
CUDA
Simon Green

2

CUDA: Massive Parallelism

GPU is a massively parallel processor
NVIDIA G80: 128 processors
Support thousands of active threads (12,288 on G80)

CUDA provides a programming model that
efficiently exposes this massive parallelism

Simple syntax: minimal extensions to C/C++

Transparent scalability across varying hardware

3

C-Code Example to Add 2 Arrays

nvcc addmatrix.cu -o addmatrixgcc addmatrix.c -o addmatrix

__global__
void addMatrixG(float *a, float *b,

float *c, int N)

{

int i=blockIdx.x*blockDim.x+threadIdx.x;

int j=blockIdx.y*blockDim.y+threadIdx.y;

int index = i + j * N;

if (i < N && j < N)

c[index]= a[index] + b[index];

}

void main()
{

.....
dim3 dimBlk (16,16);
dim3 dimGrd (N/dimBlk.x,N/dimBlk.y);
addMatrixG<<<dimGrd,dimBlk>>>(a,b,c,N);

}

void addMatrixC(float *a, float *b,
float *c, int N)

{
int i, j, index;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
index = i + j * N;
c[index]=a[index] + b[index];

}
}

}

void main()
{

.....
addMatrixC(a,b,c,N);

}

CUDA C programCPU C program

4
4

CUDA Kernels and Threads

Parallel portions of an application are executed on
the device as kernels

One kernel is executed at a time
Many threads execute each kernel

Differences between CUDA and CPU threads
CUDA threads are extremely lightweight

Very little creation overhead
Instant switching

CUDA uses 1000s of threads to achieve efficiency
Multi-core CPUs can use only a few

Definitions:
Device = GPU; Host = CPU
Kernel = function that runs on the device

5
5

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code
Each thread has an ID that it uses to compute memory
addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

6

Thread Cooperation

Threads in the array need not be completely
independent

Thread cooperation is valuable
Share results to save computation
Share memory accesses

Drastic bandwidth reduction

Thread cooperation is a powerful feature of CUDA

7

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 0

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

Divide monolithic thread array into multiple blocks
Threads within a block cooperate via shared memory
Threads in different blocks cannot cooperate

Enables programs to transparently scale to any
number of processors!

76543210 76543210 76543210

8

Transparent Scalability

Hardware is free to schedule thread blocks
on any processor at any time

A kernel scales across any number of parallel
multiprocessors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

9
9

CUDA Programming Model

A kernel is executed by a
grid of thread blocks

A thread block is a batch
of threads that can
cooperate with each
other by:

Sharing data through
shared memory
Synchronizing their
execution

Threads from different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

10
10

Processors execute computing threads
Thread Execution Manager issues threads
128 Thread Processors grouped into 16 multiprocessors (SMs)
Parallel Data Cache enables thread cooperation

G80/G92 Device

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread ProcessorsThread Processors

11
11

Thread and Block IDs

Threads and blocks have IDs
So each thread can decide
what data to work on

Block ID: 1D or 2D
Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data

Image processing
Solving PDEs on volumes

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

12
12

Kernel Memory Access

Registers

Global Memory
Kernel input and output data reside here
Off-chip, large
Uncached

Shared Memory
Shared among threads in a single block
On-chip, small
As fast as registers

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

The host can read & write global memory but not shared memory

13
13

Execution Model

Kernels are launched in grids
One kernel executes at a time

A block executes on one multiprocessor
Does not migrate

Several blocks can reside concurrently on one
multiprocessor

Control limitations (of G8X/G9X GPUs):
At most 8 concurrent blocks per SM
At most 768 concurrent threads per SM

Number is further limited by SM resources
Register file is partitioned among all resident threads
Shared memory is partitioned among all resident thread
blocks

14
14

CUDA Advantages over Legacy GPGPU

Random access byte-addressable memory
Thread can access any memory location

Unlimited access to memory
Thread can read/write as many locations as needed

Shared memory (per block) and thread
synchronization

Threads can cooperatively load data into shared memory
Any thread can then access any shared memory location

