NUMERICAL SIMULATION OF CHEMOTAXIS MODELS ON STATIONARY
SURFACES
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Abstract. In this paper we present an implicit finite element method foraasbf chemotaxis models, where
a new linearized flux-corrected transport (FCT) algoritlenmiodified in such a way as to keep the density of on-
surface living cells nonnegative. Level set techniquesadapted for an implicit description of the surface and for
the numerical treatment of the corresponding system of paiffarential equations. The presented scheme is able
to deliver a robust and accurate solution for a large clash@fotaxis-driven models. The numerical behavior of the
proposed scheme is tested on the blow-up model on a sphere aflihbaoid and on the pattern-forming dynamics
model ofEscherichia colion a sphere.
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1. Introduction. After first being introduced in the beginning of the seventiy E.
Keller and L. Segel 34, 25] for modeling the behavior of the slime mold amoebi-
tyostelium discoideupthemotaxis models became widely used in many medical and bi
logical applications. Among them are bacteria/cells agatien and pattern formation pro-
cesses], 32, 42, 43, 44] and modeling of tumor invasion and metastasis procesdescha
proliferation dominated stagé,[6, 7, 8, 9], modeling of vasculogenesi8,[19, 37], which is
very important for understanding tissue engineering agdmeration, etc.

Many interesting mathematical questions arise also in tiiext of the chemotaxis-driven
systems. The main point is the existence and uniquenes® aolation. In particular, un-
bounded aggregation of cells may give rise to singulariéieaccumulation points. This
phenomenon is known as thow-upeffect [34, 21, 33, 36, 22, 11, 12, 23]. Another inter-
esting phenomenon is the fact that a homogeneous statisolartyon may become unstable
for large values of the chemotactic sensitivity functipi) under some conditions on the
reactive source term in the chemotactic growth system. $sthbilities may give rise to
rapidly evolving transient solutions and/or special pagenhich are observed in biological
experiments (see, e.dL,[2]) and were already mentioned above.

From the numerical point of view, one of the main problemseadealt with is due to the
rapid growth of solutions in a small neighborhood of cerfa@ints or curves. In particular,
the blow-up phenomenon or a singular spiky behavior of ezatitions may give rise to
nonphysical oscillations if the employed numerical schésneot guaranteed to satisfy the
discrete maximum principle (DMP). The construction praoalsa nonoscillatory, positivity-
preserving, accurate numerical scheme for chemotaxésplikblems can be compared with
the numerical stabilization of advection dominated protdén Computational Fluid Dynam-
ics (CFD). It is known that an adequate treatment of unstathective terms is a matter of
utmost importance for the majority of CFD applications.

In the last decade several methods for the numerical treatofiche chemotactic term

V- (A(u) B(c) C(Ve)) (mostly applicable to its simplified for® - (x uV¢)), whereu is the
cell density and: is the chemoattractant, have been proposed. Chertock armgiav [LO]
proposed a second-order Godunov-type central-upwindnsetfer chemotaxis and hapto-
taxis systems and related models. The constructed schelmegbeo the class of finite-
volume methods and was proven to preserve the positivithefcell density. Numerical
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results were obtained for the 2D case on unit square ge@retiinother finite-volume ap-
proach for the Keller-Segel chemotaxis model is due to Ejtb§]. He also studied an implicit
upwind-like numerical scheme and carefully analyzed itiderstand if it gives the correct
behavior of the solution when it is effectively smooth andewlit blows up. Tysomt al. pro-
posed a fractional step method for the partial differerggalations arising in the chemotaxis
models B4]. In every time step the solution procedure was split up thtee independent
steps corresponding to the advection, diffusion and reagtiocesses. Each step was handled
independently using the finite-volume discretization in@@ The advection step was solved
with the help of the CAWPACK simulation tool B1], which incorporates the 'flux-limiting’
stabilization strategy. For the diffusion step the A-stadnhd L-stable TR-BDF2 method was
used. There are also attempts by H. Gajeweskil. to develop numerical software for chemo-
taxis problems17, 19].

