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Abstract. In this paper we present an implicit finite element method for a class of chemotaxis models, where
a new linearized flux-corrected transport (FCT) algorithm is modified in such a way as to keep the density of on-
surface living cells nonnegative. Level set techniques areadopted for an implicit description of the surface and for
the numerical treatment of the corresponding system of partial differential equations. The presented scheme is able
to deliver a robust and accurate solution for a large class ofchemotaxis-driven models. The numerical behavior of the
proposed scheme is tested on the blow-up model on a sphere and anellipsoid and on the pattern-forming dynamics
model ofEscherichia colion a sphere.
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1. Introduction. After first being introduced in the beginning of the seventies by E.
Keller and L. Segel [24, 25] for modeling the behavior of the slime mold amoebaDic-
tyostelium discoideum, chemotaxis models became widely used in many medical and bio-
logical applications. Among them are bacteria/cells aggregation and pattern formation pro-
cesses [1, 32, 42, 43, 44] and modeling of tumor invasion and metastasis processes before a
proliferation dominated stage [4, 6, 7, 8, 9], modeling of vasculogenesis [3, 19, 37], which is
very important for understanding tissue engineering and regeneration, etc.
Many interesting mathematical questions arise also in the context of the chemotaxis-driven
systems. The main point is the existence and uniqueness of the solution. In particular, un-
bounded aggregation of cells may give rise to singularitiesat accumulation points. This
phenomenon is known as theblow-upeffect [34, 21, 33, 36, 22, 11, 12, 23]. Another inter-
esting phenomenon is the fact that a homogeneous stationarysolution may become unstable
for large values of the chemotactic sensitivity functionχ(·) under some conditions on the
reactive source term in the chemotactic growth system. Suchinstabilities may give rise to
rapidly evolving transient solutions and/or special patterns which are observed in biological
experiments (see, e.g. [1, 2]) and were already mentioned above.
From the numerical point of view, one of the main problems to be dealt with is due to the
rapid growth of solutions in a small neighborhood of certainpoints or curves. In particular,
the blow-up phenomenon or a singular spiky behavior of exactsolutions may give rise to
nonphysical oscillations if the employed numerical schemeis not guaranteed to satisfy the
discrete maximum principle (DMP). The construction process of a nonoscillatory, positivity-
preserving, accurate numerical scheme for chemotaxis-like problems can be compared with
the numerical stabilization of advection dominated problems in Computational Fluid Dynam-
ics (CFD). It is known that an adequate treatment of unstableadvective terms is a matter of
utmost importance for the majority of CFD applications.

