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Abstract

We present an implicit finite element method for a class of chemotaxis mod-
els in three spatial dimensions. The proposed algorithm is designed to main-
tain mass conservation and to guarantee positivity of the cell density. To en-
force the discrete maximum principle, the standard Galerkin discretization is
constrained using a local extremum diminishing flux limiter. To demonstrate
the efficiency and robustness of this approach, we solve blow-up problems
in a 3D chemostat domain. To give a flavor of more complex and realistic
chemotactic applications, we investigate the pattern dynamics and aggregat-
ing behavior of the bacteria Escherichia coli and Salmonella typhimurium.
The obtained numerical results are in good qualitative agreement with theo-
retical studies and experimental data reported in the literature.
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1 Introduction
Chemotaxis, an oriented movement towards or away from regions of higher con-
centrations of chemical species, plays a vitally important role in the evolution of
many living organisms. Experimental studies confirm that certain species (cells or
bacteria) experience collective motion driven by attraction to or repulsion by other
species (medicine, food, tumor angiogenic factor) [12]. The simplest mathemat-
ical description of chemotactic cell motion was proposed by Patlak [56], Keller
and Segel [40, 41]. Various extensions of their models have been used to analyze
tumor angiogenesis and invasion [15, 8], vasculogenesis [7], mesenchymal mo-
tion [31, 16], biological pattern formation [3, 67], multi-species chemotaxis with
attraction and repulsion between competitive interacting species [35, 34] etc.

From the mathematical point of view, several interesting questions arise in the
context of classical (also called minimal) chemotaxis models. In particular, un-
bounded aggregation of cells may give rise to singularities at accumulation points.
This phenomenon is known as the blow-up effect. Theoretical studies have shown
that solutions to the 1D minimal model cannot blow up (see, e.g., [55]). In two di-
mensions, the existence of blow-up solutions depends on the initial cell density u0

and chemotactic sensitivity χ. It is known that a (bounded) solution exists globally
in time if ‖u0‖L1(Ω) < 4πχ−1 in the nonsymmetric case and ‖u0‖L1(Ω) < 8πχ−1

in the presence of radial symmetry [36]. Otherwise, a blow-up occurs in finite
time whenever

∫
Ω
|x− x0|2u0(x) dx� 1 for some x0 ∈ Ω. For details, we refer

to Nagai [52], Senba & Suzuki [62], and Horstmann & Wang [37].

In three dimensions, the threshold for the blow-up effect may also depend on
the initial cell density, on the form of the chemotactic sensitivity, and on other
parameters (see, e.g., [21, 20]). Perthame [57] showed that there is a blow-up
in finite time if (

∫
Ω
|x|2u0(x) dx)2 < C‖u0‖2

L1(Ω), where C is a small constant.
Horstmann and Winkler [38] studied conditions under which the solution of a
chemotaxis system with a chemotactic sensitivity of the form χ = c uα (where c
and α are some constants) remains bounded or blows up in finite or infinite time.
Their results prove the existence of initial data that give rise to blow-up solutions
of the classical chemotaxis model in a bounded domain Ω ⊂ R3. The existence,
uniqueness, and uniform-in-time boundedness of global classical solutions for a
3D chemotaxis-haptotaxis system were investigated by Tao and Wang [65].

Another interesting phenomenon is the fact that a homogeneous stationary solu-
tion may become unstable for large values of the sensitivity function χ(u) under
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some conditions on the reactive source term in the chemotactic growth system.
Such instabilities may give rise to rapidly evolving transient solutions, forming
patterns which are observed in biological experiments (see, e.g., [4, 3, 64]).

The wealth of the methods for the numerical solution of chemotaxis problems in-
cludes positivity-preserving finite volume and finite element schemes [17, 25, 60],
fractional step algorithms based on operator splitting [59, 69], interior penalty /
discontinuous Galerkin methods [23, 24], and cell-overcrowding prevention mod-
els [13, 22, 58]. However, special care is required when it comes to the numerical
simulation of the blow-up phenomenon and pattern formation. Steep gradients,
spikes, and propagating fronts may give rise to nonphysical oscillations if the
numerical scheme is not guaranteed to satisfy the discrete maximum principle
(DMP). As a result, the cell density may become negative. Moreover, the blow-up
or instability of approximate solutions may occur for purely numerical reasons.

In the present paper, we employ a high-resolution finite element scheme which
satisfies the discrete maximum principle for linear and multilinear approximations
on unstructured meshes. This algorithm is labeled FEM-TVD since it is based on
a multidimensional generalization of total variation diminishing schemes for 1D
conservation laws [43, 44]. The proposed methodology guarantees mass conser-
vation and keeps the cell density nonnegative. Another objective of this paper
is to perform a series of numerical experiments for chemotaxis problems in the
three-dimensional case. Most numerical studies published to date are concerned
with 2D simulations, whereas the numerical behavior of solutions in 3D remains
largely unexplored.

