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Abstract

We consider the Fokker–Planck equation (FPE) for the orientation proba-
bility density of fiber suspensions. Using the continuous Galerkin method,
we express the numerical solution in terms of Lagrange basis functions that
are associated with N nodes of a computational mesh for a domain in the
3D physical space and M nodes of a mesh for the surface of a unit sphere
representing the configuration space. The NM time-dependent unknowns
of our finite element approximations are probabilities corresponding to dis-
crete space locations and orientation angles. The framework of alternating-
direction methods enables us to update the numerical solution in parallel by
solving N evolution equations on the sphere and M three-dimensional advec-
tion equations in each (pseudo-)time step. To ensure positivity preservation
as well as the normalization property of the probability density, we perform
algebraic flux correction for each equation and synchronize the correction
factors corresponding to different orientation angles. The velocity field for
the spatial advection step is obtained using a Schur complement method
to solve a generalized system of the incompressible Navier–Stokes equations
(NSE). Fiber-induced subgrid-scale effects are taken into account using an
effective stress tensor that depends on the second- and fourth-order mo-
ments of the orientation density function. Numerical studies are performed
for individual subproblems and for the coupled FPE-NSE system.
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1. Introduction

Coarse-grained simulations of fiber suspension flows and, in particular, of
injection molding processes require accurate subgrid-scale modeling of the
orientation-dependent rheology [3, 39]. Commonly used non-Newtonian flow
models relate fiber-induced effective stresses to orientation tensors, which
represent the second- and fourth-order moments of a probability density ψ.
There is a one-to-one correspondence between these moments and the first
coefficients of spectral (Fourier in 2D, spherical harmonics in 3D) Galerkin
approximations [20, 25, 31] to the Fokker–Planck equation (FPE) for ψ.

Exact evolution equations for orientation tensors and for the coefficients of
arbitrary-order spectral Galerkin methods can be derived from the FPE.
Then a suitable closure approximation must be provided for the unknown
high-order terms. For example, the Advani–Tucker [1] and Folgar–Tucker
[11] equations for the second-order orientation tensor A(ψ) depend on its
fourth-order counterpart A(ψ). Many ways to reconstruct A from A were
proposed in the literature [4, 6, 9, 21, 29, 30, 34]. Lohmann [26] analyzed the
resulting models, formulated criteria for physical admissibility of closures,
and designed numerical methods that preserve relevant properties.

Some of the most reliable closures are based on the idea of reconstructing
a probability density function ψ from A and using it to calculate A. Such
reconstruction-based approaches may be well suited for modeling the rhe-
ological behavior of fiber suspension flows [3, 5, 29] but the recovery of ψ
from its second-order moment is an ill-posed inverse problem. Straightfor-
ward reconstruction procedures, such as the one proposed in [15], have the
additional drawback that ψ may become negative. Hence, there might be
no satisfactory alternative to solving the FPE, e.g., if ψ is needed to predict
the mechanical properties of fiber-reinforced lightweight materials [3].

The computation of well-resolved and property-preserving numerical so-
lutions to the FPE involves tremendous computational effort because ψ
depends not only on the Cartesian coordinates of the three-dimensional
physical space and on the time instant but also on two orientation angles.
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Galerkin methods using spherical harmonics as basis functions for the config-
uration space [20, 25, 31] are efficient and may perform well in the diffusion-
dominated regime. However, they are not to be recommended for advection-
dominated transport problems because a large number of modes/moments
may be needed to obtain positivity-preserving results for orientation density
functions (ODFs) with sharp peaks [7]. Such ODFs correspond to strongly
aligned orientation states, which frequently occur in practice.

Fractional-step methods for finite volume and finite element discretizations
of the FPE and of its twin, the Smoluchowski equation, were developed in
[2, 10, 14, 17, 18, 19, 28, 43]. Such approaches require a fine mesh resolution
but, in principle, cell averages and/or pointwise values can be constrained
to satisfy discrete maximum principles. In this work, we present the first
high-resolution finite element scheme that ensures positivity preservation
and the normalization property for numerical solutions to the FPE.

Following Knezevic [18, 19], we discretize the FPE in (pseudo-)time using an
alternating-direction method. The resulting subproblems are discretized in
space using the continuous Galerkin method and Lagrange finite elements.
Adapting the monolithic convex limiting (MCL) procedure developed in
[22], we construct an algebraic flux correction scheme that preserves all
essential properties of probability density functions. The proposed algorithm
is well suited for parallel computing, which is a must when it comes to
putting together all building blocks of our finite element solver for the full
FPE/Navier–Stokes model of fiber suspension flows. We discuss relevant
implementation details and perform numerical studies for PDEs on surfaces.
A test problem with a known exact solution is designed for the FPE. The
results for the axisymmetric 4.5:1 contraction benchmark [24, 26, 40, 41]
agree well with the numerical solutions obtained in [26] using a property-
preserving finite element discretization of the Folgar–Tucker equation.