Among finite element approximations for the nonlinear chiemxis system one can find a
method proposed by Saito i85]. Herein he utilizes an upwind technique to construct a
numerical scheme that satisfies both positivity and massatwation properties. The discon-
tinuous Galerkin methods, so popular in the numerical conityisince the late nineties,
were accommodated for the Keller-Segel chemotaxis systeifagshteyn and Kurganov,
see [L4, 15]. Their methods are based on three primal discontinuougr@al methods:
Nonsymmetric Interior Penalty Galerkin, Symmetric InberPenalty Galerkin and Incom-
plete Interior Penalty Galerkin. The numerical fluxes fag #ipproximation of the advec-
tive term employ a central-upwind scheme, which belongth&family of nonoscillatory
central schemes, applicable to general multidimensiogatesns of conservation laws and
related problemsDeveloped by Kuzmin, Turekt al, the Flux-Corrected Transport (FCT)
and FEM-TVD algorithms for unstructured meshes were exgldor the chemotaxis mod-
els in two- and three space dimensions, s 9. They were shown to be accurate and
positivity-preserving, even in the case of solutions withrp peaks that blow-up in the center
or at the boundary of the domain.

Though mathematical analysis of chemotaxis models angsisaif evolving in time mani-
folds started already several decades before, their mtiegroccurred just recently due to the
necessity of constructing complex models for biological eredical applications. Very often
one has to couple PDEs defined in a domain with PDEs definedoonépme manifold (one
can think, e. g., of a cell membrane). At the same time the tedderocesses might lead
to the shape deformation of the manifold. As one of the firstkawdor chemotaxis-driven
processes on surfaces we would like to mention the paper lgt ¥ al. [46], where the
chemotaxis of bone marrow-derived mesenchymal stem cedligriulated, and by Elliogt.

al. [45], where the shape of a single cell evolves due to its chenwtagponse.

In this article we describe a special numerical scheme fenuataxis-like models, which
makes it possible to couple partial differential equationsa surface with those, which are
defined on some embedded into this domain manifold. Thelaiforganized as follows:
in section2 we define the problem. Then, in secti®nsubsectiors.1, we describe the level
set methodology: numerical treatment of the Laplace-Beltterm and of the on-surface de-
fined advective term. After that in subsecti®r2 we present the modified FCT-stabilization
technique for on-surface defined advection-dominatedtemsa In sectiort we demonstrate
numerical results for blow-up problems on a sphere and otlips@d. Then, we consider a
more realistic chemotaxis model, where a pattern formirgbier of bacteria along a sphere
occurs due their response to the chemoattractant, whidbktrgodted in the surrounding do-
main. Sectiorb summarizes the characteristics of the proposed approach.



2. Problem formulation. Almost all chemotaxis models, which were mentioned in
the previous section can be mathematically described byollmving system of reaction-
advection-diffusion equations:

@1 - DAV e pud + filw e, p), i QX T,
ac; : i ” :
(2.2) a—tj = DjAc; — Zak’jCk; + Zﬂk,juk +gj(u,c,p), in QxT
k=1 k=1
9]
(2.3) % = D!Arpi+ Vr - (x] - v/ (u,c,p)pi) + si(u,c,p), onT' xT

