
∂t

= Dc
i∆ci −∇ · [χc

iw
c
i (c,ρ)ci] + fi(c,ρ), in Ω× T, (1)

∂∗ρj
∂t

= Dρ
j∆Γ(t)ρj −∇Γ(t) · (χ

ρ
jw

ρ
j (c,ρ)ρj) + gj(c,ρ), on Γ(t)× T,(2)

where
∂∗ρj
∂t

is a time-derivative, which takes into account the evolution of

Γ(t) and will be explained in the next section. The corresponding boundary

and initial conditions have to be provided. Here, ci(x, t), i = 1 . . . n, are

defined in the whole domain Ω and are solutions of (1). Unknown func-

tions ρj(x, t), j = 1 . . . m live on the surface Γ(t) ⊂ Ω and are solutions

of (2). We adopt the notation by writing vector fields in a bold letters,

i.e., c = (c1, . . . , cn)
T . The next sections are only dedicated to develop

an efficient and accurate technique including examples for the solution of

equations (2). The evolving surface Γ(t) is aligned with prescribed level

set function and its solution is extended to the neighborhood of the surface

Ωǫ(t) . The position of Γ(t) is prescribed implicitly by the zero level set

of the time-dependent level set function φ(t), those values are either given

analytically or found by solving the transport equation

∂φ

∂t
+ v · ∇φ = 0, (3)

where v is the velocity of the surface, which can be prescribed analyti-

cally, or v can also be determined through forces acting on the surface Γ,

e.g. chemo-attractive, chemo-repulsive forces, bending surface etc. By
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the proper choice of numbers of equations n and m, parameters Dc
i and

Dρ
j , chemotaxis/advection-related functions χc

i and vci , as well as kinetic

terms fi(·) and gj(·), one can easily obtain any of the models from the

above presented references. In Figure 1, Ωǫ(t) is an ǫ-band around Γ(t),

G( )t

W ( )te

W in

W out

Figure 1: Geometrical illustration

the domain of interest Ω = Ωin∪Ωout∪Γ,

where Γ(t) is taken as a zero level set

of φ. In a series of papers [33, 34, 35]

the authors constructed a robust and ef-

ficient numerical scheme for chemotaxis

problems in 2 and 3 spatial dimensions,

in the case when n = 2 and m = 1.

There, the FCT-TVD stabilization tech-

niques, Newton-like solvers and coupled

as well as decoupled approaches were an-

alyzed, see also [32]. It was shown that

the solver was able to deliver physically appropriate and accurate numeri-

cal solutions. Using the FCT method and the operator splitting technique

one can extend the proposed framework to models with multi-species and

multi-chemos. In the paper [31] we constructed a numerical scheme for the

equation of the type (2) coupled with a chemotaxis system and the surface

Γ was considered to be stationary. In this article we will propose a numeri-

cal scheme for solution of the partial differential equation of type (2) on the

time dependent surface with j = 1. This method treats implicitly the arising

advective terms and boundary integrals, which are due to the surface evolu-

tion, the transport and chemotaxis-processes solve via a robust, positivity-

preserving finite element based TVD/FCT-stabilization technique.

The article is organized as follows: in section 2 we present the required

theoretical derivations. Namely, in subsection 2.1 we explain the advective

surface derivative and surface-related parameters, and in subsection 2.2 we

describe the level set methodology and present the corresponding integral-

theorems. Section 3 deals with the construction of an implicit numerical

scheme, discuss the treatment of surface-advection and boundary-integral

terms and discuss the corresponding stabilization techniques. In section 4

we present numerical results for reaction-diffusion partial differential equa-

tions in two spatial dimensions and examine the order of time- and space-

convergence. Section 5 summarizes the characteristics of the proposed ap-

proach.
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2. Theoretical results

2.1. Preliminaries and derivation

In this article we derive an implicit numerical scheme for the following

parabolic chemotaxis-like equation on an evolving hypersurface Γ(t)

∂∗ρ

∂t
= D∆Γ(t)ρ−∇Γ(t) · (χρ∇Γ(t)c) + g(ρ) on Γ(t)× T, (4)

which can be obtained from (2) by setting j = 1 and

Dρ = D, χρ = χ,

wρ = ∇Γ(t)c, g(c,ρ) = g(ρ).

