

MIDIA.

CUDA

Simon Green

CUDA: Massive Parallelism

- GPU is a massively parallel processor
 - NVIDIA G80: 128 processors
 - Support thousands of active threads (12,288 on G80)
- CUDA provides a programming model that efficiently exposes this massive parallelism
- Simple syntax: minimal extensions to C/C++
- Transparent scalability across varying hardware

C-Code Example to Add 2 Arrays

CPU C program

```
void addMatrixC(float *a, float *b,
                float *c, int N)
  int i, j, index;
  for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
      index = i + j * N;
      c[index]=a[index] + b[index];
void main()
  addMatrixC(a,b,c,N);
```

CUDA C program

```
qlobal
void addMatrixG(float *a, float *b,
                float *c, int N)
  int i=blockIdx.x*blockDim.x+threadIdx.x;
  int j=blockIdx.y*blockDim.y+threadIdx.y;
  int index = i + j * N;
  if (i < N \&\& j < N)
    c[index] = a[index] + b[index];
void main()
  dim3 dimBlk (16,16);
  dim3 dimGrd (N/dimBlk.x,N/dimBlk.y);
  addMatrixG<<<dimGrd,dimBlk>>>(a,b,c,N);
```

CUDA Kernels and Threads

- Parallel portions of an application are executed on the device as kernels
 - One kernel is executed at a time
 - Many threads execute each kernel
- Differences between CUDA and CPU threads
 - CUDA threads are extremely lightweight
 - Very little creation overhead Instant switching
 - CUDA uses 1000s of threads to achieve efficiency
 - Multi-core CPUs can use only a few

Definitions:

Device = GPU; Host = CPU

Kernel = function that runs on the device

Arrays of Parallel Threads

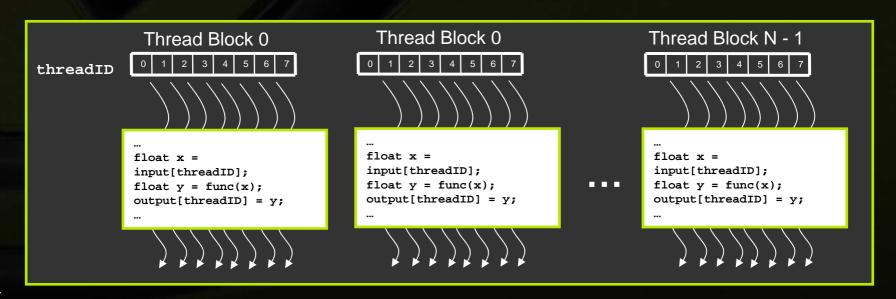
- A CUDA kernel is executed by an array of threads
 - All threads run the same code
 - Each thread has an ID that it uses to compute memory addresses and make control decisions

Thread Cooperation

- Threads in the array need not be completely independent
- Thread cooperation is valuable
 - Share results to save computation
 - Share memory accesses
 - Drastic bandwidth reduction
- Thread cooperation is a powerful feature of CUDA

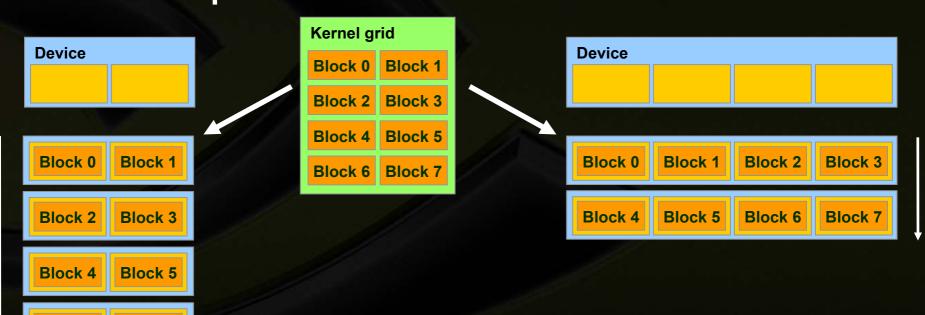
Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via shared memory
 - Threads in different blocks cannot cooperate
- Enables programs to transparently scale to any number of processors!



Transparent Scalability

- Hardware is free to schedule thread blocks on any processor at any time
 - A kernel scales across any number of parallel multiprocessors



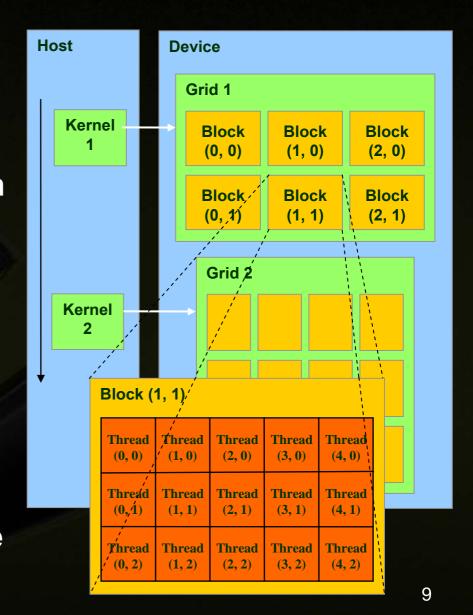
Block 6

Block 7

CUDA Programming Model

A kernel is executed by a grid of thread blocks

- A thread block is a batch of threads that can cooperate with each other by:
 - Sharing data through shared memory
 - Synchronizing their execution
- Threads from different blocks cannot cooperate

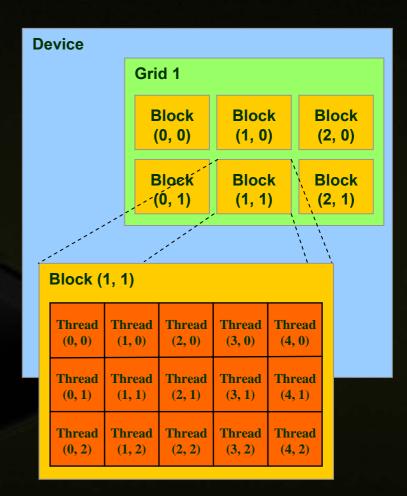


G80/G92 Device

- Processors execute computing threads
- Thread Execution Manager issues threads
- 128 Thread Processors grouped into 16 multiprocessors (SMs)
- Parallel Data Cache enables thread cooperation