2. Mathematical modeling

Fiber suspensions are often simulated using non-Newtonian flow models in
which the effective stress tensor τ of the Navier–Stokes equations (NSE)

ρ

(
∂v

∂t
+ v · ∇v

)
= ρg −∇p+∇ · τ , ∇ · v = 0 (1)
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for the mixture velocity v and pressure p depends on the orientation of fibers
[36]. We denote by g the gravitational acceleration. The mixture density ρ
is assumed to be constant for simplicity. In addition to system (1), the 3D
flow model that we consider includes the Fokker–Planck equation [30]

∂ψ

∂t
+ v · ∇xψ +∇p · (ṗψ) = Dr∆pψ, (2)

where ψ(x,p, t) is the probability that rigid fibers located in a small neigh-
borhood of a space location x ∈ Rd have orientation p ∈ Rd at time t ≥ 0.
We denote by ∇x or ∇ the gradient operator of the physical space Rd and
by ∇p the gradient/divergence operator of the configuration space

Sd−1 = {p ∈ Rd : |p| = 1}.

Here and below | · | denotes the Euclidean norm of a vector in Rd.

The notation ∆p is used for the Laplace–Beltrami operator on the surface
Sd−1 of the unit sphere in Rd. The rotary diffusion coefficient Dr ≥ 0
measures the intensity of fiber-fiber interactions [4, 11]. The angular velocity
ṗ of fiber rotation is determined by Jeffery’s equation [16, 29]

ṗ = Wp + λe [Dp−D : (p⊗ p)p] , (3)

where

D =
1

2

[
∇v + (∇v)>

]
is the strain rate tensor,

W =
1

2

[
∇v − (∇v)>

]
is the spin tensor and

λe =
r2
e − 1

r2
e + 1

is a dimensionless parameter depending on the fiber aspect ratio re.

A typical model for the stress tensor τ of the NSE system is given by [36]

τ = 2µ(D +NpA : D +Ns(DA + AD)).

Here µ denotes the constant dynamic viscosity of the carrier fluid. The
dimensionless parameters Np and Ns are known as the particle number and
shear number, respectively [36]. The second-order orientation tensor [1]

A(x, t) =

∫
Sd

p⊗ p ψ(x,p, t) dp (4)
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and its fourth-order counterpart

A(x, t) =

∫
Sd

p⊗ p⊗ p⊗ p ψ(x,p, t) dp (5)

satisfy evolution equations, which can be derived from (2). In this work, we
evolve ψ using (2) and treat its moments as derived quantities.

For ψ to be a valid probability distribution, the admissibility conditions

ψ(x,p, t) ≥ 0,

∫
Sd

ψ(x,p, t) dp = 1 (6)

must hold for all x ∈ Rd and t ≥ 0. The nonnegativity of ψ implies that the
symmetric tensors A and A are positive semidefinite. The normalization
property implies that the trace of A is equal to unity. It is essential to
ensure the validity of (6) for numerical solutions to (2). Otherwise, the
occurrence of nonphysical orientation states may give rise to instabilities,
produce misleading simulation results, or cause the code to crash.

3. Alternating-direction method

Let a finite element approximation to the solution ψ of (6) be defined by

ψh(x,p, t) =
N∑
i=1

M∑
k=1

ψi,k(t)ϕi(x)ϕ̃k(p),

where ϕi(x) and ϕ̃k(p) are continuous Lagrange basis functions such that

ψi,k(t) = ψh(xi,pk, t).

We use linear (P1) finite elements on simplex meshes and multilinear (Q1)
ones on tensor-product meshes. The degree of freedom ψi,k(t) is the ap-
proximate probability of the event in which a fiber located at the ith node
xi of the spatial mesh has orientation pk corresponding to the kth node
of the surface mesh for Sd−1. Using the framework of alternating-direction
methods [12, 18, 19] to discretize the Fokker–Planck equation (6) in time,
we update the entries of the coefficient matrix Ψ = (ψi,k) row-by-row and
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column-by-column by solving simplified evolution equations for

ψi,∗(p, t) =

M∑
k=1

ψi,k(t)ϕ̃k(p), i = 1, . . . , N,

ψ∗,k(x, t) =
N∑
i=1

ψi,k(t)ϕi(x), k = 1, . . . ,M.