Here, the derivative
∂∗ρ

∂t
= ∂•t ρ+ ρ∇Γ(t) · v (5)

is due to the evolution of Γ(t) and can be obtained by the Leibniz formula

d

dt

∫

Γ(t)

ρ =

∫

Γ(t)

∂•t ρ+ ρ∇Γ(t) · v. (6)

By ∂•t ρ = ∂tρ+v ·∇ρ one denotes the advective surface material derivative.

The surface velocity v = V n + vS can be decomposed into velocity com-

ponents in the normal direction V n, with n to be a surface outward normal

vector, and in the tangential direction vS . One can easily find that

V (x, t) = −
φt(x, t)

|∇φ(x, t)|
.

Using the relations

∇Γ·v = ∇ΓV ·n+V∇Γ·n+∇Γ·vS = V∇Γ·n+∇Γ·vS = −V H+∇Γ·vS,

v · ∇ρ = V n · ∇ρ+ vS · ∇ρ = V
∂ρ

∂n
+ vS · ∇ρ,

where H is a mean curvature, we can rewrite (4) as

∂tρ+vS·∇ρ−V Hρ+V
∂ρ

∂n
+ρ∇Γ(t)·vS = D∆Γ(t)ρ−∇Γ(t)·(χρ∇Γ(t)c)+g(ρ),

(7)

or, in terms of the surface material derivative, as

∂•t ρ+ ρ∇Γ · v = D∆Γ(t)ρ−∇Γ(t) · (χρ∇Γ(t)c) + g(ρ). (8)
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2.2. Level set method

To obtain the semi-discrete form for equation (8) we adopt the level set

method. We assume that Γ(t) ⊂ Ω is a compact smooth connected and

oriented hypersurface in R
d and there exists a smooth level set function

φ(t,x) =











< 0 , if x is inside Γ(t),

0 , if x ∈ Γ(t),

> 0 , if x is outside Γ(t),

(9)

such that |∇φ| 6= 0. Then, an outward normal to Γ(t) is

n = (ni)i = ∇φ/|∇φ| (10)

and

PΓ = (δij − ninj)ij = I −
∇φ

|∇φ|
⊗

∇φ

|∇φ|
(11)

is the projection onto the tangent space TxΓ. Observe that if φ(·) is chosen

as a signed distance function then |∇φ| = 1. For a scalar function ξ on Ω
and a tangential vector field ξ on Γ one obtains

∇Γξ =

(

∂ξ

∂xi
− ninj

∂ξ

∂xj

)

i

, (12)

∇Γ · ξ =
∂ξi
∂xi

− ninj
∂ξi
∂xj

. (13)

Therefore the Laplace-Beltrami operator on Γ(t) with respect to the level

set function φ can be written as

∆Γξ = ∇Γ · ∇Γξ = ∇ · PΓ∇ξ. (14)

The Eulerian mean curvature is defined through the level set function as

H = −∇ · n = −∇ ·
∇φ

|∇φ|
.

In the subsequent we will need the following lemmas.

Lemma 1. (Coarea formula)

Let for each t ∈ [0, T ], φ(t, ·) : Ω̄ → R be Lipschitz continuous and assume

that for each r ∈ (infΩφ, supΩφ) the level set Γr = {x|φ(x, ·) = r} is a

smooth d-dimensional hypersurface in R
d+1. Suppose that η : Ω̄ → R is

continuous and integrable. Then
∫ supΩ

infΩ

(
∫

Γr

η

)

dr =

∫

Ω

η|∇φ|. (15)
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PROOF. Proof of the formula can be found [15].