Thread and Block IDs

- Threads and blocks have IDs
 - So each thread can decide what data to work on
- Block ID: 1D or 2D
- Thread ID: 1D, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes



Kernel Memory Access

- Registers
- Global Memory
 - Kernel input and output data reside here
 - Off-chip, large
 - Uncached
- Shared Memory
 - Shared among threads in a single block
 - On-chip, small
 - As fast as registers

Block (0, 0)

Shared Memory

Registers

Registers

Registers

Thread (0, 0)

Thread (1, 0)

Global
Memory

The host can read & write global memory but not shared memory

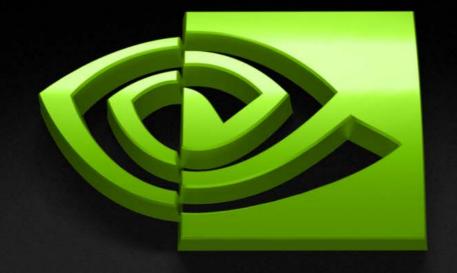
Host

Execution Model

- Kernels are launched in grids
 - One kernel executes at a time
- A block executes on one multiprocessor
 - Does not migrate
- Several blocks can reside concurrently on one multiprocessor
 - Control limitations (of G8X/G9X GPUs):
 - At most 8 concurrent blocks per SM
 - At most 768 concurrent threads per SM
 - Number is further limited by SM resources
 - Register file is partitioned among all resident threads
 - Shared memory is partitioned among all resident thread blocks

CUDA Advantages over Legacy GPGPU

- Random access byte-addressable memory
 - Thread can access any memory location
- Unlimited access to memory
 - Thread can read/write as many locations as needed
- Shared memory (per block) and thread synchronization
 - Threads can cooperatively load data into shared memory
 - Any thread can then access any shared memory location
- Low learning curve
 - Just a few extensions to C
 - No knowledge of graphics is required
- No graphics API overhead



MIDIA.

Programming in CUDA

GPU Memory Allocation / Release

- cudaMalloc(void ** pointer, size_t nbytes)
- cudaMemset(void * pointer, int value, size_t count)
- cudaFree(void* pointer)

```
int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
```

Data Copies

- cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);
 - direction specifies locations (host or device) of src and dst
 - Blocks CPU thread: returns after the copy is complete
 - Doesn't start copying until previous CUDA calls complete
- cudaMemcpyAsync(..., cudaStream_t streamId)
 - Host memory must be pinned (allocate with cudaMallocHost)
 - Returns immediately
 - doesn't start copying until previous CUDA calls in stream streamId or 0 complete
- enum cudaMemcpyKind
 - cudaMemcpyHostToDevice
 - cudaMemcpyDeviceToHost
 - cudaMemcpyDeviceToDevice

Executing Code on the GPU

- C function with some restrictions
 - Can only access GPU memory
 - No variable number of arguments ("varargs")
 - No static variables
- Must be declared with a qualifier
 - __global__ : invoked from within host (CPU) code, cannot be called from device (GPU) code must return void
 - __device__ : called from other GPU functions, cannot be called from host (CPU) code
 - host : can only be executed by CPU, called from host
 - host and device qualifiers can be combined
 - sample use: overloading operators
 - Compiler will generate both CPU and GPU code

Launching kernels on GPU

Modified C function call syntax:

```
kernel << < dim3 grid, dim3 block, int smem, int stream >>> (...)
```

- Execution Configuration ("<<< >>>"):
 - grid dimensions: x and y
 - thread-block dimensions: x, y, and z
 - shared memory: number of bytes per block for extern smem variables declared without size
 - optional, 0 by default
 - stream ID
 - optional, 0 by default

```
dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);
```

CUDA Built-in Device Variables

- All __global__ and __device__ functions have access to these automatically defined variables
 - dim3 gridDim;
 - Dimensions of the grid in blocks (gridDim.z unused)
 - dim3 blockDim;
 - Dimensions of the block in threads
 - dim3 blockIdx;
 - Block index within the grid
 - dim3 threadIdx;
 - Thread index within the block

Minimal Kernels


```
global void minimal (int* d a)
*d a = 13;
global void assign( int* d_a, int value)
int idx = blockDim.x * blockldx.x + threadldx.x;
 d_a[idx] = value;
                                 Common Pattern!
```

Minimal Kernel for 2D data


```
global void assign2D(int* d_a, int w, int h, int value)
   int iy = blockDim.y * blockldx.y + threadldx.y;
   int ix = blockDim.x * blockldx.x + threadldx.x;
   int idx = iy * w + ix;
   d a[idx] = value;
}
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);
```

Example: Increment Array Elements

CPU program

```
void increment_cpu(float *a, float b, int N)
{
    for (int idx = 0; idx<N; idx++)
        a[idx] = a[idx] + b;
}

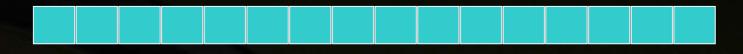
void main()
{
    .....
    increment_cpu(a, b, N);</pre>
```

CUDA program

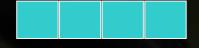
```
_global___ void increment_gpu(float *a, float b, int N)
     int idx = blockldx.x * blockDim.x + threadldx.x;
     if (idx < N)
          a[idx] = a[idx] + b;
void main()
     dim3 dimBlock (blocksize);
     dim3 dimGrid( ceil( N / (float)blocksize) );
     increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
```

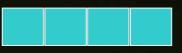
Example: Increment Array Elements

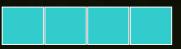
Increment N-element vector a by scalar b



