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Abstract. An optimal control problem of static plasticity with linear kinematic hardening
and von Mises yield condition is studied. The problem is treated in its primal formulation, where
the state system is a variational inequality of the second kind. First-order necessary optimality
conditions are obtained by means of an approximation by a family of control problems with state
system regularized by Huber-type smoothing, and a subsequent limit analysis. The equivalence of
the optimality conditions with the C-stationarity system Herzog et al. [2012] for the equivalent dual
formulation of the problem is proved. Numerical experiments are presented, which demonstrate the
viability of the Huber-type smoothing approach.
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1. Introduction. We consider an optimal control problem for static small-strain
elastoplasticity in its primal formulation. This model describes the deformation of a
solid body under high loads, such that the yield stress is reached and permanent
deformation ensues. Since elastoplastic deformation is the basis of many industrial
production processes, its optimization is of significant importance. The static VI
has only limited physical meaning, but can be regarded as time discretization of a
corresponding quasi-static counterpart. The latter models elastoplastic deformation
processes and thus appears in various industrial applications. When an instanta-
neous control strategy is applied to optimize or control such processes, then the static
optimal control problem considered in this paper will arise.

We consider here a linear kinematic hardening model with von Mises yield condition
and under the assumption of small strains. The description of the forward problem
follows [Han and Reddy, 1999a, Chapter 12.2] where the quasistatic case is considered,
see also Alberty et al. [1999]. The solid body Ω ⊂ R3 is clamped on a non-vanishing
Dirichlet part ΓD of its boundary Γ, and it is subject to boundary loads on the
remaining Neumann part ΓN . The variables of the problem are the displacement

u ∈ V := H1
D(Ω;R3) = {u ∈ H1(Ω;R3) : u = 0 on ΓD}

and the plastic strain

p ∈ Q := L2(Ω;Q) = {p ∈ S : trace(p) = 0}

where S := L2(Ω;S) and S = R3×3
sym are spaces of symmetric matrices. By Q :=

{q ∈ S : trace(q) = 0} we denote the subspace of trace-free (deviatoric) symmetric
matrices. All spaces are endowed with their natural inner products and norms. For S
and Q, this is the Frobenius norm, denoted by |p|, and corresponding inner product
p : q.
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Given ` ∈ V ′, the forward problem is to findW = (u,p) ∈ Z := V ×Q which satisfies
the following variational inequality (VI) of the second kind.

a(W ,Y −W ) + j(q)− j(p) ≥ 〈`, v − u〉 for all Y = (v, q) ∈ Z. (1.1)

The forms a, j and ` in (1.1) are defined as follows:

a(W ,Y ) =

∫
Ω

[
(ε(u)− p) : C (ε(v)− q)

]
dx+

∫
Ω

p : H q dx (1.2a)

j(p) = σ̃0

∫
Ω

|p|dx (1.2b)

〈`, v〉 =

∫
Ω

f · v dx+

∫
ΓN

g · v ds. (1.2c)

In (1.2a), C represents the material’s fourth-order elasticity tensor, see e.g. [Han and
Reddy, 1999a, Chapter 2.3], and H is the hardening modulus. The constant σ̃0 > 0
in (1.2b) denotes the material’s yield stress. The data f and g in (1.2c) are volume
and boundary loads, respectively. We remark that the second term of the energy form
a(·, ·) and the specific choice of j(·) are characteristic for linear kinematic hardening.
We consider the following optimal control problem with control variables (f , g) ∈
L2(Ω;R3)× L2(ΓN ;R3) and state variables (u,p) ∈ V ×Q.

Minimize J(u,f , g) :=
1

2
‖u− ud‖2L2(Ω;R3) +

ν1

2
‖f‖2L2(Ω;R3) +

ν2

2
‖g‖2L2(ΓN ;R3)

s.t. the variational inequality (1.1). (1.3)

One can prove by standard methods that there exists at least one global optimal
solution of (1.3) so we do not discuss this in detail. The derivation of optimality
conditions, however, is by no means standard since (1.3) constitutes a generalized
mathematical program with equilibrium constraints (MPEC) in function space. Under
assumptions made precise in Section 2, our main result is the following first-order
necessary optimality system.
Theorem 1.1. Let (f , g) ∈ L2(Ω;R3) × L2(ΓN ;R3) be a locally optimal solution
for (1.3) with associated state W = (u,p) ∈ Z. Then there exists an adjoint state
Z = (w, r) ∈ Z and multipliers % ∈ Q, π ∈ Q and ϑ ∈ L2(Ω) such that the following
optimality system is satisfied:

a(W ,Y ) +

∫
Ω

% : q dx = 〈`, v〉 for all Y = (v, q) ∈ Z (1.4a)

% : p = σ̃0 |p|, |%| ≤ σ̃0 a.e. in Ω (1.4b)

a(Y ,Z) +

∫
Ω

π : q dx = −
∫

Ω

(u− ud) · v dx for all Y = (v, q) ∈ Z (1.4c)

ν1 f −w = 0 a.e. in Ω, ν2 g −w = 0 a.e. in ΓN (1.4d)

π : p = 0 a.e. in Ω (1.4e)
σ̃0 r = |p|π + ϑ% a.e. in Ω (1.4f)

ϑ% : π ≥ 0 a.e. in Ω (1.4g)
ϑ = 0 a.e. in I = {x ∈ Ω : |%(x)| < σ̃0}. (1.4h)
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space state variables test functions adjoint variables

displacement V u v w
plastic strain Q p q r
joint variables Z = V ×Q W = (u,p) Y = (v, q) Z = (w, r)

dual variables

lower level Q % ∈ σ̃0 ∂|p|
upper level Q π
upper level L2(Ω) ϑ

control variables

volume force L2(Ω;R3) f
traction force L2(ΓN ;R3) g

constant

yield stress R σ̃0

Table 1.1
Variables in the primal optimal control problem (1.3) and optimality system (1.4).

Note that (1.4b) can be equivalently expressed as the pointwise relation % ∈ σ̃0 ∂|p|.

This set of optimality conditions is proved by considering a family of regularized
problems obtained by a Huber-type smoothing of the functional j in (1.2b). The
individual conditions in (1.4) will be detailed later on in the paper, along with the
proof. Due to the wealth of notation involved in (1.4), we give an overview over all
variables in Table 1.1.

Let us make some general comments on the result of Theorem 1.1. First-order nec-
essary optimality conditions such as (1.4) are of significant importance in practice.
They are, among other uses, key to efficient solution algorithms for (1.3), as well as
error estimates. Despite their importance, there does not seem to be a classification
scheme for optimality conditions pertaining to MPECs which involve variational in-
equalities of the second kind. There are rather few problems treated in the literature,
and each comes with its own specific set of optimality conditions, see see Wenbin and
Rubio [1991], Bonnans and Tiba [1991], Bonnans and Casas [1995], de los Reyes [2011,
2012]. A comparison of the strengths of these conditions between problems seems to
be lacking.

The picture is much more complete for problems involving VIs of the first kind, which
can be written in terms of an equivalent complementarity system. Such optimization
problems are also refered to as MPCCs (mathematical programs with complementarity
constraints). The concept of strong stationarity is the most rigorous among first-order
optimality conditions, and it can be expected to hold at local minima under suitable
constraint qualifications. We refer to Flegel and Kanzow [2003] for a treatment in
the finite dimensional case. Under less restrictive assumptions, weaker stationarity
conditions can be shown. We refer to Scheel and Scholtes [2000], Hoheisel et al. [2013]
for an overview.

Among the various notions of stationarity for optimization problems with VIs of the
first kind, C-stationarity plays a prominent role. This concept of intermediate strength
is generically obtained when a limit process for a sequence of regularized problems
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is considered. We refer to Hintermüller and Kopacka [2009], Herzog et al. [2012] as
examples for infinite dimensional problems.

The problem of elastoplasticity considered here is special in the sense that equivalent
formulations of the forward problem exist, either as a VI of the first kind, or of the
second kind. Optimal control problems with the former, also called dual or stress-
based formulation, were considered in Herzog et al. [2012], and optimality conditions
of C-stationary and other types were derived there.

As a second result of this paper, we show that the optimality system (1.4) is precisely
equivalent to the C-stationarity conditions for the problem obtained by replacing in
(1.3) the primal (strain-based) formulation (1.1) by the corresponding dual (stress-
based) VI. To our best knowledge, this is the first time that an optimality system for
an optimization problem of a VI of the second kind is being classified in this sense.

To put our contributions into perspective, we wish to point out that the investigation
of optimal control of primal elastoplasticity is not only of interest due to the compar-
ison with the dual formulation. The primal formulation also suggests an alternative
way of smoothing (the Huber-type regularization already mentioned), which appears
to be competitive compared to the regularization approaches used in case of the dual
formulation. This is demonstrated by preliminary numerical experiments presented
in Section 8. Moreover, there are numerous constitutive laws that can be only for-
mulated through primal variables, as for instance in case of thermoplasticity, see e.g.
Bartels and Roubíček [2008]. Our work thus lays the foundations for the derivation
of optimality conditions for such cases.

The outline of the paper is as follows. Sections 2 and 3 collect our standing assump-
tions, as well as some known facts concerning the forward problem (1.1). Sections 4
and 5 are devoted to the study of regularized optimal control problems, which are ob-
tained by approximating the VI (1.1) by an equation. A Huber-type smoothing of j(·)
is used for this purpose. We point out that an improved integrability result for (u,p)
based on Herzog et al. [2011a] plays an essential role in the Fréchet differentiability of
the regularized forward problem, see Theorem 5.2. The first-order optimality system
for the regularized case is given in Theorem 6.1. In Section 6 we pass to the limit
to prove Theorem 1.1. The equivalence of the optimality conditions (1.4) with the
system of C-stationarity of the problem involving the corresponding dual formulation
is shown in Section 7. Finally, Section 8 reports on some numerical experiments based
on the proposed regularization of (1.3).

Notation. We shall use the short hand notation (·, ·)Ω to denote the standard
L2 inner product in spaces such as L2(Ω), L2(Ω;R3) and L2(Ω; S). Similarly, (·, ·)ΓN

denotes the L2 inner product of functions defined on ΓN . Besides the spaceH1
D(Ω;R3)

already defined, we will also use the more general Sobolev spaces

W 1,p
D (Ω;R3) = {u ∈W 1,p(Ω;R3) : u = 0 on ΓD}

for values of p ∈ [1,∞]. We will denote the conjugate exponent of p by p′ and write
W−1,p
D (Ω;R3) to denote the dual space of W 1,p′

D (Ω;R3). The dual of a normed linear
space X is denoted as X ′ and the duality pairing by 〈·, ·〉.

2. Standing assumptions. Our first assumption concerns the domain Ω.

Assumption 2.1 (Domain and its boundary).
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(a) The boundary Γ of the domain Ω ⊂ R3 is Lipschitz, i.e., the boundary consists
of a finite number of local graphs of Lipschitz maps, see, e.g., [Grisvard, 1985,
Definition 1.2.1.1].

(b) Moreover, the boundary is assumed to consist of two disjoint measurable parts
ΓN and ΓD such that Γ = ΓN ∪ ΓD. While ΓN is relatively open, ΓD is a
relatively closed subset of Γ. Furthermore ΓD is assumed to have positive
measure.

(c) In addition, the set Ω ∪ ΓN is regular in the sense of Gröger [1989].

The class of domains fulfilling Assumption 2.1 covers a wide range of geometries.
In particular, a characterization of Gröger regular domains can be found in [Haller-
Dintelmann et al., 2009, Section 5]. We make this assumption in order to apply
the integrability results in Herzog et al. [2011a] pertaining to systems of nonlinear
elasticity, which leads to Theorem 5.2.

Assumption 2.2 (Elasticity and hardening tensors). The tensor-valued functions C
and H are elements of L∞(Ω;L(S)), where L(S) denotes the space of linear operators
S → S. Both C(x) and H(x) are assumed to be uniformly bounded and coercive with
coercivity constants c > 0 and h > 0, respectively. That is, for all ε ∈ S and almost
all x ∈ Ω there holds

ε : C(x) ε ≥ c |ε|2 and p : H(x)p ≥ h |p|2.

Moreover, we assume as usual that C and H are symmetric, i.e.,

Cijkl = Cjikl = Cklij . (2.1)

and similarly for H.

In what follows, we abbreviate

‖C‖L∞(Ω;L(S)) =: c and ‖H‖L∞(Ω;L(S)) =: h.

In homogeneous isotropic materials, C is given by

Cijkl = λL δij δkl + µL (δik δjl + δil δjk)

with Lamé constants satisfying µL > 0 and 3λL + 2µL > 0. In this case, we have
c = min(3λL+2µL, 2µL). A standard example for the hardening modulus is H = k1 I,
with the fourth-order identity tensor I and a constant k1 > 0, hence h = k1 holds.

As in Herzog and Meyer [2011], we introduce the linear and compact operator R :
L2(Ω;R3)× L2(ΓN ;R3)→ V ′ by

〈R(f , g), v〉 := 〈`, v〉.