Lemma 2. (Eulerian integration by parts)

Assume that the following quantities exist. Then, for a scalar function η and

a vector field Q we have
∫

Ω

∇Γ(t)η|∇φ| = −

∫

Ω

ηHn|∇φ|+

∫

∂Ω

η(n∂Ω − n · n∂Ωn)|∇φ|, (16)

∫

Ω

∇Γ(t) ·Q|∇φ| = −

∫

Ω

HQ · n|∇φ|+

∫

∂Ω

Q · (n∂Ω − n · n∂Ωn)|∇φ|,(17)

∫

Ω

∇Γ(t) ·Qη|∇φ| +

∫

Ω

Q · ∇Γ(t)η|∇φ| =

−

∫

Ω

Q · nηH|∇φ| +

∫

∂Ω

Q · (n∂Ω − n · n∂Ωn)η|∇φ|, (18)

where n∂Ω is an outward normal to ∂Ω.

PROOF. For the proof see, e.g., [3].

Lemma 3. (Implicit surface Leibniz formula)

Let η be an arbitrary level set function defined on Ω such that the following

quantities exist. Then

d

dt

∫

Ω

η|∇φ| =

∫

Ω

(∂•t η + η∇Γ(t) · v)|∇φ| −

∫

∂Ω

ηv · n∂Ω|∇φ|. (19)

PROOF. For the proof see, e.g., [3].

Let us denote ϕ to be some test function, then using the coarea formula (15)

we can write the variational formulation of (8):
∫

Ω

(∂•t ρ+ ρ∇Γ · v)ϕ|∇φ| =

∫

Ω

(

D∆Γ(t)ρ−∇Γ(t) · (χρ∇Γ(t)c)
)

ϕ|∇φ|

+

∫

Ω

g(ρ)ϕ|∇φ|. (20)

Due to the implicit surface Leibniz formula (19) the left hand side of (20)

can be rewritten as
∫

Ω

(∂•t ρ+ ρ∇Γ(t) · v)ϕ|∇φ| =
d

dt

∫

Ω

ρϕ|∇φ|

−

∫

Ω

ρ∂•t ϕ|∇φ|+

∫

∂Ω

ρϕv · n∂Ω|∇φ|.(21)
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In general the boundary integral cannot be neglected. In Section (4) we

show that its non-inclusion into the numerical scheme can cause kinks and

wiggles in the solution near boundaries which grow and spread throughout

the domain as time evolves. Since
(

D∇Γ(t)ρ− χρ∇Γ(t)c
)

· n = 0, integra-

tion by parts in (18) gives

∫

Ω

(D∇Γ(t)ρ− χρ∇Γ(t)c) · ∇Γ(t)ϕ|∇φ| =

−

∫

Ω

ϕ∇Γ(t) · (D∇Γ(t)ρ− χρ∇Γ(t)c)|∇φ|

+

∫

∂Ω

(D∇Γ(t)ρ− χρ∇Γ(t)c) · n∂Ωϕ|∇φ|. (22)

The boundary integral
∫

∂Ω
(D∇Γ(t)ρ − χρ∇Γ(t)c) · n∂Ωϕ|∇φ| on the right

hand side of (22) cannot be neglected in general as well. Its numerical

treatment though can be performed in a similar way to the boundary integral
∫

∂Ω
ρϕv · n∂Ω|∇φ| from (21). For the brevity everywhere in this article we

assume that the boundary ∂Ω is aligned with some level set Γr and therefore

(D∇Γ(t)ρ−χρ∇Γ(t)c) ·n∂Ω = 0. Applying (21) and (22) to (20), we obtain

d

dt

∫

Ω

ρϕ|∇φ|+

∫

Ω

(D∇Γ(t)ρ− χρ∇Γ(t)c) · ∇Γ(t)ϕ|∇φ| =
∫

Ω

ρ∂•t ϕ|∇φ| −

∫

∂Ω

ρϕv · n∂Ω|∇φ|+

∫

Ω

g(ρ)ϕ|∇φ|. (23)

