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Abstract: We have previously presented an approach to include graphics processing units
as co-processors in a parallel Finite Element multigrid solver called FEAST. In this paper
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1 Introduction

While high-end HPC systems continue to be specialised
solutions, price/performance and power/performance
considerations lead to an increasing interest in HPC
systems built from commodity components. In fact,
such clusters have been dominating the TOP500 list of
supercomputers in the number of deployed installations
for several years (Meuer et al., 2007).

Meanwhile, because thermal restrictions have
put an end to frequency scaling, codes no longer
automatically run faster with each new commodity
hardware generation. Now, parallelism and specialisation
are considered as the most important design principles
to achieve better performance. Soon, CPUs will have
tens of parallel cores; future massively parallel chip
designs will probably be heterogeneous with general
and specialised cores and Non-Uniform Memory Access
(NUMA) to local storage/caches on the chip.

Currently available specialised co-processors are
forerunners of this development and a good testbed
for future systems. The GRAPE series clusters
(Genomic Sciences Center, RIKEN, 2006), the upgrade
of the TSUBAME cluster with the ClearSpeed
accelerator boards (Tokyo Institute of Technology, 2006;
ClearSpeed Technology, 2006), or the Maxwell FPGA
supercomputer (FPGA High Performance Computing
Alliance, 2007) have demonstrated the power efficiency
of this approach.

Multimedia processors such as the Cell BE processor
or Graphics Processor Units (GPUs) are also considered
as potent co-processors for commodity clusters. The
absolute power consumption of the corresponding
boards is high, because, in contrast to the GRAPE
or ClearSpeed boards, they are optimised for high
bandwidth data movement, which is responsible for
most of the power dissipation. However, the power
consumption relative to the magnitude of the data
throughput is low, so that these boards do improve the
power/performance ratio of a system for data intensive
applications such as the Finite Element simulations
considered in this paper.

Unfortunately, different co-processors are controlled
by different languages and integrated into the system
with different APIs. In practice, application programmers
are not willing to deal with the resulting complications,
and co-processor hardware can only be deployed in
the market, if standard high level compilers for the
architecture are available or if hardware accelerated
libraries for common sub-problems are provided.

1.1 Main hypothesis

Obviously, not all applications match the specialisation
of a given co-processor, but in many cases
hardware acceleration can be exploited without
fundamental restructuring and reimplementation,
which is prohibitively expensive for established codes.
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In particular, we believe that each co-processor should
have at least one parallel language to efficiently utilise
its resources, and some associated runtime environment
enabling the access to the co-processor from the main
code. However, the particular choice of the co-processor
and language are of subordinated relevance because
productivity reasons limit the amount of code that
may be reimplemented for acceleration. Most important
are the abstraction from the particular co-processor
hardware (such that changes of co-processor and parallel
language become manageable) and a global computation
scheme that can concentrate resource utilisation in
independent fine-grained parallel chunks. Consequently,
the main task does not lie in the meticulous tuning
of the co-processor code as the hardware will soon be
outdated anyway, but rather in the abstraction and
global management that remain in use over several
hardware generations.

1.2 Contribution

We previously suggested an approach – tailored to
the solution of PDE problems – which integrates
co-processors not on the kernel level, but as local solvers
for local sub-problems in a global, parallel solver scheme
(Göddeke et al., 2008). This concentrates sufficient
fine-grained parallelism in separate tasks and minimises
the overhead of repeated co-processor configuration and
data transfer through the relatively narrow PCIe/PCI-X
bus. The abstraction layer of the suggested minimally
invasive integration encapsulates heterogeneities of the
system on the node level, so that MPI sees a globally
homogeneous system, while the local heterogeneity
within the node interacts cleverly with the local solver
components.

We assessed the basic applicability of this approach
for the scalar Poisson problem, using GPUs as
co-processors. They are attractive because of very good
price/performance ratios, fairly easy management, and
very high memory bandwidth. We encapsulated the
hardware specifics of GPUs such that the general
application sees only a generic co-processor with certain
parallel functionality. Therefore, the focus of the project
does not lie in new ways of GPU programming,
but rather in algorithm and software design for
heterogeneous co-processor enhanced clusters.

In this paper, we use an extended version of this
hardware-aware solver toolkit and demonstrate that
even a fully developed non-scalar application code can
be significantly accelerated, without any code changes
to either the application or the previously written
accelerator code. The application specific solver based
on these components has a more complex data-flow
and more diverse CPU/co-processor interaction than
the Poisson problem. This allows us to perform a
detailed, realistic assessment of the accuracy and speed of
co-processor acceleration of unmodified code within this
concept. In particular, we quantify the strong scalability
effects within the nodes, caused by the addition of
parallel co-processors. Our application domain in this

paper is Computational Solid Mechanics (CSM), but
the approach is widely applicable, for example to
the important class of saddlepoint problems arising in
Computational Fluid Dynamics (CFD).

1.3 Related work

We have surveyed co-processor integration in commodity
clusters in more detail in Section 1 of a previous
publication (Göddeke et al., 2007a).