To advance ψh in time from tn to tn+1 = tn + ∆t, we need to solve the
evolution equation (known as Jeffery’s equation with diffusion [30])

∂ψi,∗
∂t

+∇p · (ṗψi,∗) = Dr∆pψi,∗ (7)

for each vertex xi of the spatial mesh and the advection equation

∂ψ∗,k
∂t

+ v · ∇xψ∗,k = 0 (8)

for each vertex pk of the spherical mesh. In the three-dimensional case, the
location of pk on S3 is determined by two orientation angles [21].

In addition to replacing (2) with a sequence of lower-dimensional subprob-
lems that can be solved in parallel, the alternating direction (AD) approach
makes it possible to discretize each subproblem using tailor-made numerical
methods. We take advantage of this option in the next sections.

4. Pure advection in physical space

Let u = ψ∗,k be the scalar-valued probability of fiber orientation along a
unit vector pk. The second step of the AD finite element solver for (6)
approximates u by a numerical solution uh =

∑N
j=1 ujϕj of

∂u

∂t
+ v · ∇u = 0 in Ω ⊂ Rd (9)

where ∇ = (∂x1 , . . . , ∂xd)> = ∇x is the gradient operator of the physical
space Rd and v is a given divergence-free velocity field. Imposing periodic
boundary conditions on ∂Ω and using the standard Galerkin method to
discretize (9) in space, we obtain a linear system of the form [22]∑

j∈Ni

mij
duj
dt

+
∑
j∈Ni

aijuj = 0, i = 1, . . . , N, (10)
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where

mij =

∫
Ω
ϕiϕj dx, aij =

∫
Ω
ϕiv · ∇ϕj dx

are the coefficients of the consistent mass matrix and of the discrete advec-
tion operator, respectively. The integer set Ni contains the indices of nodes
j ∈ {1, . . . , N} such that mij 6= 0. Introducing the notation u̇i = dui

dt for the
nodal time derivatives that appear in (9), we define

fij = mij(u̇i − u̇j) + dij(ui − uj)

using the artificial diffusion coefficients

dij =

{
max(|aij |, |aij |) if j 6= i,

−
∑

m∈Ni\{i} dim if j = i

and write the spatial semi-discretization (9) in the equivalent form

mi
dui
dt

=
∑

j∈Ni\{i}

[(aij − dij)(uj − ui) + fij ]

=
∑

j∈Ni\{i}

[2dij(ūij − ui) + fij ],

where mi =
∑

j∈Ni
mij =

∫
Ω ϕi dx is a positive diagonal entry of the lumped

mass matrix. By definition of dij , the bar state

ūij =
uj + ui

2
+

(aij − dij)(uj − ui)
2dij

is a convex combination of ui and uj . To ensure preservation of local bounds
using the monolithic convex limiting (MCL) algorithm proposed in [22], we
replace the antidiffusive flux fij = −fji with f∗ij = −f∗ji such that

min
j∈Ni

uj =: umin
i ≤ ū∗ij = ūij +

f∗ij
2dij

≤ umax
i := max

j∈Ni

uj

and ū∗ji ∈ [umin
j , umax

j ]. Under these equality and inequality constraints, the
best bound-preserving approximation to fij is given by [22]

f∗ij =

min
(
fij , 2dij min (umax

i − ūij , ūji − umin
j )

)
if fij > 0,

max
(
fij , 2dij max(umin

i − ūij , ūji − umax
j )

)
if fij ≤ 0.
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If discretization is time is performed using an explicit strong stability pre-
serving (SSP) Runge–Kutta method, and the CFL-like condition

2∆t

mi

∑
j∈N ∗

i

dij ≤ 1

holds for ∆t, then each forward Euler stage produces a convex combination
of umin

i and umax
i . For details, we refer the interested reader to [22].

Remark 1. The convexity-based proof of the discrete maximum principle
follows the analysis of a low-order method for nonlinear hyperbolic systems
in [13]. As mentioned in [22, Sec. 5.2], the MCL limiting strategy can also
be used to preserve positive semi-definiteness of the second-order orientation
tensor A in finite element discretizations of the Folgar–Tucker equation.