In the last decade several methods for the numerical treatment of the chemotactic term
∇· (A(u)B(c)C(∇c)) (mostly applicable to its simplified form∇· (χu∇c)), whereu is the
cell density andc is the chemoattractant, have been proposed. Chertock and Kurganov [10]
proposed a second-order Godunov-type central-upwind scheme for chemotaxis and hapto-
taxis systems and related models. The constructed scheme belongs to the class of finite-
volume methods and was proven to preserve the positivity of the cell density. Numerical
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results were obtained for the 2D case on unit square geometries. Another finite-volume ap-
proach for the Keller-Segel chemotaxis model is due to Filbet [16]. He also studied an implicit
upwind-like numerical scheme and carefully analyzed it to understand if it gives the correct
behavior of the solution when it is effectively smooth and when it blows up. Tysonet al. pro-
posed a fractional step method for the partial differentialequations arising in the chemotaxis
models [44]. In every time step the solution procedure was split up intothree independent
steps corresponding to the advection, diffusion and reaction processes. Each step was handled
independently using the finite-volume discretization in space. The advection step was solved
with the help of the CLAWPACK simulation tool [31], which incorporates the ’flux-limiting’
stabilization strategy. For the diffusion step the A-stable and L-stable TR-BDF2 method was
used. There are also attempts by H. Gajewskiet al. to develop numerical software for chemo-
taxis problems [17, 18].
Among finite element approximations for the nonlinear chemotaxis system one can find a
method proposed by Saito in [35]. Herein he utilizes an upwind technique to construct a
numerical scheme that satisfies both positivity and mass conservation properties. The discon-
tinuous Galerkin methods, so popular in the numerical community since the late nineties,
were accommodated for the Keller-Segel chemotaxis system by Epshteyn and Kurganov,
see [14, 15]. Their methods are based on three primal discontinuous Galerkin methods:
Nonsymmetric Interior Penalty Galerkin, Symmetric Interior Penalty Galerkin and Incom-
plete Interior Penalty Galerkin. The numerical fluxes for the approximation of the advec-
tive term employ a central-upwind scheme, which belongs tothe family of nonoscillatory
central schemes, applicable to general multidimensional systems of conservation laws and
related problems.Developed by Kuzmin, Tureket al., the Flux-Corrected Transport (FCT)
and FEM-TVD algorithms for unstructured meshes were explored for the chemotaxis mod-
els in two- and three space dimensions, see [38, 39]. They were shown to be accurate and
positivity-preserving, even in the case of solutions with sharp peaks that blow-up in the center
or at the boundary of the domain.
Though mathematical analysis of chemotaxis models and analysis of evolving in time mani-
folds started already several decades before, their integration occurred just recently due to the
necessity of constructing complex models for biological and medical applications. Very often
one has to couple PDEs defined in a domain with PDEs defined onlyon some manifold (one
can think, e. g., of a cell membrane). At the same time the modeled processes might lead
to the shape deformation of the manifold. As one of the first works for chemotaxis-driven
processes on surfaces we would like to mention the paper by Voigt et. al. [46], where the
chemotaxis of bone marrow-derived mesenchymal stem cells is simulated, and by Elliottet.
al. [45], where the shape of a single cell evolves due to its chemotaxis response.
In this article we describe a special numerical scheme for chemotaxis-like models, which
makes it possible to couple partial differential equationson a surface with those, which are
defined on some embedded into this domain manifold. The article is organized as follows:
in section2 we define the problem. Then, in section3, subsection3.1, we describe the level
set methodology: numerical treatment of the Laplace-Beltrami term and of the on-surface de-
fined advective term. After that in subsection3.2 we present the modified FCT-stabilization
technique for on-surface defined advection-dominated equations. In section4 we demonstrate
numerical results for blow-up problems on a sphere and on an ellipsoid. Then, we consider a
more realistic chemotaxis model, where a pattern forming behavior of bacteria along a sphere
occurs due their response to the chemoattractant, which is distributed in the surrounding do-
main. Section5 summarizes the characteristics of the proposed approach.
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2. Problem formulation. Almost all chemotaxis models, which were mentioned in
the previous section can be mathematically described by thefollowing system of reaction-
advection-diffusion equations:

∂ui
∂t

= Du
i ∆ui +∇ · [χu

i · vui (u, c,ρ)ui] + fi(u, c,ρ), in Ω× T,(2.1)

∂cj
∂t

= Dc
j∆cj −

m
∑

k=1

αk,jck +

n
∑

k=1

βk,juk + gj(u, c,ρ), in Ω× T(2.2)

∂ρl
∂t

= Dρ
l ∆Γρl +∇Γ · (χρ

l · v
ρ
l (u, c,ρ)ρl) + sl(u, c,ρ), on Γ× T(2.3)

with corresponding boundary and initial conditions. Here,ui(t,x), i = 1 . . . n, denotes den-
sities of species, which live in a bounded domainΩ ⊂ R

d, d = 2, 3, cj(t,x), j = 1 . . .m,
stands for concentration of chemoattractants andρl(t,x), l = 1 . . . p, are
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FIG. 2.1. (left) Γ ⊂ Ω, (right) Γ = ∂Ω.

densities of species, which
live on a closed smooth
surfaceΓ. Velocitiesv in
equations (2.1) and (2.3)
can describe the species-
chemoattractant interaction
(v = ∇c), species-
species interactionv =
∇u or some external ve-
locity (e.g., due to fluid
flow, evolution of a sur-