Erez et al. (2007) present a general framework and
evaluation scheme for irregular scientific applications
(such as Finite Element computations) on stream
processors and architectures like ClearSpeed, Cell
BE and Merrimac. Sequoia (Fatahalian et al., 2006)
presents a general framework for portable data
parallel programming of systems with deep, possibly
heterogeneous, memory hierarchies, which can also be
applied to a GPU-cluster. Our work distribution is
similar in spirit, but more specific to PDE problems and
more diverse on the different memory levels.

GPU-enhanced systems have traditionally been
deployed for parallel rendering (Humphreys et al., 2002;
van der Schaaf et al., 2006) and scientific visualisation
(Kirchner et al., 2003; Nirnimesh et al., 2007). One
of the largest examples is ‘gauss’, a 256 node cluster
installed by GraphStream at Lawrence Livermore
National Laboratory (GraphStream, Inc., 2006). Several
parallel non-graphics applications have been ported to
GPU clusters. Fan et al. (2004) present a parallel GPU
implementation of flow simulation using the Lattice
Boltzmann model. Their implementation is 4.6 times
faster than an SSE-optimised CPU implementation, and
in contrast to FEM, LBM typically does not suffer
from reduced precision. Stanford’s Folding@Home
distributed computing project has deployed a dual-GPU
16 node cluster achieving speed-ups of 40 over highly
tuned SSE kernels (Owens et al., 2008). Recently,
GPGPU researchers have started to investigate the
benefits of dedicated GPU-based HPC solutions like
NVIDIA’s Tesla (2008) or AMD’s FireStream (2008)
technology, but published results usually do not exceed
four GPUs (see for example the VMD code by Stone et
al. in the survey paper by Owens et al., 2008).

An introduction to GPU computing and
programming aspects is clearly beyond the scope of this
paper. For more details, we refer to excellent surveys
of techniques, applications and concepts, and to the
GPGPU community website (Owens et al., 2007, 2008;
GPGPU, 2004–2008).

1.4 Paper overview

In Section 2 the theoretical background of solid
mechanics in the context of this paper is presented,
while our mathematical and computational solution
strategy is described in Section 3. In Section 4 we revisit
our minimally invasive approach to integrate GPUs as
co-processors in the overall solution process without
changes to the application code. We present our results
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in three different categories: In Section 5 we show that
the restriction of the GPU to single precision arithmetic
does not affect the accuracy of the computed results in
any way, as a consequence of our solver design. Weak
scalability is demonstrated on up to 64 nodes and half a
billion unknowns in Section 6. We study the performance
of the accelerated solver scheme in Section 7 in view
of absolute timings and the strong scalability effects
introduced by the co-processor. Section 8 summarises the
paper and briefly outlines future work.

For an accurate notation of bandwidth transfer
rates given in metric units (e.g., 8 GB/s) and memory
capacity given in binary units (e.g., 8 GiB) we use
the international standard IEC60027-2 in this paper:
G = 109, Gi = 230 and similarly for Ki, Mi.

2 Computational Solid Mechanics

In CSM the deformation of solid bodies under external
loads is examined. We consider a two-dimensional
body covering a domain Ω̄ = Ω ∪ ∂Ω, where Ω is
a bounded, open set with boundary Γ = ∂Ω. The
boundary is split into two parts: the Dirichlet part ΓD

where displacements are prescribed and the Neumann
part ΓN where surface forces can be applied (ΓD ∩
ΓN = ∅ ). Furthermore the body can be exposed to
volumetric forces, e.g., gravity. We treat the simple,
but nevertheless fundamental, model problem of elastic,
compressible material under static loading, assuming
small deformations. We use a formulation where the
displacements u(x) =

(
u1(x), u2(x)

)�
of a material point

x ∈ Ω̄ are the only unknowns in the equation. The
strains can be defined by the linearised strain tensor
εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, i, j = 1, 2, describing the linearised

kinematic relation between displacements and strains.
The material properties are reflected by the constitutive
law, which determines a relation between the strains
and the stresses. We use Hooke’s law for isotropic
elastic material, σ = 2µε + λtr(ε)I , where σ denotes the
symmetric stress tensor and µ and λ are the so-called
Lamé constants, which are connected to the Young
modulus E and the Poisson ratio ν as follows:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
. (1)

The basic physical equations for problems of solid
mechanics are determined by equilibrium conditions. For
a body in equilibrium, the inner forces (stresses) and the
outer forces (external loads f ) are balanced:

−div σ = f , x ∈ Ω.

Using Hooke’s law to replace the stress tensor, the
problem of linearised elasticity can be expressed in terms
of the following elliptic boundary value problem, called
the Lamé equation:

−2µ div ε(u) − λ graddiv u = f , x ∈ Ω (2a)

u = g, x ∈ ΓD (2b)

σ(u) · n = t, x ∈ ΓN (2c)

Here, g are prescribed displacements on ΓD, and t are
given surface forces on ΓN with outer normal n. For
details on the elasticity problem, see for example Braess
(2001).