The article is organized as follows. In section 2, we provide the analytical back-
ground and theoretical results for chemotaxis models in 3D. In section 3, we out-
line the FEM-TVD algorithm that we used in the numerical study to be presented
in section 4. We demonstrate that the FEM-TVD method is well-suited for nu-
merical simulations of chemotaxis problems, even in situations when the pure
Galerkin method fails. In subsections 4.2 and 4.3, we consider realistic chemo-
taxis models which describe the aggregation and proliferation of the bacteria Es-
cherichia coli and Salmonella typhimurium. Section 5 summarizes the pros and
cons of the proposed approach.
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2 Analytical background and theoretical results for
chemotaxis models in 3D

The generic form of the chemotaxis problem to be solved in a three-dimensional
domain Ω ⊂ R3 reads

ut = ∇ · (D(u)∇u− A(u)B(c)C(∇c)) + q(u) in Ω, (1)

ct = d∆c− s(u) c+ g(u)u in Ω, (2)

where u(t,x) denotes the cell density and c(t,x) is the chemoattractant concen-
tration. A particular model is defined by the formulae for the generic coefficients
D(·), A(·), B(·), C(·), q(·), d, s(·), g(·). The above transport equation for u and
reaction-diffusion equation for c are endowed with the initial conditions

u|t=0 = u0, c|t=0 = c0 in Ω. (3)

It is common to prescribe the homogeneous Neumann boundary conditions

n · ∇u = 0 n · ∇c = 0 on Γ, (4)

or total flux boundary conditions of the form

n · (D(u)∇u− A(u)B(c)C(∇c)) = 0, n · ∇c = 0 on Γ, (5)

where n is an outward normal to the boundary Γ = ∂Ω.

Before presenting a brief summary of the theoretical results for the above class of
chemotaxis models, we cite a local existence result for the following problem

ut = ∇(∇u− χ(u, c)∇c) + f(u, c), x ∈ Ω, t > 0
τct = ∆c+ g(u, c), x ∈ Ω, t > 0

n · ∇u = n · ∇c = 0, x ∈ Γ, t > 0
u(0,x) = u0(x), c(0,x) = c0(x), x ∈ Ω.

 (6)

Theorem 2.1 (compare Theorem 7.2 in [63]) Suppose that Ω ⊂ RN is a convex
domain with smooth boundary ∂Ω, τ > 0, and χ, f and g are smooth functions of
u and c. Let u0 and c0 be in C4,θ(Ω) for θ ∈ (0, 1). If the compatibility conditions
are satisfied on the boundary, then there exists a unique classical solution (u, c)
to (6) in QT for some T > 0. Moreover, u and c are in C2,θ(QT ).
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Of course, there exist other results on the local existence of solutions to general
chemotaxis equations. Moreover, one can also derive some alternative versions,
for example, by applying the theorems of H. Amann [5, 6] and A. Yagi [71].
However, the theorem above is sufficient for our purposes.

In this paper we concentrate on three model problems. In particular, we consider
the following chemotaxis models

classical:

{
ut = ∆u− χ∇ · (u∇c),

ct = ∆c− c+ u,
(7)

pattern formation:

{
ut = du∆u− χ∇ · (u∇c) + u(1− u),

ct = ∆c− βc+ u,
(8)

aggregation:


ut = du∆u− χ∇ ·

[
u

(1 + c)2
∇c
]
,

ct = ∆c− c+ w
u2

µ+ u2
.

(9)

There is a crucial difference between model (7) and models (8) and (9). The
reactive term u(1 − u) in system (8) prevents its solution from blowing up in a
finite time (see for instance [66]). The blow-up is also impossible for the third
model (which can be shown quite easily by applying Alikakos’ method of the
Moser iteration and standard regularity result for abstract evolution equations,
see [32, Theorem 4 and Remark 3]). However, the first model does allow the
finite time blow-up phenomenon, and its study has attracted the attention of many
scientists. The first step in understanding the possibility of finite time blow-up for
the first model has been made by V. Nanjundiah [54], who performed a non-linear
stability analysis in space dimension N = 2. His studies result in the conclusion
that:

“The end-point (in time) of the aggregation is such that the cells are
distributed in the form of δ-function concentrations.”

Nanjundiah’s paper was followed by the papers by S. Childress and J. K. Percus
that contain the famous conjectures regarding the asymptotic behavior of the so-
lution of the Keller-Segel model for the space dimensions N = 1, N = 2, and
N ≥ 3. This conjecture says the following (see [19, page 236-237]):
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“In particular, for the special model we have investigated, collapse
cannot occur in a one-dimensional space; may or may not in two di-
mensions, depending upon the cell population; and must, we surmise,
in three or more dimensions under a perturbation of sufficiently high
symmetry.”

Childress and Percus refer to aggregation that proceeds to the formation of δ-
functions in the cell density as chemotactic collapse. For the one- and two-
dimensional results, we refer to [33] and the references therein. Surprisingly
enough, little attention has been paid so far to the three-dimensional case. In spite
of its practical importance, it was analyzed rather superficially compared to the
one- and two-dimensional situations. However, the following results are known
for the three-dimensional version of the parabolic-elliptic PDE system (7).