Low learning curve
Just a few extensions to C
No knowledge of graphics is required

No graphics API overhead

Programming in CUDA

16

GPU Memory Allocation / Release

cudaMalloc(void ** pointer, size_t nbytes)
cudaMemset(void * pointer, int value, size_t count)
cudaFree(void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc((void**)&d_a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

16

17

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete

cudaMemcpyAsync(..., cudaStream_t streamId)
Host memory must be pinned (allocate with cudaMallocHost)
Returns immediately
doesn’t start copying until previous CUDA calls in stream
streamId or 0 complete

enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

17

18

Executing Code on the GPU

C function with some restrictions
Can only access GPU memory
No variable number of arguments (“varargs”)
No static variables

Must be declared with a qualifier
__global__ : invoked from within host (CPU) code,

cannot be called from device (GPU) code
must return void

__device__ : called from other GPU functions,
cannot be called from host (CPU) code

__host__ : can only be executed by CPU, called from host

__host__ and __device__ qualifiers can be combined
sample use: overloading operators
Compiler will generate both CPU and GPU code

18

19

Launching kernels on GPU

Modified C function call syntax:
kernel<<<dim3 grid, dim3 block, int smem, int stream>>>(…)

Execution Configuration (“<<< >>>”):
grid dimensions: x and y
thread-block dimensions: x, y, and z
shared memory: number of bytes per block for extern
smem variables declared without size

optional, 0 by default

stream ID
optional, 0 by default

dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);

19

20

CUDA Built-in Device Variables

All __global__ and __device__ functions have
access to these automatically defined variables

dim3 gridDim;
Dimensions of the grid in blocks (gridDim.z unused)

dim3 blockDim;
Dimensions of the block in threads

dim3 blockIdx;
Block index within the grid

dim3 threadIdx;
Thread index within the block

21

Minimal Kernels

__global__ void minimal(int* d_a)
{

*d_a = 13;
}

__global__ void assign(int* d_a, int value)
{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

d_a[idx] = value;
}

21

Common Pattern!

22

Minimal Kernel for 2D data

__global__ void assign2D(int* d_a, int w, int h, int value)
{

int iy = blockDim.y * blockIdx.y + threadIdx.y;
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int idx = iy * w + ix;

d_a[idx] = value;
}
...
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

22

23
23

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N)

a[idx] = a[idx] + b;
}

void main()
{

…..
dim3 dimBlock (blocksize);
dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}

24
24

Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

25
25

Example: Host Code
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);

26
26

CUDA Memory Spaces

Each thread can:
Read/write per-thread registers
Read/write per-thread local memory
Read/write per-block shared memory
Read/write per-grid global memory
Read only per-grid constant memory
Read only per-grid texture memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

The host can read/write
global, constant, and texture
memory (stored in DRAM)

27
27

CUDA Memory Spaces
Global and Shared Memory introduced before

Most important, commonly used
Local, Constant, and Texture for convenience/performance

Local: automatic array variables allocated there by compiler
Constant: useful for uniformly-accessed read-only data

Cached (see programming guide)
Texture: useful for spatially coherent random-access read-
only data

Cached (see programming guide)
Provides filtering, address clamping and wrapping

Memory Location Cached Access Scope (“Who?”)
Local Off-chip No Read/write One thread

Shared On-chip N/A Read/write All threads in a block

Global Off-chip No Read/write All threads + host

Constant Off-chip Yes Read All threads + host

Texture Off-chip Yes Read All threads + host

28

Variable Qualifiers (GPU code)

__device__
stored in device memory (large, high latency, no cache)
Allocated with cudaMalloc (__device__ qualifier implied)
accessible by all threads
lifetime: application

__constant__
same as __device__, but cached and read-only by GPU
written by CPU via cudaMemcpyToSymbol(...) call
lifetime: application

__shared__
stored in on-chip shared memory (very low latency)
accessible by all threads in the same thread block
lifetime: kernel launch

Unqualified variables:
scalars and built-in vector types are stored in registers
arrays of more than 4 elements or run-time indices stored in
device memory 28