3 Solution strategy

To solve the elasticity problem, we use FEASTSolid, an
application built on top of FEAST, our toolkit providing
Finite Element discretisations and corresponding
optimised parallel multigrid solvers for PDE problems.
In FEAST, the discretisation is closely coupled with the
domain decomposition for the parallel solution: The
computational domain Ω̄ is covered with a collection
of quadrilateral subdomains Ω̄i. The subdomains
form an unstructured coarse mesh (cf. Figure 8 in
Section 7), and are hierarchically refined so that the
resulting mesh is used for the discretisation with Finite
Elements. Refinement is performed such as to preserve a
logical tensorproduct structure of the mesh cells within
each subdomain. Consequently, FEAST maintains a
clear separation of globally unstructured and locally
structured data. This approach has many advantageous
properties which we outline in this section and Section 4.
For more details on FEAST, we refer to Turek et al.
(2003) and Becker (2007).

3.1 Parallel multigrid solvers in FEAST

For the problems we are concerned with in the
(wider) context of this paper, multigrid methods are
obligatory from a numerical point of view. When
parallelising multigrid methods, numerical robustness,
numerical efficiency and (weak) scalability are often
contradictory properties: A strong recursive coupling
between the subdomains, for instance by the direct
parallelisation of ILU-like smoothers, is advantageous
for the numerical efficiency of the multigrid solver.
However, such a coupling increases the communication
and synchronisation requirements significantly and is
therefore bound to scale badly. To alleviate this high
communication overhead, the recursion is usually relaxed
to the application of local smoothers that act on
each subdomain independently. The contributions of
the separate subdomains are combined in an additive
manner only after the smoother has been applied to
all subdomains, without any data exchange during the
smoothing. The disadvantage of such a (in terms of
domain decomposition) block-Jacobi coupling is that
typical local smoothers are usually not powerful enough
to treat, for example, local anisotropies. Consequently,
the numerical efficiency of the multigrid solver is
dramatically reduced (Smith et al., 1996; Turek et al.,
2003).

To address these contradictory needs, FEAST
employs a generalised multigrid domain decomposition
concept. The basic idea is to apply a global multigrid
algorithm which is smoothed in an additive manner
by local multigrids acting on each subdomain
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independently. In the nomenclature of the previous
paragraph, this means that the application of a local
smoother translates to performing few iterations – in
the experiments in this paper even only one iteration –
of a local multigrid solver, and we can use the terms
local smoother and local multigrid synonymously.
This cascaded multigrid scheme is very robust as
local irregularities are ‘hidden’ from the outer solver,
the global multigrid provides strong global coupling
(as it acts on all levels of refinement), and it exhibits
good scalability by design. Obviously, this cascaded
multigrid scheme is prototypical in the sense that it can
only show its full strength for reasonably large local
problem sizes and ill-conditioned systems (Becker, 2007).

Global computations. Instead of keeping all data in
one general, homogeneous data structure, FEAST stores
only local FE matrices and vectors, corresponding to
the subdomains. Global matrix-vector operations are
performed by a series of local operations on matrices
representing the restriction of the ‘virtual’ global matrix
on each subdomain. These operations are directly
followed by exchanging information via MPI over the
boundaries of neighbouring subdomains, which can be
implemented asynchronously without any global barrier
primitives. There is only an implicit subdomain overlap,
the domain decomposition is implemented via special
boundary conditions in the local matrices (Becker, 2007).
Several subdomains are typically grouped into one MPI
process, exchanging data via shared memory.

To solve the coarse grid problems of the global multigrid
scheme, we use a tuned direct LU decomposition solver
from the UMFPACK library (Davis, 2004) which is
executed on the master process while the compute
processes are idle.

Local computations. Finite Element codes are known
to be limited in performance by memory latency in
case of many random memory accesses, and memory
bandwidth otherwise, rather than by raw compute
performance. This is in general known as the memory
wall problem. FEAST tries to alleviate this problem
by exploiting the logical tensorproduct structure of
the subdomains. Independently on each grid level, we
enumerate the degrees of freedom in a line-wise fashion
such that the local FE matrices corresponding to scalar
equations exhibit a band structure with fixed band
offsets. Instead of storing the matrices in a CSR-like
format which implies indirect memory access in the
computation of a matrix-vector multiplication, we can
store each band (with appropriate offsets) individually,
and perform matrix-vector multiplication with direct
access to memory only. The asymptotic performance gain
of this approach is a factor of two (one memory access
per matrix entry instead of two), and usually higher in
practice as block memory transfers and techniques for
spatial and temporal locality can be employed instead
of excessive pointer chasing and irregular memory access
patterns. The explicit knowledge of the matrix structure
is analogously exploited not only for parallel linear

algebra operations, but also, for instance, in the design
of highly tuned, very powerful smoothing operators
(Becker, 2007).