Suppose that Ω ⊂ R3 is a ball or the space R3 itself. Then there exist initial data
such that the corresponding solution blows up in finite time, see [51, 29, 30, 28].
The case of Ω = R3 was investigated in [29, 30, 28]. It was shown that for any
T > 0 and any constant C > 0 there exists a radial solution (u(t, r), c(t, r)) to
a parabolic-elliptic version of system (7). This solution is smooth for all times
0 < t < T , blows up at r = 0 and t = T , and has the property∫

|x|≤r

u(T, s) ds→ C.

For any T > 0 there exists a sequence {δn}n∈IN with limn→∞ δn = 0, and a
sequence of radial solutions (un(t, r), cn(t, r)) that blow up at r = 0 and t = T ,
and are such that un(t, r) is self-similar. Furthermore,

un(t, r) ∼
(

8π

χ
+ δn

)
(4πr2)−1 as r → 0.

For this solution ∫
|x|≤r

u(T, s) ds→ 0 as r → 0.

Corrias, Perthame and Zaag [21] showed that Childress’ and Percus’ conjecture
does not hold for Ω = RN (N ≥ 3). In this particular case, they proved the
existence of initial data such that weak solutions of the parabolic-elliptic case of
(7) exist globally in time if

||u0||LN/2(RN )
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is sufficiently small. On the other hand, they proved that the solution blows up in
finite time if  ∫

RN

|x|2u0dx

N−2

< C||u0||NL1(RN )

for a sufficiently small constant C.

For the full parabolic-parabolic system (7) (the model considered in the present
paper) and a smoothly bounded domain Ω in R3, Boy [10] showed that there
exists a unique solution of (7) locally in time for sufficiently smooth initial data
compatible with the boundary data. Furthermore, for all T > 0 there exists a
constant CT , such that if the initial data satisfy

||c0||H2(Ω) < CT , ||u0||L∞(Ω) < CT

and
||∇u0||L2(Ω) < CT ,

then the problem (7) has a unique solution on [0, T ]× Ω.

Horstmann and Winkler [38] proved that there exist initial data such that the cor-
responding solution of (7) blows up either in finite or in infinite time. A basic tool
for their analysis was the Lyapunov functional introduced in [26, 53]:

F (u(t), c(t)) :=

∫
Ω

1

2χ
|∇c(t)|2 +

1

2χ
c2(t) + u(t) log(u(t))− u(t)c(t)dx. (10)

Similarly to their result for the parabolic-elliptic situation, Corrias and Perthame
[20] showed that if Ω = RN and the initial data are such that

u0 ∈ Lq(RN) with q > N/2 and ∇c0 ∈ LN(RN)

are sufficiently small, then there exist solutions of (7) globally in time, and these
solutions behave like those of the heat equation.

In a recent paper, Calvez, Corrias and Ebde [14] also analyzed the classical Keller-
Segel system in RN , N ≥ 3. In this reference, the authors try to describe (as far as
possible) the dynamics in both situations: in the parabolic-elliptic case and in the
fully parabolic case. Their main results for the former case and Ω = RN are: lo-
cal existence without smallness assumption on the initial density, global existence
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under an improved smallness condition, and a comparison of blow-up criteria. For
the parabolic-parabolic case (7), they formulate criteria of the concentration phe-
nomenon. Furthermore, they present a visualization tool based on a reduction of
the parabolic-elliptic system to a finite-dimensional dynamical system of gradient
flow type sharing some common features with the infinite-dimensional system.

As already mentioned above, the global existence of solutions to (9) is well known,
and a proof is easy to construct. Therefore, we leave this as an exercise for the
interested reader. In essence, the difference in the time asymptotic behavior of
our two models (7) and (9) is caused by the way in which the production of the
chemoattractant is handled. While model (7) assumes that the production of the
chemoattractant is proportional to the cell density of the motile species, model (9)
takes the saturating effect in the chemoattractant production into account. This
effect can be interpreted as an alternative way to model quorum sensing effects
in chemotaxis, which has also been proposed already in [54]. In view of the
chemoattractant production, Nanjundiah wrote the following (see [54, p. 68]):

“At high cell-densities, one can expect a fall-off in the rate propor-
tional (say) to the number of cell-pairs in a region: then g(u, c) =
g0(c)u− g1(c)u2. Similarly, one can expect a fall-off at high c.”

We will not go into further detail on this aspect since this would be a topic for
a paper on its own. However, we wish to point out that the question as to how
quorum sensing effects are modeled seems to have more than just one answer.