face, etc.). χu andχρ are vectors of chemo-, resp. chemosensitivity entries, which can
be nonlinear. We distinguish two cases. In the first case, seeFigure2.1(a),Γ ⊂ Ω. Here, we
introduce a narrow bandΩΓ ⊂ Ω aroundΓ, where the equation (2.3) is treated by the level
set method. In the second case, see Figure2.1 (b), Γ = ∂Ω and we takeΩΓ to be a narrow
band in a direction, which is opposite to outer-normal of∂Ω. In both cases the computational
domain isΩ. This procedure allows us to perform the direct coupling of domain-defined
equations (2.1)–(2.2) with a surface-defined equation (2.3).
In a series of papers [38, 39, 40] the authors constructed a robust and efficient numerical
scheme for chemotaxis problems in 2 and 3 spatial dimensions, in the case whenn = 1,
m = 1 andp = 0. There, the FCT-TVD stabilization techniques, Newton-like solvers and
coupled, resp., decoupled approaches were analyzed. It wasshown that the solver was able
to deliver physically appropriate and accurate numerical solutions. Using the FCT method
and the operator splitting technique one can extend the proposed framework to the case of
multi-species and multi-chemos. In this paper we constructa numerical scheme for the equa-
tion (2.3) and couple this equation with the chemotaxis system (2.1)–(2.2). The surfaceΓ
is considered to be stationary. From the analytical point ofview one does not know, how
curvature of a manifold influences blow-up: are blow-up points at points of largest curvature,
is blow-up quicker if curvature is larger, etc? For this reason, we consider some numerical
experiments for chemotaxis problems on surfaces of constant and varying curvature. The
developed scheme and numerical results provide a promisingbasis for further studies in this
context.

3. Numerical scheme. The construction of positivity preserving, robust numerical
schemes for the system (2.1)–(2.2) was thouroughly analyzed in [38, 39]. Therefore, here
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we focus on the equation (2.3). Let us rewrite it in the following form

(3.1)
∂ρ

∂t
= D∆Γρ+∇Γ · (vρ) + s,

where∆Γρ is the Laplace-Beltrami term and∇Γ · (vρ) is the on-surface defined advective
term. For the simplicity of notation we setΩΓ = Ω and use the symbolΩ to denote both
domains. We also assume thatρ∗ is a natural extension ofρ from Γ to the whole domain
Ω. In the following we will omit∗ and will write simplyρ. The two main points, which
we consider in details are the treatment of the surface-defined terms and the corresponding
application of the FCT stabilization technique to the discretized∇Γ · (vρ) term.

3.1. Level set: diffusion and advection on a surface.To obtain the semi-discrete form
for equation (3.1) we adopt the level set method. We assume thatΓ is a compact smooth
connected and oriented hypersurface inR

d and that there exists a smooth level set function

(3.2) φ(x) =











< 0 if x is insideΓ

0 if x ∈ Γ

> 0 if x is outsideΓ

such that|∇φ| 6= 0. Then, an outward normal toΓ is

(3.3) n = (ni)i = ∇φ/|∇φ|

and

(3.4) PΓ = (δij − ninj)ij = I −
∇φ

|∇φ|
⊗

∇φ

|∇φ|

is the projection onto the tangent spaceTxΓ. Observe that ifφ(·) is chosen as a signed
distance function then|∇φ| = 1. For a scalar functionξ onΩ and a tangential vector fieldξ
onΓ one obtains

∇Γξ =

(

∂ξ

∂xi
− ninj

∂ξ

∂xj

)

i

,(3.5)

∇Γ · ξ =
∂ξi
∂xi

− ninj
∂ξi
∂xj

.(3.6)

Therefore the Laplace-Beltrami operator onΓ with respect to the level set functionφ can be
written as

(3.7) ∆Γξ = ∇Γ · ∇Γξ = ∇ · PΓ∇ξ.

From the Coarea’s formula [13] it is known that

(3.8)
∫ sup

Ω
φ

infΩφ

(
∫

Γr

ξ

)

d r =

∫

Ω

ξ|∇φ|,

whereΓr = {x|φ(x) = r}. After multiplying the equation (3.1) by finite element test
functions{ϕ} and integrating overΩ, we obtain a weak formulation for (3.1):

(3.9)
∂

∂t

∫

Ω

ρϕ|∇φ| =

∫

Ω

D∆Γρϕ|∇φ|+

∫

Ω

∇Γ · (vρ)ϕ|∇φ|+

∫

Ω

sϕ|∇φ|
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The Eulerian integration by parts (see, e.g., [13]) applied to the Laplace-Beltrami term on the
right hand side of (3.9) together with the assumption