In the context of alternating direction methods for (2), the application of
MCL to the advection equation for individual orientation modes will produce
arrays of limited fluxes f∗ij,k, k = 1, . . . ,M . Introducing

µk =

∫
Sd−1

ϕ̃k(p)dp,

we impose the additional requirement that the normalization property∫
Sd−1

ψni,∗(p)dp =
M∑
k=1

µkψ
n
i,k = 1

of the approximate ODF be preserved. The low-order approximations

ψLi,k = ψni,k +
∆t

mi

∑
j∈Ni\{i}

(dij − aij)(ψnj,k − ψni,k)

corresponding to f∗ij = 0 meet this requirement because

M∑
k=1

µkψ
L
i,k =

M∑
k=1

µkψ
n
i,k +

∆t

mi

∑
j∈Ni\{i}

(dij − aij)

(
M∑
k=1

µkψ
n
j,k −

M∑
k=1

µkψ
n
i,k

)

=
M∑
k=1

µkψ
n
i,k = 1.

In view of this auxiliary result, the flux-corrected version

ψMCL
i,k = ψni,k +

∆t

mi

∑
j∈Ni\{i}

[(dij − aij)(ψnj,k − ψni,k) + f∗∗ij ]
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satisfies the linear constraint
∑M

k=1 µkψ
MCL
i,k =

∑M
k=1 µkψ

n
i,k = 1 if

M∑
k=1

µkf
∗∗
ij,k = 0. (11)

Adapting the scaling strategy that Lohmann et al. [27] used to enforce mass
conservation in the physical space, we first calculate prelimited fluxes f∗ij,k
without taking (11) into account. Then we examine the sum

R∗ij =

M∑
k=1

µkf
∗
ij,k

and multiply f∗ij,k by the balancing correction factor

βij,k =


−

∑M
k=1 min(0,µkf

∗
ij,k)∑M

k=1 max(0,µkf
∗
ij,k)

if R∗ij > 0 and µkf
∗
ij,k > 0,

1 if R∗ij = 0,

−
∑M

k=1 max(0,µkf
∗
ij,k)∑M

k=1 min(0,µkf
∗
ij,k)

if R∗ij < 0 and µkf
∗
ij,k < 0.

That is, additional limiting is performed for positive or negative components
of a nonvanishing sum R∗ij to ensure that (11) holds for f∗∗ij,k = βij,kf

∗
ij,k.

5. Jeffery’s equation with diffusion

The MCL methodology is also applicable to finite element discretizations of
PDEs on surfaces. The first step of our alternating direction method for (2)
requires numerical solution of the diffusive Jeffery equation

∂U

∂t
+∇p · (ṗU) = Dr∆pU on Sd−1 (12)

for the orientation states U = ψi,∗ of mesh vertices xk. The representation
of p ∈ S2 in spherical coordinates φ ∈ [0, 2π) and θ ∈ [0, π] is given by

p = (sin θ cosφ, sin θ sinφ, cos θ)>.

The plane tangential to S2 at p is spanned by the unit vectors

eθ(p) = (cos θ cosφ, cos θ sinφ,− sin θ)> ∈ S2,

eφ(p) = (− sinφ, cosφ, 0)> ∈ S2.
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We use eθ and eφ to define the tangential gradient operator

∇p = eθ
∂

∂θ
+ eφ

1

sin θ

∂

∂φ
.

The surface divergence of V(p) = Vθ(θ, φ)eθ(p) + Vφ(θ, φ)eφ(p) is given by

∇p ·V =
1

sin θ

∂

∂θ
(sin θ Vθ) +

∂Vφ
∂φ

. (13)

Let V = ∇p. Then Vθ = ∂
∂θ and ∂Vφ = 1

sin θ
∂
∂φ . It follows that

∆p = ∇p · ∇p =
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
.

Further transformation rules of differential geometry for PDEs on surfaces
can be found in [8, 42]. At the discrete level, the restriction of differential
operators to elements K of a surface mesh for the manifold Sd−1 is performed
using a mapping FK : K̂ → K from a reference element K̂ ⊂ Rd−1.

Let JK denote the Jacobian of FK . Introducing the symmetric Gram matrix

GK = J>KJK ,

we use the local counterpart ∇K = JKG
−1
K ∇ of ∇p in the formula [42]

aK(W,U) =

∫
K̂
∇KŴ · (Dr∇KÛ − V̂Û)

√
detGKdx̂

= Dr

∫
K̂
∇̂Ŵ · (G−1

K ∇̂Û)
√

detGKdx̂

−
∫
K̂
JKG

−1
K (∇̂Ŵ · V̂Û)

√
detGKdx̂

for the contribution of element K to the bilinear form associated with

LU = ∇p · (VU −Dr∇pU).