3. Numerical scheme

For the discretization in space we use time-independent (conforming) bi-

linear finite elements with the corresponding space of test functions Qh =
span{ϕ1, . . . , ϕN}. Therefore

ϕ̇ = v · ∇ϕ (24)

and the semi-discretization problem for (25) reads: find P ∈ Qh such that

d

dt

∫

Ω

Pϕ|∇φ|+

∫

Ω

(D∇Γ(t)P − χρ∇Γ(t)c) · ∇Γ(t)ϕ|∇φ| = (25)

∫

Ω

Pv · ∇ϕ|∇φ| −

∫

∂Ω

Pϕv · n∂Ω|∇φ|+

∫

Ω

g(ρ)ϕ|∇φ| ∀ϕ ∈ Qh.

The algorithm proposed by C. M. Elliott et al. [3] is the level set-based finite

element method, where diffusive and advective terms are treated implicitly
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but the surface-evolution term
∫

Ω
Pv ·ϕ|∇φ| treated explicitly. This method

has some interesting properties: First, stationary finite elements save time

of calculation and reduce the complexity of a solver. Secondly, the level set

nature makes it possible to couple surface-defined PDEs with the domain-

defined PDEs. Additional prescription of a transport equation for the level

set function can allow to model a complex behavior of the evolving in time

hypersurface Γ(t). And thirdly, the method does not require numerical eval-

uation of the curvature. Nevertheless, for more practical use this method has

to be improved because of a few drawbacks. On the one hand, this method

does not include any stabilization for the convective term, which is due to

the surface evolution in time, and which may cause the numerical scheme

to loose its positivity-preserving properties and thus lead to oscillatory solu-

tions with negative values. On the other hand, this method does not include

integral-boundary terms. Under some conditions the absence of correspond-

ing discrete terms in the numerical scheme may lead to the loss of accuracy

of the solution near boundaries. This may also cause loss of positivity of the

solution near boundaries follows by deterioration of the entire solution. To

overcome these stumbling-blocks, we adopted a fully implicit FCT/TVD-

stabilized finite element method inclusive boundary integrals.

Fully-discrete scheme of the implicit version: Given Pm at the tm-the

time instance and the time step ∆t = tm+1 − tm, then solve for Pm+1

1

∆t

∫

Ω

Pm+1ϕ|∇φm+1|+

∫

Ω

(D∇Γm+1Pm+1 −wPm+1) · ∇Γm+1ϕ|∇φm+1|

−

∫

Ω

Pm+1vm+1 · ∇ϕ|∇φm+1|+

∫

∂Ω

Pm+1ϕvm+1 · n∂Ω|∇φ
m+1|

=
1

∆t

∫

Ω

Pmϕ|∇φm +

∫

Ω

gϕ|∇φm|, (26)

for all ϕ ∈ Sh. Using {ϕi} test functions as quadrilateral finite elements in

space, the matrix form of the equation (26) looks like follows:

[M (|∇φm+1|) + ∆tL(D|∇φm+1|)−∆tK(wm|∇φm+1|)

− ∆tN (vm+1|∇φm+1|) + ∆tR(|∇φm+1|)]Pm+1

=M (|∇φm|)Pm +∆tg(|∇φm|) (27)

Here,M (·) denotes the (consistent) mass matrix,L(·) is the discrete Laplace-

Beltrami operator, K(·) is the discrete on-surface advection operator with
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the linearized velocity wm, N (·) is the discrete operator due to the surface

evolution and R(·) are discrete boundary integrals with the entries defined

by the formulae

mij(ψ) =

∫

Ω

ϕiϕjψ, (28)

lij(ψ) =

∫

Ω

PΓ∇ϕi · ∇ϕjψ, (29)

kij(ψ) =

∫

Ω

ϕiψ · PΓϕj, (30)

nij(ψ) =

∫

Ω

ϕiv
m+1 · ∇ϕjψ, (31)

gi(ψ) =

∫

Ω

ϕigiψ. (32)