The logical tensorproduct structure of the underlying
mesh has an additional important advantage: Grid
transfer operations during the local multigrid can
be expressed as matrices with constant coefficients
(Turek, 1999), and we can directly use the corresponding
stencil values without the need to store and access a
matrix expressing an arbitrary transfer function. This
significantly increases performance, as grid transfer
operations are reduced to efficient vector scaling,
reduction and expansion operations.

The small local coarse grid problems are solved by
performing few iterations of a preconditioned conjugate
gradient algorithm.

In summary, Figure 1 illustrates a typical solver in
FEAST. The notation ′local multigrid (V 4 + 4, S, CG)′

denotes a multigrid solver on a single subdomain,
configured to perform a V cycle with 4 pre- and
postsmoothing steps with the smoothing operator
S ∈ {Jacobi, Gauss-Seidel, ILU, . . . }, using a conjugate
gradient algorithm on the coarsest grid. To improve
solver robustness, the global multigrid solver is used
as a preconditioner to a Krylov subspace solver such
as BiCGStab which executes on the global fine grid.
As a preconditioner, the global multigrid performs
exactly one iteration without convergence control.

Figure 1 Illustration of the family of cascaded multigrid
solver schemes in FEAST. The accelerable parts of
the algorithm (cf. Section 4) are highlighted

Everything up to the local multigrid executes on the
CPUs in double precision. The computational precision
of the local multigrid may vary depending on the
architecture.

We finally emphasise that the entire concept –
comprising domain decomposition, solver strategies and
data structures – is independent of the spatial dimension
of the underlying problem. Implementation of 3D
support is tedious and time-consuming, but does not pose
any principal difficulties.

3.2 Scalar and vector-valued problems

The guiding idea to treating vector-valued problems
with FEAST is to rely on the modular, reliable and
highly optimised scalar local multigrid solvers on each
subdomain, in order to formulate robust schemes for a
wide range of applications, rather than using the best
suited numerical scheme for each application and go
through the optimisation and debugging process over
and over again. Vector-valued PDEs as they arise for
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instance in solid mechanics (CSM) and fluid dynamics
(CFD) can be rearranged and discretised in such a way
that the resulting discrete systems of equations consist
of blocks that correspond to scalar problems (for the
CSM case see beginning of Section 3.3). Due to this
special block-structure, all operations required to solve
the systems can be implemented as a series of operations
for scalar systems (in particular matrix-vector operations,
dot products and grid transfer operations in multigrid),
taking advantage of the highly tuned linear algebra
components in FEAST. To apply a scalar local multigrid
solver, the set of unknowns corresponding to a global
scalar equation is restricted to the subset of unknowns
that correspond to the specific subdomain.

To illustrate the approach, consider a matrix-vector
multiplication y = Ax with the exemplary block
structure:(

y1
y2

)
=

(
A11 A12
A21 A22

) (
x1
x2

)

As explained above, the multiplication is performed as
a series of operations on the local FE matrices per
subdomain Ωi, denoted by superscript (·)(i). The global
scalar operators, corresponding to the blocks in the
matrix, are treated individually:

3.3 Solving the elasticity problem

In order to solve vector-valued linearised elasticity
problems with the application FEASTSolid using the
FEAST intrinsics outlined in the previous paragraphs,
it is essential to order the resulting degrees of freedom
corresponding to the spatial directions, a technique called
separate displacement ordering (Axelsson, 1999). In the
2D case where the unknowns u = (u1, u2)� correspond
to displacements in x and y-direction, rearranging the left
hand side of equation (2a) yields:

−
(

(2µ+λ)∂xx +µ∂yy (µ + λ)∂xy

(µ + λ)∂yx µ∂xx +(2µ+λ)∂yy

) (
u1

u2

)
=

(
f1

f2

)
(3)

We approximate the domain Ω by a collection of several
subdomains Ωi, each of which is refined to a logical
tensorproduct structure as described in Section 3.1.
We consider the weak formulation of equation (3) and
apply a Finite Element discretisation with conforming
bilinear elements of the Q1 space. The vectors and
matrices resulting from the discretisation process are
denoted with upright bold letters, such that the resulting
linear equation system can be written as Ku = f .
Corresponding to representation (3) of the continuous

equation, the discrete system has the following block
structure,(

K11 K12
K21 K22

) (
u1
u2

)
=

(
f1
f2

)
, (4)

where f = (f1, f2)� is the vector of external loads
and u = (u1,u2)� the (unknown) coefficient vector of
the FE solution. The matrices K11 and K22 of this
block-structured system correspond to scalar elliptic
operators (cf. equation (3)). It is important to note
that (in the domain decomposition sense) this also
holds for the restriction of the equation to each
subdomain Ωi, denoted by K(i)

jj u(i)
j = f (i)

j , j = 1, 2.
Consequently, due to the local generalised tensor-
product structure, FEAST’s tuned solvers can be applied
on each subdomain, and as the system as a whole is
block-structured, the general solver (see Figure 1) is
applicable. Note, that in contrast to our previous work
with the Poisson problem (Göddeke et al., 2008), the
scalar elliptic operators appearing in equation (3) are
anisotropic. The degree of anisotropy aop depends on
the material parameters (see equation (1)) and is given by

aop =
2µ + λ

µ
=

2 − 2ν

1 − 2ν
. (5)