29
29

Thread Synchronization Function

void __syncthreads();

Synchronizes all threads in a block
Generates barrier synchronization instruction
No thread can pass this barrier until all threads in the
block reach it
Used to avoid RAW / WAR / WAW hazards when
accessing shared memory

Allowed in conditional code only if the conditional is
uniform across the entire thread block

30
30

GPU Atomic Integer Operations

Atomic operations on integers in global memory
Resolve simultaneous operations on a single address by
multiple threads

atomicAdd(d_a, myVal); // all active threads add to d_a

Associative operations on signed/unsigned ints
add, sub, min, max, ...
and, or, xor
Increment, decrement
Exchange, compare and swap

Requires hardware with compute capability 1.1
Compute capability 1.2 adds shared mem atomics

31

Device Management

CPU can query and select GPU devices
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *current_device)
cudaGetDeviceProperties(cudaDeviceProp* prop,

int device)
cudaChooseDevice(int *device, cudaDeviceProp* prop)

Multi-GPU setup:
device 0 is used by default
one CPU thread can control only one GPU

multiple CPU threads can control the same GPU
– calls are serialized by the driver

31

32

CUDA / Graphics Interoperability

CUDA enables buffers from graphics APIs to be
mapped to device pointers for kernel access

CUDA 1.1 has basic interoperability
OpenGL: Buffer Objects (PBOs and VBOs)
DirectX 9: Vertex Buffers (VBs)

CUDA 2.0 will improve DX9 interop
Index Buffers (IBs) and Textures/Surfaces

CUDA 2.0 will add Vista and DX10 support

33

Graphics Interop: OpenGL

Register buffer object (once)

GLuint bufferObj;
cudaGLRegisterBufferObject(bufferObj);

Map bufferObj to device pointer:

float* devPtr;
cudaGLMapBufferObject((void**)&devPtr,

bufferObj);
Unmap: cudaGLUnmapBufferObject()
Unregister: cudaGLUnregisterBufferObject().

34

Graphics Interop: DX9

Initialize/terminate with cudaD3D9Begin()/End()
Below must fall between begin/end pair

Register VB:
LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
cudaD3D9RegisterVertexBuffer(vertexBuffer);

Map VB to __device__ pointer:
float* devPtr;
cudaD3D9MapVertexBuffer((void**)&devPtr,

vertexBuffer);

Unmap: cudaD3D9UnmapVertexBuffer()
Unregister: cudaD3D9UnregisterVertexBuffer()

35
35

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code Virtual

Physical

CPU Code

36
36

NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code

Open64
Generates GPU PTX assembly

Parallel Thread eXecution
(PTX)

Virtual Machine and ISA
Programming model
Execution resources and
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

37

Warps

Instructions are executed one SIMT warp at a time
Warp = 32 threads on current CUDA-capable GPUs
Launching thread blocks whose size is not a multiple of
warp size results in inefficient processor utilization
SIMT = single instruction multiple thread

Divergent branches within a warp cause serialization
If all threads in a warp take the same branch, no extra cost
If threads each take one of two different branches, entire
warp pays cost of both branches of code
If threads take n different branches, entire warp pays cost of
n branches of code

CUDA Performance Strategies

39

Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache
GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly
data transfers

Even low parallelism computations can sometimes be
faster than transferring back and forth to host

40

Optimize Memory Coherence

Coalesced vs. Non-coalesced = order of magnitude
Global/Local device memory

Optimize for spatial locality in cached texture
memory

In shared memory, avoid high-degree bank conflicts

41

Take Advantage of Shared Memory

Hundreds of times faster than global memory
Threads can cooperate via shared memory

Use one / a few threads to load / compute data
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing
Matrix transpose example later

42

Use Parallelism Efficiently

Partition your computation to keep the GPU
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support
multiple active thread blocks per multiprocessor

Registers, shared memory

CUDA Memory Optimizations

44

Memory optimizations

Optimizing memory transfers
Coalescing global memory accesses
Using shared memory effectively