with corresponding boundary and initial conditions. Hergt, ), i = 1...n, denotes den-
sities of species, which live in a bounded dom@irc RY, d = 2,3, ¢;(t,z),j = 1...m,
stands for concentration of chemoattractants apdt,x), [ = 1...p, are
densities of species, which
live on a closed smooth
surfacel’. Velocitieswv in
equations Z.1) and @.3
can describe the species-
chemoattractant interaction
(v = Ve), species-
species interactiony =
Vu or some external ve-
FiG. 2.1.(Ief) T C ©, (right) T = Q. locity (e.g., due to fluid
flow, evolution of a sur-
face, etc.). x* and x” are vectors of chemo-, resp. chemosensitivity entrieschviban
be nonlinear. We distinguish two cases. In the first casefFspre2.1(a),I" C Q. Here, we
introduce a narrow ban@ C €2 aroundl’, where the equatior2(3) is treated by the level
set method. In the second case, see Figutéb), I' = 002 and we take)r to be a narrow
band in a direction, which is opposite to outer-normad@f In both cases the computational
domain is€2. This procedure allows us to perform the direct coupling ofmdin-defined
equations Z.1)—(2.2) with a surface-defined equatioh.§).
In a series of papers3g, 39, 40] the authors constructed a robust and efficient numerical
scheme for chemotaxis problems in 2 and 3 spatial dimensiorthe case whem = 1,
m = 1 andp = 0. There, the FCT-TVD stabilization techniques, Newtorelgolvers and
coupled, resp., decoupled approaches were analyzed. klveam that the solver was able
to deliver physically appropriate and accurate numerioalt®ons. Using the FCT method
and the operator splitting technique one can extend theogempframework to the case of
multi-species and multi-chemos. In this paper we constautmerical scheme for the equa-
tion (2.3) and couple this equation with the chemotaxis systém){(2.2). The surfacd’
is considered to be stationary. From the analytical pointiedv one does not know, how
curvature of a manifold influences blow-up: are blow-up p®at points of largest curvature,
is blow-up quicker if curvature is larger, etc? For this mgsve consider some numerical
experiments for chemotaxis problems on surfaces of conatah varying curvature. The
developed scheme and numerical results provide a promisisig for further studies in this
context.

3. Numerical scheme. The construction of positivity preserving, robust numalkic
schemes for the systerd.()—(2.2) was thouroughly analyzed 88, 39. Therefore, here

3



we focus on the equatio (). Let us rewrite it in the following form

(3.2) % = DArp+ Vr - (vp) + s,

whereArp is the Laplace-Beltrami term aridr - (vp) is the on-surface defined advective
term. For the simplicity of notation we sér = (2 and use the symbd@? to denote both
domains. We also assume thétis a natural extension gf from I" to the whole domain
Q. In the following we will omitx and will write simply p. The two main points, which
we consider in details are the treatment of the surface-etfierms and the corresponding
application of the FCT stabilization technique to the disizedV - (vp) term.

3.1. Level set: diffusion and advection on a surfaceTo obtain the semi-discrete form
for equation 8.1) we adopt the level set method. We assume tha a compact smooth
connected and oriented hypersurfac&®ihand that there exists a smooth level set function

<0 if zisinsidel’
(3.2) o) =40 fxel
> 0 if x is outsidel’

such thatV¢| # 0. Then, an outward normal 0 is

(3.3) n=(n;); = Vo/|Vg|
and

sy 7 VO VO
(3.4) Pr = (0, nmj)ij =7 Vol ® Vol

is the projection onto the tangent spafgl’. Observe that ifp(-) is chosen as a signed
distance function thefV¢| = 1. For a scalar functiog on 2 and a tangential vector fiel
onTI' one obtains

_ (o8, 9
(3.5) Vré = <5mi — n;n; axj>i,
(3.6) Vp £ = 98 0

— NN —.
83% J 8513j

Therefore the Laplace-Beltrami operatorIonvith respect to the level set functigncan be
written as

(3.7) Aré =Vr -Vl =V -PrVE.