It is known that under some conditions the discrete Laplace-Beltrami op-

erator L(D|∇φ|) can deteriorate and leads to an ill-conditioned matrix. In

this article we do not investigate this situation and refer to the corresponding

works of Olshanskii et al. [26, 27, 28]. The convective-like matrices K(·)
andN (·) depending on velocitiesw and v, as well as the boundary-integral

operator R(·) may lead to the loss the positivity-preserving properties and

thus lead to nonphysical oscillations in the solution profile. This fact neces-

sitates the use of some stabilization based techniques to treat the operators

or terms which caused oscillation. Rewriting the equation (27) as

[M (|∇φm+1|) + ∆tL(D|∇φm+1|)−∆tK(φm+1|)

=M (|∇φm|)Pm +∆tg(|∇φm|) (33)

we apply the linearized flux-corrected transport (FCT) algorithm to the op-

erator

K(φm+1|) =K(wm|∇φm+1|)−∆tN (vm+1|∇φm+1|) + ∆tR(|∇φm+1|).

Positivity constraints are enforced using a nonlinear blend of high- and low-

order approximations through an algebraic manipulation of the matricesM

and K. The limiting strategy is fully multidimensional and applicable to

(multi-)linear finite element discretizations on unstructured meshes. The

approach was successfully tested for domain-defined equations for chemo-

taxis in 2- and 3-spatial dimensions [33, 34] and for chemotaxis equations

which are defined on stationary surfaces [31]. For a detailed presentation of

the FEM-FCT methodology, including theoretical analysis (stability, posi-

tivity, convergence) and technical implementation details (data structures,
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matrix assembly) we refer the interested reader to [16, 17, 18, 19, 20] and

other related publications of Kuzmin et al.

4. Numerical results

4.1. Example 1

In the first example we would like to demonstrate that numerical stabiliza-

tion of certain PDEs on surfaces is necessary. For these purposes we con-

sider the transport equation

∂tρ+ v · ∇Γρ = 0 (34)

on the unit sphere Γ = {x : |x| = 1}. Applying the level set methodology,

we solve the transport equation (34) on level sets Γc ⊂ Ω. For the sake of

simplicity our calculational domain Ω is chosen to be a union of all level

sets Γc with c ∈ [0.5, 1.5]. The following initial condition

ρ(x, t) =

{

10 if |x− (0, 0, 1)T | ≤ 0.3 ,

0 else.
(35)

and the advective velocity vector-field

v = {x1, 0,−x3}
T

are taken. The mesh is constructed by refining the coarsest level via con-

necting opposite midpoints several times. In the table below we give the

number of cells and degrees of freedom at every level of refinement. For

numerical experiments we use a grid of trilinear finite elements at the 5th

level of mesh refinement. Edges of quadrilaterals are aligned with the level

sets. Figure 2(a) we show the initial condition for ρ. Its numerical solution

for the pure Galerkin scheme at an exemplary time-point T = 0.2 is demon-

strated in Figure 2(b). One can clearly observe artificial wiggles and nega-

tive values of ρ near regions of steep gradients. These nonphysical negative

level cells d.o.f.

1 192 250

2 1 536 1 746

3 12 288 13 090

4 98 304 101 442

5 786 432 798 850

Table 1: Mesh levels on the computational domain Ω.