3. Known results. First we address the solvability of (1.1). Note that a(·, ·) is
clearly bounded and also coercive on Z, since Young’s inequality implies

a(W ,W ) =

∫
Ω

[
(ε(u)− p) : C(ε(u)− p) + p : Hp

]
dx

≥ c ‖ε(u)− p‖2S + h ‖p‖2S
≥ c (1− κ) ‖ε(u)‖2S +

(
c (1− 1/κ) + h

)
‖p‖2S (3.1)
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for any κ > 0. Any choice of κ subject to c/(c + h) < κ < 1, together with Korn’s
inequality ([Temam, 1983, Proposition 1.1]) then gives the ellipticity of a:

a(W ,W ) ≥ a
(
‖u‖2V + ‖p‖2S

)
(3.2)

for some positive constant a. Moreover, in the considered case of linear kinematic
hardening, j is convex and finite on all of Z = V × Q. Therefore, existence and
uniqueness for (1.1) follow by standard arguments, see e.g. [Han and Reddy, 1999b,
Theorem 6.6]:

Lemma 3.1. For every ` ∈ V ′, there is a unique solution (u,p) ∈ V ×Q of (1.1).

While we treat primarily the primal formulation of static plasticity in this paper, it is
useful to recall the dual formulation as well. In place of the plastic strain p, the dual
formulation uses the stress and backstress (σ,χ), which are confined to a feasible set
K. In our case of the von Mises yield condition, K is defined as

K := {(τ ,µ) ∈ S × S : (τ (x),µ(x)) ∈ K a.e. in Ω}
and K := {(τ ,µ) ∈ S× S : |τD + µD| ≤ σ̃0}.

(3.3)

Here and throughout,

τD = τ − (1/3) trace(τ ) I (3.4)

denotes the deviatoric (trace-free) part of the matrix τ ∈ R3×3, and I is the identity
matrix.

Lemma 3.2. Problem (1.1) is equivalent to the dual problem of the following VI of
first kind in mixed form: given ` ∈ V ′, find u ∈ V and (σ,χ) ∈ K such that∫

Ω

σ : C−1(τ − σ) dx+

∫
Ω

χ : H−1(µ− χ) dx

−
∫

Ω

ε(u) : (τ − σ) dx ≥ 0 for all (τ ,µ) ∈ K (3.5a)∫
Ω

ε(v) : σ dx = 〈`, v〉 for all v ∈ V. (3.5b)

The equivalence holds in the following sense: Problem (3.5) admits a unique solution
(σ,χ,u) ∈ S × S × V . It is related to the unique solution (u,p) of (1.1) via

σ = C(ε(u)− p) and χ = −Hp.

The proof of Lemma 3.2 is based on classical arguments, cf. e.g. [Han and Reddy,
1999b, Section 8.1] and it is given in Section A in the appendix.

In the sequel, we will frequently invoke the Browder-Minty theorem on monotone
operators. We recall here a version for strongly monotone operators, which will be
sufficient for our purposes.

Theorem 3.3 (Browder-Minty Theorem for strongly monotone operators). Suppose
that X is a separable Hilbert space and thatM : X → X ′ is strongly monotone, i.e.,

〈Mx−M y, x− y〉 ≥ m ‖x− y‖2X (3.6)
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with some m > 0, and hemicontinuous, i.e., [0, 1] 3 t 7→ 〈M(x+t y), z〉 is continuous.
ThenM is invertible, andM−1 is Lipschitz continuous with constant 1/m, i.e.,

‖M−1 F −M−1G‖X ≤
1

m
‖F −G‖X′ . (3.7)

If in additionM is Lipschitz with constant LM, thenM−1 is also strongly monotone,
viz.

〈M−1 F −M−1G, F −G〉 ≥ m

L2
M
‖F −G‖2X′ . (3.8)

The theorem and its proof can be found in [Zeidler, 1990, Theorem 26.A]. The strong
monotonicity ofM−1 follows easily from

‖F −G‖2X′ = ‖MM−1F −MM−1G‖2 ≤ L2
M‖M−1F −M−1G‖2X

and the subsequent application of (3.6). In all our applications of Theorem 3.3, the
hemicontinuity will be superseded by continuity ofM.

4. Regularized control problems. Following the road map in de los Reyes
[2011] we consider the following family of regularized optimal control problems:

Minimize
1

2
‖u− ud‖2L2(Ω;R3) +

ν1

2
‖f‖2L2(Ω;R3) +

ν2

2
‖g‖2L2(ΓN ;R3) (4.1a)

s.t. a(W ,Y ) +

∫
Ω

hγ(p) : q dx = 〈`, v〉 for all Y = (v, q) ∈ Z. (4.1b)

The function

hγ(p) := σ̃0 γ
p

mγ(|p|)
(4.2)

is the derivative of a Huber-type regularization (see [Huber, 1981, eq. (7.14)] or [Huber,
1973, eq. (1.6)]) of j with the following local smoothing of the function R 3 p 7→
max(0, p) ∈ R, parametrized by γ > 0:

mγ(p) :=


γ p, if γ p ≥ σ̃0 + 1

2γ

σ̃0 + γ
2

(
γ p− σ̃0 + 1

2γ

)2
, if |γ p− σ̃0| ≤ 1

2γ

σ̃0, if γ p ≤ σ̃0 − 1
2γ ,

(4.3)

The functions mγ and hγ are displayed in Figure 4.1.
In this section, we next address some properties of mγ and hγ in Lemma 4.1. We
then deduce the global Lipschitz continuity of the solution map for the regularized
state equation (4.1b) in Theorem 4.2. Theorem 4.3 is devoted to the convergence of
the solution of (4.1b) to that of the original VI (1.1) as γ →∞. Finally, Theorem 4.4
addresses the convergence of (global) minimizers of the regularized control problem
(4.1) to those of the original problem (1.3).
Lemma 4.1. For all p ∈ R and γ > 0 there holds

σ̃0

mγ(p)
≤ 1,

γ p

mγ(p)
≤ 1, (4.4)

and 0 ≤ mγ(p)−max(σ̃0, γ p) ≤
1

2γ
. (4.5)
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Fig. 4.1. The function p 7→ mγ(p) for γ ∈ {0.5, 1, 2, 4} (left), and |p| 7→ |hγ(p)| (right).

Moreover, hγ : S→ S is bounded and continuously differentiable with

h′γ(p) = σ̃0 γ

(
1

mγ(|p|)
I−

m′γ(|p|)
mγ(|p|)2 |p|

p⊗ p
)
, (4.6)

where I : S→ S denotes the fourth-order identity tensor and ⊗ : S× S→ L(S) is the
dyadic product, i.e., (p⊗ q)ijkl = qij pkl. The derivative of mγ is given by

m′γ(p) =


γ, if γ p ≥ σ̃0 + 1

2γ ,

γ2
(
γ p− σ̃0 + 1

2γ

)
, if |γ p− σ̃0| ≤ 1

2γ ,

0, if γ p ≤ σ̃0 − 1
2γ .

(4.7)

Furthermore, there holds

0 ≤ m′γ(p) ≤ γ for all p ∈ R, (4.8)

‖h′γ(p)‖L(S) ≤ 2 γ for all p ∈ S, (4.9)

q : h′γ(p) q ≥ 0 for all p, q ∈ S, (4.10)

which shows that hγ : S→ S is a globally Lipschitz and monotone operator.

Proof. For values of p such that γ p ≤ σ̃0−1/(2γ) or γ p ≥ σ̃0 +1/(2γ), (4.4) is evident
by the definition (4.3) of mγ . For all p satisfying σ̃0 − 1/(2γ) < γ p < σ̃0 + 1/(2γ),
(4.3) implies

mγ(p) = σ̃0 +
γ

2

(
γ p− σ̃0 +

1

2γ

)2

︸ ︷︷ ︸
≥0

≥ σ̃0.

Moreover, for the right hand boundary γ p = σ̃0 + 1/(2γ), we get mγ(p) = γ p. Since
the derivative

m′γ(p) = γ2
(
γ p− σ̃0 +

1

2γ

)
is easily seen to be ≤ γ on the interval under consideration, we can conclude mγ(p) ≥
γ p, i.e., (4.4) holds.
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Inequality (4.5) holds trivially for p such that γ p ≤ σ̃0 − 1/(2γ) or γ p ≥ σ̃0 + 1/(2γ)
since the middle term is then identically zero. In case σ̃0−1/(2γ) < γ p < σ̃0 +1/(2γ),
the first inequality in (4.5) follows from (4.4). For the second inequality, we estimate

mγ(p)−max(σ̃0, γ p) = σ̃0 −max(σ̃0, γ p)︸ ︷︷ ︸
≤0

+
γ

2

(
γ p− σ̃0 +

1

2γ

)2

≤ 1

2γ
,

which completes the proof of (4.5).

In view of (4.4) we have |hγ(p)| = σ̃0 γ
|p|

mγ(|p|) ≤ σ̃0 for all p ∈ S so that hγ is indeed
bounded. The continuous differentiability of hγ and mγ are easily verified, i.e., (4.6)
and (4.7) hold. To prove (4.8) we observe that, in case |γ p− σ̃0| ≤ 1

2γ ,

0 ≤ m′γ(p) = γ2
(
γ p− σ̃0 +

1

2γ

)
≤ γ (4.11)

holds. If
∣∣γ p − σ̃0

∣∣ > 1
2γ , (4.8) is trivially fulfilled. Moreover, (4.9) follows directly

from (4.8), (4.4), and (4.6):

h′γ(p) = σ̃0 γ

(
1

mγ(|p|)
I−

m′γ(|p|)
mγ(|p|)2 |p|

p⊗ p
)

⇒ ‖h′γ(p)‖ ≤ σ̃0 γ

(
1

σ̃0
+

γ

σ̃0 γ |p|2
|p|2

)
= 2 γ.

It remains to prove (4.10). In case γ |p| ≤ σ̃0 − 1/(2γ), one obtains

q : h′γ(p) q = σ̃0 γ
1

mγ(|p|)
|q|2 = γ |q|2 ≥ 0 for all q ∈ S.

If γ |p| ≥ σ̃0 + 1/(2γ), then (4.4) yields

q : h′γ(p) q = σ̃0 γ

(
1

mγ(|p|)
|q|2 − γ (p : q)2

mγ(|p|)2

1

|p|

)
≥ σ̃0 γ

(
1

mγ(|p|)
− 1

mγ(|p|)
γ |p|

mγ(|p|)

)
|q|2 = 0 for all q ∈ S.

In view of (4.11), a similar argument as above implies q : h′γ(p) q ≥ 0 whenever
σ̃0 − 1/(2γ) ≤ γ |p| ≤ σ̃0 + 1/(2γ).

The definition of mγ implies that the Nemyzki operators associated with mγ and m′γ
map Lp(Ω) into Lp(Ω) for every p ∈ [1,∞]. Furthermore, since hγ : S→ S is bounded,
it follows immediately that the associated Nemyzki operator maps S = L2(Ω; S)
into L∞(Ω; S). To simplify notation, we denote this Nemyzki operator by the same
symbol. By standard arguments, this Nemyzki operator inherits the monotonicity and
Lipschitz properties from hγ : S→ S. We refer to Goldberg et al. [1992] or [Tröltzsch,
2010, Section 4.3]. An immediate consequence is the following result.

Theorem 4.2. For each ` ∈ V ′ the regularized equation (4.1b) admits a unique
solution Wγ = (uγ ,pγ) ∈ Z. The associated solution operator Gγ : V ′ 3 ` 7→Wγ ∈ Z
is Lipschitz continuous with a Lipschitz constant independent of γ.
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The proof based on the theory of monotone operators is given in Section B in the
appendix. The following theorem uses arguments similar to [de los Reyes, 2012,
Theorem 3.3]. Its proof is given in Section C in the appendix.

Theorem 4.3. Let ` ∈ V ′ be given and denote by Wγ = (uγ ,pγ) ∈ Z the unique
solution of (4.1b). The sequence {Wγ}γ>0 converges strongly in Z to the unique
solution W of (1.1) as γ →∞.

We can now address the convergence of minimizers of the regularized control problem
(4.1) to those of the original problem (1.3). The proof follows along the lines of [de los
Reyes, 2012, Theorem 3.5]. Nevertheless we briefly recall the arguments adapted to
the present setting in the following theorem.

Theorem 4.4.

(a) For each γ > 0, there exists a globally optimal solution for problem (4.1).
Moreover, every sequence {(fγ , gγ)}γ>0 of global solutions to (4.1) contains
a weakly convergent subsequence. Any weak accumulation point is a globally
optimal solution for (1.3).

(b) In case the global solution (f∗, g∗) ∈ L2(Ω;R3) × L2(ΓN ;R3) of (1.3) is
unique, then (fγ , gγ)→ (f∗, g∗) strongly in L2(Ω;R3)× L2(ΓN ;R3) as γ →
∞.

Proof. Let γ > 0 be arbitrary but fixed. It follows from the compactness of R :
L2(Ω;R3)×L2(ΓN ;R3)→ V ′ and the (Lipschitz) continuity of Gγ : V ′ → V ×Q that
Gγ is weakly-strongly continuous. Due to the quadratic structure of the objective
functional, the existence of a global minimizer for (4.1) is a standard result.