We illustrate the details of the solution process with a
basic iteration scheme, a preconditioned defect correction
method:

uk+1 = uk + ωK̃−1
B (f − Kuk) (6)

This iteration scheme acts on the global system (4) and
thus couples the two sets of unknowns u1 and u2. The
block-preconditioner K̃B explicitly exploits the block
structure of the matrix K. We use a block-Gauss-Seidel
preconditioner K̃BGS in this paper (see below). One
iteration of the global defect correction scheme consists
of the following three steps:

• Compute the global defect (cf. Section 3.2):(
d1
d2

)
=

(
K11 K12
K21 K22

) (
uk

1
uk

2

)
−

(
f1
f2

)

• Apply the block-preconditioner

K̃BGS :=
(
K11 0
K21 K22

)

by approximately solving the system K̃BGSc = d.
This is performed by two scalar solves per
subdomain and one global (scalar) matrix-vector
multiplication:

• For each subdomain Ωi, solve K(i)
11 c(i)

1 = d(i)
1 .

• Update RHS: d2 = d2 − K21c1.

• For each subdomain Ωi, solve K(i)
22 c(i)

2 = d(i)
2 .

• Update the global solution with the (eventually
damped) correction vector: uk+1 = uk + ωc.
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Instead of the illustrative defect correction scheme
outlined above, our full solver is a multigrid iteration
in a (V 1 + 1) configuration. The procedure is identical:
During the restriction phase, global defects are smoothed
by the block-Gauss-Seidel approach, and during the
prolongation phase, correction vectors are treated
analogously. Figure 2 summarises the entire scheme.
Note the similarity to the general template solver in
Figure 1, and that this specialised solution scheme is
entirely constructed from FEAST intrinsics.

Figure 2 Our solution scheme for the elasticity equations.
The accelerable parts of the algorithm
(cf. Section 4) are highlighted

4 Co-processor integration

4.1 Minimally invasive integration

Figure 3 illustrates how the elasticity application
FEASTSolid, the core toolbox FEAST and the
GPU accelerated library FEASTGPU interact. The
control flow of the global recursive multigrid solvers
(see Figure 2) is realised via one central interface,
which is responsible for scheduling both tasks and data.
FEASTGPU adds GPU support, by replacing the local
multigrid solvers (see Figure 2) that act on the individual
subdomains, with a GPU implementation. Then, the
GPU serves as a local smoother to the outer multigrid
(cf. Section 3.1). The GPU smoother implements the
same interface as the existing local CPU smoothers,
consequently, comparatively few changes in FEAST’s
solver infrastructure were required for their integration,
e.g., changes to the task scheduler and the parser for
parameter files. Moreover, this integration is completely
independent of the type of accelerator we use, and
we will explore other types of hardware in future work.
For more details on this minimally invasive hardware
integration into established code we refer to Göddeke
et al. (2008).

Assigning the GPU the role of a local smoother
means that there is a considerable amount of work on
the GPU, before data must be transferred back to the
host to be subsequently communicated to other processes
via MPI. Such a setup is very advantageous for the
application of hardware accelerators in general, because
the data typically has to travel through a bandwidth
bottleneck (1–4GB/s PCIe compared to more than
80GB/s video memory) to the accelerator, and this

overhead can only be amortised by a faster execution
time if there is enough local work. In particular, this
bottleneck makes it impossible to accelerate the local
portions of global operations, e.g., defect calculations.
The impact of reduced precision on the GPU is also
minimised by this approach, as it can be interpreted
as a mixed precision iterative refinement scheme, which
is well-suited for the kind of problems we are dealing
with (Göddeke et al., 2007b). We analyse the achieved
accuracy in detail in Section 5.

Figure 3 Interaction between FEASTSolid, FEAST and
FEASTGPU (see online version for colours)

4.2 Process scheduling

In a homogeneous cluster environment like in our
case where each node has exactly the same (potentially
internally heterogeneous) specification, the assignment
of MPI processes to the nodes is easy to manage.
In the heterogeneous case where the configuration of the
individual nodes differs, we are faced with a complicated
multidimensional dynamic scheduling problem which
we have not addressed yet. For instance, jobs can
be differently sized depending on the specification
of the nodes, the accumulated transfer and compute
performance of the graphics cards compared to the
CPUs etc. For the tests in this paper, we use static
partitions and only modify FEAST’s scheduler to be able
to distribute jobs based on hard-coded rules.

An example of such a hard-coded rule is the
dynamic rescheduling of small problems (less than 2000
unknowns), for which the configuration overhead would
be very high, from the co-processor back to the CPU,
which executes them much faster from its cache. For
more technical details on this rule and other tradeoffs, we
refer to our previous publication (Göddeke et al., 2008).