Let's assume N=16, blockDim=4 -> 4 blocks







blockldx.x=0 blockDim.x=4 threadldx.x=0,1,2,3 idx=0,1,2,3 blockldx.x=1 blockDim.x=4 threadldx.x=0,1,2,3 idx=4,5,6,7

blockldx.x=2 blockDim.x=4 threadldx.x=0,1,2,3 idx=8,9,10,11

blockldx.x=3 blockDim.x=4 threadldx.x=0,1,2,3 idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

Example: Host Code


```
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h A = (float*) malloc(numBytes);
// allocate device memory
float* d A = 0;
cudaMalloc((void**)&d A, numbytes);
// copy data from host to device
cudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice);
// execute the kernel
increment gpu<<< N/blockSize, blockSize>>>(d A, b);
// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);
// free device memory
cudaFree(d_A);
```

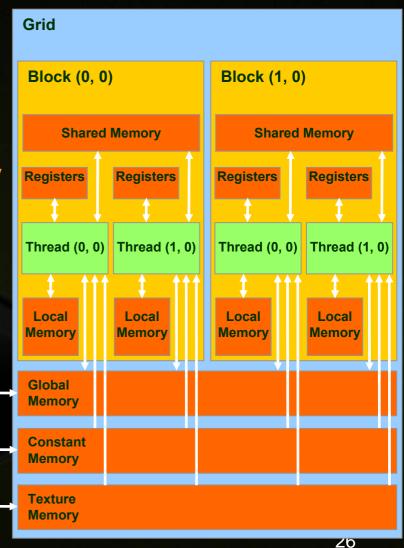
CUDA Memory Spaces

- Each thread can:
 - Read/write per-thread registers
 - Read/write per-thread local memory
 - Read/write per-block shared memory
 - Read/write per-grid global memory
 - Read only per-grid constant memory

Host

Read only per-grid texture memory

The host can read/write global, constant, and texture memory (stored in DRAM)



CUDA Memory Spaces

- Global and Shared Memory introduced before
 - Most important, commonly used
- Local, Constant, and Texture for convenience/performance
 - Local: automatic array variables allocated there by compiler
 - Constant: useful for uniformly-accessed read-only data
 - Cached (see programming guide)
 - Texture: useful for spatially coherent random-access readonly data
 - Cached (see programming guide)
 - Provides filtering, address clamping and wrapping

Memory	Location	Cached	Access	Scope ("Who?")
Local	Off-chip	No	Read/write	One thread
Shared	On-chip	N/A	Read/write	All threads in a block
Global	Off-chip	No	Read/write	All threads + host
Constant	Off-chip	Yes	Read	All threads + host
Texture	Off-chip	Yes	Read	All threads + host 27

Variable Qualifiers (GPU code)

28

- device__
 - stored in device memory (large, high latency, no cache)
 - Allocated with cudaMalloc (__device__ qualifier implied)
 - accessible by all threads
 - lifetime: application
- __constant_
 - same as __device__, but cached and read-only by GPU
 - written by CPU via cudaMemcpyToSymbol(...) call
 - lifetime: application
- shared
 - stored in on-chip shared memory (very low latency)
 - accessible by all threads in the same thread block
 - lifetime: kernel launch
- Unqualified variables:
 - scalars and built-in vector types are stored in registers
 - arrays of more than 4 elements or run-time indices stored in device memory

Thread Synchronization Function

- void __syncthreads();
- Synchronizes all threads in a block
 - Generates barrier synchronization instruction
 - No thread can pass this barrier until all threads in the block reach it
 - Used to avoid RAW / WAR / WAW hazards when accessing shared memory
- Allowed in conditional code only if the conditional is uniform across the entire thread block

GPU Atomic Integer Operations

- Atomic operations on integers in global memory
 - Resolve simultaneous operations on a single address by multiple threads

atomicAdd(d_a, myVal); // all active threads add to d_a

- Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap
- Requires hardware with compute capability 1.1
 - Compute capability 1.2 adds shared mem atomics

Device Management

- CPU can query and select GPU devices
 - cudaGetDeviceCount(int *count)
 - cudaSetDevice(int device)
 - cudaGetDevice(int *current_device)
 - cudaGetDeviceProperties(cudaDeviceProp* prop, int device)
 - cudaChooseDevice(int *device, cudaDeviceProp* prop)
- Multi-GPU setup:
 - device 0 is used by default
 - one CPU thread can control only one GPU
 - multiple CPU threads can control the same GPU
 - calls are serialized by the driver

CUDA / Graphics Interoperability

- CUDA enables buffers from graphics APIs to be mapped to device pointers for kernel access
- CUDA 1.1 has basic interoperability
 - OpenGL: Buffer Objects (PBOs and VBOs)
 - DirectX 9: Vertex Buffers (VBs)
- CUDA 2.0 will improve DX9 interop
 - Index Buffers (IBs) and Textures/Surfaces
- CUDA 2.0 will add Vista and DX10 support

Graphics Interop: OpenGL

Register buffer object (once)

```
GLuint bufferObj;
cudaGLRegisterBufferObject(bufferObj);
```

Map bufferObj to device pointer:

- Unmap: cudaGLUnmapBufferObject()
- Unregister: cudaGLUnregisterBufferObject().

Graphics Interop: DX9

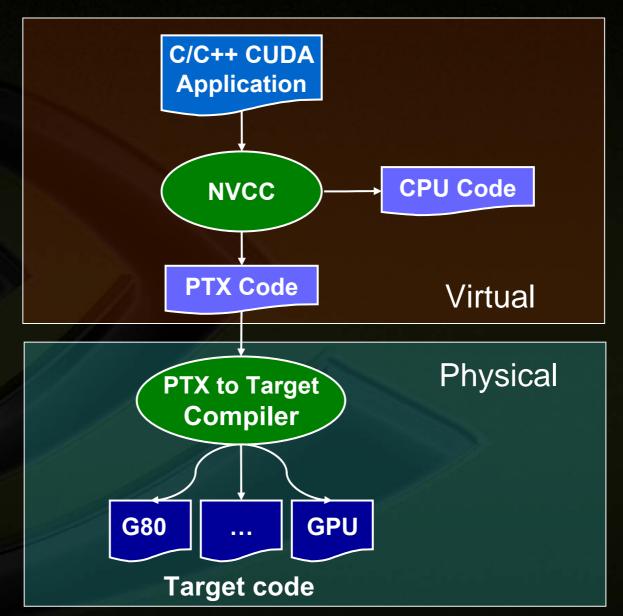
- Initialize/terminate with cudaD3D9Begin()/End()
 - Below must fall between begin/end pair
- Register VB:

```
LPDIRECT3DVERTEXBUFFER9 vertexBuffer;
cudaD3D9RegisterVertexBuffer(vertexBuffer);
```