To prove convergence, consider a sequence {Wγ ,fγ , gγ} ∈ Z×L2(Ω;R3)×L2(ΓN ;R3)
of global minimizers to (4.1) for γ → ∞. Note first that (0,0,0) is feasible for each
regularized VI (4.1b). It then follows that

J(Wγ ,fγ , gγ) ≤ J(0,0,0) for all γ > 0.

Thanks to the structure of the cost functional, this implies that {(fγ , gγ)} is bounded
in L2(Ω;R3)×L2(ΓN ;R3). Consequently, there exists a subsequence (denoted in the
same way) and a weak accumulation point (f̂ , ĝ) such that

(fγ , gγ) ⇀ (f̂ , ĝ) weakly in L2(Ω;R3)× L2(ΓN ;R3).

And thus, again by compactness, R(fγ , gγ) → R(f̂ , ĝ) strongly in V ′. Theorems 4.2
and 4.3 imply for the associated states Wγ and Ŵ

‖Wγ − Ŵ ‖Z = ‖Gγ(fγ , gγ)−G(f̂ , ĝ)‖Z
≤ ‖Gγ(fγ , gγ)−Gγ(f̂ , ĝ)‖Z + ‖Gγ(f̂ , ĝ)−G(f̂ , ĝ)‖Z
≤ L ‖(fγ , gγ)− (f̂ , ĝ)‖L2(Ω;R3)×L2(ΓN ;R3)

+ ‖Gγ(f̂ , ĝ)−G(f̂ , ĝ)‖Z −→ 0 as γ →∞.

We recall that L > 0 is the Lipschitz constant of Gγ , which is independent of γ by
Theorem 4.2. Now let (W ∗,f∗, g∗) be an arbitrary global minimizer for (1.3). From
the weak lower semicontinuity of the objective functional, we finally obtain that

J(Ŵ , f̂ , ĝ) ≤ lim inf
γ→∞

J(Wγ ,fγ , gγ) ≤ lim inf
γ→∞

J(Gγ(f∗, g∗),f∗, g∗) = J(W ∗,f∗, g∗),
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so (a) is proved. If (f∗, g∗) is unique, the strong convergence in part (b) follows from
weak convergence together with convergence of the norm.

Remark 4.5. The question arises, which minima of the original problem (1.3) can
be approximated by minima of the regularized problems (4.1)? So far, we merely know
from Theorem 4.4 that this is true for one of the global minimizers of (1.3). However,
it is well known that with a slight modification of the regularized problems (4.1), this
result can be sharpened so that every local minimum of (1.3) can be approximated.

To be more precise, let (f∗, g∗) be an arbitrary local minimum of (1.3). When the
term

r

2
‖f − f∗‖2L2(Ω;R3) +

r

2
‖g − g∗‖2L2(ΓN ;R3) (4.12)

with sufficiently large r > 0 is added to the objective in (4.1a), then it can be shown that
a sequence of solutions of these modified regularized problems exists which converges
strongly in L2(Ω;R3) × L2(ΓN ;R3) to (f∗, g∗). This technique goes back to Barbu
[1984] and Mignot and Puel [1984] and was used in [Herzog et al., 2012, Corollary 3.5]
in the context of an optimal control problem for the dual formulation of the static
elastoplasticity system, see (7.1).

5. Differentiability of the regularized solution operator. This section ad-
dresses the Fréchet differentiability of the solution map of (4.1b). In fact, we prove
this result in a slightly more general setting of the form

a(W ,Y ) +

∫
Ω

h(p) : q dx = 〈`, v〉 for all Y = (v, q) ∈ Z, (5.1)

with unknownW = (u,p) ∈ Z and a general nonlinear Nemyzki operator h. Assump-
tions on h are given below, and they admit hγ from (4.2) as a special case. Equation
(5.1) with its general nonlinearity is of independent interest, since it comprises, for
example, models of static viscoplasticity if h : S→ S is properly chosen.

The main step stone in proving the differentiability of the solution map ` 7→ W
of (5.1) is to establish an integrability result for the solution W , i.e., to show that
(u,p) ∈W 1,p

D (Ω;R3)× Lp(Ω;Q). This is achieved in Theorem 5.2 and Corollary 5.3.
The main result of this section in the abstract setting is Theorem 5.5. Lemma 5.6
shows its applicability to the regularized state equation (4.1b), and Corollary 5.7
summarizes the differentiability result for the regularized state equation (4.1b).

In this section, we work with the following assumption for the nonlinearity h in order
to achieve the higher integrability result. An additional assumption will be added
later (Assumption 5.4).

Assumption 5.1 (Nonlinearity h). The function h : S→ S is continuously differen-
tiable and its derivative satisfies

‖h′(p)‖L(S) ≤ Lh for all p ∈ S, (5.2)
q : h′(p) q ≥ 0 for all p, q ∈ S (5.3)

with a constant Lh > 0. For every p ∈ S, the operator h′(p) ∈ L(S) is self-adjoint,
i.e. h′(p) is a symmetric fourth-order tensor in the sense of (2.1). For simplicity, we
also assume h(0) = 0.
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The conditions in Assumption 5.1 clearly imply that h : S → S is monotone and
globally Lipschitz continuous with Lipschitz constant Lh. These properties carry over
to the Nemyzki operator associated with h, which maps Lp(Ω; S) into Lp(Ω;S), for
any p ∈ [1,∞]. For simplicity, we denote this Nemyzki operator by the same symbol.

Just as in the proof of Theorem 4.2 (Appendix B), we define the nonlinear map
N : Z → Z ′ by the left hand side of (5.1), i.e.,

〈NW , Y 〉 = a(W ,Y ) + (h(p), q)Ω . (5.4)

We know from (3.2) and the monotonicity of h that N is strongly monotone, i.e.,

〈N (u1 − u2,p1 − p2), (u1 − u2,p1 − p2)〉 ≥ a
(
‖u1 − u2‖2V + ‖p1 − p2‖2S

)
.

Moreover N is clearly continuous. Just as in Theorem 4.2, it thus follows by the
Browder-Minty Theorem 3.3 that (5.1) admits a unique solutionW = (u,p) ∈ V ×Q
for every ` ∈ V ′.
We now transform (5.1) into an equation in the displacement u only. Let us briefly
sketch the approach. We borrow ideas from linear saddle-point systems and apply
them to [

ε(v)
q

]> [ C(x) −C(x) ΠD

−ΠD C(x) ΠD
[
C(x) + H(x) + h(·)

]
ΠD

] [
ε(u)
p

]
,

which is a pointwise representation of the terms appearing on the left hand side of
(5.1). The symbol ΠD : S → Q denotes the orthogonal projection to the deviatoric
part,

ΠDτ := τD, τ ∈ S,

see (3.4). Note that the (2,2) block is nonlinear.

To achieve the reduction to u, we test (5.1) with v = 0 and q ∈ Q arbitrary and
arrive at

ΠD
[
C(x)p(x) + H(x)p(x) + h(p(x))

]
= ΠD C(x) ε(u(x)) a.e. in Ω. (5.5)

Note that Q consists of all elements of S with vanishing trace so that only the devia-
toric parts show up in (5.5). Let us denote the left hand side in (5.5) by F : Q→ Q,
i.e. F (p) := ΠD

[
Cp + Hp + h(p)

]
. Of course F depends on x, since C and H need

not to be constant, but we suppress this dependency in the following for the sake of
readability. Thanks to ΠDτ : q = τ : q for all τ ∈ S and q ∈ Q, the monotonicity of
h yields(

F (q1)− F (q2)
)

: (q1 − q2) ≥ (c+ h) |q1 − q1|2 for all q1, q2 ∈ Q, (5.6)

where c and h are the coercivity constants from Assumption 2.2. Moreover, as ΠD is
linear and bounded with constant one, Assumptions 2.2 and 5.1 imply

|F (q1)− F (q2)| ≤
(
c+ h+ Lh

)
|q1 − q2| for all q1, q2 ∈ Q. (5.7)

As the constants in (5.6) and (5.7) are independent of x, Theorem 3.3 implies that
F (x, ·) : Q→ Q is continuously invertible for almost every x ∈ Ω such that (5.5) gives

p(x) = F−1
(
x,ΠDC(x) ε(u(x))

)
a.e. in Ω. (5.8)
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Moreover, by Theorem 3.3, the pointwise inverse F−1(x, ·) : Q → Q is strongly
monotone and Lipschitz continuous with constants independent of x. Arguing as in
[Betz and Meyer, 2012, Theorem 2.4], one can show in addition that x 7→ F−1(x, q) is
measurable for every q ∈ Q. Thus the Nemyzki operator associated with F−1 satisfies
the Carathéodory condition and it maps Lp(Ω;Q) into Lp(Ω;Q) for every p ∈ [1,∞].
We will denote this operator by the same symbol. Moreover, according to Goldberg
et al. [1992] or [Tröltzsch, 2010, Section 4.3], the Lipschitz continuity of F−1(x, ·)
carries over to its Nemyzki operator.

We now test (5.1) with q = 0 and v ∈ V and eliminate p by (5.8). This yields the
desired reduced formulation:∫

Ω

b(x, ε(u)) : ε(v) dx = 〈`, v〉 for all v ∈ V , (5.9)

where we are using the abbreviation

b(x, ·) : S 3 ε 7→ C(x)
(
ε− F−1

(
x,ΠDC(x) ε

))
∈ S. (5.10)

The above derivation shows that, if (u,p) ∈ V ×Q solves (5.1), then u is a solution of
(5.9). On the other hand it is easily seen that, if u ∈ V solves (5.9), then (u,p) with
p as defined in (5.8) is a solution of (5.1). Thus (5.1) and (5.9) are indeed equivalent.
The unique solvability of (5.1) implies that, for every ` ∈ V ′, (5.9) admits a unique
solution u ∈ V .

As indicated at the beginning of this section, we wish to prove higher integrability of
u provided that ` is more regular than just an element of V ′. To this end we aim to
apply [Herzog et al., 2011a, Theorem 1.1] to the reduced problem (5.9). This requires
us to verify that b(x, ·) is strongly monotone and Lipschitz continuous with constants
independent of x. The uniform Lipschitz continuity of b follows immediately from
the uniform boundedness of C and the uniform Lipschitz continuity of F−1(x, ·). To
prove the strong monotonicity of b, let us define, for any x ∈ Ω, the pointwise map
M(x, ·, ·) : S×Q→ S×Q by

M(x, ε,p) :=

[
C(x)(ε− p)

F (x,p)−ΠDC(x) ε

]
. (5.11)

Arguing as in (3.1) and using again the monotonicity of h, we infer thatM(x, ·, ·) is
strongly monotone:(
M(x, ε1,p1)−M(x, ε2,p2)

)
: (ε1−ε2,p1−p2) ≥ m

(
|ε1−ε2|2 + |p1−p2|2

)
(5.12)

with some m > 0. Due to the uniform coercivity of C and H, the constant m is
independent of x. Now let ε1, ε2 ∈ S be arbitrary and let p1 = F−1

(
x,ΠDC(x)(ε1 −

ε2)
)
and p2 = 0. Inserting these into (5.12) yields

m |ε1 − ε2|2 ≤ m
(
|ε1 − ε2|2 + |p1|2

)
≤
(
M(ε1,p1)−M(ε2,0)

)
: (ε1 − ε2,p1)

=
(
C(ε1 − ε2)− CF−1(ΠDC(ε1 − ε2)

))
: (ε1 − ε2)− F (0) : p1

= b(·, ε1 − ε2) : (ε1 − ε2)− F (0) : p1,
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where again we suppress the dependency on x. Because of Assumption 5.1 we have
F (0) = 0 so that (5.10) gives

m |ε1 − ε2|2 ≤ b(x, ε1 − ε2) : (ε1 − ε2),

uniformly for x ∈ Ω. In addition, because of h(0) = 0, we have b(0) = 0 ∈ L∞(Ω;S).
Since x 7→ b(x, ε) is also measurable for every ε ∈ S — thanks to the measurability
of F−1 mentioned above — the operator b satisfies the conditions in [Herzog et al.,
2011a, Assumption 1.5(2)]. Taking into account Assumption 2.1, [Herzog et al., 2011a,
Theorem 1.1] is applicable and it yields the following higher integrability result:
Theorem 5.2. There exists an index p > 2 such that for every ` ∈ W−1,p

D (Ω;R3) =

W−1,p′

D (Ω;R3), the equation (5.9) admits a unique solution u ∈ W 1,p
D (Ω;R3). More-

over, the associated solution mapping is globally Lipschitz, i.e., there exists L > 0
such that

‖u1 − u2‖W 1,p(Ω;R3) ≤ L ‖`1 − `2‖W−1,p(Ω;R3)

holds for all `1, `2 ∈W−1,p(Ω;R3).
Due to the trace theorem and Sobolev embeddings, an inhomogeneity of the form