4.3 FEASTGPU: The GPU accelerated library

While the changes to FEAST that enable the
co-processor integration are hardware independent,
the co-processor library itself is hardware specific and
has to deal with the peculiarities of the programming
languages and development tools. In case of the GPU
being used as a scientific co-processor in the cluster,
FEASTGPU implements the data transfer and the
multigrid computation.
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The data transfer from the CPU to the GPU and vice
versa seems trivial at first sight. However, we found this
part to be most important to achieve good performance.
In particular it is crucial to avoid redundant copy
operations. For the vector data, we perform the format
conversion from double to single precision on the fly
during the data transfer of the local right hand side
vector (the input to the smoother); and from single
to double precision during the accumulation of the
smoothing result from the GPU with the previous iterate
on the CPU. This treatment minimises the overhead and
in all our experiments we achieved best performance with
this approach. For the matrix data, we model the GPU
memory as a large L3 cache with either automatic or
manual prefetching. For graphics cards with a sufficient
amount of video memory (≥512MiB), we copy all data
into driver-controlled memory in a preprocessing step
and rely on the graphics driver to page data in and out
of video memory as required. For older hardware with
limited video memory (≤128MiB), we copy all matrix
data associated with one subdomain manually to the
graphics card, immediately before using it. Once the data
is in video memory, one iteration of the multigrid solver
can execute on the GPU without further costly transfers
to or from the main memory.

The implementation of the multigrid scheme relies
on various operators (matrix-vector multiplications, grid
transfers, coarse grid solvers, etc.) collected in the GPU
backend. We use the graphics-specific APIs OpenGL and
Cg for the concrete implementation of these operators.
In case of a basic V -cycle with a simple Jacobi smoother
this is not a difficult task on DirectX9c capable GPUs,
for details see papers by Bolz et al. (2003) and Goodnight
et al. (2003). In our implementation we can also use
F - and W -cycles in the multigrid scheme, but this
is a feature of the control flow that executes on the
CPU and not the GPU. It is a greater challenge to
implement complex local smoothers, like ADI-TRIGS
that is used in Section 5.3 on the CPU, because of the
sequential dependencies in the computations. The new
feature of local user-controlled storage in NVIDIA’s G80
architecture accessible through the CUDA programming
environment (NVIDIA Corporation, 2007), will help
in resolving such dependencies in parallel. But before
designing more optimised solutions for a particular
GPU-generation, we want to further evaluate the
minimally invasive hardware integration into existing
code on a higher level.

5 Accuracy studies

On the CPU, we use double precision exclusively.
An important benefit of our solver concept and
corresponding integration of hardware acceleration is
that the restriction of the GPU to single precision has
no effect on the final accuracy and the convergence
of the global solver. To verify this claim, we perform
three different numerical experiments and increase the
condition number of the global system and the local

systems. As we want to run the experiments for the
largest problem sizes possible, we use an outdated cluster
named DQ, of which 64 nodes are still in operation.
Unfortunately, this is the only cluster with enough nodes
available to us at the time of writing. Each node contains
one NVIDIA Quadro FX 1400 GPU with only 128MiB
of video memory; these boards are three generations
old. As newer hardware generations provide better
compliance with the IEEE 754 single precision standard,
the accuracy analysis remains valid for better GPUs.

GPUs that support double precision in hardware
are already becoming available (AMD Inc., 2008).
However, by combining the numerical experiments in
this Section with the performance analysis in Section 7.2,
we demonstrate that the restriction to single precision
is actually a performance advantage. In the long
term, we expect single precision to be 4 × faster for
compute-intensive applications (transistor count) and
2 × faster for data-intensive applications (bandwidth).

Unless otherwise indicated, in all tests we configure
the solver scheme (cf. Figure 2) to reduce the initial
residuals by six digits, the global multigrid performs
one pre- and postsmoothing step in a V cycle,
and the inner multigrid uses a V cycle with four
smoothing steps. As explained in Section 4.1, we
accelerate the plain CPU solver with GPUs by replacing
the scalar, local multigrid solvers with their GPU
counterparts, otherwise, the parallel solution scheme
remains unchanged. We statically schedule 4 subdomains
per cluster node, and refine each subdomain 7–10
times. A refinement level of L yields 2(2L + 1)2 Degrees
Of Freedom (DOF) per subdomain, so the maximum
problem size in the experiments in this Section is 512Mi
DOF for refinement level L = 10.

5.1 Analytic reference solution

This numerical test uses a unitsquare domain, covered by
16, 64 or 256 subdomains which are refined 7–10 times.
We define a parabola and a sinusoidal function for the x
and y displacements, respectively, and use these functions
and the elasticity equation (2) to prescribe a right hand
side for the global system, so that we know the exact
analytical solution. This allows us to compare the L2
errors (integral norm of the difference between computed
FE function and analytic solution), which according to
FEM theory are reduced by a factor of 4 (h2) in each
refinement step (Braess, 2001).