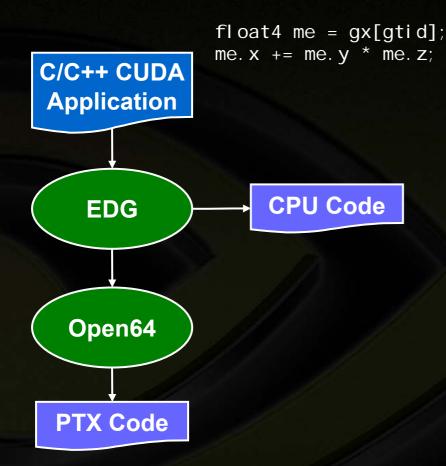
Map VB to __device__ pointer:

- Unmap: cudaD3D9UnmapVertexBuffer()
- Unregister: cudaD3D9UnregisterVertexBuffer()

Compiling CUDA



NVCC & PTX Virtual Machine



- EDG
 - Separate GPU vs. CPU code
- Open64
 - Generates GPU PTX assembly
- Parallel Thread eXecution (PTX)
 - Virtual Machine and ISA
 - Programming model
 - Execution resources and state

I d. gl obal . v4. f32 {\$f1, \$f3, \$f5, \$f7}, [\$r9+0]; mad. f32 \$f1, \$f5, \$f3, \$f1;

Warps

- Instructions are executed one SIMT warp at a time
 - Warp = 32 threads on current CUDA-capable GPUs
 - Launching thread blocks whose size is not a multiple of warp size results in inefficient processor utilization
 - SIMT = single instruction multiple thread
- Divergent branches within a warp cause serialization
 - If all threads in a warp take the same branch, no extra cost
 - If threads each take one of two different branches, entire warp pays cost of both branches of code
 - If threads take n different branches, entire warp pays cost of n branches of code

MIDIA.

CUDA Performance Strategies

Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache
 - GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host

Optimize Memory Coherence

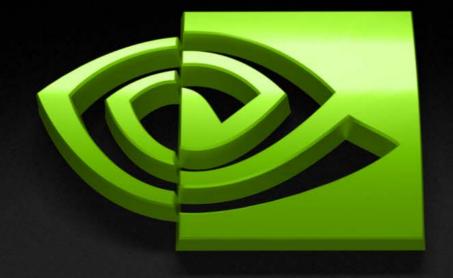
- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
- Optimize for spatial locality in cached texture memory
- In shared memory, avoid high-degree bank conflicts

Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing
 - Matrix transpose example later

Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory



MIDIA.

CUDA Memory Optimizations

Memory optimizations

- Optimizing memory transfers
- Coalescing global memory accesses
- Using shared memory effectively

Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)
 - 8GB/s for PCI-e 2.0
- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory
- Group transfers
 - One large transfer much better than many small ones

Page-Locked Memory Transfers

- cudaMallocHost() allows allocation of page-locked host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s+ common on PCI-express (x16)
 - ~4 GB/s measured on nForce 680i motherboards (overclocked PCI-e)
- See the "bandwidthTest" CUDA SDK sample
- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits

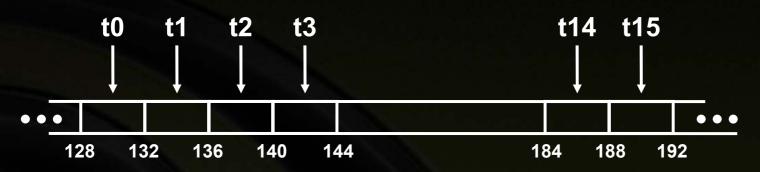
Global Memory Reads/Writes

- Highest latency instructions: 400-600 clock cycles
- Likely to be performance bottleneck
- Optimizations can greatly increase performance
 - Coalescing: up to 10x speedup
 - Latency hiding: up to 2.5x speedup

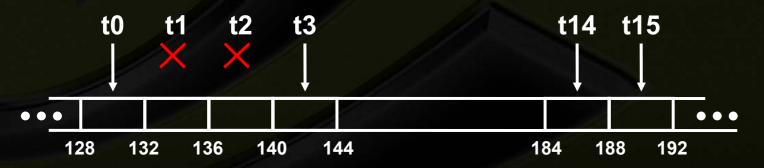
Coalescing

- A coordinated read by a half-warp (16 threads)
- A contiguous region of global memory:
 - 64 bytes each thread reads a word: int, float, ...
 - 128 bytes each thread reads a double-word: int2, float2, ...
 - 256 bytes each thread reads a quad-word: int4, float4, ...
- Additional restrictions on G8X/G9X architecture:
 - Starting address for a region must be a multiple of region size
 - The kth thread in a half-warp must access the kth element in a block being read
- Exception: not all threads must be participating
 - Predicated access, divergence within a halfwarp

Coalesced Access: Reading floats

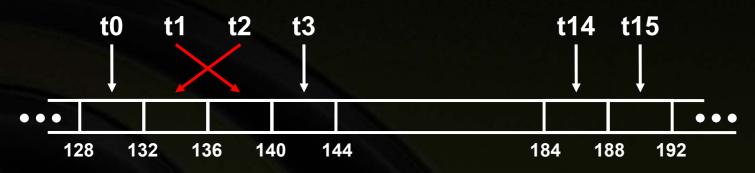


All threads participate

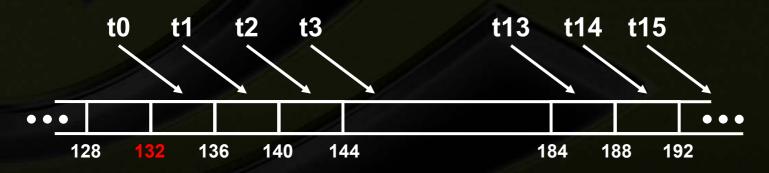


Some Threads Do Not Participate

Uncoalesced Access: Reading floats



Permuted Access by Threads



Misaligned Starting Address (not a multiple of 64)