From the Coarea’s formuld g] it is known that

(38) /fT (/F 5) ar= [ ol

wherel', = {x|¢(x) = r}. After multiplying the equation3.1) by finite element test
functions{¢} and integrating oveR, we obtain a weak formulation foB(1):

0
@9 5 [ pelVol= [ DarpelVel+ [ Vr-oeivel+ [ selvo
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The Eulerian integration by parts (see, e.tj3] applied to the Laplace-Beltrami term on the
right hand side of%.9) together with the assumption

/ Ve - (DVepe)| V| = / DVip-noe|Vé| =0,
Q o0

whereng, is a normal t@s2, give us

/ DVip-Vrp|Ve| = — / Vi - DVrppl Vel + / Vr - (DVrpg)| Vol
Q Q Q
(3.10) = —/ Vr - DVrpp|V¢|

Q

or, due to 8.4),
(3.12) [ ¥r DYool = - [ DPeYp-veiTol
Q Q

The advective ternVr - (vp) is treated in a similar way. Namely, applying the Eulerian
integration by parts to the corresponding weak formulatibRr- - (vp), one obtains:

@12) [ Ve (weelVel = [ po-TrplVel+ [ v-nonpelTol.

Q Q o0
In general, the integral along the boundary on the right tede of 8.12 can bring suffi-
cient changes into the solution dynamics and thereforeatdmn neglected, see, e.g26].
Assuming thad(2 is aligned alond’., for somec, and setting some restrictions enwe can
write

(3.13) [ oo manglvel <o,
o0
Therefore
(3.14) /Q V- (pv)elVé| = — /Q v Vig|Ve,

and the resulting semi-discrete scheme looks as follows:

9
(3.15) —/p|V¢|+/D’Ppr'V<p|V¢|f/pv'PpVLp|V¢|:/5(p\V¢|.
ot Jo Q Q Q

3.2. Stabilization. It is known that the pure Galerkin scheme will not work f8r1(5),
especially for largev. Here, we adopt the FCT methodology to construct a positjpie-
serving nonoscillatory numerical scheme for the reactidfusion-advection equation on a
surfacel’ C Q¢, whend = 2,3. We would like to note that the equatio®.{5 can be sta-
bilized by the FCT approach and then coupled in a segregaagdnith the equationZ.1),
which in turn might be also stabilized with the FCT (or anyesthonvection-related) algo-
rithm. This allows to treat numerically the interaction ofa-domain defined entities with
on-a-surfaces defined ones.

Given a set of piecewise-polynomial basis functigps} and a time step\t, the standard
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Galerkin discretization in space together with the impligiler discretization in time yields
the following linearized algebraic equation

(3.16) [M (Vo) + AtL(D|Ve|) — AtK (v"[Vg])] p" ' = M([Vo))p" + Ats™(|V4)),

wherep™*! is the unknown density of species at tihg ;. Here, M (-) denotes the (con-
sistent) mass matrix,(-) is the discrete Laplace-Beltrami operator, did-) is the discrete
on-surface advection operator with entries defined by thaditae

(3.17) mi0) = [ e

(3.18) i) = | PV Voo,
(3.19) k@) = [ b Prg,
(3.20) ) = [ g

As shown by Kuzmiret al. [27, 28, 29], positivity constraints can be readily enforced at the
discrete level using a conservative manipulation of thericeg M and K, supposing that
the source term\ts™ does not course any threat to positivity. The former is axiprated by

its diagonal counterpat{;, constructed using row-sum mass lumping

(3.21) My, = diag{m;},  mi=Y_ mi(|Ve|).
J

Next, all negative off-diagonal entries & are eliminated by adding an artificial diffusion
operatorD. For conservation reasons, this matrix must be symmetiilc »éro row and
column sums. For any pair of neighboring nodesidy, the entryd;; is defined as{7, 28|

Inax{_kijv 07 _kji}v ] 7é iv
dij = o
_Zk?gi dir, J =1
Itis clear thatd;; = d;;. The result is a positivity-preserving discretization @i/lorder. By

construction, the differencg between the residual of this scheme and that of the undgrlyin
Galerkin approximation

(3.22)

un+1 —un ntl
(3.23) J = (M = M(|V9))) < — Du
admits a conservative decomposition into a sum of skew-sstmcrantidiffusive fluxes
(3.24) =Y tg L=l Vi