Figure 4 illustrates the main results. We first note that
all configurations require exactly four iterations of the
global solver. Most importantly, the differences between
CPU and GPU runs are in the noise, independent of the
level of refinement or the size of the problem. In fact,
in the figure the corresponding CPU and GPU results
are plotted directly on top of each other. We nevertheless
prefer illustrating these results with a figure instead of
a table, because it greatly simplifies the presentation:
Looking at the graphs vertically, we see the global
error reduction by a factor of 4 with increasing level
of refinement L. The independence of the subdomain



262 D. Göddeke et al.

distribution and the level of refinement can be seen
horizontally, for instance 16 subdomains on level 8 are
equivalent to 64 level-7 subdomains.

Figure 4 Error reduction of the elasticity solver in the L2

norm (see online version for colours)

5.2 Global ill-conditioning: cantilever beam
configuration

The cantilever beam test (BEAM) is a standard benchmark
configuration in CSM, and is known to be difficult
to solve numerically (Braess, 2001; Ovtchinnikov and
Xanthis, 1998). A long, thin beam is horizontally
attached at one end and the gravity force pulls it
uniformly in the y-direction (see Figure 5). We partition
the geometry in such a way that the number of compute
nodes is proportional to the length of the beam, and
test two configurations: one consisting of 8 × 2 square
subdomains (distributed to 4 nodes), the other of 32 ×
2 square subdomains (16 nodes), resulting in a global
domain anisotropy of 4 : 1 and 16 : 1, respectively, and
a maximum problem size of 32Mi and 128Mi DOF,
respectively. This high degree of domain anisotropy in
conjunction with the large ratio between free Neumann
boundary and fixed Dirichlet boundary (only the narrow
side at one end is fixed) and the high level of refinement
results in a very ill-conditioned global system (Axelsson,
1999; Ovtchinnikov and Xanthis, 1998). To illustrate this,
we first use a simple unpreconditioned conjugate gradient
method whose iteration count grows with the condition
number of the system and is thus a suitable indicator
thereof.

Figure 5 Computed displacements and von Mises stresses for
the BEAM configuration with anisotropy 1 : 16 (top)
and 1 : 4 (bottom) (see online version for colours)

For small problem sizes we solve the two beam
configurations described above, as well as a third variant
– a very short ‘beam’ with global ‘anisotropy’ of 1 : 1.
The latter configuration is used exclusively in this test

to emphasise the dependency on the global anisotropy.
Figure 6 shows the iteration numbers of the conjugate
gradient solver for varying degrees of freedom. Reading
the graphs vertically (for a fixed number of DOF),
shows a significant rise of iteration numbers due to the
increasing degree of anisotropy (note that the y-axis
is scaled logarithmically). For the isotropic and mildly
anisotropic beam we can clearly observe that one grid
refinement doubles the number of iterations, which is the
expected behaviour of CG. For the strongly anisotropic
beam, however, this is no longer true on the highest
refinement levels, where the precise iteration counts are
8389, 21104 and 47522, showing a factor which is clearly
greater than 2.

Figure 6 Illustration of the ill-conditioning: BEAM
configuration with a simple CG solver (see online
version for colours)

Note: Logscale on y-axis.

Table 1 contains the results we achieved with our
multigrid solver for the cantilever beam configuration.
The fractional iteration count is a consequence of the
global BiCGStab solver permitting an ‘early exit’ after
the first of the two applications of the preconditioner
(an entire parallel multigrid iteration), if the scheme
has already converged. As there exists no analytic
reference solution in this case, we use the displacement
(in y-direction) of the midpoint of the free side of
the deformed beam and its volume as features of
the solutions to compare the computed CPU and
GPU results, for increasing levels of refinement L and
corresponding problem sizes.

We see no accuracy difference except for floating
point noise between the CPU and the GPU
configurations, although the CPU configuration uses
double precision everywhere and the GPU configuration
solves the local multigrid in single precision. This is a
very important advantage of our minimally invasive
co-processor acceleration and corresponding solver
concept: As the global anisotropies and ill-conditioning
are entirely hidden from the local multigrids (which
see locally isotropic problems on their respective
subdomains), the potentially negative impact caused by
the limited precision of the GPUs does not come into
play.
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Table 1 Iterations and computed results for the BEAM configuration with anisotropy of 1 : 4 (top) and 1 : 16 (bottom).
Differences are highlighted in bold face

Iterations Volume y-Displacement

refinement L CPU GPU CPU GPU CPU GPU

aniso04
8 4 4 1.6087641E-3 1.6087641E-3 −2.8083499E-3 −2.8083499E-3
9 4 4 1.6087641E-3 1.6087641E-3 −2.8083628E-3 −2.8083628E-3
10 4.5 4.5 1.6087641E-3 1.6087641E-3 −2.8083667E-3 −2.8083667E-3

aniso16
8 6 6 6.7176398E-3 6.7176398E-3 −6.6216232E-2 −6.6216232E-2
9 6 5.5 6.7176427E-3 6.7176427E-3 −6.6216551E-2 −6.6216552E-2
10 5.5 5.5 6.7176516E-3 6.7176516E-3 −6.6217501E-2 −6.6217502E-2

Overall, we see the expected rise of iteration numbers
when elongating the beam and thus increasing the
system’s condition number. But apart from some
granularity effects that are inevitable within our solver
concept, we see good level independence and, in
particular, identical convergence of the CPU and the
GPU variants.