From the pattern forming point of view in chemotaxis one of the typical exper-
iments with Escherichia coli bacteria done by J. Adler in 1966 has been quoted
in [61]. To give the reader an illustration of the experimental setting we cite the
following description from [61]:

“About a million motile cells of E. coli are placed at one end of a cap-
illary tube filled with a solution containing 2.5×10−4 molar galactose
as the energy source, and the ends of the tube are closed with plugs of
agar and clay.... The galactose is present in excess over the oxygen,
since the concentration of oxygen in water saturated with air at 37oC
is about 2.0×10−4 mole/l and it takes six molecules of oxygen to fully
oxidize a molecule of galactose.... Soon afterward, two sharp, easily
visible bands of bacteria have moved out from the origin, and some
bacteria remain at the origin.”
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As a conclusion of these observations Adler stated that

“...the bacteria create a gradient of oxygen or of an energy source,
and then they move preferentially in the direction of the higher con-
centration of the chemical. As a consequence, bands of bacteria ...
form and move out.”

In other experiments with E. coli, Budrene and Berg [11] observed complex two-
dimensional spots or stripe patterns that were caused by the interplay of diffusion,
growth, and aggregation in response to the gradients of the chemoattractant. To
analyze such spatial pattern formations, Mimura and Tsujikawa proposed in [48]
chemotaxis models that include (8). To show that model (8) can describe the
observed patterns, several scientists analyzed this model under some appropriate
scaling. For example, Nadin, Perthame and Ryzhik [50] proved the existence of
traveling wave solutions to a one-dimensional parabolic-elliptic version of (8) if
the growth term is either a Fisher/KPP type or is truncated for small population
densities. Their analysis provides H1

0 (R) estimates, as well as some stability con-
ditions on the coefficients which enforce an upper bound on the solution.

As mentioned above, solutions of model (8) exist globally in time due to the pres-
ence of the decay part −u2 of the growth term f(u). Tello and Winkler [66]
considered more general forms of the growth term f(u) for various spatial dimen-
sions. Under some technical assumptions, they showed that there exists at least
one global weak solution (compare [66, Theorem 3.3]) for arbitrary initial data.
In our case, one can apply their result in [66, Theorem 2.5] that guarantees the
existence of an unique global bounded classical solution for any initial data.

3 Numerical method

3.1 Galerkin discretization
In the numerical implementation, we solve equations (1) and (2) in a segregated
fashion. In each time step, the transport equation for the chemoattractant concen-
tration c(t,x) is solved prior to that for the cell density u(t,x). To begin with,
both equations are written in the Galerkin weak form and discretized in space
using (conforming) trilinear finite elements. The discretization in time is per-
formed by the unconditionally stable implicit Euler method. The Crank-Nicolson
or fractional-step-θ time-stepping schemes can be implemented in a similar way.
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The system of linearized algebraic equations consists of two decoupled subprob-
lems for the new vectors of discrete nodal values un+1 and cn+1

[M(1) + ∆tL(Dn)−∆tK(cn)]un+1 = M (1)un + ∆tqn, (11)

[M(1) + ∆tL(d) + ∆tM (sn)] cn+1 = M (1)cn + ∆tM (gn)un, (12)

where M(·) denotes the (consistent) mass matrix, L(·) is a discrete diffusion
operator, and K(c) is a discrete transport operator due to the chemotactic flux
A(u)B(c)C(∇c). For brevity, we use the abbreviations Dn = D(un), sn =
s(un), and gn = g(un). The entries of M(·), L(·), K(c) and qn are defined by

mij(ψ) =

∫
Ω

ϕiϕjψ dx, ψ ∈ {1, s(u), g(u)}, (13)

lij(ψ) =

∫
Ω

∇ϕi · ∇ϕjψ dx, ψ ∈ {D(u), d}, (14)

kij(c) =

∫
Ω

∇ϕi · A(ϕj)B(c)C(∇c) dx, (15)

qni =

∫
Ω

ϕiqj(u
n) dx, (16)

where ϕi is the finite element basis function associated with a vertex xi. In for-
mula (15), the discontinuous concentration gradient ∇c can be replaced by a su-
perconvergent approximation obtained using a suitable reconstruction technique
(see, e.g., [73]).

3.2 Positivity preservation
The numerical behavior of the cell density u depends on the properties of the
matrix A = M + ∆t(L −K) that appears in the left-hand side of (11). Here
and below, we suppress the explicit dependencies of the matrices when they can
be easily deduced from the context, e.g., we write M = M (1),L = L(Dn) and
K = K(cn) (the single matrix entries are treated in the same way). Sufficient
conditions of positivity preservation are given by the following theorem.

Theorem 3.1 If A = {aij} is an irreducibly diagonally dominant n × n matrix
with aii > 0 for all i = 1, . . . , n and aij ≤ 0 for all i 6= j, then A−1 ≥ 0.

Here and below, matrix/vector inequalities are meant to hold componentwise. For
a proof of this theorem, we refer to the classical work by Varga ([70], p. 85).
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Theorem 3.2 Under the conditions of Theorem 3.1, the Galerkin scheme (11) is
positivity-preserving, i.e., un ≥ 0, qn ≥ 0 ⇒ un+1 ≥ 0.