〈`, v〉 =

∫
Ω

f · v dx+

∫
ΓN

g · v ds = 〈R(f , g), v〉 (5.13)

with f ∈ L2(Ω;R3) and g ∈ L2(ΓN ;R3) does represent an element of W−1,p(Ω;R3)
for every p < 4.
In order to transfer the result to the original problem (5.1), we exploit that we can
recover the plastic strain p from u by the pointwise relation (5.8). Since F−1 is
globally Lipschitz from Lp(Ω;S) to Lp(Ω;Q) as seen above, Assumption 2.2 implies
the same for F−1 ◦ΠDC and we can conclude the following result.
Corollary 5.3. There exists an index p ∈ (2, 4) such that for every f ∈ L2(Ω;R3)
and g ∈ L2(ΓN ;R3), the equation (5.1) with ` as in (5.13) admits a unique solution
(u,p) ∈ W 1,p

D (Ω;R3) × Lp(Ω;Q). Moreover, the associated solution mapping G :

L2(Ω;R3) × L2(ΓN ;R3) → W 1,p
D (Ω;R3) × Lp(Ω;Q) is globally Lipschitz continuous,

i.e., there exists L > 0 such that

‖u1 −u2‖W 1,p(Ω;R3) + ‖p1 − p2‖Lp(Ω;Q) ≤ L
(
‖f1 − f2‖L2(Ω;R3) + ‖g1 − g2‖L2(ΓN ;R3)

)
holds for all f1,f2 ∈ L2(Ω;R3) and g1, g2 ∈ L2(ΓN ;R3).
Based on this integrability result, we are now in the position to prove the differentia-
bility of G. An additional assumption is needed.
Assumption 5.4. Assume that the Nemyzki operator associated with h is Fréchet
differentiable from Lp(Ω;S) to L2(Ω;S) with p > 2 as in Corollary 5.3.
This assumption will be verified for the particular nonlinearity hγ from (4.2) in
Lemma 5.6 below.
Theorem 5.5. Under Assumptions 5.1 and 5.4, G is Fréchet differentiable from
L2(Ω;R3) × L2(ΓN ;R3) to Z, and the derivative δW = (δu, δp) = G′(f , g)(δf , δg)
at (f , g) in the direction (δf , δg) is given by the unique solution δW = (δu, δp) ∈ Z
of the linearized equation

a(δW ,Y ) +

∫
Ω

h′(p) δp : q dx =

∫
Ω

δf · v dx+

∫
ΓN

δg · v ds for all Y = (v, q) ∈ Z,

(5.14)
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where (u,p) = G(f , g).

Proof. Thanks to (5.3) and (5.2) the bilinear form on the left hand side of (5.14) is
bounded and coercive so that (5.14) admits a unique solution δW = (δu, δp). Note
that due to (5.2) the operator h′(p) can be extended to an operator from S to S,
which we denote by the same symbol. Next let us introduce the remainder

R = (ru, rp) := G(f + δf , g + δg)︸ ︷︷ ︸
=:(û,p̂)

−G(f , g)− δW

The remainder R solves

a(R,Y ) +

∫
Ω

h′(p) rp : q dx = −
∫

Ω

(
h(p̂)− h(p)− h′(p)(p̂− p)

)
: q dx

for all Y = (v, q) ∈ Z. Due to the coercivity of the bilinear form in the linearized
equation (5.14) and the differentiability assumption on h we find

‖R‖Z ≤ c ‖h(p̂)− h(p)− h′(p)(p̂− p)‖S
= o
(
‖p̂− p‖Lp(Ω;S)

)
= o
(
‖(δf , δg)‖L2(Ω;R3)×L2(ΓN ;R3)

)
,

where the Lipschitz continuity of G by Corollary 5.3 was used in the previous estimate.
Thus G is Fréchet differentiable with derivative G′(f , g).

Lemma 5.6. For every γ > 0, the function hγ defined in (4.2) satisfies the conditions
in Assumption 5.1. Moreover, the associated Nemyzki operator is Fréchet differen-
tiable from Lp(Ω;S) to L2(Ω;S) for every p > 2, so that Assumption 5.4 holds as
well. The derivative of hγ at p ∈ Lp(Ω; S) in the direction δp ∈ Lp(Ω;S) is given by

(
h′γ(p) δp

)
(x) = σ̃0 γ

(
δp(x)

mγ(|p(x)|)
−m′γ(|p(x)|) p(x) : δp(x)

mγ(|p(x)|)2

p(x)

|p(x)|

)
(5.15)

with mγ : R→ R as defined in (4.3) and m′γ as given in (4.7).

Proof. The first assertion has already been proved in Lemma 4.1, cf. (4.10) and (4.9).
To show the differentiability property of the Nemyzki operator associated with hγ ,
let p > 2 be given and define r = 2p/(p − 2) < ∞. Thanks to (4.9) we have that
S 3 p 7→ h′γ(p) ∈ L∞(Ω;L(S)) ↪→ Lr(Ω;L(S)). Since moreover hγ maps S and thus
also Lp(Ω;S) into L∞(Ω; S) ↪→ S, the desired Fréchet differentiability follows from
abstract results for Nemyzki operators, see Goldberg et al. [1992] or [Tröltzsch, 2010,
Section 4.3].

Corollary 5.7. For any γ > 0, there exists p ∈ (2, 4) such that the solution operator
Gγ of (4.1b), with ` = R(f , g) as in (5.13), maps L2(Ω;R3) × L2(ΓN ;R3) into
W 1,p
D (Ω;R3)×Lp(Ω;Q), and it is Fréchet differentiable from L2(Ω;R3)×L2(ΓN ;R3)

to Z. The derivative δW = (δu, δp) = G′γ(f , g)(δf , δg) at (f , g) in the direction
(δf , δg) is given by the unique solution δW = (δu, δp) ∈ Z of the linearized equation
(5.14) with hγ in place of h.

Proof. Lemma 5.6 shows that the nonlinearity hγ from (4.2) verifies Assumptions 5.1
and 5.4. Consequently, Corollary 5.3 and Theorem 5.5 apply for this particular choice
of h. Thus the solution operator Gγ of (4.1b) maps L2(Ω;R3) × L2(ΓN ;R3) to
W 1,p
D (Ω;R3)×Lp(Ω;Q) for some p ∈ (2, 4). The Fréchet derivative is given by (5.14)

with h′γ in place of h′.
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6. Optimality system. Based on the differentiability result established in The-
orem 5.5, we can now derive first-order necessary optimality conditions for the reg-
ularized control problem (4.1). Later on we pass to the limit γ → ∞ to obtain the
optimality system for the original problem (1.3) stated in Theorem 1.1.
Theorem 6.1 (Regularized optimality system). Let (fγ , gγ) ∈ L2(Ω;R3)×L2(ΓN ;R3)
be a locally optimal solution of the regularized problem (4.1) with associated state
Wγ = (uγ ,pγ) ∈ Z. Then there exists an adjoint state Zγ = (wγ , rγ) ∈ Z and
multipliers %γ ∈ Q and πγ ∈ Q such that the following optimality system is satisfied:

a(Wγ ,Y ) +

∫
Ω

%γ : q dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds for all Y = (v, q) ∈ Z (6.1a)

%γ = σ̃0

γ pγ
mγ(|pγ |)

a.e. in Ω (6.1b)

a(Y ,Zγ) +

∫
Ω

πγ : q dx = −
∫

Ω

(uγ − ud) · v dx for all Y = (v, q) ∈ Z (6.1c)

πγ = σ̃0 γ

(
rγ

mγ(|pγ |)
−m′γ(|pγ |)

rγ : pγ
mγ(|pγ |)2

pγ
|pγ |

)
a.e. in Ω (6.1d)

ν1 fγ −wγ = 0 a.e. in Ω (6.1e)

ν2 gγ −wγ = 0 a.e. in ΓN . (6.1f)

We note that (6.1a)–(6.1b) represents the state equation (4.1). We introduced the
term %γ through (6.1b) in order to facilitate the passage to the limit in Proposition 6.2
below. Equations (6.1c)–(6.1d) are the adjoint equation, while (6.1e)–(6.1f) represent
the stationarity condition w.r.t. the controls.
Proof. We first eliminate the multiplier-like terms %γ and πγ from (6.1) by plugging
in (6.1b) into (6.1a) and (6.1d) into (6.1d). Then (6.1a) becomes the regularized state
equation (4.1b), whose adjoint equation for Zγ = (wγ , rγ) reads

a(Y ,Zγ) + (h′γ(pγ) rγ , q)Ω = −(uγ − ud,v)Ω for all Y ∈ Z. (6.2)

Here we used that πγ in (6.1d) is equal to h′γ(pγ) rγ , cf. (4.6). Since the bilinear form
a(·, ·) is symmetric (due to the symmetry properties of C and H), the left hand side
of the adjoint equation thus coincides with the one of the linearized equation so that
there exists a unique solution Zγ ∈ Z to (6.2).
Next we consider the reduced cost functional J (f , g) := J(Guγ (f , g), (f , g)). Here
Gγ = (Guγ , G

p
γ) denotes the splitting of the (regularized) solution operator into dis-

placement and plastic strain components. Since J is of quadratic type and Gγ is
Fréchet differentiable from L2(Ω;R3) × L2(ΓN ;R3) to Z by Corollary 5.7. It follows
from the local optimality that

J ′(fγ , gγ)(δf , δg) = 0 for all (δf , δg) ∈ L2(Ω;R3)× L2(ΓN ;R3). (6.3)

Let δW = (δp, δu) denote the unique solution to the linearized equation (5.14) with
h′γ in place of h′. Using the chain rule we obtain that

J ′(fγ , gγ)(δf , δg)

= (uγ − ud, δu)Ω + ν1(f , δf)Ω + ν2(g, δg)ΓN

= −a(δW ,Zγ)− (h′γ(pγ) δp, rγ)Ω + ν1(f , δf)Ω + ν2(g, δg)ΓN

= −(wγ , δf)Ω − (wγ , δg)ΓN + ν1(f , δf)Ω + ν2(g, δg)ΓN .
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Together with (6.3) this implies (6.1e) and (6.1f). Finally, in view of (4.4) and (4.9),
it is easy to check that indeed %γ ∈ Q and πγ ∈ Q as claimed.
It will be convenient to refer to (6.1) as the regularized optimality system (rather
than the optimality system of the regularized control problem), and to (6.1c)–(6.1d)
as the regularized adjoint equation, etc. These slightly imprecise terms will not give
rise to confusion.
We now pass to the limit in the regularized optimality system (6.1). As an interme-
diate step in the proof of Theorem 1.1, we obtain a preliminary version of first-order
necessary optimality conditions for the original problem (1.3). This result will be
refined in Lemma 6.4 below, which subsequently leads to the proof of Theorem 1.1.
Proposition 6.2 (Preliminary optimality system). Let (f , g) be a locally optimal
solution for (1.3) with associated state (u,p) ∈ Z. Then there exists an adjoint state
Z = (w, r) ∈ Z and multipliers % ∈ Q and π ∈ Q such that the following optimality
system is satisfied:

a(W ,Y ) +

∫
Ω

% : q dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds for all Y = (v, q) ∈ Z, (6.4a)

% : p = σ̃0 |p| a.e. in Ω, (6.4b)
|%| ≤ σ̃0 a.e. in Ω, (6.4c)

a(Y ,Z) +

∫
Ω

π : q dx = −
∫

Ω

(u− ud) · v dx for all Y = (v, q) ∈ Z, (6.4d)

ν1 f −w = 0 a.e. in Ω (6.4e)
ν2 g −w = 0 a.e. in ΓN , (6.4f)

as well as

π : p = 0 a.e. in Ω, (6.4g)
π : r ≥ 0 a.e. in Ω, (6.4h)
r = 0 a.e. in I = {x ∈ Ω : |%(x)| < σ̃0}. (6.4i)

Note that (6.4b)–(6.4c) are equivalent to % ∈ σ̃0 ∂|p|, the subdifferential of the
Frobenius norm.
Proof. The proof principally follows the lines of [de los Reyes, 2011, Theorem 5.1].
Nevertheless, since substantial parts of the proof have to be modified due to the special
structure of static elastoplasticity, we present the proof in detail.
We elaborate on the arguments under the assumption that (f , g) ∈ L2(Ω;R3) ×
L2(ΓN ;R3) is a (local or global) optimal control of (1.3) which can be approximated
by a strongly convergent sequence of (local or global) solutions (fγ , gγ) of (4.1). As
was mentioned in Remark 4.5, this may not be the case for all local minimizers of
(1.3). We briefly come back to the necessary modifications to the arguments at the
end of the proof.
Let us denote the state associated to (f , g) by (u,p) ∈ V ×Q, i.e., (u,p) solves (1.1)
with ` in the right hand side given by (1.2c).
Step 1. The state system (6.4a)–(6.4c):
The state system is simply an alternative formulation of (1.1), so it can be checked
without a limit argument. We first define

% :=
[
C(ε(u)− p)−Hp

]D
.
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We multiply this equation by q ∈ Q and integrate over Ω to obtain∫
Ω

[
(ε(u)− p) : C (ε(0)− q)

]
dx+

∫
Ω

p : H q dx+

∫
Ω

% : q dx = 0 for all q ∈ Q.