Coalescing: Timing Results

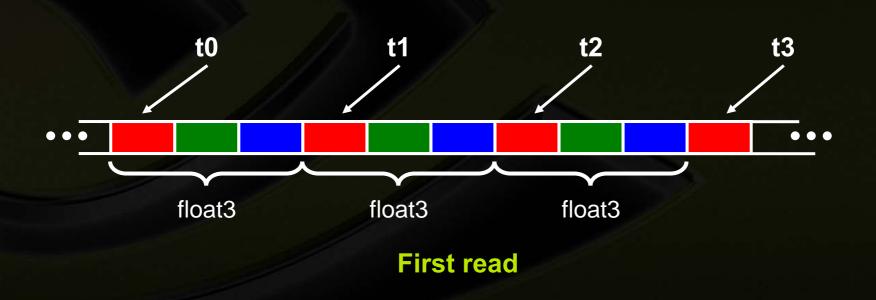
- Experiment on G80:
 - Kernel: read a float, increment, write back
 - 3M floats (12MB)
 - Times averaged over 10K runs
- 12K blocks x 256 threads:
 - 356µs coalesced
 - 357μs coalesced, some threads don't participate
 - **◎ 3,494µs permuted/misaligned thread access**

Uncoalesced float3 Code

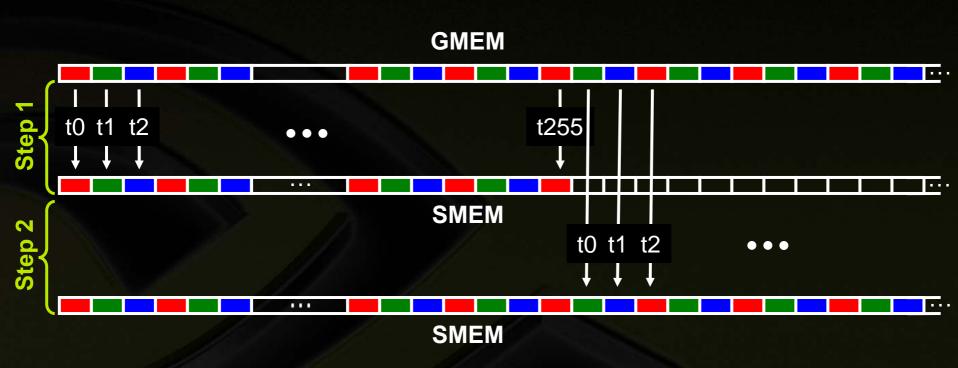

```
global void accessFloat3(float3 *d_in, float3 d_out)
int index = blockldx.x * blockDim.x + threadldx.x;
float3 a = d_in[index];
a.x += 2;
a.y += 2;
a.z += 2;
d_out[index] = a;
```

Uncoalesced Access: float3 Case

- float3 is 12 bytes
- Each thread ends up executing 3 reads
 - sizeof(float3) ≠ 4, 8, or 12
 - Half-warp reads three 64B non-contiguous regions



Coalescing float3 Access



Similarly, Step3 starting at offset 512

Coalesced Access: float3 Case

- Use shared memory to allow coalescing
 - Need sizeof(float3)*(threads/block) bytes of SMEM
 - Each thread reads 3 scalar floats:
 - Offsets: 0, (threads/block), 2*(threads/block)
 - These will likely be processed by other threads, so sync
- Processing
 - Each thread retrieves its float3 from SMEM array
 - Cast the SMEM pointer to (float3*)
 - Use thread ID as index
 - Rest of the compute code does not change!

Coalesced float3 Code


```
<u>_global___</u> void accessInt3Shared(float *g_in, float *g_out)
                     int index = 3 * blockldx.x * blockDim.x + threadldx.x;
                     shared__ float s_data[256*3];
                     s_data[threadldx.x] = g_in[index];
Read the input
                     s_data[threadIdx.x+256] = g_in[index+256];
through SMEM
                     s_data[threadIdx.x+512] = g_in[index+512];
                     __syncthreads();
                     float3 a = ((float3*)s_data)[threadIdx.x];
                     a.x += 2;
Compute code
                     a.y += 2;
is not changed
                     a.z += 2;
                     ((float3*)s_data)[threadldx.x] = a;
                       _syncthreads();
Write the result
                     g_out[index] = s_data[threadldx.x];
through SMEM
                     g_out[index+256] = s_data[threadIdx.x+256];
                     g_out[index+512] = s_data[threadldx.x+512];
```

Coalescing: Timing Results

- Experiment:
 - Kernel: read a float, increment, write back
 - 3M floats (12MB)
 - Times averaged over 10K runs
- 12K blocks x 256 threads:
 - 356µs coalesced
 - 357µs coalesced, some threads don't participate
 - **3,494**µs permuted/misaligned thread access
- 4K blocks x 256 threads:
 - 3,302µs float3 uncoalesced
 - 359µs float3 coalesced through shared memory

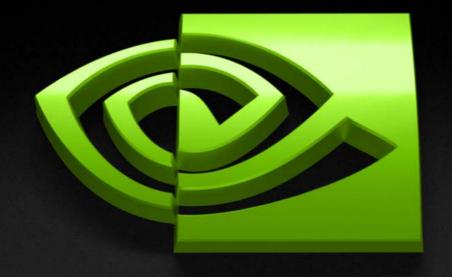
Coalescing: Structures of size ≠ 4, 8, 16 Bytes

- Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)
- If SoA is not viable:
 - Force structure alignment: __align(X), where X = 4, 8, or 16
 - Use SMEM to achieve coalescing