The proof of this result is very simple. In the case of linear or multilinear finite
elements, we have M ≥ 0. Hence, the right-hand side bn = Mun + ∆tqn is
nonnegative, and so is un+1 = A−1bn by Theorem 3.1. �

In general, the standard Galerkin approximation (11) does not satisfy the above
constraints. The entries of the discrete diffusion operator L have the right sign un-
der rather mild assumptions on the geometric properties of the mesh (no sharp an-
gles, moderate aspect ratios). However, some off-diagonal entries of
M + ∆t(L − K) are strictly positive. If mij + ∆t(lij − kij) > 0 for some
j 6= i, then the conditions of Theorem 3.1 are violated, and the cell density u may
become negative.

As shown by Kuzmin et al. [43, 44], the positivity constraint can be readily
enforced at the discrete level using a conservative manipulation of the matrices
M (1) and K(un, cn). The former is approximated by its diagonal counterpart

ML := diag{mi}, mi =
∑
j

mij. (17)

To satisfy sufficient DMP conditions, all negative off-diagonal entries of K are
eliminated by adding an artificial diffusion operator D [43, 44]. For conservation
reasons, this must be a symmetric matrix with zero row and column sums. For
any pair of neighboring nodes i and j, the off-diagonal entry dij is defined as

dij = max{−kij, 0,−kji}, j 6= i. (18)

Note that dji = dij so that D is symmetric, as desired. The diagonal coefficients
dii are defined so that the row and column sums of D are equal to zero

dii = −
∑
j 6=i

dij. (19)

The result is a positivity-preserving discretization of low order. It does not pro-
duce undershoots or overshoots but the inherent numerical diffusion smears the
solution profiles. To rectify this, we apply a limited amount of compensating an-
tidiffusion which is guaranteed to be local extremum diminishing (LED).
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3.3 Flux limiting
By construction, the net artificial diffusion received by node i can be written as

(Du)i =
∑
j

dijuj =
∑
j 6=i

dij(uj − ui) = −
∑
j 6=i

fij, (20)

where fij = dij(ui−uj) is the antidiffusive flux from node j into node i. Inserting
the so-defined fluxes into the right-hand side of the low-order scheme, we can
remove artificial diffusion in smooth regions, where negative off-diagonal entries
of K do not pose any threat to positivity. In other regions, the magnitude of fij
needs to be limited. In this paper, we use an upwind-biased limiting strategy [43]
based on a generalization of the fully multidimensional flux-corrected transport
(FCT) algorithm [72] and 1D total variation diminishing (TVD) schemes. The
sums of fluxes that may violate the positivity constraint for node i are given by

P±i =
∑

kij≤kji

max
min

{0, fij}. (21)

The off-diagonal entries lij of the low-order operator L = K+D are nonnegative
and define the upper/lower bounds for the FEM-TVD scheme as follows [43]

Q±i =
∑
j 6=i

lij
max
min

(uj − ui). (22)

Given a pair of nodes i and j with kij < kji, the raw antidiffusive fluxes fij and
fji are multiplied by the common correction factor

αij =

{
min{1, Q+

i /P
+
i }, if fij > 0,

min{1, Q−i /P−i }, otherwise (23)

and inserted into the right-hand side of the low-order system. This yields a nonlin-
ear high-resolution finite element scheme satisfying the discrete maximum princi-
ple. For a detailed presentation of the underlying theory and practical implemen-
tation details (data structures, iterative solvers), we refer to Kuzmin [43].

4 Numerical results

4.1 Chemotaxis in a 3D chemostat
To consider some realistic settings for chemotactic movement in three spatial di-
mensions, we perform our numerical simulations in chemostat-like domains. A
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chemostat (from Chemical environment is static) is a popular bioreactor. The
classical example is a cylindrical container to which a fresh medium is continu-
ously added, while a culture liquid is continuously removed to keep the culture
volume constant. This method is often used to cultivate certain species that are
later used for some experimental observations. A major advantage of such biore-
actors is the possibility to control the growth rate of the cultivated microorganism
by changing the rate at which the medium is added. On the other hand, chemostats
can also be used experimentally to observe the influence of external signals upon
the motion of motile species or to monitor predator-prey interactions of species.
For example, the effect of competition and chemotaxis between n-populations has
been studied analytically by Kuiper in [42] and Le & Smith in [45]. Numerical
simulations for multi-species chemotaxis models in three spatial dimensions will
be considered in a forthcoming paper. Here we study the single species case.

We assume that the medium in the chemostat is static. By this we neglect the trans-
port of u with the velocity of the fluid and concentrate on the chemotaxis-driven
reactions only. The purpose of the following numerical experiments is to inves-
tigate the transport and blow-up behavior of the ‘cultural liquid’ and the applica-
bility of the FEM-TVD algorithm to chemotaxis models in the three-dimensional
space. Also for simplicity, we do not take into account the continuous ‘feed’ of
chemoattractants and cell-‘effluent’.