∫

Ω

∇Γ · (D∇Γρϕ)|∇φ| =

∫

∂Ω

D∇Γρ · nΩϕ|∇φ| = 0,

wherenΩ is a normal to∂Ω, give us
∫

Ω

D∇Γρ · ∇Γϕ|∇φ| = −

∫

Ω

∇Γ ·D∇Γρϕ|∇φ|+

∫

Ω

∇Γ · (D∇Γρϕ)|∇φ|

= −

∫

Ω

∇Γ ·D∇Γρϕ|∇φ|(3.10)

or, due to (3.4),
∫

Ω

∇Γ ·D∇Γρϕ|∇φ| = −

∫

Ω

DPΓ∇ρ · ∇ϕ|∇φ|.(3.11)

The advective term∇Γ · (vρ) is treated in a similar way. Namely, applying the Eulerian
integration by parts to the corresponding weak formulationof ∇Γ · (vρ), one obtains:

(3.12)
∫

Ω

∇Γ · (v ρ)ϕ|∇φ| = −

∫

Ω

ρv · ∇Γϕ|∇φ|+

∫

∂Ω

v · n∂Ωρϕ|∇φ|.

In general, the integral along the boundary on the right handside of (3.12) can bring suffi-
cient changes into the solution dynamics and therefore cannot be neglected, see, e.g., [26].
Assuming that∂Ω is aligned alongΓc, for somec, and setting some restrictions onv, we can
write

(3.13)
∫

∂Ω

ρv · n∂Ωϕ|∇φ| = 0.

Therefore

(3.14)
∫

Ω

∇ · (ρv)ϕ|∇φ| = −

∫

Ω

ρv · ∇Γϕ|∇φ|,

and the resulting semi-discrete scheme looks as follows:

(3.15)
∂

∂t

∫

Ω

ρ|∇φ|+

∫

Ω

DPΓ∇ρ · ∇ϕ|∇φ| −

∫

Ω

ρv · PΓ∇ϕ|∇φ| =

∫

Ω

sϕ|∇φ|.

3.2. Stabilization. It is known that the pure Galerkin scheme will not work for (3.15),
especially for largev. Here, we adopt the FCT methodology to construct a positivity pre-
serving nonoscillatory numerical scheme for the reaction-diffusion-advection equation on a
surfaceΓ ⊂ Ωd, whend = 2, 3. We would like to note that the equation (3.15) can be sta-
bilized by the FCT approach and then coupled in a segregated way with the equation (2.1),
which in turn might be also stabilized with the FCT (or any other convection-related) algo-
rithm. This allows to treat numerically the interaction of in-a-domain defined entities with
on-a-surfaces defined ones.
Given a set of piecewise-polynomial basis functions{ϕi} and a time step∆t, the standard
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Galerkin discretization in space together with the implicit Euler discretization in time yields
the following linearized algebraic equation

(3.16) [M(|∇φ|) +∆tL(D|∇φ|)−∆tK(vn|∇φ|)] ρn+1 =M(|∇φ|)ρn +∆tsn(|∇φ|),

whereρn+1 is the unknown density of species at timetn+1. Here,M(·) denotes the (con-
sistent) mass matrix,L(·) is the discrete Laplace-Beltrami operator, andK(·) is the discrete
on-surface advection operator with entries defined by the formulae

mij(ψ) =

∫

Ω

ϕiϕjψ,(3.17)

lij(ψ) =

∫

Ω

PΓ∇ϕi · ∇ϕjψ,(3.18)

kij(ψ) =

∫

Ω

ϕiψ · PΓϕj ,(3.19)

sni (ψ) =

∫

Ω

ϕisiψ.(3.20)

As shown by Kuzminet al. [27, 28, 29], positivity constraints can be readily enforced at the
discrete level using a conservative manipulation of the matricesM andK, supposing that
the source term∆tsn does not course any threat to positivity. The former is approximated by
its diagonal counterpartML constructed using row-sum mass lumping

(3.21) ML := diag{mi}, mi =
∑

j

mij(|∇φ|).

Next, all negative off-diagonal entries ofK are eliminated by adding an artificial diffusion
operatorD. For conservation reasons, this matrix must be symmetric with zero row and
column sums. For any pair of neighboring nodesi andj, the entrydij is defined as [27, 28]

(3.22) dij =

{

max{−kij , 0,−kji}, j 6= i,

−
∑

k 6=i dik, j = i.

It is clear thatdij = dji. The result is a positivity-preserving discretization of low order. By
construction, the differencef between the residual of this scheme and that of the underlying
Galerkin approximation

(3.23) f = (ML −M(|∇φ|))
un+1 − un

∆t
−D un+1

admits a conservative decomposition into a sum of skew-symmetric antidiffusive fluxes

(3.24) fi =
∑

j 6=i

fij , fji = −fij , ∀j 6= i.