The Galerkin discretization of Jeffery’s equation (12) uses V = ṗ. The
resulting semi-discrete problem can be written in the bar state form

µk
dUk
dt

=
∑

l∈Nk\{k}

[2Dkl(Ūkl − Uk) + Fkl +Gkl], k = 1, . . . ,M
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and constrained using MCL to enforce preservation of local bounds. The
artificial diffusion coefficients Dkl and the raw antidiffusive fluxes Fkl are
defined as for the pure advection equation in Rd−1. The diffusive fluxes

Gkl = DrLkl(Ul − Uk)

result from the discretization of Dr∆pU and do not require limiting if the
coefficients Lkl of the discrete Laplace–Beltrami operator are nonnegative
for k 6= l. If the corresponding conditions for the geometric properties of the
surface mesh are violated, the limiter should be applied to Fkl+Gkl. The unit
sum property

∑M
k=1 µkUk = 1 is preserved since the Galerkin discretization

of (12) is globally conservative and the limited fluxes add up to zero.

Examples of meshes that are well suited for solving PDEs on S2 include
quadrilateral cubed sphere grids [32, 33] and triangular geodesic grids [43].
To generate a hierarchy of quadrilateral or triangular meshes for the geomet-
ric multigrid solvers implemented in our software package FEAT3, we first
generate a coarse (level 0) mesh by normalizing the Cartesian coordinates of
the vertices Xk of a cube/icosahedron containing the manifold S2. The cube
that we use is the convex hull of the vertices (±a,±a,±a), where a = 1√

3
.

The twelve vertices of the employed icosahedron are defined by

(0,±b,±c) , (±b,±c, 0) , (±c, 0,±b) ,

where

b =

√
2

5 +
√

5
, c =

1 +
√

5√
10 + 2

√
5
.

The normalized counterpart xk = Xk
|Xk| of Xk ∈ R3 lies on S2. In refinement

step m ∈ N, we subdivide the elements of the level m − 1 mesh into four
subelements. The coordinates of new vertices are normalized again. Figure 1
shows the subdivision of a square/triangle and the level 4 meshes.

Remark 2. The use of (multi-)linear mappings FK : K̂ → K for elements
of the surface mesh may cause the discrete operators to lose some properties
that are assumed in proofs of local maximum principles. Moreover, optimal
convergence rates might be impossible to achieve. To avoid such troubles,
we use quadratic (P2 or Q2) mappings in our finite element solver.
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Figure 1: Refinement strategy and level 4 meshes for computations on S2.

6. Coupling with the flow solver

When it comes to simulating fiber suspension flows, we discretize the gen-
eralized Navier–Stokes system (1) using the inf-sup stable Q2-Pdisc

1 finite
element pair (continuous Q2 for v, discontinuous P1 for p) and solve the dis-
crete saddle-point problem using a Schur complement method (as described
in [37] and implemented in the high-performance C++ software package
FEAT3). In each outer iteration or time step, a discretely divergence-free
velocity field vh is passed to our parallel AD solver for the Fokker–Planck
equation (2). A continuous approximation Gh to ∇vh is recovered by mini-
mizing the L2 norm of Gh−∇vh subject to the incompressibility constraint
tr(Gh) = 0. The approximate probability density ψh is used to calculate
the orientation tensors and update the effective stress tensor τ . Our imple-
mentation of the weak two-way coupling is sketched in Fig. 2.

FPE:
∂ψ

∂t
+ v · ∇xψ +∇p · (ṗψ) = Dr∆pψ,

ṗ = Wp + λe [Dp− (D : (p⊗ p)) p],

D = D(∇v), W = W(∇v).

v &∇v ⇑ ⇓ A(ψ) & A(ψ)

NSE: ρ

(
∂v

∂t
+ v · ∇v

)
= ρg −∇p+∇ · τ ,

τ = 2µ(D +NpA : D +Ns(DA + AD)),

∇ · v = 0.

Figure 2: Two-way coupling for the NSE-FPE model of fiber suspension flows.
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A similar fractional-step algorithm was used by Lohmann [26, Chap. 6] for
a finite element discretization of the Folgar–Tucker model, in which the FPE
for ψ is replaced with an evolution equation for the orientation tensor A.

7. Numerical examples

Numerical studies of the MCL scheme for advection in the physical space
were already performed in [22]. In this section, we test our finite element
solvers for various equations on S2 and for the NSE-FPE system.