10



(a) initial solution (b) pure Galerkin method

(c) TVD (d) FCT

Figure 2: Numerical results for the transport problem, ∆t = 0.001.

values grow rapidly as time evolves, which leads to an abnormal termination

of the simulation run. In [31] we also showed that the pure Galerkin scheme

for chemotaxis problems on stationary surfaces cannot guarantee positivity

preservation and smoothness of the solution. The corresponding FCT/TVD

methodology helps to stabilize this type of problems and delivers a suffi-

ciently accurate solution, see Figures 2(c) and 2(d) as well as [31]. In the

following we show that the integral boundary term
∫

∂Ω
ρϕv · n∂Ω|∇φ| can

also lead to undesired kinks near the boundary of the calculation domain,

which can also spread through the whole domain and spoil the numerical

solution. An advective term to the surface evolution requires the special nu-

merical treatment as well. For corresponding reconstruction processes we

refer, e.g., to [21].
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4.2. Example 2

Let us take example 1 from [3]. We solve the following equation

∂∗ρ(x, t)

∂t
= D∆Γ(t)ρ(x, t) + g(x, t) on Γ(t), (36)

where Γ(t) is prescribed by the zero level set of the function

φ(x, t) = |x| − 1.0 + sin(4 t)(|x| − 0.5)(1.5− |x|). (37)

As a domain we choose Ω = {x ∈ R
2 : 0.5 ≤ |x| ≤ 1.5}. The boundary

of the domain ∂Ω is aligned with a curve from the family Γr. The analytical

solution is chosen to be

ρ(x, t) = e−t/|x|2 x1
|x|2

.

Since Γ(t) is time-dependent, the equation (36) transforms into

∂tρ+ vS · ∇ρ+ V
∂ρ

∂n
− V Hρ+ ρ∇Γ · vS −∆Γρ = g, (38)

where H is a mean curvature of Γ(t) and therefore H = −1/|x|. Substitut-

ing vS = 0 into (38) we get

∂tρ+ V
∂ρ

∂n
− V Hρ−∆Γρ = g. (39)

The function ρ(x, t) from (4.2) solves

∂tρ−∆Γρ = 0.

Therefore, one finds that

g = V
∂ρ

∂n
− V Hρ = V ρ

(

2 t

|x|3
+

1

|x|

)

.

As the initial condition we set ρinit = ρ(x, t = 0). In figures 3(c) and 3(d) we

demonstrate numerical results after the 1000th iteration with the fixed time

step ∆t = 0.0001 obtained by a scheme, which does not include a boundary

integral term. Here, explicit and implicit schemes reveal the same artifact

in the numerical solution: artificial kinks near the outside boundary of the

domain might propagate in time to the whole domain causing deterioration

of the numerical solution. In figures 4(a), 4(b) and 4(c) we show numerical

solutions, which are obtained by the implicit scheme (26). One can clearly

see much better profiles of the numerical solution. The 3rd level of the mesh
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(a) mesh at level 2 and initial solu-

tion

(b) analytical solution

(c) numerical solution, level 3

no name ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(d) boundary kinks, level 2

Figure 3: The 2nd and 3rd levels of mesh refinement consists of 288 and 1088 degrees of

freedom respectively.

refinement is used. In figure 4(a) we demonstrate the numerical solution

of (26) without any stabilization. In figure 4(a) the TVD and in figure 4(c)

the FCT stabilization techniques are applied. In the corresponding tables

we show the L2(Ωǫ), and H1(Ωǫ)-errors which are defined by

L2(Ωǫ)-error =
‖ρanalytical(x, t)− ρnumerical(x, t)‖L2(Ωǫ)

Area (Ωǫ)
,

H1(Ωǫ)-error =
‖∇(ρanalytical(x, t)− ρnumerical(x, t))‖L2(Ωǫ)

Area (Ωǫ)
.