45

Data Transfers

Device memory to host memory bandwidth much
lower than device memory to device bandwidth

4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)
8GB/s for PCI-e 2.0

Minimize transfers
Intermediate data structures can be allocated, operated
on, and deallocated without ever copying them to host
memory

Group transfers
One large transfer much better than many small ones

46

Page-Locked Memory Transfers

cudaMallocHost() allows allocation of page-locked
host memory
Enables highest cudaMemcpy performance

3.2 GB/s+ common on PCI-express (x16)
~4 GB/s measured on nForce 680i motherboards
(overclocked PCI-e)

See the “bandwidthTest” CUDA SDK sample

Use with caution
Allocating too much page-locked memory can reduce
overall system performance
Test your systems and apps to learn their limits

47

Global Memory Reads/Writes

Highest latency instructions: 400-600 clock cycles

Likely to be performance bottleneck

Optimizations can greatly increase performance
Coalescing: up to 10x speedup
Latency hiding: up to 2.5x speedup

48

Coalescing

A coordinated read by a half-warp (16 threads)
A contiguous region of global memory:

64 bytes - each thread reads a word: int, float, …
128 bytes - each thread reads a double-word: int2, float2, …
256 bytes – each thread reads a quad-word: int4, float4, …

Additional restrictions on G8X/G9X architecture:
Starting address for a region must be a multiple of region
size
The kth thread in a half-warp must access the kth element in a
block being read

Exception: not all threads must be participating
Predicated access, divergence within a halfwarp

49

Coalesced Access: Reading floats

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Some Threads Do Not Participate

All threads participate

50

Uncoalesced Access: Reading floats

t0 t1 t2 t14 t15t3

132 136128 140 144

Permuted Access by Threads

184 192188

Misaligned Starting Address (not a multiple of 64)

t0 t1 t2 t13 t15t3

132 136 184 192128 140 144 188

t14

51

Coalescing: Timing Results

Experiment on G80:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access

52

Uncoalesced float3 Code

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;
a.y += 2;
a.z += 2;

d_out[index] = a;
}

53

Uncoalesced Access: float3 Case

float3 is 12 bytes
Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 12
Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3

54

Coalescing float3 Access

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …St
ep

 2
St

ep
 1

…

…

…

Similarly, Step3 starting at offset 512

55

Coalesced Access: float3 Case

Use shared memory to allow coalescing
Need sizeof(float3)*(threads/block) bytes of SMEM
Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)
These will likely be processed by other threads, so sync

Processing
Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)
Use thread ID as index

Rest of the compute code does not change!

56

Coalesced float3 Code
__global__ void accessInt3Shared(float *g_in, float *g_out)
{

int index = 3 * blockIdx.x * blockDim.x + threadIdx.x;
__shared__ float s_data[256*3];
s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];
__syncthreads();
float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;
a.y += 2;
a.z += 2;

((float3*)s_data)[threadIdx.x] = a;
__syncthreads();
g_out[index] = s_data[threadIdx.x];
g_out[index+256] = s_data[threadIdx.x+256];
g_out[index+512] = s_data[threadIdx.x+512];

}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM

57

Coalescing: Timing Results

Experiment:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
4K blocks x 256 threads:

3,302µs – float3 uncoalesced
359µs – float3 coalesced through shared memory

58

Coalescing:
Structures of size ≠ 4, 8, 16 Bytes

Use a Structure of Arrays (SoA) instead of Array of Structures
(AoS)

If SoA is not viable:
Force structure alignment: __align(X), where X = 4, 8, or 16
Use SMEM to achieve coalescing

zyx Point structure

zyx zyx zyx AoS

xxx yyy zzz SoA

59

Coalescing: Summary

Coalescing greatly improves throughput

Critical to memory-bound kernels

Reading structures of size other than 4, 8, or 16
bytes will break coalescing:

Prefer Structures of Arrays over AoS
If SoA is not viable, read/write through SMEM