7.1. Diffusion-reaction on S2

We begin with an example that illustrates the importance of using at least
quadratic basis functions for the mapping FK from a planar reference el-
ement K̂ ∈ R2 to a curved element K of a surface mesh for S2. Let
U(p) = p1p2 for p = (p1, p2, p3)> ∈ S2. The application of ∆p shows
that U is an exact solution of the spherical diffusion-reaction equation

−∆pU + U = F on S2

with the right-hand side F (p) = 7p1p2. We solve this elliptic problem on
successively refined triangular meshes using the standard Galerkin method
and P1 finite elements. The experimental orders of convergence (EOCs)
w.r.t. the L2 and H1 norms are listed in Table 1. The optimal convergence
rates (EOC=3.0 for the L2 error, EOC=2.0 for the H1 error) are achieved
with P2 mappings. The use of P1 mappings decreases the EOCs by 1.0.

7.2. Heat conduction on S2

In the second numerical experiment, we solve the spherical heat equation

∂U

∂t
−∆pU = F on S2 × (0, T ]

using the manufactured exact solution U(p, t) = p1p2 exp(−t) to define the
right-hand side F = 5U and the initial data U0 = U(·, 0).

Computations are performed using the Galerkin method, triangular P1 el-
ements and the Crank–Nicolson time stepping. The final time is given by
T = 1.0. The convergence history reported in Table 2 confirms that the use
of P2 mappings is essential for achieving optimal convergence rates.
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(a) linear mapping FK

level L2 error EOC H1 error EOC

3 5.91e-3 - 2.14e-1 -
4 1.50e-3 1.97 2.14e-1 1.00
5 3.77e-4 1.99 5.33e-2 1.00
6 9.43e-5 1.99 2.67e-2 1.00
7 2.36e-5 1.99 1.33e-2 1.00

(b) quadratic mapping FK

level L2 error EOC H1 error EOC

3 3.16e-4 - 1.13e-2 -
4 4.03e-5 2.97 2.84e-3 1.99
5 5.06e-6 2.99 7.12e-4 2.00
6 6.33e-7 3.00 1.78e-4 2.00
7 7.91e-8 3.00 4.45e-5 2.00

Table 1: Spherical reaction-diffusion equation, convergence history.

(a) linear mapping FK

level L2 error EOC H1 error EOC

3 6.71e-3 - 7.66e-2 -
4 1.72e-3 1.96 3.90e-2 0.97
5 4.34e-4 1.99 1.96e-2 0.99
6 1.09e-4 2.00 9.81e-3 0.99
7 2.72e-5 2.00 4.91e-3 1.00

(b) quadratic mapping FK

level L2 error EOC H1 error EOC

3 1.19e-4 - 4.15e-3 -
4 1.50e-5 2.99 1.05e-3 1.99
5 1.87e-6 3.00 2.62e-4 2.00
6 2.34e-7 3.00 6.55e-5 2.00
7 2.92e-8 3.00 1.64e-5 2.00

Table 2: Spherical heat equation, convergence history.

7.3. Pure advection on S2

Our next evolutionary test problem is the spherical advection equation

∂U

∂t
+∇p · (VU) = 0 on S2 × (0, T ].
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Using the spherical coordinates θ(p) and φ(p), we define (cf. [23, 33])

Vθ(θ, φ, t) = −10 sin(2(φ− 2πt)) sin θ cos(πt),

Vφ(θ, φ, t) = 20 sin2(φ− 2πt) cos θ sin θ cos(πt) + 2π sin θ.

By the definition (13) of the surface divergence, the velocity field

V(p) = Vθ(θ(p), φ(p), t)eθ(p) + Vφ(θ(p), φ(p), t)eφ(p)

is solenoidal, i.e., ∇p · V = 0. This choice of V results in a strong but
reversible deformation of the initial data U0. The exact solution U(·, t)
coincides with U(·, 0) = U0 at the final time T = 1. We denote the global
minimum and maximum of U0 by Umin and Umax, respectively.

Finite element approximations Uh(·, t) are advanced in time using an ex-
plicit second-order SSP Runge-Kutta scheme (Heun’s method) and time
steps ∆t that satisfy appropriate CFL conditions. The global minimum and
maximum of Uh(·, 1) are denoted by Umin

h and Umax
h . The result is bound

preserving if [Umin
h , Umax

h ] ⊆ [Umin, Umax]. Let us verify if this is the case
and examine the L2 error behavior for two representative choices of U0.

Smooth initial condition. For p = (p1, p2, p3)> the initial distribution [23]

U0(p) = exp
(
− 5

(
(p1 − 1)2 + p2

2 + p2
3

) )
has the shape of a Gaussian hill. The peak is pointing in the positive p1

direction. The range of U0 is the interval [Umin, Umax] = [0, 1].