We consider the minimal Keller-Segel chemotaxis model

ut = ∆u− χ∇ · (u∇c), (24)

ct = ∆c− c+ u, (25)

which is obtained from the system (1)–(2) by setting

A(u) = u, B(c) = χ, C(∇c) = ∇c, D(u) = 1, q(u) = 0,

d = 1, s(u) = 1, g(u) = 1.

The homogeneous natural boundary conditions (or ’total flux’ boundary condi-
tions for u and c)

n · (∇u− u∇c) = n · ∇c = 0 on ∂Ω (26)

and the following initial data

u(0,x) = 1000 · e−100·(x21+x22+(x3−2)2) in Ω, (27)

c(0,x) = 500 · e−50·(x21+x22+(x3−3)2) in Ω (28)
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are prescribed. Inoculum of chemoattractant and cells according to (27)–(28) is
shown in Figure 1(a).

(a) (b)

Figure 1: (a) Initial conditions for the cells (dark spot) and the chemoattractant
(grey spot); (b) cutlines of the cell distribution (solid line) and chemoattractant
concentration (dashed line) along the x3-axis.

The stability of the system is heavily dependent on the chemoattractive sensitivity
χ. By fixing all involved parameters and varying the magnitude of χ one can make
either the diffusion processes or the chemoattractive transport of cells dominant.
The former situation leads to steady-state solutions, whereas the latter gives rise
to evolving in time solutions, blow-ups etc.

In Figures 2–4, we examine the distribution of cells and of the chemoattractant
for the chemotaxis sensitivities χ = 1, χ = 2, and χ = 3, respectively. One
can observe that for smaller χ the propagation of cells into the region with high
concentrations of the chemoattractant is relatively slow. In this case, the diffusion
of cells is more pronounced than the chemoattractive transport. For larger χ,
the propagation of cells into the region of high chemoattractant concentrations is
accelerated. The magnitude of u increases rapidly, and a blow-up occurs.
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(a) t = 5 · 10−3 (b) t = 7 · 10−3 (c) t = 10−2 (d) t = 2 · 10−2

(e) t = 5 · 10−3 (f) t = 7 · 10−3 (g) t = 10−2 (h) t = 2 · 10−2

Figure 2: Development of cell and chemoattractant concentrations for χ = 1 at
t = 5 ·10−3, 7 ·10−3, 10−2, 2 ·10−2; ∆t = 10−4. Top: Distribution of cells u (red)
and chemoattractant c (green). Bottom: Cutline along the x3-axis for cells u.

(a) t = 10−3 (b) t = 6 · 10−3 (c) t = 10−2 (d) t = 2 · 10−2

(e) t = 10−3 (f) t = 6 · 10−3 (g) t = 10−2 (h) t = 2 · 10−2

Figure 3: Development of cell and chemoattractant concentrations for χ = 2 at
t = 10−3, 6 · 10−3, 10−2, 2 · 10−2; ∆t = 10−4. Top: Distribution of cells u (red)
and chemoattractant c (green). Bottom: Cutline along the x3-axis for cells u.
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(a) t = 10−3 (b) t = 5 · 10−3 (c) t = 10−2 (d) t = 2 · 10−2

(e) t = 10−3 (f) t = 5 · 10−3 (g) t = 10−2 (h) t = 2 · 10−2

Figure 4: Development of cell and chemoattractant concentrations for χ = 3 at
t = 10−3, 5 · 10−3, 10−2, 2 · 10−2; ∆t = 10−4. Top: Distribution of cells u (red)
and chemoattractant c (green). Bottom: Cutline along the x3-axis for cells u.

Figures 2(h), 3(h) and 4(h) display snapshots of the numerical solution at late
time instants which represent the crucial part of the simulation process. Here
we observe a strong aggregation of the cell density, which produces a peak at
the point (0, 0, 3)T . The proposed FEM-TVD method delivers smooth, positivity
preserving and nonoscillatory profiles of the cell distribution u and chemoattrac-
tant concentration c alike. At the same time, the pure Galerkin scheme without
any stabilization technique is incapable of delivering a plausible solution: non-
physical negative values in the cell density grow rapidly as time evolves, which
leads to an abnormal termination of the simulation run (see Figures 5(a)-5(c)).
The chemoattractant concentration c calculated with the unconstrained Galerkin
scheme also exhibits spurious oscillations (albeit with a smaller amplitude and,
obviously, with a small delay in time). The plots of this oscillatory solution are
not presented since they do not carry any additional information.

Local mesh refinement can significantly improve the accuracy of a finite element
approximation. Numerical experiments indicate that the use of mesh adaptation
is particularly important for blow-up problems and problems with strong localiza-
tion effects. This is a very broad topic which is beyond the scope of the present
paper. The interested reader is referred to [64] for some results illustrating the
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benefits of mesh adaptation in the context of a two-dimensional blow-up problem.