Additional resources:
Aligned Types SDK Sample

The CUDA Visual Profiler

61

The CUDA Visual Profiler

Helps measure and find potential performance
problem

GPU and CPU timing for all kernel invocations and
memcpys
Time stamps

Access to hardware performance counters

62

Signals
Events are tracked with hardware counters on signals in the chip:

timestamp

gld_incoherent
gld_coherent
gst_incoherent
gst_coherent

local_load
local_store

branch
divergent_branch

instructions – instruction count

warp_serialize – thread warps that serialize on address conflicts to
shared or constant memory

cta_launched – executed thread blocks

Global memory loads/stores are coalesced
(coherent) or non-coalesced (incoherent)

Total branches and divergent branches
taken by threads

Local loads/stores

63

Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps
launched for a particular kernel.
Launch enough thread blocks to ensure that the target
multiprocessor is given a consistent percentage of the total
work.

Values are best used to identify relative performance
differences between unoptimized and optimized code

In other words, try to reduce the magnitudes of
gld/gst_incoherent, divergent_branch, and warp_serialize

64

Parallel Memory Architecture

In a parallel machine, many threads access memory
Therefore, memory is divided into banks
Essential to achieve high bandwidth

Each bank can service one address per cycle
A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

65

Bank Addressing Examples

No Bank Conflicts
Linear addressing
stride == 1

No Bank Conflicts
Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

66

Bank Addressing Examples

2-way Bank Conflicts
Linear addressing
stride == 2

8-way Bank Conflicts
Linear addressing
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

67

How addresses map to banks on G80

Bandwidth of each bank is 32 bits per 2 clock cycles
Successive 32-bit words are assigned to successive
banks
G80 has 16 banks

So bank = address % 16
Same as the size of a half-warp

No bank conflicts between different half-warps, only within a single half-warp

68

Shared memory bank conflicts

Shared memory is as fast as registers if there are
no bank conflicts

The fast case:
If all threads of a half-warp access different banks, there is
no bank conflict
If all threads of a half-warp read the identical address,
there is no bank conflict (broadcast)

The slow case:
Bank Conflict: multiple threads in the same half-warp
access the same bank
Must serialize the accesses
Cost = max # of simultaneous accesses to a single bank

Optimization Example: Matrix Transpose

70

Matrix Transpose

SDK Sample (“transpose”)
Illustrates:

Coalescing
Avoiding SMEM bank conflicts
Speedups for even small matrices

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

71

Uncoalesced Transpose

__global__ void transpose_naive(float *odata, float *idata, int width, int height)
{

unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

if (xIndex < width && yIndex < height)
{

unsigned int index_in = xIndex + width * yIndex;
unsigned int index_out = yIndex + height * xIndex;
odata[index_out] = idata[index_in];

}
}

1.
2.

3.

4.
5.
6.

72

Uncoalesced Transpose

Reads input from GMEM

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

Write output to GMEM

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

Stride = 16, uncoalesced

GMEMGMEM

Stride = 1, coalesced

73

Coalesced Transpose

Assumption: matrix is partitioned into square tiles
Threadblock (bx, by):

Read the (bx,by) input tile, store into SMEM
Write the SMEM data to (by,bx) output tile

Transpose the indexing into SMEM

Thread (tx,ty):
Reads element (tx,ty) from input tile
Writes element (tx,ty) into output tile

Coalescing is achieved if:
Block/tile dimensions are multiples of 16

74

Coalesced Transpose

Writes to GMEMReads from SMEM

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

Writes to SMEMReads from GMEM

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

75

SMEM Optimization

Threads read SMEM with stride = 16
Bank conflicts

Reads from SMEM

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

Solution
Allocate an “extra” column
Read stride = 17
Threads read from consecutive banks

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

76

Coalesced Transpose
__global__ void transpose(float *odata, float *idata, int width, int height)
{

__shared__ float block[(BLOCK_DIM+1)*BLOCK_DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;
unsigned int yBlock = blockDim.y * blockIdx.y;
unsigned int xIndex = xBlock + threadIdx.x;
unsigned int yIndex = yBlock + threadIdx.y;
unsigned int index_out, index_transpose;

if (xIndex < width && yIndex < height)
{

unsigned int index_in = width * yIndex + xIndex;
unsigned int index_block = threadIdx.y * (BLOCK_DIM+1) + threadIdx.x;
block[index_block] = idata[index_in];
index_transpose = threadIdx.x * (BLOCK_DIM+1) + threadIdx.y;
index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}
__syncthreads();

if (xIndex < width && yIndex < height)
odata[index_out] = block[index_transpose];

}

1.