On the other hand, we test (1.1) with Y = (v + u,p) with v ∈ V arbitrary to get∫
Ω

[
(ε(u)− p) : C (ε(v)− 0)

]
dx ≥ 〈`, v〉 for all v ∈ V.

Since v ∈ V is arbitrary, we have indeed an equality. When added to the previous
equality, (6.4a) follows.
Next we set Y = (u, q) in (1.1) so that we arrive at∫

Ω

[
(ε(u)− p) : C (ε(0)− (q − p))

]
dx+

∫
Ω

p : H (q − p) dx+ j(q)− j(p) ≥ 0

for all q ∈ Q. Using the definition of % and since q ∈ Q is arbitrary, this can be
written as ∫

Ω

(
σ̃0

(
|p| − |q|

)
− % : (p− q)

)
dx = 0 for all q ∈ Q. (6.5)

From this we will deduce (6.4c) and (6.4b) by contradiction. Assume first that there
is a subset E1 ⊂ Ω of positive measure with |%| > σ̃0 a.e. in E1. If we insert q =
χE1(p− %) + χΩ\E1

p ∈ Q into (6.5), then we get (using |p| ≤ |p− %|+ |%|)

0 =

∫
E1

(
σ̃0

(
|p| − |p− %|

)
− |%|2

)
dx ≤

∫
E1

|%|
(
σ̃0 − |%|

)
dx < 0,

which yields a contradiction. Consequently, (6.4c) is proved. To verify (6.4b), we
assume to the contrary that there is a subset E2 ⊂ Ω of positive measure with the
property p :% < σ̃0 |p| a.e. in E2. (Note that (6.4c) forbids p :% > σ̃0 |p|.) By choosing
q = χΩ\E2

p ∈ Q in (6.5), we obtain

0 =

∫
E2

(
σ̃0 |p| − % : p

)
dx < 0,

again a contradiction, which shows that (6.4b) must hold.
Step 2. The adjoint equation (6.4d):
By definition of πγ , see (6.1d), we have a.e. in Ω

πγ : rγ = σ̃0 γ

(
|rγ |2

mγ(|pγ |)
−m′γ(|pγ |)

(rγ : pγ)2

mγ(|pγ |)2|pγ |

)

≥ σ̃0 γ

(
|rγ |2

mγ(|pγ |)
−m′γ(|pγ |)

|rγ |2|pγ |
mγ(|pγ |)2

)

≥ σ̃0 γ

mγ(|pγ |)

(
|rγ |2 −

m′γ(|pγ |)
γ

|rγ |2
)
≥ 0 by (4.4) and (4.8). (6.6)

Testing the regularized adjoint equation (6.1c) with its solution Zγ = (wγ , rγ) it thus
follows that

−(uγ − ud,wγ)Ω = a(Zγ ,Zγ) + (πγ , rγ)Ω ≥ a(Zγ ,Zγ) ≥ a ‖Zγ‖2.
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Therefore,

a ‖Zγ‖2Z ≤ ‖uγ − ud‖V ‖wγ‖V ≤ K‖Zγ‖Z

holds, which shows the boundedness of the sequence of adjoint states. Thus there
exists a subsequence (denoted in the same way) such that (wγ , rγ) = Zγ ⇀ Z =
(w, r) in Z. We need to show that Z satisfies (6.4d).

When we insert Y = (v,0) with arbitrary v ∈ V into (6.1c) and take the limit γ →∞,
then ∫

Ω

(
ε(w)− r

)
: C ε(v) dx = −

∫
Ω

(u− ud) · v dx for all v ∈ V (6.7)

follows by weak convergence. Testing (6.1c) with Y = (0, q) yields

πγ =
[
C (ε(wγ)− rγ)−H rγ

]D
⇀

[
C (ε(w)− r)−H r

]D
=: π ∈ Q.

Multiplying the previous equation with q ∈ Q, integrating over Ω and subtraction the
arising equation from (6.7) then verifies the adjoint equation (6.4d).

Step 3. The sign condition (6.4h):
Let ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 be arbitrary. If one tests the regularized adjoint equation
(6.1c) with ϕZγ = (ϕwγ , ϕ rγ), which clearly belongs to V ×Q, then one obtains

0 =

∫
Ω

(
ε(wγ)− rγ

)
: C
(
ε(ϕwγ)− ϕ rγ

)
dx

+

∫
Ω

ϕ rγ : H rγ dx+

∫
Ω

ϕπγ : rγ dx+

∫
Ω

ϕ (uγ − ud) ·wγ dx

≥
∫

Ω

ϕ
((
ε(wγ)− rγ

)
: C
(
ε(wγ)− rγ

)
+ rγ : H rγ

)
dx

+

∫
Ω

(
ε(wγ)− rγ

)
: C

1

2

(
∇ϕw>γ +wγ∇ϕ>

)
dx+

∫
Ω

ϕ (uγ − ud) ·wγ dx,

where we used πγ :rγ ≥ 0 from (6.6) for the preceding estimate. Due to the coercivity
of C and H and ϕ ≥ 0, the first addend is convex and continuous w.r.t. (wγ , rγ), thus
weakly lower semicontinuous in V ×Q. Moreover, thanks to wγ ⇀ w in V , we obtain
wγ → w in L2(Ω;R3) by compact embedding. Since also uγ → u in L2(Ω;R3), we
arrive at

0 ≥ lim inf
γ→∞

∫
Ω

ϕ
((
ε(wγ)− rγ

)
: C
(
ε(wγ)− rγ

)
+ rγ : H rγ

)
dx

+ lim
γ→∞

∫
Ω

(
ε(wγ)− rγ

)
: C

1

2

(
∇ϕw>γ +wγ∇ϕ>

)
dx

+ lim
γ→∞

∫
Ω

ϕ (uγ − ud) ·wγ dx

≥
∫

Ω

ϕ
((
ε(w)− r

)
: C
(
ε(w)− r

)
+ r : H r

)
dx

+

∫
Ω

(
ε(w)− r

)
: C

1

2

(
∇ϕw> +w∇ϕ>

)
dx+

∫
Ω

ϕ (u− ud) ·w dx

= a(Z, ϕZ) +

∫
Ω

ϕ (u− ud) ·w dx = −
∫

Ω

ϕπ : r dx,
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where we used the definition of a(·, ·) and the adjoint equation (6.4d) for the final two
equalities. Since ϕ ≥ 0 was arbitrary, this implies π : r ≥ 0 a.e. in Ω, which is (6.4h).

Step 4. The complementarity relation (6.4g):
Let us first notice that the definition of πγ in (6.1d) implies

∫
Ω

σ̃0

(
|rγ |2

mγ(|pγ |)
−m′γ(|pγ |)

(rγ : pγ)2

mγ(|pγ |)2|pγ |

)
dx

=
1

γ

∫
Ω

πγ : rγ → 0 as γ →∞, (6.8)

since πγ and rγ are weakly convergent and thus bounded in Q. With this result at
hand, (6.4g) follows similarly as in [de los Reyes, 2011, Theorem 5.1]. Nevertheless we
include the proof, since, in contrast to [de los Reyes, 2011, Theorem 5.1], we derive
here a pointwise equation.

Using the definition of πγ in (6.1d), we obtain

|πγ : pγ | = σ̃0 γ

∣∣∣∣ rγ : pγ
mγ(|pγ |)

−m′γ(|pγ |)
(rγ : pγ)|pγ |
mγ(|pγ |)2

∣∣∣∣
≤ σ̃0|rγ |

γ |pγ |
mγ(|pγ |)

∣∣∣∣1−m′γ(|pγ |)
|pγ |

mγ(|pγ |)

∣∣∣∣ since mγ(|pγ |) > 0

≤ σ̃0

∣∣∣∣|rγ | −m′γ(|pγ |)
|rγ | |pγ |
mγ(|pγ |)

∣∣∣∣ by (4.4)2.

Therefore, Hölder’s inequality implies

‖πγ : pγ‖2L1(Ω) ≤ σ̃
2
0 |Ω|

∫
Ω

(
|rγ | −m′γ(|pγ |)

|rγ ||pγ |
mγ(|pγ |)

)2

dx. (6.9)

To estimate the above integral, let us define—up to sets of zero measure—the following
subsets of Ω:

Aγ = {x ∈ Ω : γ |pγ | ≥ σ̃0 + 1
2γ }, (6.10a)

Sγ = {x ∈ Ω :
∣∣γ |pγ | − σ̃0

∣∣ ≤ 1
2γ } (6.10b)

Iγ = Ω \ (Aγ ∪ Sγ) = {x ∈ Ω : γ |pγ | ≤ σ̃0 − 1
2γ }. (6.10c)

By the formulas for mγ and m′γ , see (4.3) and (4.7), we have

mγ(|pγ |) = γ |pγ | and m′γ(|pγ |) = γ a.e. in Aγ
mγ(|pγ |) = σ̃0 and m′γ(|pγ |) = 0 a.e. in Iγ .

(6.11)

Thus we find

|rγ | −m′γ(|pγ |)
|rγ | |pγ |
mγ(|pγ |)

=

{
0

|rγ |

}
≤

0 a.e. in Aγ

σ̃0
|rγ |

mγ(|pγ |)
a.e. in Iγ

(6.12)
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by (4.4)1. On Sγ one obtains by inserting (4.3) and (4.7) that

|rγ | −m′γ(|pγ |)
|rγ | |pγ |
mγ(|pγ |)

=
|rγ |

mγ(|pγ |)
(
mγ(|pγ |)−m′γ(|pγ |)|pγ |

)
=

|rγ |
mγ(|pγ |)

(
σ̃0 +

γ

2

[(
σ̃0 −

1

2γ

)2

−
(
γ |pγ |

)2])
.

On the subset of Sγ where γ |pγ | < σ̃0 holds, the definition of Sγ in (6.10b) yields
γ |pγ | ≥ σ̃0 − 1/(2γ). On the remaining subset of Sγ , γ |pγ | ≥ σ̃0 > σ̃0 − 1/(2γ)
follows. So in any case we have(

σ̃0 −
1

2γ

)2

−
(
γ |pγ |

)2 ≤ 0

a.e. in Sγ , provided that σ̃0 − 1/(2γ) ≥ 0, i.e. γ ≥ 1/(2σ̃0). This is not a restriction,
as we will pass to the limit γ →∞ below, so we conclude

|rγ | −m′γ(|pγ |)
|rγ | |pγ |
mγ(|pγ |)

≤ σ̃0
|rγ |

mγ(|pγ |)
a.e. in Sγ . (6.13)

By combining the estimates (6.13) and (6.12), we find

|rγ | −m′γ(|pγ |)
|rγ | |pγ |
mγ(|pγ |)

≤ σ̃0
|rγ |

mγ(|pγ |)
a.e. in Ω (6.14)

for the integrand in (6.9). Furthermore the estimates (4.4)2 and (4.8) yield

|rγ | −m′γ(|pγ |)
|rγ | |pγ |
mγ(|pγ |)

≥ 0 a.e. in Ω. (6.15)

Using these upper and lower bounds for the integrand in (6.9), together with the
Cauchy-Schwarz inequality, we finally arrive at

‖πγ : pγ‖2L1(Ω)

≤ σ̃2
0 |Ω|

∫
Ω

(
|rγ | −m′γ(|pγ |)

|rγ ||pγ |
mγ(|pγ |)

)
σ̃0

|rγ |
mγ(|pγ |)

dx

≤ σ̃3
0 |Ω|

∫
Ω

(
|rγ |2

mγ(|pγ |)
−m′γ(|pγ |)

(rγ : pγ)2

mγ(|pγ |)2|pγ |

)
dx. (6.16)

Consequently, (6.8) implies

‖πγ : pγ‖L1(Ω) → 0 as γ →∞.

Moreover, since πγ ⇀ π in Q and pγ → p in Q, we conclude πγ :pγ ⇀ π :p in L1(Ω).
The uniqueness of the weak limit then confirms that π : p = 0 must hold a.e. in Ω,
which is (6.4g).