(a) χ = 1 (b) χ = 2 (c) χ = 3

(d) χ = 1 (e) χ = 2 (f) χ = 3

Figure 5: The pure Galerkin scheme, cell densities for χ = 1, 2 and 3 at time
t = 2 · 10−2. Top: Oscillatory distribution of cells. Bottom: Cutline along the
x3-axis for cells u.

4.2 Pattern formation
In the next example, we use our high-resolution FEM-TVD method to simulate
the pattern dynamics of motile cells Escherichia coli. Several chemotaxis models
describing this phenomenon can be found in the literature. In this numerical study,
we adopt the one proposed by Aida et al. [4] and replace the commonly employed
cubic growth rate by the classical Fisher-type model,

ut = du∆u− χ∇ · (u∇c) + u(1− u), (29)

ct = ∆c− βc+ u. (30)
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System (29)–(30) can be obtained from the general form of the chemotaxis prob-
lem (1)–(2) by setting

A(u) = u, B(c) = χ, C(∇c) = ∇c, D(u) = du, q(u) = u(1− u),

d = 1, s(u) = β, g(u) = 1.

As before, we prescribe homogeneous natural boundary conditions on ∂Ω. The
initial conditions for this test are given by

u(0,x) = 1 + σ(x),

c(0,x) = 1/32,

where σ(x) is a small perturbation defined as

σ(x) =

{
random[0, 1], if ‖x‖2 ≤

√
2,

0, otherwise.

(a) total of 16 elements (b) total of 128 elements (c) total of 1024 elements

(d) total of 16 elements (e) total of 128 elements (f) total of 1024 elements

Figure 6: Spherical mesh for three successive refinement levels. Top: Three-
dimensional visualization. Bottom: Two-dimensional cutplane along the x1x2-
plane.

Following [4], we choose the following parameter settings: du = 0.0625, χ = 8.5,
and β = 32. Numerical simulations are performed in the sphere ‖x‖2 ≤ 8 which
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is discretized using an almost uniform mesh which is considerably finer than the
one shown in figures 6(c) and 6(f) (resulting in 4, 194, 304 conforming trilinear
finite elements). The time step is taken to be ∆t = 0.1.

We have already reported in [64] that 2D solutions of (29)–(30) are very sensitive
to the choice of parameters, such as χ, σ, etc. The same effect is observed during
numerical experiments in 3D. Figure 7 displays the bacteria distribution calculated
with the FEM-TVD algorithm. Placed in the center, the initial concentration of
bacteria propagates into the whole domain in a moving-wave pattern. Advancing
wave-fronts leave trailing spikes in response to the chemosensitivity.

(a) t = 5.0 (b) t = 10.0 (c) t = 20.0

(d) x1x2–cutplane (e) x1x2–cutplane (f) x1x2–cutplane

Figure 7: Pattern formation simulated with the FEM-TVD algorithm. The screen-
shots were taken at times t = 5.0, 10.0, 20.0.
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4.3 Aggregation of bacteria
As last example for our 3D simulations, we consider the chemotaxis model pro-
posed by Tyson et al. in [67] (see also [68] and [69])

ut = du∆u− χ∇ ·
[

u

(1 + c)2
∇c
]
, (31)

ct = dc∆c− c+ w
u2

µ+ u2
. (32)

System (31)–(32) describes an aggregating behavior of the bacteria Escherichia
coli and Salmonella typhimurium. It can readily be seen that this system is of the
form (29)–(30) and, therefore, can be solved using the FEM-TVD algorithm.
As usual, we prescribe the homogeneous natural boundary conditions on ∂Ω. The
initial conditions are chosen to be

u(0,x) = 0.9 + 0.2σ(x),

c(0,x) = 0,

where σ(x) = random[0, 1] in Ω. Numerical simulations are performed in the
cubic domain Ω = [0, 16]3. A uniform mesh with h = 1/4 and a total of 262, 144
trilinear elements is employed. The time step is taken to be ∆t = 0.01. Other
parameters are chosen as follows: du = 1, dc = 0.33, χ = 80, w = 1. Numer-
ical results at a sequence of consecutive time points are shown in Figures 8(a)–
8(d). Randomly distributed bacteria aggregate into cylindrical capsules. As time
evolves, the concentration of bacteria in these capsules grows, and the distances
between the capsules increase. The proposed FEM-TVD algorithm keeps u non-
negative and yields an accurate resolution of concentration points. Flux correction
makes it more reliable than the underlying Galerkin method and less diffusive than
the corresponding low-order scheme.
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(a) t = 1.0 (b) t = 2.0

(c) t = 4.0 (d) t = 5.0

Figure 8: Aggregation of bacteria. The screenshots were taken at the distinct times
t = 1.0, 2.0, 4.0, 5.0.