In the upcoming tables the L2(Ωǫ)-errors, order of convergence and num-

bers of degrees of freedom are calculated at 1000th time step. Table 2 is

constructed in the whole domain without and with TVD/FCT stabilization

techniques, respectively.
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(a) Implicit scheme without stabi-

lization

(b) Implicit scheme with TVD stabi-

lization

(c) Implicit scheme with FCT stabi-

lization

no name ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(d) no boundary kinks

Figure 4: Numerical solutions obtained by adoption of the fully implicit scheme (26).

lev. d.o.f L2(Ωǫ) -errors order H1(Ωǫ) -errors order

Including boundary integral without stabilization

2 288 3.32928E-003 – 3.38593E-002 –

3 1088 1.25199E-003 1.4110 2.35593E-002 0.5233

4 4224 4.55928E-004 1.4574 1.66758E-002 0.4985

5 16640 1.69121E-004 1.4307 1.23715E-002 0.4307

6 66048 5.97876E-005 1.5001 9.05951E-003 0.4495

Total variation diminishing (TVD) schemes

2 288 3.72731E-003 – 3.34255E-002 –

3 1088 1.33463E-003 1.4817 2.27460E-002 0.5553

4 4224 4.70020E-004 1.5057 1.59574E-002 0.5114

5 16640 1.70923E-004 1.4594 1.18479E-002 0.4296

6 66048 5.98328E-005 1.5143 8.69003E-003 0.4472

Flux Corrected Transport (FCT) schemes

2 288 3.34406E-003 – 3.37376E-002 –

3 1088 1.25317E-003 1.4160 2.35129E-002 0.5209

4 4224 4.56032E-004 1.4584 1.66585E-002 0.4972

5 16640 1.69131E-004 1.4310 1.23644E-002 0.4301

6 66048 5.97813E-005 1.5004 9.05490E-003 0.4494

Table 2: L2(Ωǫ) and H1(Ωǫ)-errors, numbers of degrees of freedom and orders are calcu-

lated in the domain Ωin ∪ Ωout
14



4.3. Example 3

As a 3rd test case we take example 2 from [3]: we solve the equation (36)

in the domain Ω = {x ∈ R
2 : 0.5 ≤ |x| ≤ 1.5} on stationary level sets

φ(x, t) = |x| − 1.0.

Here, the initial solution is ρ0(x) = sin(4γ) and the tangential velocity of

the surface Γ is vS = 0. Since γt = 0, the normal component of the surface

velocity V is also zero. The mean value of ρ0 vanishes on every level set Γr,

hence the solution tends to zero as time tends to infinity. Obtained numerical

solutions at successive time instances are presented in figure 5.

(a) at t = 0.00 (b) at t = 0.002

(c) at t = 0.045 (d) at t = 0.1

Figure 5: Solution of example 3 at various time instances, ∆t = 0.0001
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lev. d.o.f L2(Ωǫ) -errors order H1(Ωǫ) -errors order

Including boundary integral without stabilization

2 288 6.65856E-003 – 6.77186E-002 –

3 1088 2.50399E-003 1.4110 4.71187E-002 0.5532

4 4224 9.11856E-004 1.5092 3.33517E-002 0.5151

5 16640 3.38243E-004 1.5130 2.47431E-002 0.4844

6 66048 1.19575E-004 1.5001 1.81190E-002 0.4495

Total variation diminishing (TVD) schemes

2 288 7.45463E-003 – 6.68511E-002 –

3 1088 2.66927E-003 1.4817 4.54921E-002 0.5553

4 4224 9.40041E-004 1.5056 3.19149E-002 0.5114

5 16640 3.41847E-004 1.4594 2.36959E-002 0.4296

6 66048 1.19665E-004 1.5143 1.73800E-002 0.4472

Flux Corrected Transport (FCT) schemes

2 288 6.68813E-003 – 6.74752E-002 –

3 1088 2.50635E-003 1.4110 4.70259E-002 0.5532

4 4224 9.12065E-004 1.5092 3.33171E-002 0.5151

5 16640 3.38263E-004 1.5130 2.47289E-002 0.4844

6 66048 1.19562E-004 1.5004 1.81098E-002 0.4494

Table 3: L2(Ωǫ) and H1(Ωǫ) errors and order of convergence and number of degrees of

freedom in the band 0.75 < |x| < 1.25

4.4. Example 4

Now everything is similar to the previous example 4.3, but the tangential

velocity of the surface is defined as

vS = 10
(−φx2

, φx1
)

|∇φ|
. (40)

Numerical results at some instances of time intervals are shown in figure 6.