Step 5. The complementarity relation (6.4i):
By choosing v = 0 in (6.1a) we obtain %γ =

[
C (ε(uγ) − pγ) − Hpγ

]D. Since
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(uγ ,pγ) → (u,p) strongly in Z, this shows %γ → % strongly in Q. Therefore the
weak convergence of rγ in Q (see step 2) implies∫

Ω

|rγ |(|%γ | − |%|) dx→ 0 as γ →∞. (6.17)

Due to (6.4c) the mapping Q 3 r 7→
∫

Ω
|r|(σ̃0 − |ρ|)dx ∈ R is convex and continuous

and thus weakly lower semicontinuous. Consequently we obtain

0 ≤
∫

Ω

|r|(σ̃0 − |%|) dx

≤ lim inf
γ→∞

∫
Ω

|rγ |(σ̃0 − |%|) dx

≤ lim sup
γ→∞

∫
Ω

|rγ |(σ̃0 − |%γ |) dx+ lim sup
γ→∞

∫
Ω

|rγ |(|%γ | − |%|) dx

= lim sup
γ→∞

∫
Ω

(
σ̃0 |rγ | − |rγ ||%γ |

)
dx by (6.17)

= lim sup
γ→∞

σ̃0

∫
Ω

(
|rγ | − γ

|rγ ||pγ |
mγ(|pγ |)

)
dx by (6.1b)

≤ lim sup
γ→∞

σ̃0

∫
Ω

(
|rγ | −m′γ(|pγ |)

|rγ ||pγ |
mγ(|pγ |)

)
dx by (4.8)

≤ lim sup
γ→∞

σ̃0 |Ω|1/2
(∫

Ω

(
|rγ | −m′γ(|pγ |)

|rγ ||pγ |
mγ(|pγ |)

)2

dx

)1/2

,

where we again applied Hölder’s inequality for the last estimate. So we end up with
the expression known from (6.9), which can be estimated by (6.16) as seen before,
and we conclude ∫

Ω

|r|(σ̃0 − |%|) dx = 0.

The non-negativity of the integrand now shows the pointwise complementarity relation
|r|(σ̃0 − |%|) = 0 a.e. in Ω. Together with |%| ≤ σ̃0 from (6.4c), this finally implies
(6.4i).

Step 6. The gradient equations (6.4e) and (6.4f):
By passing to the limit in (6.1e) and (6.1f) we finally obtain (6.4e) and (6.4f).

This concludes the proof under the assumption initially made, namely that (f , g) ∈
L2(Ω;R3) × L2(ΓN ;R3) is being approximated by the sequence (fγ , gγ). As was
mentioned in Remark 4.5, to achieve the same in the general case, the regularized
problems (4.1) need to be modified by the additional term (4.12) in the objective.
The optimality systems for problems undergo the obvious change that (6.4e) and
(6.4f) are replaced by ν1 fγ + r (fγ − f

∗)−wγ = 0 and ν2 gγ + r (gγ − g∗)−wγ = 0.
In the limit, the conditions are again (6.4e) and (6.4f), respectively.

For easy reference, we summarize in Table 6.1 the variables associated with (4.1) and
their convergence as γ →∞.

Remark 6.3. We would like to point out some differences to optimality conditions
for other optimal control problems governed by VIs of second kind obtained in [de los
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variable definition convergence

fγ ∈ L2(Ω;R3) local solution to (4.1) strongly in L2(Ω;R3)
gγ ∈ L2(ΓN ;R3) local solution to (4.1) strongly in L2(ΓN ;R3)

uγ ∈ V local solution to (4.1) strongly in V
pγ ∈ Q local solution to (4.1) strongly in Q

wγ ∈ V Theorem 6.1 weakly in V
rγ ∈ Q Theorem 6.1 weakly in Q
πγ ∈ Q Theorem 6.1 weakly in Q
%γ ∈ Q Theorem 6.1 strongly in Q
ϑγ ∈ L2(Ω) Lemma 6.4 weakly in L2(Ω)

Table 6.1
Variables associated with the regularized control problem (4.1) and their convergence when

γ →∞, as proved in Proposition 6.2 and Lemma 6.4.

Reyes, 2011, Theorem 5.1] and [de los Reyes, 2012, Theorem 4.1]. First of all, notice
that the complementarity relations in (6.4h)–(6.4i) hold in a pointwise sense in con-
trast to the results mentioned above. Apart from that, further structural differences
to the above arise when we further exploit the specific setting of our problem in the
sequel. It turns out that we can refine the result of Proposition 6.2 by introducing a
new scalar valued multiplier ϑ, which gives more structure to the adjoint plastic strain
r and leads to a strengthening of conditions (6.4h) and (6.4i), so that we finally arrive
at the optimality system presented in Theorem 1.1, eq. (1.4). This step is essential in
proving the equivalence of (1.4) to the C-stationarity system for the equivalent dual
formulation of the problem in Section 7.
Lemma 6.4. Under the conditions of Proposition 6.2, there exists a multiplier ϑ ∈
L2(Ω) such that the adjoint plastic strain can be decomposed as follows:

r =
1

σ̃0

(
|p|π + ϑ%

)
. (6.18)

Proof. From (6.1b) and (6.1d) it follows that rγ satisfies

rγ =
1

σ̃0

(
mγ(|pγ |)

γ
πγ +

m′γ(pγ)

γ

rγ : pγ
|pγ |

%γ

)
.

By introducing the approximate multiplier

ϑγ :=
m′γ(pγ)

γ

rγ : pγ
|pγ |

(6.19)

it follows from (4.8) and the boundedness of rγ (see after (6.8)) that

‖ϑγ‖L2(Ω) ≤ ‖rγ‖S ≤ K <∞.

Consequently, up to a subsequence, ϑγ ⇀ ϑ in L2(Ω) for some ϑ ∈ L2(Ω).
Let us now define the auxiliary quantity αγ ∈ L2(Ω) by

αγ =
mγ(|pγ |)

γ
=
σ̃0

γ
+


|pγ | − σ̃0

γ a.e. in Aγ ,
1
2 (γ |pγ | − σ̃0 + 1

2γ )2 a.e. in Sγ ,
0 a.e. in Iγ ,

(6.20)
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where Aγ , Sγ , and Iγ are as defined in (6.10). The definition of mγ in (4.3) was used
here.
We now verify that αγ → |p| strongly in L2(Ω). First Young’s inequality yields∫

Ω

(αγ − |p|)2 dx =

∫
Ω

(
mγ(|pγ |)

γ
− |pγ |+ |pγ | − |p|

)2

dx

≤ 2

∫
Ω

(
mγ(|pγ |)

γ
− |pγ |

)2

dx+ 2
∥∥|pγ | − |p|∥∥2

L2(Ω)
. (6.21)

From the representation (6.20) we get

mγ(|pγ |)
γ

− |pγ | =

{
0, a.e. in Aγ
σ̃0

γ − |pγ |, a.e. in Iγ .
(6.22)

On Sγ we have by (6.20) and Young’s inequality(
mγ(|pγ |)

γ
− |pγ |

)2

≤ 2

(
σ̃0

γ
− |pγ |

)2

+
1

2

(
γ |pγ | − σ̃0 +

1

2γ

)4

a.e. in Sγ .

(6.23)
Moreover the definitions of Sγ and Iγ , respectively, in (6.10) immediately yield∣∣∣γ |pγ | − σ̃0 +

1

2γ

∣∣∣ ≤ ∣∣γ |pγ | − σ̃0

∣∣+
1

2γ
≤ 1

γ
a.e. in Sγ (6.24a)

and ∣∣∣ σ̃0

γ
− |pγ |

∣∣∣ ≤ σ̃0

γ
+ |pγ | ≤

2 σ̃0

γ
− 1

2γ2
≤ 2 σ̃0

γ
a.e. in Iγ . (6.24b)

By inserting the estimates (6.22) and (6.23) into (6.21) we continue with∫
Ω

(αγ − |p|)2 dx

≤ 4

∫
Sγ

(
σ̃0

γ
− |pγ |

)2

dx+

∫
Sγ

(
γ |pγ | − σ̃0 +

1

2γ

)4

dx

+ 2

∫
Iγ

(
σ̃0

γ
− |pγ |

)2

dx+ 2 ‖pγ − p‖2S

≤ 4 |Sγ |
1

4γ4
+ |Sγ |

1

γ4
+ 2 |Iγ |

4 σ̃2
0

γ2
+ 2 ‖pγ − p‖2S by (6.24a) and (6.24b)

≤ c |Ω|
(

1

γ4
+

1

γ2

)
+ 2 ‖pγ − p‖2S → 0 as γ →∞.

Since %γ → % strongly in Q (see Step 5 in the proof of Proposition 6.2), ϑγ ⇀ ϑ
weakly in L2(Ω) as shown above, πγ ⇀ π weakly in S (see end of Step 4 in the proof
of Proposition 6.2), and αγ → |p| strongly in L2(Ω) as just shown, we finally obtain

σ̃0 rγ = αγ πγ + ϑγ %γ ⇀ |p|π + ϑ% in L1(Ω; S)

so that σ̃0 r = |p|π + ϑ% holds as claimed.
With the help of the above lemma, we can now finalize the proof of Theorem 1.1.
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Proof of Theorem 1.1. Proof. Let (f , g) ∈ L2(Ω;R3) × L2(ΓN ;R3) be a
locally optimal solution for (1.3) with associated state W = (u,p) ∈ Z. In view of
Proposition 6.2, the preliminary optimality system (6.4) holds. A comparison between
(6.4) and (1.4) shows that we only have to verify (1.4f)–(1.4h).

First we note that (6.4b) and (6.4c) imply

%(x) : p(x) = |%(x)||p(x)|, (6.25)

i.e., the alignment of % and p, which will be useful in the course of the proof.

Lemma 6.4 gives the existence of ϑ̃ ∈ L2(Ω) such that σ̃0 r = |p|π + ϑ̃% holds. If we
define

ϑ(x) :=

{
ϑ̃(x), if %(x) 6= 0,

0, if %(x) = 0,
(6.26)

then we obtain ϑ ∈ L2(Ω) and still σ̃0 r = |p|π + ϑ% holds, so (1.4f) is shown.

Next we show that ϑ = 0 holds on the set I (where |%| < σ̃0), which is (1.4h).
Equation (6.4b) implies |p| = 0 a.e. in I, while (6.4i) shows r = 0 on I. Now (1.4f)
implies ϑ% = 0 a.e. in I. Due to (6.26) this gives (1.4h).

It remains to prove (1.4g), i.e., ϑ% : π ≥ 0. If p(x) 6= 0, then (6.25) gives that
%(x) = κp(x) with some κ ∈ R and we obtain from (6.4g) that π(x) = 0 and thus in
particular

ϑ(x)%(x) : π(x) = ϑ(x)κp(x) : π(x) = 0

holds. If, on the other hand, p(x) = 0 holds, then (1.4f) and (6.4h) imply

ϑ(x)%(x) : π(x) = σ̃0 r(x) : π(x) ≥ 0.

Thus in any case (1.4g) holds, which concludes the proof.

Remark 6.5. Assume that (1.4) holds. Then (1.4b) implies p = 0 a.e. in I. Hence
(1.4h) gives

r =
1

σ̃0

(
|p|π + ϑ%

)
= 0 a.e. in I, (6.27)

i.e. (6.4i). Moreover, by (1.4g) we obtain

π : r =
1

σ̃0

(
|p| |π|2 + ϑ% : π

)
≥ 0,

i.e. (6.4h). Thus (1.4) implies (6.4).

7. Equivalence to C-stationarity. As was mentioned in the introduction, the
strength of the optimality system obtained in Theorem 1.1 is not obvious to gauge.
This is due to the lack of a classification scheme for optimality conditions of MPECs
which involve variational inequalities of the second kind. We prove in this section that
the result of Theorem 1.1 is in fact equivalent to C-stationarity of another optimal
control problem closely related and equivalent to (1.3). That problem is obtained
when the primal formulation of elastoplasticity (1.1) is replaced by the equivalent
dual formulation (3.5), a variational inequality of first kind, see Lemma 3.2. To our
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Problem (1.3)
with VI (1.1)
of 2nd kind

Lemma 3.2←−−−−−−−−−−−−−−→
Problem (7.1)
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Necessary
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Theorem 7.2←−−−−−−−−−−−−−−→
Necessary
optimality
system (7.2)

Fig. 7.1. Relation between optimal control problems (1.3) and (7.1) and their first-order opti-
mality systems.

best knowledge, this is the first time that an optimality system for an MPEC with
a VI of the second kind is being classified in this sense. Figure 7.1 illustrates the
situation.