To achieve high resolution while keeping the scheme positivity-preserving, each flux is multi-
plied by a solution-dependent correction factorαij ∈ [0, 1] and is inserted into the right-hand
side of the nonoscillatory low-order scheme. The original Galerkin discretization corresponds
to the settingαij := 1. It may be used in regions where the numerical solution is smooth and
well-resolved. The settingαij := 0 is appropriate in the neighborhood of steep fronts.

In essence, the off-diagonal entries of the sparse matricesM andK are replaced by

m∗
ij := αijmij , k∗ij := kij + (1− αij)dij ,
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while the diagonal coefficients of the flux-corrected Galerkin operators are given by

m∗
ii := mi −

∑

j 6=i

αijmij , k∗ii := kii −
∑

j 6=i

(1− αij)dij .

In implicit FEM-FCT schemes [29, 27, 28], the optimal values ofαij are determined using
Zalesak’s algorithm [47]. The limiting process begins with cancelling all fluxes that are
diffusive in nature and tend to flatten the solution profiles.The required modification is:

fij := 0 if fij(uj − ui) > 0,

whereu is a positivity-preserving solution of low order [29, 27, 28]. The remaining fluxes
are truly antidiffusive, and the computation ofαij involves the following algorithmic steps:

1. Compute the sums of positive/negative antidiffusive fluxes into nodei

P+
i =

∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}.

2. Compute the distance to a local extremum of the auxiliary solutionu

Q+
i = max{0,max

j 6=i
(uj − ui)}, Q−

i = min{0,min
j 6=i

(uj − ui)}.

3. Compute the nodal correction factors for the net increment to nodei

R+
i = min

{

1,
miQ

+
i

∆tP+
i

}

, R−
i = min

{

1,
miQ

−
i

∆tP−
i

}

.

4. Check the sign of the antidiffusive flux and apply the correction factor

αij =

{

min{R+
i , R

−
j }, if fij > 0,

min{R−
i , R

+
j }, otherwise.

For practical implementation details, we refer to the original publications by Kuzminet al.
[29, 27, 28].
Due to the level-set methodology and the algebraic nature ofthe flux-corrected schemes, TVD
and some FCT methods can be implemented for the equation (3.15) almost without changes
(one should only operate with properM(·), L(·) andK(·) matrices). Nevertheless, there
are certain FCT schemes which necessiate the evaluation ofρxi

during the antidiffusive flux-
limiting, e.g.Gradient-based slope limitingin [30]. In this case the corresponding projection
onto the tangential spaceTxΓ is required. Numerical tests showed that the TVD scheme

drops behind the FCT algorithms in accuracy: neglecting the(ML −M(|∇φ|))
ρn+1 − ρn

∆t
term results in a smeared solution. Therefore, the FCT-based algorithms are in this case more
preferable.

4. Numerical results. In this section we demonstrate that the proposed level-set tech-
nique together with the algebraic flux correction makes it possible to perform numerical sim-
ulations of chemotaxis processes on surfaces of nonzero curvature. Here, we consider chemo-
taxis models with blow-ups on a sphere and an ellipsoid, as well as pattern-forming dynamics
of cells on a sphere with the Fischer overcrowding-prevention term. In every case the solver
was able to deliver plausible, nonoscillatory and sufficiently accurate numerical solutions.
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4.1. Blow-up on a sphere.As a first example, we consider the minimal Keller-Segel
model on a sphereΓ = {x : |x| = 5} ⊂ Ω = {x : 4.0 ≤ |x| ≤ 6.0}:

∂tρ1 = ∆Γρ1 − χ∇ · (ρ1∇Γρ2),(4.1)

∂tρ2 = ∆Γρ2 − ρ2 + ρ1(4.2)

with the following bell-shaped initial conditions

ρ1(x1, x2, x3, t = 0) = 5.0 e−0.5((x1−5.0)2+x2

2
+x2

3),

ρ2(x1, x2, x3, t = 0) = 5.0 e−0.5((x1−5.0)2+x2

2
+x2

3).