2.
3.
4.
5.
6.

7.

8.
9.

10.
11.
12.

13.

14.
15.

77

Transpose Timings

Speedups with coalescing and SMEM optimization:
128x128: 0.011ms vs. 0.022ms (2.0X speedup)
512x512: 0.07ms vs. 0.33ms (4.5X speedup)

1024x1024: 0.30ms vs. 1.92ms (6.4X speedup)
1024x2048: 0.79ms vs. 6.6ms (8.4X speedup)

Coalescing without SMEM optimization:
128x128: 0.014ms
512x512: 0.101ms

1024x1024: 0.412ms
1024x2048: 0.869ms

Execution Configuration Optimizations

79

Occupancy

Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

Limited by resource usage:
Registers
Shared memory

80

Grid/Block Size Heuristics

of blocks > # of multiprocessors
So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2
Multiple blocks can run concurrently in a multiprocessor
Blocks that aren’t waiting at a __syncthreads() keep the
hardware busy
Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices
Blocks executed in pipeline fashion
1000 blocks per grid will scale across multiple generations

81

Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~22 cycles later
Scenarios:CUDA: PTX:

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy
Threads do not have to belong to the same thread block

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

82

Register Pressure

Hide latency by using more threads per SM
Limiting Factors:

Number of registers per kernel
8192 per SM, partitioned among concurrent threads

Amount of shared memory
16KB per SM, partitioned among concurrent threadblocks

Check .cubin file for # registers / kernel
Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel
At some point “spilling” into LMEM may occur

Reduces performance – LMEM is slow
Check .cubin file for LMEM usage

83

Determining resource usage
Use “–ptxoptions=-v” option to nvcc
Or, compile the kernel code with the -cubin flag to
determine register usage.
Open the .cubin file with a text editor and look for
the “code” section.

architecture {sm_10}
abiversion {0}
modname {cubin}
code {

name = BlackScholesGPU
lmem = 0
smem = 68
reg = 20
bar = 0
bincode {

0xa0004205 0x04200780 0x40024c09 0x00200780
…

per thread local memory

per thread block shared memory

per thread registers

84

CUDA Occupancy Calculator

85

Optimizing threads per block
Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps
More threads per block == better memory latency
hiding
But, more threads per block == fewer registers per
thread

Kernel invocations can fail if too many registers are used
Heuristics

Minimum: 64 threads per block
Only if multiple concurrent blocks

192 or 256 threads a better choice
Usually still enough regs to compile and invoke successfully

This all depends on your computation, so expriment!

86

Occupancy != Performance

Increasing occupancy does not necessarily
increase performance

BUT…

Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available
parallelism)

87

Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
of multiprocessors
Memory bandwidth
Shared memory size
Register file size
Threads per block

You can even make apps self-tuning (like FFTW and
ATLAS)

“Experiment” mode discovers and saves optimal
configuration

88

Conclusion
Understand CUDA performance characteristics

Memory coalescing
Divergent branching
Bank conflicts
Latency hiding

Use peak performance metrics to guide optimization
Understand parallel algorithm complexity theory
Know how to identify type of bottleneck

e.g. memory, core computation, or instruction overhead
Optimize your algorithm, then unroll loops
Use template parameters to generate optimal code

89

Questions?

http://developer.nvidia.com/

Extras

91
91

Built-in Vector Types

Can be used in GPU and CPU code

[u]char[1..4], [u]short[1..4], [u]int[1..4],
[u]long[1..4], float[1..4]

Structures accessed with x, y, z, w fields:
uint4 param;
int y = param.y;

dim3
Based on uint3

Used to specify dimensions
Default value (1,1,1)