By the replacement of the primal by the dual VI, we obtain the following optimal
control problem

Minimize J(u,f , g) s.t. (3.5), (7.1)

which is equivalent to (1.3). Since (3.5) is a VI of first kind, it can be reformulated by
means of a complementarity system involving a Lagrange multiplier λ ∈ L2(Ω), the so-
called plastic multiplier, see (7.2a)–(7.2c) below. For a rigorous proof of the existence
and uniqueness of λ, we refer to [Herzog et al., 2011b, Theorem 1.4 and Corollary 1.2].
Problem (7.1) can thus be considered an MPCC (mathematical programs with com-
plementarity constraints). The following first-order optimality conditions for (7.1)
are proved in [Herzog et al., 2012, Theorem 3.16] by means of a Moreau-Yosida based
regularization of (3.5) and a subsequent limit analysis:

Theorem 7.1 (C-stationarity). Let (u,σ,χ, λ,f , g) ∈ V×S×S×L2(Ω)×L2(Ω;R3)×
L2(ΓN ;R3) be a locally optimal solution of (7.1). Then there exist adjoint stresses
(ζ,ψ) ∈ S × S and displacement w ∈ V , and a multiplier θ ∈ L2(Ω) such that the
following optimality system is satisfied:

∫
Ω

σ : C−1τ dx+

∫
Ω

χ : H−1µ dx−
∫

Ω

ε(u) : τ dx

+

∫
Ω

λ (σD + χD) : (τD + µD) dx = 0 for all τ ,µ ∈ S

 (7.2a)

∫
Ω

σ : ε(v)dx =

∫
Ω

f · v dx
∫

ΓN

g · v ds for all v ∈ V (7.2b)

0 ≤ λ ⊥ |σD + χD|2 − σ̃2
0 ≤ 0 a.e. in Ω (7.2c)
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∫
Ω

ζ : C−1τ dx+

∫
Ω

ψ : H−1µ dx−
∫

Ω

ε(w) : τ dx

+

∫
Ω

λ (ζD +ψD) : (τD + µD) dx

+

∫
Ω

θ (σD + χD) : (τD + µD) dx = 0 for all τ ,µ ∈ S


(7.2d)

−
∫

Ω

ζ : ε(v) dx = +

∫
Ω

(u− ud) · v dx for all v ∈ V (7.2e)

ν1 f −w = 0 a.e. in Ω, ν2 g −w = 0 a.e. on ΓN (7.2f)

λ (σD + χD) : (ζD +ψD) = 0 a.e. in Ω (7.2g)

θ
(
|σD + χD|2 − σ̃2

0

)
= 0 a.e. in Ω (7.2h)

θ (σD + χD) : (ζD +ψD) ≥ 0 a.e. in Ω. (7.2i)

For convenience, we list in Table 7.1 the variables pertaining to the dual formulation.
The notation is the same as in Herzog et al. [2012] with the minor exception that
here, the multiplier µ associated with the non-negativity constraint for the plastic
multiplier is not introduced as an extra variable. Instead, it has been replaced by
its governing equation, µ = (σD + χD) : (ζD + ψD). Moreover, in order to comply
with the sign of the adjoint displacement w in (1.4), we needed to change the sign of
all adjoint states and multipliers (ζ, ψ, w and θ) appearing in [Herzog et al., 2012,
Theorem 3.16].

space state variables test functions adjoint variables

displacement V u v w
stress S σ τ ζ
backstress S χ µ ψ
generalized stresses S × S Σ = (σ,χ) T = (τ ,µ) Υ = (ζ,ψ)

dual variables

plastic multiplier L2(Ω) λ ≥ 0 µ
yield condition φ(Σ) =

(
|σD + χD|2 − σ̃2

0

)
/2 ≤ 0 θ

Table 7.1
Variables in the dual formulation.

The optimality system in (7.2) is known as the system of C-stationarity. Note that,
as usual for MPCCs, the optimality system does not involve a multiplier for the
complementarity relation in (7.2c). Moreover, it is characteristic for C-stationarity
that a sign condition is only known for the product in (7.2i), and not for each term
individually. In the following we will show that the optimality systems (1.4) and (7.2)
are indeed equivalent.

Theorem 7.2. Let (u,p,f , g) ∈ V ×Q× L2(Ω;R3)× L2(ΓN ;R3) satisfy the primal
optimality system (1.4) with multipliers (w, r,%,π, ϑ) ∈ V × Q × Q × Q × L2(Ω).
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Define

σ = C(ε(u)− p), χ = −Hp, λ =
|p|
σ̃0
, (7.3a)

ζ = C (ε(w)− r), ψ = −H r, θ =
ϑ

σ̃0
. (7.3b)

Then (u,σ,χ, λ,f , g,w, ζ,ψ, θ) fulfill the C-stationarity conditions in (7.2).
Let, on the other hand, (u,σ,χ, λ,f , g) ∈ V ×S×S×L2(Ω)×L2(Ω;R3)×L2(ΓN ;R3)
fulfill (7.2) with multipliers (w, ζ,ψ, θ) ∈ V × S × S × L2(Ω). If we define

p = ε(u)− C−1σ, % = σD + χD, (7.4a)

r = ε(w)− C−1ζ, π = ζD +ψD, ϑ = σ̃0 θ, (7.4b)

then (u,p,f , g,w, r,%,π, ϑ) satisfies (1.4).
Proof. We first assume that (1.4) holds and show (7.2).
Step 1. The state system (7.2a)–(7.2c):
Employing the definition of σ in (7.3a) and testing (1.4a) with (0,v), v ∈ V arbitrary,
immediately gives (7.2b). Taking v = 0 and q ∈ Q arbitrary in (1.4a), the definition
of σ and χ in (7.3a) yields∫

Ω

(%− σ − χ) : q dx = 0 for all q ∈ Q,

which implies

% = %D = σD + χD, (7.5)

since Q consists of all trace-free (purely deviatoric) tensor functions in S. Thus (1.4b)
yields |σD + χD| ≤ σ̃0 a.e. in Ω. Next we show

λ (σD + χD) = p a.e. in Ω. (7.6)

Thanks to the definition of λ in (7.3a) this is obviously true for p(x) = 0. To show
the relation where p(x) 6= 0, employ again the definition of λ and (7.5), which give

λ (σD + χD) =
|p|
σ̃0
%. (7.7)

Since |%(x)| = σ̃0 holds a.e. where p(x) 6= 0, (6.25) implies

p(x) =
|p(x)|
|%(x)|

%(x) =
|p(x)|
σ̃0

%(x) a.e. in {x ∈ Ω : p(x) 6= 0}.

Together with (7.7), this yields (7.6). Using (7.6) and the definition of λ immediately
gives λ

(
|σD +χD|− σ̃0

)
= 0 so that the complementarity system in (7.2c) is verified.

Note that the sign condition on λ follows from its definition in (7.3a).
By solving the definitions of σ and χ in (7.3a) for p, we find p = ε(u) − C−1σ and
p = −H−1χ. By multiplying the first equation with an arbitrary τ ∈ S and the
second with an arbitrary µ ∈ S, integrating over Ω, and using that p is trace-free, we
arrive at∫

Ω

σ : C−1τ dx+

∫
Ω

χ : H−1µ dx−
∫

Ω

ε(u) : τ dx+

∫
Ω

p : (τD + µD) dx = 0
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for all τ ,µ ∈ S. Inserting (7.6) then yields (7.2a).
Step 2. The adjoint equation (7.2d) and (7.2e):
Similarly to above, we choose q = 0 in (1.4c) so that the definition of ζ in (7.3b)
yields (7.2e). Choosing v = 0 in (1.4c), we obtain completely analogously to (7.5)
that

π = ζD +ψD. (7.8)

If we solve the definitions of ζ and ψ for r and test the arising equations with τ ,µ ∈ S,
then we arrive at∫

Ω

ζ : C−1τ dx+

∫
Ω

ψ : H−1µdx−
∫

Ω

ε(w) : τ dx

+

∫
Ω

r : (τD + µD)dx = 0 for all τ ,µ ∈ S.

(7.9)
From (1.4f), (7.8), (7.5), and the definitions of λ and θ it follows that∫

Ω

r : (τD + µD) dx =

∫
Ω

1

σ̃0
(|p|π + ϑ%) : (τD + µD) dx

=

∫
Ω

(
λ (ζD +ψD) + θ (σD + χD)

)
: (τD + µD)dx.

Inserting this into (7.9) results in (7.2d).
Step 3. The complementarity relations (7.2g)–(7.2i):
Thanks to (7.6) and (7.8), (7.2g) follows immediately from (1.4e). Similarly, (7.2i)
is a direct consequence of (1.4g) together with (7.5), (7.8), and the definition of θ in
(7.3b). The complementarity relation in (7.2h) follows from (1.4h) and the definition
of θ which imply that

θ = 0 a.e. in {x ∈ Ω : |σD(x) + χD(x)| < σ̃0}.

Since the gradient equations in (7.2f) coincide with these in (1.4d), this ends the first
part of the proof.
To show the reverse direction, assume that (7.2) holds.
Step 1. The state system (1.4a) and (1.4b):
If one tests (7.2a) with (τ ,−τ ) with τ ∈ S arbitrary, then ε(u)−C−1σ+H−1χ = 0
is obtained. The definition of p in (7.4a) thus yields

p = −H−1χ. (7.10)

Consequently, (7.2a) implies∫
Ω

(
λ (σD + χD)− p

)
: (τ + µ) dx = 0 for all τ ,µ ∈ S,

where we used that

AD :BD = AD :B for all A,B ∈ R3×3. (7.11)

Therefore

p = λ (σD + χD), (7.12)
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which in particular implies that trace(p) = 0 a.e. in Ω such that p ∈ Q. In view of
the definition of p in (7.4a) and (7.10) we find % =

[
C(ε(u)−p)

]D− [Hp]D and thus∫
Ω

% : q dx+

∫
Ω

q : Hp dx−
∫

Ω

C
(
ε(u)− p

)
: q dx = 0 for all q ∈ Q, (7.13)

where we again used (7.11). Solving the definition of p for σ and inserting this
expression into (7.2b) gives∫

Ω

C
(
ε(u)− p

)
: ε(v) dx = 〈`, v〉 for all v ∈ V.

Adding this equation to (7.13) yields (1.4a). By the definition of % in (7.4a) and (7.2c)
we immediately obtain |%| ≤ σ̃0 a.e. in Ω. Moreover, from (7.12), the definition of %,
and the complementarity relation in (7.2c) it follows

% : p = λ
∣∣σD + χD

∣∣2 =
∣∣λ (σD + χD)

∣∣ σ̃0 = σ̃0 |p|,

i.e. the remaining condition in (1.4b).

Step 2. The adjoint equation (1.4c):
Analogously to the derivation of (7.10) we test (7.2d) with (τ ,−τ ) with arbitrary
τ ∈ S, which gives

r = −H−1ψ. (7.14)

By solving this equation for ψ, the definition of r and π in (7.4a) and (7.4b), respec-
tively imply π = [ζ +ψ]D =

[
C(ε(w)− r)−H r

]D so that∫
Ω

(
H r : q − C

(
ε(w)− r

)
: q + π : q

)
dx = 0 for all q ∈ Q, (7.15)

where we again used (7.11). Now, we can argue as in the case of the state equation.
The definition of r gives ζ = C(ε(w) − r). If we insert this into (7.2e) and add the
arising equation to (7.15), then (1.4c) is obtained.

Step 3. The complementarity relations (1.4e)–(1.4h):
If ones inserts (7.14) together with the definition of % and π into (7.4a) and (7.4b),
then (7.11) implies similarly to (7.12) that

r = λπ + θ %. (7.16)

Since trace(%) = trace(π) = 0 a.e. in Ω by definition, this yields r ∈ Q. By (7.12)
we have p(x) = 0 a.e. where λ (x) = 0 holds. If λ (x) 6= 0, then (7.2c) implies
|σD(x) + χD(x)| = σ̃0. Therefore, in any case, (7.12) gives

|p| = σ̃0 λ.

Together with (7.16) and the definition of ϑ in (7.4b) this yields (1.4f).

In view of (7.12) and the definition of π in (7.4b), (1.4e) follows directly from (7.2g).
Moreover, using the definitions of %, π, and ϑ in (7.4a) and (7.4b), we obtain (1.4g)
immediately from (7.2i). In addition, the complementarity relation in (7.2h) shows
θ(x) = 0 a.e. where |%(x)| = |σD(x) +χD(x)| < σ̃0, which gives in turn (1.4h). Since
the gradient equations in (7.2f) and (1.4d) are the same, this ends the proof.
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8. Numerical Experiments. We consider the numerical solution of a particu-
lar example of the regularized problem (4.1) for fixed γ > 0. In fact, we apply some
minor changes to the original problem setting in an effort to make the problem more
realistic from a practical point of view. These modifications do not affect our theory,
and the changes to the regularized optimality system (6.1) as well as the optimality
system (1.4) for the original problem are going to be obvious.
In our model problem, we restrict the discussion to boundary loads g as controls.
These controls act only on a part ΓC of the Neumann boundary ΓN , and g = 0 is
fixed on ΓN \ ΓC . We also slightly modify the first term in the objective so that
only the first two components of the displacement field are observed, and the desired
state ud has only two components. Finally the observation takes place on part of the
boundary ΓO ⊂ Γ, instead of inside the domain. We arrive at the following problem.

Minimize J(u, g) :=
β

2
‖u(1,2) − ud‖2L2(ΓO;R2) +

ν2

2
‖g‖2L2(ΓC ;R3)

s.t. a(W ,Y ) +

∫
Ω

hγ(p) : q dx =

∫
ΓC

g · v ds for all Y = (v, q) ∈ Z,
(8.1)

with hγ given in (4.2). For notational convenience, we denote the variables by u
instead of uγ etc.
Our computational domain is the scaled Fichera corner Ω = (−L,L)3 \ (0, L)3 with
L = 100 [mm]. The control boundary ΓC is the upper boundary at z = L, and it
coincides with the observation boundary ΓO. The Dirichlet boundary ΓD is located
at the opposite face, i.e., at z = −L, see also Figure 8.1.
We take as material data the relevant parameters from [Neff and Wieners, 2003,
Table 2], i.e.,

elasticity modulus E = 206 900 [N/mm2]

Poisson ratio ν = 0.29

shear modulus µL = E
2 (1+ν) ≈ 80 194 [N/mm2]

dilation modulus λL = E ν
(1+ν)(1−2 ν) ≈ 110 744 [N/mm2]

yield stress σ̃0 = 450
√

2/3 [N/mm2] ≈ 367.42 [N/mm2]

and in addition we choose the

hardening parameter k1 = 100 000 [N/mm2].