The results presented in Table 3 illustrate the convergence behavior of the
standard Galerkin approximation using P2 mappings FK . For comparison
purposes, we also report the values of Umin

h obtained with P1 mappings.
The L2 convergence rates exceed 2.0 on fine meshes. Although the bound-
preserving flux limiter was deactivated in this experiment, only the result
obtained on the coarsest piecewise-linear triangulation of S2 has a small
undershoot. The snapshots displayed in Fig. 3 illustrate how the accuracy
of the Galerkin approximation Uh(·, 1) improves as the mesh is refined.

Discontinuous initial condition. Let us now test the ability of our MCL
scheme to reproduce a configuration consisting of two slotted cylinders. The
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level L2 error EOC Umax
h Umin

h

FK ∈ P1 FK ∈ P2

5 3.05e-01 - 0.39 -4.6e-08 2.1e-09
6 1.62e-01 0.91 0.62 2.1e-09 2.1e-09
7 5.91e-02 1.46 0.82 2.1e-09 2.1e-09
8 1.31e-02 2.18 0.93 2.1e-09 2.1e-09
9 2.24e-03 2.53 0.98 2.1e-09 2.1e-09

Table 3: Spherical advection of a Gaussian hill, convergence history.

Figure 3: Spherical advection of a Gaussian hill, results for mesh levels 5–9.

initial data depicted in Fig. 4 is defined by [23, 33]

U0(θ, φ) =


1 if ri ≤ r and |φ− φi| ≥ r

6 for i = 1, 2,

1 if r1 ≤ r and |φ− φ1| < r
6 and θ − θ1 < − 5

12r,

1 if r2 ≤ r and |φ− φ2| < r
6 and θ − θ2 >

5
12r,

0 otherwise,

where

r1 = arccos
(

cos θ1 cos θ + sin θ1 sin θ cos(φ− φ1)
)
,

r2 = arccos
(

cos θ2 cos θ + sin θ2 sin θ cos(φ− φ2)
)
.

The involved constants are chosen as follows:

r =
1

2
, θ1 = θ2 = 0, φ1 =

5π

6
, φ2 =

7π

6
.

The exact solution U(·, 1) = 1 is again bounded by Umin = 0 and Umax = 1.

In this experiment, we constrain the baseline Galerkin discretization using
MCL. The effect of mesh refinement on the L2 and L∞ errors is illustrated
by the data presented in Table 4. The small negative values of Umin

h are
due to the fact that our surface triangulations do not reproduce S2 exactly.
As already mentioned, mapping errors may result in a loss of some matrix

16



Figure 4: Spherical advection of slotted cylinders, initial data.

properties that are assumed in proofs of discrete maximum principles for
flux-corrected Galerkin methods. The magnitude of the undershoots in our
numerical results for the advection of slotted cylinders decreases as the order
of the mapping FK is increased and/or the mesh is refined. The L2 error
decreases so slowly because the exact solution is discontinuous. Figure 5
shows the MCL solutions Uh(·, 1) calculated on mesh levels 5–9.

level L2 error EOC Umax
h Umin

h

FK ∈ P1 FK ∈ P2

5 0.74 - 0.72 -1.3e-06 -3.6e-07
6 0.58 0.35 0.97 -1.0e-07 -3.1e-08
7 0.45 0.38 1.00 -1.4e-08 -4.6e-09
8 0.33 0.45 1.00 -1.8e-09 -5.7e-10
9 0.24 0.42 1.00 -2.2e-10 -7.2e-11

Table 4: Spherical advection of slotted cylinders, convergence history.

Figure 5: Spherical advection of slotted cylinders, results for mesh levels 5–9.

7.4. Fokker–Planck equation

In the first three examples, we considered test problems with known solu-
tions. To design such a test problem for the Fokker–Planck equation (2), we
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assume that ψ depends only on the first two components of x = (x, y, z)>

and that the probability u(x, t) = ψ(x,p, t) of any particular orientation
p ∈ S2 satisfies the two-dimensional linear advection problem

∂u

∂t
+ v · ∇u = 0 in Ω = {(x, y) ∈ R2 : x2 + y2 < 1}

with the solenoidal velocity field v(x, y) = (−y, x)> that corresponds to
solid body rotation about the center of the spatial domain Ω.

In the Lagrangian reference frame that rotates with the velocity v, the
Fokker–Planck equation (2) reduces to Jeffery’s equation (12). We define
the velocity ṗ of spherical advection using the constant tensors

D =
1

2

[
∇u + (∇u)>

]
, W =

1

2

[
∇u− (∇u)>

]
that represent the symmetric and skew-symmetric part of

∇u = diag(0.02, −0.01, −0.01).