5 Conclusions
A theoretical and numerical framework for solving 3D chemotaxis problems was
developed and analyzed. The proposed FEM-TVD algorithm preserves the pos-
itivity of cell densities and yields a crisp resolution of steep gradients. The pre-
sented methodology is well suited for numerical experiments that demonstrate
chemotactical response of motile species in a bio-container. For example, the
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developed code can be used as a tool to study the competition between self-
organization and attraction to an external source in more detail. Furthermore,
it is capable of reproducing the classical experiments of Adler [1, 2] and his group
in the context of computer simulations. The computational approach gives an ad-
ditional insight into the mechanisms behind pattern formation of traveling bands
in chemotaxis systems.

Application to system (8) indicates that our numerical scheme is a viable tool for
simulating the growth of bacterial colonies. In general, this growth is driven by
several complex biomechanical processes, creating the rich variety of shapes that
are exhibited by the colonies. For example, the division and motion of cells can
cause formation and propagation of unstable fronts. This gives rise to various
patterns, such as spiral waves [47], aggregates [49] and dendrites [9, 27]. The
presented algorithm makes it possible to gain deeper insight into these pattern
formation processes, thus helping modelers and analysts to understand the under-
lying biological mechanisms in more detail.

From the analytical point of view, the proposed numerical framework can be used
to investigate the blow-up behavior of solutions to the so-called classical chemo-
taxis model (7) in three space dimensions. In particular, one can think of using
a computational study to find qualitative criteria for identifying initial data that
lead to finite blow-up or to globally existing solution in 3D. The existence of such
initial data has been shown in [20]. The new criteria might give some hints for
finding an alternative blow-up proof instead of using the “usual” second momen-
tum method, the only tool which is currently available for proving the finite time
blow-up for certain initial data in 3D.

As a final note, we would like to point out some promising directions for further
investigations. First of all, the current implementation of the FEM-TVD scheme
requires mass lumping. Work is under way to implement a new slope limiter for
the consistent mass matrix and convection/diffusion operators. This will provide a
further gain of accuracy for strongly time-dependent problems. Furthermore, the
numerical study presented in this paper should be extended to complex chemotaxis
systems with multiple populations and chemoactive substances. The numerical
treatment of particularly sensitive applications may require further improvements
of the FEM-TVD algorithm. In particular, flux limiting may need to be performed
using a suitable synchronization of correction factors in the presence of multiple
“unstable” entities, e.g., in the case of chemotaxis problems that involve simulta-
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neous transport of more than one species. These applications and improvements
warrant further research to be presented in a forthcoming paper.
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vation laws, in: D. KUZMIN, R. LÖHNER, S. TUREK (eds), Flux-Corrected
Transport: Principles, Algorithms, and Applications, Springer, Berlin (2005),
pp. 155–206.

[45] D. LE AND H. L. SMITH, Steady states of models of microbial growth and
competition with chemotaxis, J. M. A. A. 229 (1999), pp. 295–318.

[46] P. R. M. LYRA, K. MORGAN, J. PERAIRE AND J. PEIRO, TVD algorithms
for the solution of the compressible Euler equations on unstructured meshes,
International Journal for Numerical Methods in Fluids 19 (1994), pp. 827–
847.

[47] P. K. MAINI, Applications of mathematical modelling to biological pattern
formation, in: D. REGUERA, L. L. BONILLA, J. M. RUBI (eds), Coherent
structures in complex systems, Springer Lecture Notes in Phys., 567 (2001),
pp. 205–217.

[48] M. MIMURA AND T. TSUJIKAWA, Aggregating pattern dynamics in a
chemotaxis model including growth, Physica A, 230 (1996), pp. 499–543.

[49] J. D. MURRAY, Mathematical biology II: Spatial models and biomedical
applications, vol. 18 of Interdisciplinary Applied Mathematics, Springer-
Verlag, New York, third ed., 2003.

[50] G. NADIN, B. PERTHAME AND L. RYZHIK, Traveling waves for the Keller-
Segel system with Fisher birth terms, Interfaces and Free Boundaries, 10
(2008), pp. 517–538.

[51] T. NAGAI, Blow-up of radially symmetric solutions to a chemotaxis system,
Adv. Math. Sci. Appl. 5 (1995), pp. 581–601.

27



[52] T. NAGAI, Blowup of nonradial solutions to parabolic-elliptic systems mod-
eling chemotaxis in two-dimensional domains, J. Inequal. Appl. 6 (2001), pp.
37–55.

[53] T. NAGAI, T. SENBA AND K. YOSHIDA, Application of the Moser-
Trudinger inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj,
Ser.Int. 40 (1997), pp. 411–433.

[54] V. NANJUNDIAH, Chemotaxis, signal relaying and aggregation morphol-
ogy, J. Theor. Biol. 42 (1973), pp. 63–105.

[55] K. OSAKI AND A. YAGI, Finite dimensional attractors for one-dimensional
Keller-Segel equations. Funkcialaj Ekvacioj 44 (2001), pp. 441–469.

[56] C. S. PATLAK, Random walk with persistence and external bias, Bull. Math.
Biol. Biophys. 15 (1953), pp. 311–338.

[57] B. PERTHAME, Transport equations in biology, Birkhäuser-Basel, Verlag,
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