In Tables 3 and 4 we show the L2(Ωǫ) andH1(Ωǫ) errors with order of con-

vergence and number of degrees of freedom with different mesh refinement

levels on the stripes 0.75 < |x| < 1.25 and 0.85 < |x| < 1.15, respectively.
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(a) at t = 0.0 (b) at t = 0.002

(c) at t = 0.045 (d) at t = 0.1

Figure 6: Solution of example 4 at various time instances, ∆t = 0.0001

lev. d.o.f L2(Ωǫ) -errors order H1(Ωǫ) -errors order

Including boundary integral without stabilization

2 288 1.10976E-002 – 1.12864E-001 –

3 1088 4.17333E-003 1.4110 7.85311E-002 0.5232

4 4224 1.51976E-003 1.4574 5.55863E-002 0.4985

5 16640 5.63739E-004 1.4307 4.12386E-002 0.4307

6 66048 1.99292E-004 1.5001 3.01983E-002 0.4495

Total variation diminishing (TVD) schemes

2 288 1.24243E-002 – 1.11418E-001 –

3 1088 4.44879E-003 1.4817 7.58203E-002 0.5553

4 4224 1.56673E-003 1.5057 5.31915E-002 0.5113

5 16640 5.69745E-004 1.4594 3.94932E-002 0.4295

6 66048 1.99442E-004 1.5143 2.89667E-002 0.4472

Flux Corrected Transport (FCT) schemes

2 288 1.11468E-002 – 1.12458E-001 –

3 1088 4.17726E-003 1.4160 7.83766E-002 0.5209

4 4224 1.52010E-003 1.4584 5.55285E-002 0.4971

5 16640 5.63772E-004 1.4310 4.12149E-002 0.4300

6 66048 1.99271E-004 1.5004 3.01830E-002 0.4494

Table 4: L2(Ωǫ) and H1(Ωǫ) errors and orders in the strip 0.85 < |x| < 1.15
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5. Conclusion

Modern biological and medical applications require numerical solutions

of systems of partial differential equations (PDEs) on manifolds/surfaces

and their coupling with domain-defined PDEs. The level set methodology

largely allows for such a coupling by a surface-surrounding bulk and pro-

vides the mathematical machinery for the development of numerical meth-

ods for PDEs on closed manifolds. Substantial difficulties occur when the

surface and its corresponding level set function are time dependent, i.e.,

non-stationary. Here, one does not only have to carefully treat additional

terms which arise due to the surface evolution, but also has to come up with

a robust stabilization for advective terms which are caused by deformations

of the surface, chemotaxis effects, advective surface material derivatives,

boundary integrals, etc. In this article we proposed a fully implicit numer-

ical scheme for systems of reaction-diffusion-convection/chemotaxis equa-

tions on an evolving in time surface. The positivity preservation is guar-

anteed by the TVD/FCT stabilization technique. The presented numerical

results show a sufficient accuracy, given a domain Ω ⊂ R
2. The employed

mathematical techniques such as the level set method, finite element dis-

cretization in space and TVD/FCT stabilization of advective terms provide

a straightforward extension of a given method to the 3-dimensional space

with an embedded 2-dimensional hypersurface. Next steps will be to imple-

ment and comprehensively study the given method in 3D in order to verify

its merits for more complex bio-medical applications. The proposed nu-

merical scheme was implemented in the open source FEM-library FEAT2,

which is developed and maintained at the department of Mathematics at the

TU Dortmund. The downloading of this software and the corresponding tu-

toring is possible either from www.featflow.de or by writing an email

to one of the authors of the article.
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