J#
To achieve high resolution while keeping the scheme pdtsitpnreserving, each flux is multi-
plied by a solution-dependent correction faeigy € [0, 1] and is inserted into the right-hand
side of the nonoscillatory low-order scheme. The originalle®kin discretization corresponds
to the settingy;; := 1. It may be used in regions where the numerical solution isctmand
well-resolved. The setting;; := 0 is appropriate in the neighborhood of steep fronts.
In essence, the off-diagonal entries of the sparse mathifesd K are replaced by

m;‘j = QMg k;kj = k‘ij + (1 — aij)dij,
6



while the diagonal coefficients of the flux-corrected Galedperators are given by
mfz =m; — Zaijmij, k; = ]{J“ — Z(l — aij)dij-
j#i i

In implicit FEM-FCT schemesZ], 27, 28], the optimal values ofy;; are determined using
Zalesak’s algorithm47]. The limiting process begins with cancelling all fluxesttlaae
diffusive in nature and tend to flatten the solution profilEise required modification is:

fij =0 if fij(uj — ul) > 0,

wherew is a positivity-preserving solution of low orde29, 27, 28]. The remaining fluxes
are truly antidiffusive, and the computation®f; involves the following algorithmic steps:
1. Compute the sums of positive/negative antidiffusivedhiinto node

Pt = Zmax{o, fii}s P = Zmin{o7 fij}-
J#i J#i
2. Compute the distance to a local extremum of the auxilialyt®n u

Qj_ = maX{O? mi‘x(u] - UZ)}v Qz_ = min{ov m;én(uj - ub)}
J7F JF

3. Compute the nodal correction factors for the net increrteenodei

OT O~
Rf =min{1, = Q; , R =minq1, @1
AtP, ALP;

4. Check the sign of the antidiffusive flux and apply the cctios factor

s — min{R?‘, R]_}, if fij > 0,
Y | min{R;, R}, otherwise

For practical implementation details, we refer to the ordipublications by Kuzmiret al.
[29 27, 28].
Due to the level-set methodology and the algebraic natuteedfux-corrected schemes, TVD
and some FCT methods can be implemented for the equatitd @lmost without changes
(one should only operate with propdd (-), L(-) and K (-) matrices). Nevertheless, there
are certain FCT schemes which necessiate the evaluatjon diiring the antidiffusive flux-
limiting, e.g. Gradient-based slope limitinign [30]. In this case the corresponding projection
onto the tangential spack.[" is required. Numerical tests showed that the TVD scheme
n+1 n
drops behind the FCT algorithms in accuracy: neglectind Mg, — M (|V¢|)) %
term results in a smeared solution. Therefore, the FCTebalg®rithms are in this case more
preferable.

4. Numerical results. In this section we demonstrate that the proposed leveksét t
nique together with the algebraic flux correction makes gglale to perform numerical sim-
ulations of chemotaxis processes on surfaces of nonzevatcue. Here, we consider chemo-
taxis models with blow-ups on a sphere and an ellipsoid, disasw@attern-forming dynamics
of cells on a sphere with the Fischer overcrowding-preeentrm. In every case the solver
was able to deliver plausible, nonoscillatory and suffitieaccurate numerical solutions.
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4.1. Blow-up on a sphere.As a first example, we consider the minimal Keller-Segel
model on aspherE = {z : || =5} C Q= {x : 4.0 <|z| <6.0}:

(4.1) oip1 = Arpr — xV - (01 Vrp2),
4.2) Oip2 = Arpa — p2 + p1

with the following bell-shaped initial conditions

—0.5((21-5.0)> +x3+23)

)

p1(x1, e, 3,6t =0) =5.0e

po(a1, w2, 73, = 0) = 5.0 05((@1=5.0" a3 +af)