Moreover, we use the following data related to the objective in problem (8.1):

desired state ud = (15, 0)> [mm]

coefficient β = 1 [1/mm4]

coefficient ν2 = 10−10 [mm2/N2].

The boundary traction g has [N/mm2] as its unit. The units of the coefficients β and
ν2 are chosen in such a way that the objective J(u, g) becomes dimensionless. In our
calculations, we choose

γ = 104
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Fig. 8.1. Computational domain with the control and observation boundary ΓC = ΓO at z = L
highlighted. The body is clamped at the opposite boundary z = −L.

as the regularization parameter. We use this rather large value of γ in place of a
path-following strategy in this first numerical experiment.

This numerical exercise was solved within the finite element framework FEniCS, see
Logg et al. [2012a]. We formulated the Lagrangian pertaining to (8.1) in the Uni-
fied Form Language Ufl (Alnæs [2012]) and exploited the automatic differentiation
capabilities of the form compiler Ffc (Logg et al. [2012b]) in order to automatically
generate the first-order optimality system, which is similar to (6.1). Minor changes
to (6.1) are necessary due to the changes which led from (4.1) to (8.1).

The optimality system was discretized using vector-valued continuous P1 elements for
the primal and adjoint displacements u andw as well as the control g, while symmetric
matrix-valued and trace free discontinuous P0 elements were used to discretize the
primal and adjoint plastic strains p and r. The quantities % and π were not introduced
as extra variables, cf. (6.1b) and (6.1d). We then used Newton’s method (in the form of
the solve method for a FEniCS nonlinear variational problem) with automatically
generated second-order derivatives to solve the nonlinear optimality system. The
overall algorithm is thus a basic sequential quadratic programming (SQP) approach.

For this study, sparse direct linear algebra was used to solve the arising linear systems.
The uniform tetrahedral mesh has approximately 7 000 nodes, 35 000 cells and the
total number of unknowns is roughly 415 000. Three Newton steps (without global-
ization efforts) were required to solve the system for γ = 104 to reasonable accuracy,
starting from an all-zeros initial guess for u, p, g, w and r. To accelerate the solu-
tion, the built-in MPI-based parallel assembly and solution capabilities of FEniCS
were used to distribute the problem onto 24 cores. The overall wall clock time was
approximately 321 seconds.

Figure 8.2 shows the displacement u obtained at the solution with regularization
parameter γ = 104. The desired state ud is achieved rather closely. Figure 8.2 also
shows the control g, acting on the upper surface. The boundary stresses are in the
range |g| ∈ [0, 2 918] [N/mm2]. Moreover, we show in Figure 8.3 the Frobenius norm
of the deviator of the combined stress σ+χ = C(ε(u)−p)−Hp, compare (7.3a). We
point out that |σD +χD| nearly reaches the upper bound of σ̃0 = 367.4235 [N/mm2].
Figure 8.3 also shows the Frobenius norm of the plastic strain |p|. As expected,
nonzero plastic strains are concentrated in the areas where the stresses are at the
yield stress limit. It is also as expected that these large stresses occur in areas around
the edges leading to the re-entrant corner. All visualizations were done in ParaView.
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Table 8.1 gives some insight into the behavior of the Huber-type regularization. We
see that below γ = 103, the plastic behavior is effectively suppressed, which leads to
a fast convergence of Newton’s method (always from an all-zeros initial guess) within
two steps. Between γ = 103 and γ = 104, we observe the sudden onset of a pronounced
elastoplastic behavior, which is reflected by the behavior of Newton’s method due to
increasing nonlinear effects.

γ Newton deviator distance

100 2 6.3374 · 10−2 3.6736 · 102

101 2 6.3371 · 10−1 3.6679 · 102

102 2 6.3350 · 100 3.6109 · 102

103 2 6.3132 · 101 3.0429 · 102

104 3 3.6742 · 102 4.7411 · 10−6

105 did not converge

Table 8.1
Dependence of number of Newton steps, the value of the deviator sum ‖σD + χD‖L∞(Ω;Q),

and the distance to the dual feasibility constraint σ̃0 − ‖σD + χD‖L∞(Ω;Q) ≥ 0 on the choice of
the regularization parameter γ at fixed discretization level. At γ = 105, Newton’s method no longer
converges from an all-zero initial guess.

It is interesting that the Huber-type regularization of the primal formulation of elasto-
plasticity has the effect that the combined stresses σ+χ in the dual formulation actu-
ally stay below the yield threshold. When one starts with the dual formulation (7.1),
it is natural to employ a penalty-type regularization, which leads to a convergence
of the combined stresses from above. We point out that the penalized dual formula-
tion can be interpreted as an elastoviscoplastic model. A similar interpretation seems
to be lacking in the primal formulation and deserves further investigation. Finally,
we mention that more efficient numerical implementations can be achieved by adap-
tively coupling the regularization and discretization parameters, and by employing
preconditioned iterative solvers for the Newton systems. This is postponed to future
work.

Fig. 8.2. Displacement magnitude |u|, and control g and its magnitude |g| at the solution.

Appendix A. Proof of Lemma 3.2.

Proof. The arguments are classical, cf. e.g. [Han and Reddy, 1999b, Section 8.1].
Nevertheless, we shortly sketch the proof for convenience of the reader. The existence
and uniqueness of solutions for (3.5) is for instance proved in Herzog and Meyer [2011]
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Fig. 8.3. Sum of stress deviators |σD + χD| and plastic strain |p| at the solution.

by standard direct methods of variational calculus. Moreover it is shown in [Herzog
and Meyer, 2011, Lemma A.2] by means of Lagrange duality that the dual problem
of (3.5) is given by∫

Ω

(
ε(û)− p̂

)
: C
(
ε(v − û)− (q − p̂)

)
dx+

∫
Ω

ξ̂ : H(η − ξ̂) dx

+

∫
Ω

sup
(τ ,µ)∈K

(τ : q + µ : η) dx−
∫

Ω

sup
(τ ,µ)∈K

(τ : p̂+ µ : ξ̂) dx

≥ 〈`, v − u〉 for all (v, q,η) ∈ V × S × S, (A.1)

where

û = u, p̂ = ε(u)− C−1σ, and ξ̂ = −H−1χ. (A.2)

Note that the result of [Herzog and Meyer, 2011, Lemma A.2] applies to more general
flow rules with problem (3.5) as a special case. Moreover, we point out that ` was
defined in Herzog and Meyer [2011] with the opposite sign compared to (1.2c), as is
customary for the dual formulation, cf. [Han and Reddy, 1999b, Chapter 8]. When
we test (3.5a) with (τ ,µ) = (ω + σ,χ − ω) and ω ∈ S arbitrary, which is feasible
due to the structure of K, then

H−1χ = C−1σ − ε(u)

is obtained, which in turn implies p̂ = ξ̂. Hence, by choosing η = q in (A.1), we
arrive at

a(Ŵ ,Y − Ŵ ) +

∫
Ω

sup
(τ ,µ)∈K

(τ + µ) : q dx −
∫

Ω

sup
(τ ,µ)∈K

(τ + µ) : p̂ dx

≥ 0 for all Y = (v, q) ∈ V × S (A.3)

with Ŵ = (û, p̂). Since K only involves restrictions on the deviatoric parts of τ and
µ, we find

sup
(τ ,µ)∈K

(τ + µ) : q =∞ for all q ∈ S with trace(q) 6= 0. (A.4)

On the other hand, for all q ∈ S with vanishing trace one obtains

sup
(τ ,µ)∈K

(τ + µ) : q = sup
|τD+µD|≤σ̃0

(τD + µD) : q = σ̃0 |q|. (A.5)
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Now, (A.3)–(A.5) imply that trace(p̂) = 0 holds a.e. in Ω and that Ŵ solves (1.1).
Since the solution of (1.1) is unique, the assertion is proved.

Appendix B. Proof of Theorem 4.2.

Proof. Let us define the nonlinear map Nγ : Z → Z ′ by the left hand side of (4.1b),
i.e.,

〈NγW , Y 〉 := a(W ,Y ) + (hγ(p), q)Ω .

We know from (3.2) and the monotonicity of h that Nγ is strongly monotone, i.e.,

〈Nγ(u1 − u2,p1 − p2), (u1 − u2,p1 − p2)〉 ≥ a
(
‖u1 − u2‖2V + ‖p1 − p2‖2S

)
.

Moreover Nγ is clearly continuous. The Browder-Minty Theorem 3.3 thus shows that
(4.1b) admits a unique solution W = (u,p) ∈ V × Q for every ` ∈ V ′. The inverse
N−1
γ has Lipschitz constant 1/a, independent of γ.

Appendix C. Proof of Theorem 4.3.

Proof. Let ` ∈ V ′ be given and denote by Wγ = (uγ ,pγ) ∈ Z the unique solution of
(4.1b) and by W the unique solution of (1.1). The idea is to estimate

‖W −Wγ‖Z ≤ ‖W − W̃γ‖Z + ‖W̃γ −Wγ‖Z (C.1)

with a suitable intermediate element W̃γ . We choose W̃γ = (ũγ , p̃γ) as the unique
solution to the auxiliary problem

a(W̃γ ,Y ) + σ̃0 γ

∫
Ω

p̃γ : q

max(σ̃0, γ |p̃γ |)
dx = 〈`, v〉 for all Y = (v, q) ∈ Z. (C.2)

The second term above corresponds to the derivative of the convex Huber function
jγ : S → S given by

jγ(p) := σ̃0

∫
Ω

gγ
(
|p|
)
dx

with

gγ : R→ R, gγ(p) :=

{
|p| − σ̃0

2γ , if γ |p| ≥ σ̃0

γ
2 σ̃0
|p|2, if γ |p| ≤ σ̃0.

Existence and uniqueness of a solution to (C.2) can be obtained by the Browder-Minty
Theorem 3.3, using the strong monotonicity of the underlying operator.

Equivalently, equation (C.2) can be written as the following variational inequality

a(W̃γ ,Y − W̃γ) + jγ(q)− jγ(p̃γ) ≥ 〈`, Y − W̃γ〉 for all Y = (v, q) ∈ Z. (C.3)

To estimate the first term on the right hand side of (C.1), we plug in Y = W into
(C.3). Then we plug in Y = W̃γ into (1.1) and subtract the results to obtain

a(W − W̃γ ,W − W̃γ) ≤ j(p̃γ)− j(p) + jγ(p)− jγ(p̃γ).
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0 ≤ j(q)− jγ(q) = σ̃0

∫
Ω

(
|q| − gγ(|q|)

)
dx ≤ |Ω| σ̃

2
0

γ

holds for all q ∈ S, it follows that

a(W − W̃γ ,W − W̃γ) ≤ j(p̃γ)− jγ(p̃γ) ≤ |Ω| σ̃
2
0

γ

and, consequently, the coercivity of a (see (3.2)) yields

‖W − W̃γ‖Z ≤
c
√
γ
→ 0 as γ →∞. (C.4)

To estimate the second term on the right hand side of (C.1) we test both (4.1b) and
(C.2) with Y = Wγ − W̃γ and take their difference. Exploiting again the coercivity
of a we deduce

c ‖Wγ − W̃γ‖2Z ≤ −σ̃0 γ

∫
Ω

(
pγ

mγ(|pγ |)
−

p̃γ
max(σ̃0, γ |p̃γ |)

)
: (pγ − p̃γ) dx.

The monotonicity of S 3 p 7→ p
max(σ̃0,γ |p|) ∈ S implies for the integrand:(

pγ
mγ(|pγ |)

−
p̃γ

max(σ̃0, γ |p̃γ |)

)
: (pγ − p̃γ)

=

(
1

mγ(|pγ |)
− 1

max(σ̃0, γ |pγ |)

)
pγ : (pγ − p̃γ)

+

(
pγ

max(σ̃0, γ |pγ |)
−

p̃γ
max(σ̃0, γ |p̃γ |)

)
: (pγ − p̃γ)

≥
(

1

mγ(|pγ |)
− 1

max(σ̃0, γ |pγ |)

)
pγ : (pγ − p̃γ)

=
max(σ̃0, γ |pγ |)−mγ(|pγ |)
mγ(|pγ |) max(σ̃0, γ |pγ |)

pγ : (pγ − p̃γ)

≥ − 1

2γ

1

max(σ̃0, γ |pγ |)
|pγ |

mγ(|pγ |)
|pγ − p̃γ | by (4.5)

≥ − 1

2γ

1

σ̃0

1

γ
|pγ − p̃γ | by (4.4).

Therefore,

c ‖Wγ − W̃γ‖2Z ≤
1

2γ

∫
Ω

|pγ − p̃γ | dx ≤
|Ω|1/2

2γ
‖Wγ − W̃γ‖Z . (C.5)

From (C.4) and (C.5) the result follows.
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