In the case Dr = 0, an exact solution of Jeffery’s equation is given by [29]

U(p, t) = U0

(
C(t)p

|C(t)p|

)
1

|C(t)p|3
,

where C(t) = exp (−t(W + λeD)) and

U0(p) =
1

4π|C(t0)p|3
.

For t0 = 0 this definition of U0 corresponds to the assumption of an isotropic
initial distribution. Let us define the initial condition

ψ0(x,p) =
1

4π|C(t0(x))p|3

using t0(x) = x. At the final time T = 2π, the exact solution

ψ(x,p, T ) =
1

4π|C(x+ T )p|3

of the Fokker–Planck equation (2) coincides with the result ψ̂(x,p, T ) of
solving Jeffery’s equation in the rotating Lagrangian reference frame (or,
equivalently, with the exact solution to (2) using v = 0).
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The snapshots shown in the top row of Fig. 6(a) are the results ψ∗,2(·, t) of
an Eulerian simulation for v(x, y) = (−y, x)>. In Fig. 6(b), we present the
corresponding snapshots for a Lagrangian simulation, in which the physi-
cal advection step of the alternating direction method was skipped. The
good agreement between the last diagrams of each row indicates that the
discretization of the advective term v ·∇ψ does not introduce significant ad-
ditional errors. The results of detailed grid convergence studies performed
in [42] reveal that the L2 error of the Eulerian and Lagrangian approxima-
tions to ψ(x,p, 2π) = ψ̂(x,p, 2π) exhibits second-order convergence even if
we start with a spatially discontinuous orientation distribution.

(a) Eulerian version (Fokker–Planck equation for ψ)

(b) Lagrangian version (Jeffery’s equation for ψ̂)

Figure 6: Solid body rotation, ψ∗,2(·, t) at t ∈
{

0, 2
5
π, 4

5
π, 6

5
π, 8

5
π, 2π

}
, mesh level 7.

7.5. Axisymmetric contraction

It remains to test the two-way coupling of our finite element solvers for the
Fokker–Planck equation (2) and for the Navier–Stokes system (1). A well-
known benchmark for fiber suspension flows is the axisymmetric 4.5:1 con-
traction problem. For a detailed description of the initial-boundary value
problem and of the computational setup, we refer the reader to [26, 40, 41].
Experimentally measured velocity fields and numerical simulation results for
flows of fibers through axisymmetric contractions can be found in [24].

In our numerical experiments, we define the rotary diffusion rate

Dr = CI
√

D : D
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using CI = 0.002. Further parameter settings are as follows:

λe =
99

101
, ρ = 1, µ = 0.1, Ns = 0, Np = 6.

Since Ns = 0, the formula for the effective stress tensor τ simplifies to

τ = 2µ(D +NpA : D)

and only the fourth-order moment A(ψh) of the approximate probability
density ψh needs to be passed to the Navier–Stokes solver. The list of derived
quantities that we calculate and output in the postprocessing stage includes
the second-order orientation tensor A(ψh). This enables us to compare our
simulation results with numerical solutions published in [26, 40, 41].

The hexahedral meshes on which we solve the NSE system and evolve the
orientation modes ψ∗,k in the physical space are generated from the coarse
mesh shown in Fig. 7. In Figs 8 and 9, we present the stationary velocity
field and snapshots of the maximum eigenvalue of A(ψh). These results are
in good agreement with those obtained by Lohmann [26] using a physics-
compatible finite element discretization of the Folgar–Tucker equation.

Figure 7: Axisymmetric contraction, coarse mesh for the spatial domain.

8. Conclusions

The methodology presented in this paper provides a fail-safe numerical tool
for computational exploration of evolving orientation states in suspensions
of fibers or rod-like molecules. The proposed extension of monolithic convex
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Figure 8: Axisymmetric contraction, stationary velocity field.

limiting techniques to a finite element discretization of the Fokker–Planck
equation guarantees positivity preservation and the normalization property.
We are not aware of any other work that is focused on the aspects of limit-
ing for the FPE. The modular design of our fractional-step algorithm makes
it possible to improve the accuracy and efficiency of individual subproblem
solvers step-by-step. The developed software can be used to validate clo-
sure models or generate snapshots/dictionaries for reduced-order modeling.
Further effort is needed to enhance the computational performance because
millions of discrete unknowns need to be updated in each time step. Our ex-
perience with other applications indicates that the use of GPU acceleration
[38] and machine learning tools [35] may result in significant speedups.
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(a) t = 1.25

(b) t = 6.25

(c) t = 25.0

Figure 9: Axisymmetric contraction, maximum eigenvalue of the orientation tensor A.
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