We use a uniform grid with trilinear finite elements with393 216 cells and798 980 d.o.f.
More on the mesh construction one can find in the following subsection4.3. The time step
is ∆t = 10−4 and the chemosensitivityχ = 50. The level-set function is chosen to be
φ =

√

x21 + x22 + x23 − 5.0. It is known, that the stability in terms of blow-up of the sys-
tem (4.1)-(4.2) crucially depends on the chemoattractant sensitivityχ. By fixing all involved
parameters and varying the magnitude ofχ one can make either the diffusion processes or
the chemoattractive transport of cells dominant. The former situation leads to steady-state
solutions, whereas the latter gives rise to evolving in timesolutions, blow-ups etc. For our
parameter setting we would expect a blow-up in finite time of the cell densityρ1 and the
chemoattractant concentrationρ2, if ρ1 andρ2 live on a 2D-plane. From figures (4.2(a))–
(4.2(d)) one observes that the numerical simulation of the system (4.1)–(4.2) leads also to an
infinite growth of the initial peak ofρ1 and, hence,ρ2.

(a) initial (b) t = 0.01

FIG. 4.1.Blow-up on a sphere, pure Galerkin scheme. One observes wiggles in a solution profile.
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(a) t = 0.0 (b) t = 0.002

(c) t = 0.005 (d) t = 0.01

FIG. 4.2.Blow-up on a sphere, FCT scheme. The screenshots were taken at timest = 0.0, 0.002, 0.005, 0.01.

For the pure Galerkin discretization (i.e., without any stabilization) of the problem (4.1)–
(4.2) the cell densityu becomes negative at a certain intermediate level. The nonphysical
negative values grow rapidly as time evolves, which leads toan abnormal termination of the
simulation run, see figures4.1(a)–4.1(b). At the same time, the FCT stabilization technique
preserves positivity and smoothness of the solution.

4.2. Blow-up on an ellipsoid.Let us consider a minimal Keller-Segel model

∂tρ1 = ∆Γρ1 − χ∇ · (ρ1∇Γρ2),(4.3)

∂tρ2 = ∆Γρ2 − ρ2 + ρ1(4.4)

with the bell-shaped initial conditions

ρ1(x1, x2, x3, t = 0) = 5.0 e−0.4((x1−2.41459)2+(x2−2.41459)2+(x3−2.41459)2),

ρ2(x1, x2, x3, t = 0) = 5.0 e−0.4((x1−2.41459)2+(x2−2.41459)2+(x3−2.41459)2).

The main point of this kind of numerical experiments is to understand if the position of
the blow-up depends on the curvature or not. Here, we show an exemplary test configuration,
whenΓ = {x : x21/9+x

2
2/25+x

2
3/49 = 1}. The pointx = (2.41459, 2.41459, 2.41459)T ∈

Γ of the center of initial peaks has different curvatures inx1-, x2- andx3-directions. We
chooseχ = 50 and∆t = 1.0−4. In figures4.3(a)-4.3(d)one can see various levels of the
ellipsoidal mesh. Here we like to mention that all our meshesenjoy favorable properties by
courtesy of our colleague Jens F. Acker. The final mesh for thenumerical simulation is the
7th level of the refinement and it consists of98 304 cells and245 780 d.o.f.
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(a) level2 (b) level3

(c) level4 (d) level7

FIG. 4.3.Ellipsoidal mesh, various levels of refinement.

Figures4.4(a)–4.4(d)display the evolution of the peak for the FCT application at some time
instances. One can observe that the peak rises in magnitude,while its support decreases in
size. The numerical blow-up is reached in a finite time, but nochange of the position of the
peak is detected.

(a) t = 0.0 (b) t = 0.002

(c) t = 0.005 (d) t = 0.006

FIG. 4.4. Blow-up on an ellipsoid, FCT scheme. The screenshots were taken at timest = 0.0, 0.002, 0.005,
0.006.

4.3. Pattern-formation on a sphere.In the last example, we show coupling of a surface-
defined equation with an equation, which is defined in the whole domainΩ. For this reason,
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we modify the Mimura-Tsujikawa model [32, 38, 39], which describes the propagation of
motile cells ofEscherichia coli, in such a way that the cell densityu travels along a mem-
braneΓ ⊂ Ω, while the chemoattractantc lives inΩ, e.g.