We use a uniform grid with trilinear finite elements with3 216 cells and798 980 d.o.f.
More on the mesh construction one can find in the followingssgbon4.3. The time step
is At = 10~* and the chemosensitivity = 50. The level-set function is chosen to be
¢ = \/x3 + 23+ 23 — 5.0. It is known, that the stability in terms of blow-up of the sys
tem (@.1)-(4.2) crucially depends on the chemoattractant sensitiyity fixing all involved
parameters and varying the magnitudeyobne can make either the diffusion processes or
the chemoattractive transport of cells dominant. The forsiteiation leads to steady-state
solutions, whereas the latter gives rise to evolving in tsokitions, blow-ups etc. For our
parameter setting we would expect a blow-up in finite timehef tell densityp; and the
chemoattractant concentratipg, if p; andps live on a 2D-plane. From figuregl.@(a)—
(4.2(d) one observes that the numerical simulation of the systeii{(4.2) leads also to an
infinite growth of the initial peak o, and, hencep,.

(a) initial (b) t = 0.01

FIG. 4.1.Blow-up on a sphere, pure Galerkin scheme. One observesesigga solution profile.
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(@ t=00 (b) ¢ = 0.002

(c) t = 0.005 (d) t =0.01

FiG. 4.2.Blow-up on a sphere, FCT scheme. The screenshots were teeres: = 0.0, 0.002, 0.005, 0.01.

For the pure Galerkin discretization (i.e., without anybditaation) of the problem4.1)—
(4.2 the cell densityu becomes negative at a certain intermediate level. The rysigai
negative values grow rapidly as time evolves, which leadmtabnormal termination of the
simulation run, see figures1(a}4.1(b) At the same time, the FCT stabilization technique
preserves positivity and smoothness of the solution.

4.2. Blow-up on an ellipsoid. Let us consider a minimal Keller-Segel model

4.3) Oip1 = Arpr — xV - (p1Vrp2),
(4.4) Oip2 = Arpz — p2 + p1

with the bell-shaped initial conditions

p1(z1, 22, 23,1 = 0) = 5.0 6—044((361—2441459)2+(g,-2—2.41459)2+(x3—2.41459)2)

po(@1, 29, 23,t =0) =5 O670'4((“*2'41459)2“1272'41459)2+(z372'41459)2)
K K ) N .

The main point of this kind of numerical experiments is to erstiand if the position of
the blow-up depends on the curvature or not. Here, we showemnm@ary test configuration,
whenl' = {z : 22/9+22/25+22/49 = 1}. The pointr = (2.41459, 2.41459,2.41459)T €

I' of the center of initial peaks has different curvatures:in, z5- and z3-directions. We
choosey = 50 andAt = 1.07%. In figures4.3(a}4.3(d) one can see various levels of the
ellipsoidal mesh. Here we like to mention that all our mestigsy favorable properties by
courtesy of our colleague Jens F. Acker. The final mesh fontlmeerical simulation is the
7th level of the refinement and it consists98f304 cells and245 780 d.o.f.
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(a) level2 (b) level3

(c) level4 (d) level7

FiG. 4.3.Ellipsoidal mesh, various levels of refinement.

Figures4.4(ay4.4(d)display the evolution of the peak for the FCT applicationahe time
instances. One can observe that the peak rises in magnitiile,its support decreases in
size. The numerical blow-up is reached in a finite time, butimange of the position of the
peak is detected.

(@t =0.0 (b) ¢t = 0.002
(c) t = 0.005 (d) t = 0.006

FIG. 4.4. Blow-up on an ellipsoid, FCT scheme. The screenshots wkea tat timeg = 0.0, 0.002, 0.005,
0.006.

4.3. Pattern-formation on a sphere.In the last example, we show coupling of a surface-
defined equation with an equation, which is defined in the @ldoimain(2. For this reason,
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we modify the Mimura-Tsujikawa modeBP, 38, 39], which describes the propagation of
motile cells ofEscherichia coliin such a way that the cell densitytravels along a mem-
branel’ C €, while the chemoattractantives in 2, e.g.