92

Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be
consumed only by CUDA calls from the same CPU
thread

Violation Example:
CPU thread 2 allocates GPU memory, stores address in p
thread 3 issues a CUDA call that accesses memory via p

92

93

CUDA Error Reporting to CPU

All CUDA calls return error code:
except for kernel launches
cudaError_t type

cudaError_t cudaGetLastError(void)
returns the code for the last error (no error has a code)

char* cudaGetErrorString(cudaError_t code)
returns a null-terminted character string describing the
error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));

93

94

Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately
kernel executes after all previous CUDA calls have
completed

cudaMemcpy is synchronous
control returns to CPU after copy completes
copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

Async API provides:
GPU CUDA-call streams
non-blocking cudaMemcpyAsync

94

95

CUDA Event API

Events are inserted (recorded) into CUDA call streams
Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed
asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

95

96
96

Compilation

Any source file containing CUDA language
extensions must be compiled with nvcc
NVCC is a compiler driver

Works by invoking all the necessary tools and compilers
like cudacc, g++, cl, ...

NVCC can output:
Either C code (CPU Code)

That must then be compiled with the rest of the application using another tool

Or PTX object code directly
An executable with CUDA code requires:

The CUDA core library (cuda)
The CUDA runtime library (cudart)

(only if runtime API is used)
loads cuda library

97

Asynchronous memory copy

Asynchronous host device memory copy for
page-locked memory frees up CPU on all CUDA
capable devices

Overlap implemented by using a CUDA stream

CUDA Stream = Sequence of CUDA operations that
execute in order

Stream API:
Each stream has an ID: 0 = default stream
cudaMemcpyAsync(dst, src, size, 0);

98

Overlap kernel and memory copy

Concurrent execution of a kernel and a host
device memory copy for page-locked memory

Compute capability >= 1.1 (G84 and up)
Available as a preview feature in CUDA 1.1
Overlaps kernel execution in one stream with a memory
copy from another stream

Stream API:
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, stream1);
kernel<<<grid, block, 0, stream2>>>(…);
cudaStreamQuery(stream2);

overlapped

99

Global and Shared Memory

Global memory not cached on G8x GPUs
High latency, but running many threads hides latency
Important to minimize accesses
Coalesce global memory accesses (more later)

Shared memory is on-chip, very high bandwidth
Low latency
Like a user-managed per-multiprocessor cache
Try to minimize or avoid bank conflicts (more later)

100

Texture and Constant Memory

Texture partition is cached
Uses the texture cache also used for graphics
Optimized for 2D spatial locality
Best performance when threads of a warp read locations
that are close together in 2D

Constant memory is cached
4 cycles per address read within a single warp

Total cost 4 cycles if all threads in a warp read same address
Total cost 64 cycles if all threads read different addresses

101

Profiler demo

	CUDA
	CUDA: Massive Parallelism
	C-Code Example to Add 2 Arrays
	Thread Cooperation
	Thread Blocks: Scalable Cooperation
	Transparent Scalability
	Programming in CUDA
	CUDA Built-in Device Variables
	CUDA / Graphics Interoperability
	Graphics Interop: OpenGL
	Graphics Interop: DX9
	Warps
	CUDA Performance Strategies
	CUDA Memory Optimizations
	Memory optimizations
	Coalescing:�Structures of size ≠ 4, 8, 16 Bytes
	Coalescing: Summary
	The CUDA Visual Profiler
	The CUDA Visual Profiler
	Signals
	Interpreting profiler counters
	Optimization Example: Matrix Transpose
	Execution Configuration Optimizations
	Occupancy
	Grid/Block Size Heuristics
	Register Dependency
	Register Pressure
	Determining resource usage
	CUDA Occupancy Calculator
	Optimizing threads per block
	Occupancy != Performance
	Parameterize Your Application
	Questions?
	Extras
	Asynchronous memory copy
	Overlap kernel and memory copy
	Global and Shared Memory
	Texture and Constant Memory
	Profiler demo