Coalescing: Summary

- Coalescing greatly improves throughput
- Critical to memory-bound kernels
- Reading structures of size other than 4, 8, or 16 bytes will break coalescing:
 - Prefer Structures of Arrays over AoS
 - If SoA is not viable, read/write through SMEM
- Additional resources:
 - Aligned Types SDK Sample

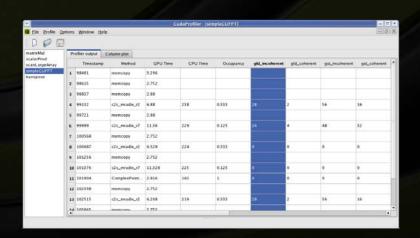


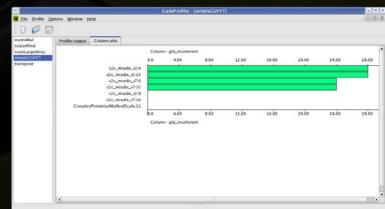
MIDIA

The CUDA Visual Profiler

The CUDA Visual Profiler

- Helps measure and find potential performance problem
 - GPU and CPU timing for all kernel invocations and memcpys
 - Time stamps
- Access to hardware performance counters





Signals

- Events are tracked with hardware counters on signals in the chip:
 - timestamp
 - gld_incoherent
 - gld_coherent
 - gst incoherent
 - gst_coherent
 - local load
 - local_store
 - branch
 - divergent_branch

Global memory loads/stores are coalesced (coherent) or non-coalesced (incoherent)

Local loads/stores

Total branches and divergent branches taken by threads

- instructions instruction count
- warp_serialize thread warps that serialize on address conflicts to shared or constant memory
- cta_launched executed thread blocks

Interpreting profiler counters

- Values represent events within a thread warp
- Only targets one multiprocessor
 - Values will not correspond to the total number of warps launched for a particular kernel.
 - Launch enough thread blocks to ensure that the target multiprocessor is given a consistent percentage of the total work.
- Values are best used to identify relative performance differences between unoptimized and optimized code
 - In other words, try to reduce the magnitudes of gld/gst_incoherent, divergent_branch, and warp_serialize

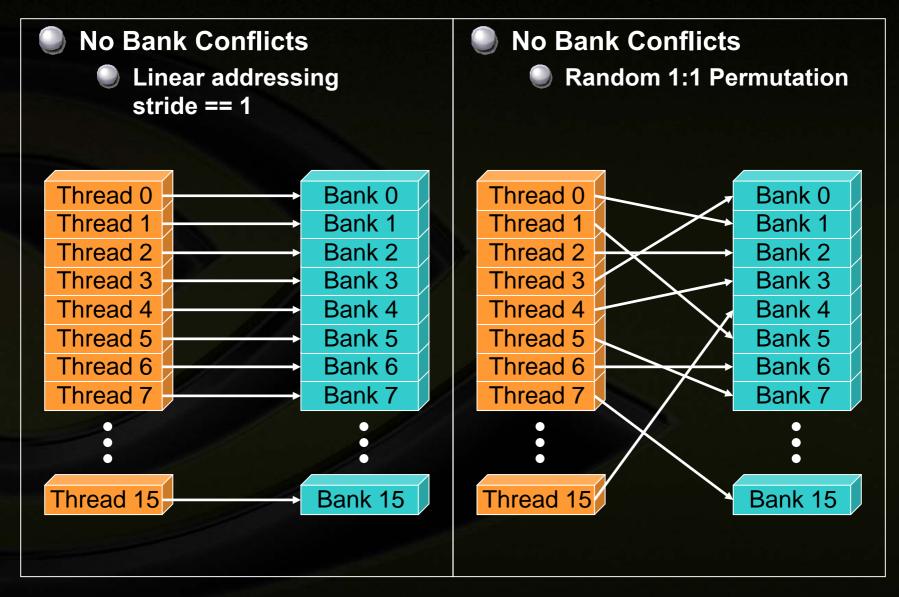
Parallel Memory Architecture

- In a parallel machine, many threads access memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth
- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

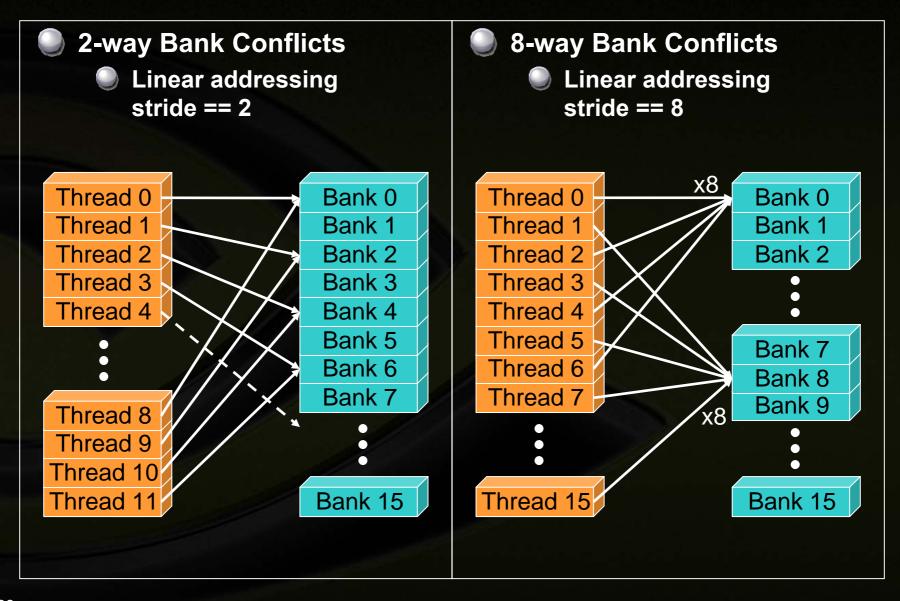
Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Bank

Bank Addressing Examples



Bank Addressing Examples



How addresses map to banks on G80

- Bandwidth of each bank is 32 bits per 2 clock cycles
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp

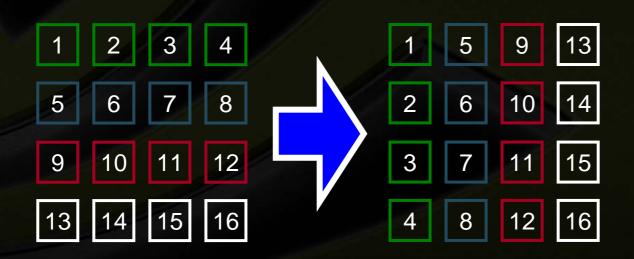
Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts
- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)
- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

Optimization Example: Matrix Transpose

Matrix Transpose

- SDK Sample ("transpose")
- Illustrates:
 - Coalescing
 - Avoiding SMEM bank conflicts
 - Speedups for even small matrices



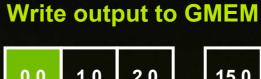
Uncoalesced Transpose


```
__global__ void transpose_naive(float *odata, float *idata, int width, int height)
{
1. unsigned int xlndex = blockDim.x * blockldx.x + threadldx.x;
2. unsigned int ylndex = blockDim.y * blockldx.y + threadldx.y;

3. if (xlndex < width && ylndex < height)
{
4. unsigned int index_in = xlndex + width * ylndex;
5. unsigned int index_out = ylndex + height * xlndex;
6. odata[index_out] = idata[index_in];
}
}
```

Uncoalesced Transpose

Reads input from GMEM



Stride = 16, uncoalesced

Coalesced Transpose

- Assumption: matrix is partitioned into square tiles
- Threadblock (bx, by):
 - Read the (bx,by) input tile, store into SMEM
 - Write the SMEM data to (by,bx) output tile
 - Transpose the indexing into SMEM
- Thread (tx,ty):
 - Reads element (tx,ty) from input tile
 - Writes element (tx,ty) into output tile
- Coalescing is achieved if:
 - Block/tile dimensions are multiples of 16

Coalesced Transpose

Reads from GMEM

Writes to SMEM

Reads from SMEM

Writes to GMEM

SMEM Optimization

Reads from SMEM

- Threads read SMEM with stride = 16
 - Bank conflicts

- Solution
 - Allocate an "extra" column
 - Read stride = 17
 - Threads read from consecutive banks

Coalesced Transpose


```
global void transpose(float *odata, float *idata, int width, int height)
    __shared__ float block[(BLOCK_DIM+1)*BLOCK_DIM];
    unsigned int xBlock = blockDim.x * blockldx.x;
    unsigned int yBlock = blockDim.y * blockldx.y;
    unsigned int xIndex = xBlock + threadIdx.x;
 5. unsigned int yIndex = yBlock + threadIdx.y;
    unsigned int index_out, index_transpose;
 7. if (xIndex < width && yIndex < height)
       unsigned int index_in = width * yIndex + xIndex;
 8.
       unsigned int index_block = threadIdx.y * (BLOCK_DIM+1) + threadIdx.x;
9.
       block[index_block] = idata[index_in];
10.
       index_transpose = threadIdx.x * (BLOCK_DIM+1) + threadIdx.y;
11.
       index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;
12.
    __syncthreads();
13.
    if (xIndex < width && yIndex < height)</pre>
14.
       odata[index out] = block[index transpose];
15.
```

Transpose Timings

- Speedups with coalescing and SMEM optimization:
 - 128x128: 0.011ms vs. 0.022ms (2.0X speedup)
 - 512x512: 0.07ms vs. 0.33ms (4.5X speedup)
 - 1024x1024: 0.30ms vs. 1.92ms (6.4X speedup)
 - 1024x2048: 0.79ms vs. 6.6ms (8.4X speedup)
- Coalescing without SMEM optimization:
 - 128x128: 0.014ms
 - 512x512: 0.101ms
 - 1024x1024: 0.412ms
 - 1024x2048: 0.869ms

Execution Configuration Optimizations

Occupancy

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy
- Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently
- Limited by resource usage:
 - Registers
 - Shared memory

Grid/Block Size Heuristics

- # of blocks > # of multiprocessors
 - So all multiprocessors have at least one block to execute
- # of blocks / # of multiprocessors > 2
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren't waiting at a __syncthreads() keep the hardware busy
 - Subject to resource availability registers, shared memory
- # of blocks > 100 to scale to future devices
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations

Register Dependency

- Read-after-write register dependency
 - Instruction's result can be read ~22 cycles later
 - Scenarios: CUDA: PTX:

$$x = y + 5;$$

 $z = x + 3;$

- To completely hide the latency:
 - Run at least 192 threads (6 warps) per multiprocessor
 - At least 25% occupancy
 - Threads do not have to belong to the same thread block

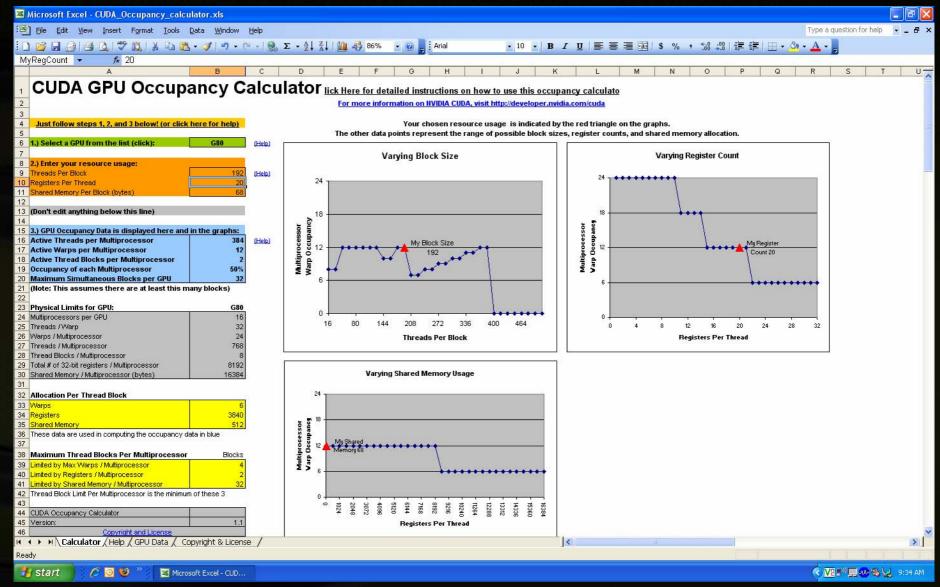
Register Pressure

- Hide latency by using more threads per SM
- Limiting Factors:
 - Number of registers per kernel
 - 8192 per SM, partitioned among concurrent threads
 - Amount of shared memory
 - 16KB per SM, partitioned among concurrent threadblocks
- Check .cubin file for # registers / kernel
- Use -maxrregcount=N flag to NVCC
 - N = desired maximum registers / kernel
 - At some point "spilling" into LMEM may occur
 - Reduces performance LMEM is slow
 - Check .cubin file for LMEM usage