(4.5) Bip1 = 0.0625Arp1 — 8.5V - (mVre) + pi(l —p1) onT
(4.6) ¢t =Ac—32.0c+p1* in

wherep; * is a natural extension ¢f; to €2. Initial conditions are chosen as follows

p1(x,t=0)=1+0(x),
cle,t =0)=1/32,

whereo(x) is defined as

{ozifnw—gﬁﬂﬁngLa
o(x) = ,
0,  otherwise

We prescribe zero-flux boundary conditions@® for ¢ andp*. As a domain we take =

{z : 48 < |z| < 5.2} andT = {z : || = 5}, which is defined by the zero level of
the level-set functio = \/z% + 23 + 23 — 5.0. During construction of the corresponding
mesh we exploit that the manifoldis prescribed and stationary. Taking a coarse quad mesh
of a unit sphere, we refine it alorigga given number of times. The generated nodes were then
copied and scaled to the given radii to form several levete Afode numbers for each of these
levels correspond by a shift by an integer multiple of the hanof nodes on the manifold.
This made it easy to create the hexahedral cells of theskslageextrusions of the original
guad cells. The resulting mesh consist§&f 432 cells, that corresponds 0671 236 d.o.f.

The mesh has a good refinement in thelirection, which makes it possible to capture the
dynamics of the cell density; in a best possible way. In figurés5(a}4.5(c)one can see
three successive refinement levels.

(a) levell (b) level2 (c) level3

FIG. 4.5. Spherical mesh for three successive levels of refinement.

Our code is able to capture the complex dynamics of the caBitle As reported in38, 39
for the case, whep, € Q?, d = 2,3, we observe a similar behavior, but now on a sphere.
Namely, placed in a point = (5,0,0)7, the initial concentration of bacteria propagates
alongI" in a moving wave-pattern as a response to the chemosetysitige figuresl.6(a}
4.6(f). Here, the FCT method works well to presesraoothnesand positivity of the cell
density.
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(@t=00 (b) t =0.21 () t = 0.42

(d) t = 1.08 (e)t=2.16 (f t =4.32

FIG. 4.6. Pattern formation on a sphere. The screenshots were takémest = 0.0, 0.21, 0.42, 1.08, 2.16,
4.32, At = 0.01.

5. Conclusions. The previously constructed algorithmical framework foertotaxis
models in 2 and 3 spatial dimensions, s&& B9], was extended to chemotaxis-related equa-
tions, which are defined on a smooth closed and orientedcsiifac Q¢, d = 2,3. The
level set method was used to implicitly describe the surfa@nd to construct a numeri-
cal scheme for corresponding partial differential equetioThen, we applied the linearized
flux-corrected FEM transport algorithm to preserve pogjtignd to guarantee the nonoscil-
latory of the resulting solution. The demonstrated nuna¢riesults show that the constructed
scheme is sufficiently robust and can deliver a suitabletieoldor chemotaxis-like models,
both on a surface and/or in a domain.

In future, a peculiar numerical and mathematical analysigfadient-based slope limiters
for the partial differential equations on surfaces is dakirWe are optimistic that this is a
very promising stabilization method for the numerical tneent of surface-based chemotaxis
problems in medicine and biology.

The proposed numerical scheme can be used to give an ingigtance on so far open
analytical questions such as the relation between the bfpphenomena (blow-up time, lo-
cation of the blow-up, etc.) and the curvature of the undieglynanifold. We hope that the
corresponding numerical experiments can shed light o@®etiquestions, which might serve
to extend, deepen and improve the theory of chemotaxigilrivodels.

The last trends in the mathematical modeling for bio-preesshow the importance of partial
differential equations on evolving in time surfadg$). For example, these kind of processes
arise when one considers reaction and interaction of sotiteesr{e.g., proteins, chemicals,
etc.) on a membrane of a cel][ there the evolution of a membrane is due to its response
on the distribution of some substances along its surfacee,l@e has to take into account
not only advective terms, which are due to chemotaxis effécansport and external flows,
but also those, which are due to the time-evolutiod ofThe current work can serve as a
pre-validation and preparation step for this class of a@ggihns.
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