∂tρ1 = 0.0625∆Γρ1 − 8.5∇ · (ρ1∇Γc) + ρ1(1− ρ1) on Γ(4.5)

ct = ∆c− 32.0c+ ρ1
∗ in Ω,(4.6)

whereρ1∗ is a natural extension ofρ1 toΩ. Initial conditions are chosen as follows

ρ1(x, t = 0) = 1 + σ(x),

c(x, t = 0) = 1/32,

whereσ(x) is defined as

σ(x) =

{

0.2, if ‖x− (5, 0, 0)T ‖ ≤ 1.5,

0, otherwise.

We prescribe zero-flux boundary conditions on∂Ω for c andρ∗. As a domain we takeΩ =
{x : 4.8 ≤ |x| ≤ 5.2} andΓ = {x : |x| = 5}, which is defined by the zero level of
the level-set functionφ =

√

x21 + x22 + x23 − 5.0. During construction of the corresponding
mesh we exploit that the manifoldΓ is prescribed and stationary. Taking a coarse quad mesh
of a unit sphere, we refine it alongΓ a given number of times. The generated nodes were then
copied and scaled to the given radii to form several levels. The node numbers for each of these
levels correspond by a shift by an integer multiple of the number of nodes on the manifold.
This made it easy to create the hexahedral cells of these levels as extrusions of the original
quad cells. The resulting mesh consists of786 432 cells, that corresponds to1 671 236 d.o.f.
The mesh has a good refinement in theΓ-direction, which makes it possible to capture the
dynamics of the cell densityρ1 in a best possible way. In figures4.5(a)-4.5(c)one can see
three successive refinement levels.

(a) level1 (b) level2 (c) level3

FIG. 4.5.Spherical mesh for three successive levels of refinement.

Our code is able to capture the complex dynamics of the cell density. As reported in [38, 39]
for the case, whenρ1 ∈ Ωd, d = 2, 3, we observe a similar behavior, but now on a sphere.
Namely, placed in a pointx = (5, 0, 0)T , the initial concentration of bacteria propagates
alongΓ in a moving wave-pattern as a response to the chemosensitivity, see figures4.6(a)-
4.6(f). Here, the FCT method works well to preservesmoothnessand positivity of the cell
density.
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(a) t = 0.0 (b) t = 0.21 (c) t = 0.42

(d) t = 1.08 (e) t = 2.16 (f) t = 4.32

FIG. 4.6.Pattern formation on a sphere. The screenshots were taken attimest = 0.0, 0.21, 0.42, 1.08, 2.16,
4.32, ∆t = 0.01.

5. Conclusions. The previously constructed algorithmical framework for chemotaxis
models in 2 and 3 spatial dimensions, see [38, 39], was extended to chemotaxis-related equa-
tions, which are defined on a smooth closed and oriented surfaceΓ ⊂ Ωd, d = 2, 3. The
level set method was used to implicitly describe the surfaceΓ and to construct a numeri-
cal scheme for corresponding partial differential equations. Then, we applied the linearized
flux-corrected FEM transport algorithm to preserve positivity and to guarantee the nonoscil-
latory of the resulting solution. The demonstrated numerical results show that the constructed
scheme is sufficiently robust and can deliver a suitable solution for chemotaxis-like models,
both on a surface and/or in a domain.
In future, a peculiar numerical and mathematical analysis for gradient-based slope limiters
for the partial differential equations on surfaces is desired. We are optimistic that this is a
very promising stabilization method for the numerical treatment of surface-based chemotaxis
problems in medicine and biology.
The proposed numerical scheme can be used to give an instinctive glance on so far open
analytical questions such as the relation between the blow-up phenomena (blow-up time, lo-
cation of the blow-up, etc.) and the curvature of the underlying manifold. We hope that the
corresponding numerical experiments can shed light onto these questions, which might serve
to extend, deepen and improve the theory of chemotaxis-driven models.
The last trends in the mathematical modeling for bio-processes show the importance of partial
differential equations on evolving in time surfacesΓ(t). For example, these kind of processes
arise when one considers reaction and interaction of some entities (e.g., proteins, chemicals,
etc.) on a membrane of a cell [5], there the evolution of a membrane is due to its response
on the distribution of some substances along its surface. Here, one has to take into account
not only advective terms, which are due to chemotaxis effects, transport and external flows,
but also those, which are due to the time-evolution ofΓ. The current work can serve as a
pre-validation and preparation step for this class of applications.
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