Determining resource usage

- Use "-ptxoptions=-v" option to nvcc
- Or, compile the kernel code with the -cubin flag to determine register usage.
- Open the .cubin file with a text editor and look for the "code" section.

CUDA Occupancy Calculator



Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
- More threads per block == better memory latency hiding
- But, more threads per block == fewer registers per thread
 - Kernel invocations can fail if too many registers are used
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation, so expriment!

Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)

Parameterize Your Application

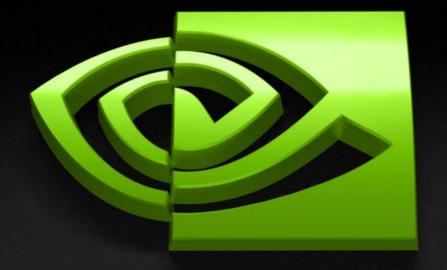
- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
 - # of multiprocessors
 - Memory bandwidth
 - Shared memory size
 - Register file size
 - Threads per block
- You can even make apps self-tuning (like FFTW and ATLAS)
 - "Experiment" mode discovers and saves optimal configuration

Conclusion

- Understand CUDA performance characteristics
 - Memory coalescing
 - Divergent branching
 - Bank conflicts
 - Latency hiding
- Use peak performance metrics to guide optimization
- Understand parallel algorithm complexity theory
- Know how to identify type of bottleneck
 - e.g. memory, core computation, or instruction overhead
- Optimize your algorithm, then unroll loops
- Use template parameters to generate optimal code

Questions?

http://developer.nvidia.com/



MIDIA

Extras

Built-in Vector Types

- Can be used in GPU and CPU code
- [u]char[1..4], [u]short[1..4], [u]int[1..4],
 [u]long[1..4], float[1..4]
 - Structures accessed with x, y, z, w fields:
 uint4 param;
 int y = param.y;
- dim3
 - Based on uint3
 - Used to specify dimensions
 - Default value (1,1,1)

Multiple CPU Threads and CUDA

- CUDA resources allocated by a CPU thread can be consumed only by CUDA calls from the same CPU thread
- Violation Example:
 - CPU thread 2 allocates GPU memory, stores address in p
 - thread 3 issues a CUDA call that accesses memory via p

CUDA Error Reporting to CPU

- All CUDA calls return error code:
 - except for kernel launches
 - cudaError_t type
- cudaError_t cudaGetLastError(void)
 - returns the code for the last error (no error has a code)
- char* cudaGetErrorString(cudaError_t code)
 - returns a null-terminted character string describing the error

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Host Synchronization

- All kernel launches are asynchronous
 - control returns to CPU immediately
 - kernel executes after all previous CUDA calls have completed
- cudaMemcpy is synchronous
 - control returns to CPU after copy completes
 - copy starts after all previous CUDA calls have completed
- cudaThreadSynchronize()
 - blocks until all previous CUDA calls complete
- Async API provides:
 - GPU CUDA-call streams
 - non-blocking cudaMemcpyAsync

CUDA Event API

- Events are inserted (recorded) into CUDA call streams
- Usage scenarios:
 - measure elapsed time for CUDA calls (clock cycle precision)
 - query the status of an asynchronous CUDA call
 - block CPU until CUDA calls prior to the event are completed
 - asyncAPI sample in CUDA SDK

Compilation

- Any source file containing CUDA language extensions must be compiled with nvcc
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC can output:
 - Either C code (CPU Code)
 - That must then be compiled with the rest of the application using another tool
 - Or PTX object code directly
- An executable with CUDA code requires:
 - The CUDA core library (cuda)
 - The CUDA runtime library (cudart)
 - (only if runtime API is used)
 - loads cuda library

Asynchronous memory copy

- Asynchronous host ←→ device memory copy for page-locked memory frees up CPU on all CUDA capable devices
- Overlap implemented by using a CUDA stream
- CUDA Stream = Sequence of CUDA operations that execute in order
- Stream API:
 - Each stream has an ID: 0 = default stream
 - cudaMemcpyAsync(dst, src, size, 0);

Overlap kernel and memory copy

- Concurrent execution of a kernel and a host ←→ device memory copy for page-locked memory
 - Compute capability >= 1.1 (G84 and up)
 - Available as a preview feature in CUDA 1.1
 - Overlaps kernel execution in one stream with a memory copy from another stream

Stream API:

```
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, stream1);
kernel<<<grid, block, 0, stream2>>>(...);
cudaStreamQuery(stream2);
```

Global and Shared Memory

- Global memory not cached on G8x GPUs
 - High latency, but running many threads hides latency
 - Important to minimize accesses
 - Coalesce global memory accesses (more later)
- Shared memory is on-chip, very high bandwidth
 - Low latency
 - Like a user-managed per-multiprocessor cache
 - Try to minimize or avoid bank conflicts (more later)

Texture and Constant Memory

- Texture partition is cached
 - Uses the texture cache also used for graphics
 - Optimized for 2D spatial locality
 - Best performance when threads of a warp read locations that are close together in 2D
- Constant memory is cached
 - 4 cycles per address read within a single warp
 - Total cost 4 cycles if all threads in a warp read same address
 - Total cost 64 cycles if all threads read different addresses

Profiler demo