5.3 Local anisotropies: towards incompressible
material

While the previous subsection examined how our solver
concept performs for ill-conditioned system matrices
due to global domain anisotropies, we now analyse
the impact of local anisotropies. For this test we use
a standard benchmark configuration in CSM which
is often used for testing Finite Element formulations
in the context of finite deformations (Reese et al.,
1999): A rectangular block is vertically compressed by a
surface load. To induce local anisotropies, we increase
the Poisson ratio ν of the material, which according
to equation (5) changes the anisotropy of the elliptic
operators in equation (3). Physically, this means that
the material becomes more incompressible. Since we use
a pure displacement FE formulation, the value of ν
must be bounded away from 0.5, otherwise the effect
of volume locking would hinder convergence to the
correct solution (Braess, 2001). Equation (1) shows that
the critical parameter λ tends to infinity for ν → 0.5.
As we only have a simple Jacobi smoother available on
the GPU, we have to increase the number of Jacobi
smoothing steps of the inner solver (the outer solver’s
configuration remains unchanged) to ensure convergence.
All experiments are again performed on 64 nodes of the
DQ cluster, yielding a maximum problem size of 512Mi
DOF for the highest refinement level (L = 10). As this
cluster is outdated and its GPUs come from an even
older technology generation than its CPUs, only changes
in relative timings (CPU/GPU) are relevant.

For clarity, Table 2 does not contain accuracy results,
but we have confirmed that in this series of tests we get

identical results (up to numerical noise) for the CPU and
the GPU just as in the previous two experiments.

Several important observations can be made from
the data listed in Table 2. First, as the increasing value
of ν affects the complete system (3), the number of
solver iterations rises accordingly. Second, the number
of iterations required to solve the system is reduced
by increased local smoothing (the anisotropy of the
elliptic operators is hidden better from the outer
solver), and occasional granularity effects disappear.
Finally, the accelerated solver behaves identically to
the unaccelerated one, in other words, even if there
are effects due to the GPU’s reduced precision, they
are completely encapsulated from the outer solver
and do not influence its convergence. Looking at the
(normalised) timings in detail, we see that on the CPU,
performing twice as many smoothing steps in the inner
multigrid results in a 40–50% increase in runtime for
the highest level of refinement, while on the GPU, only
20–25% more time is required. There are two reasons
for this behaviour: On the CPU, the operations for high
levels of refinement are performed completely out of
cache, while on the GPU, full bandwidth is only available
to the application for large input sizes, as the overhead
costs associated with launching compute kernels is less
dominant. Second, as the amount of video memory on
these outdated GPUs is barely large enough to hold all
matrix data associated with one subdomain, the high cost
of paging data in and out of memory is amortised much
better when more operations are performed on the same
data.

To verify that our test results are not influenced by
the weakness of the Jacobi smoother, we perform all
tests again with a very powerful alternating directions
tridiagonal Gauss-Seidel smoother (ADI-TRIGS, see
Becker, 2007), for which two smoothing steps (one
in each direction) suffice. This powerful smoother is
currently only available on the CPU. Table 2 shows the
expected results: The type of the inner smoother has
no effect on the outer convergence behaviour, as long
as the inner smoother is strong enough to resolve the
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Table 2 Convergence behaviour of the CPU and the GPU solver with increasing degree of operator anisotropy. To concentrate
on general tendencies, the timings are normalised by the number of iterations

V-4+4 Jacobi V-8+8 Jacobi V-2+2 ADI-TRIGS

Iters. Time/Iters. Iters. Time/Iters. Iters. Time/Iters.

L CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

nu = 0.40
aop = 6
8 4 4 3.3 4.9 3.5 3.5 4.5 5.7 3.5 n/a 3.6 n/a
9 4 4 11.1 11.2 3.5 3.5 15.9 13.4 3.5 n/a 12.0 n/a
10 4 4 48.2 41.2 3.5 3.5 69.7 52.2 3.5 n/a 49.3 n/a

nu = 0.45
aop = 11
8 4.5 4.5 3.2 4.9 4.5 4.5 4.3 5.5 4.5 n/a 3.4 n/a
9 5 5 11.0 11.1 4.5 4.5 15.6 13.2 4 n/a 11.8 n/a
10 5 5 48.1 41.1 4.5 4.5 69.3 52.1 4 n/a 49.4 n/a

nu = 0.48
aop = 26
8 7.5 7.5 3.0 4.6 6.5 6.5 4.1 5.5 6.5 n/a 3.1 n/a
9 7.5 7.5 10.8 11.0 6.5 6.5 15.4 13.5 6.5 n/a 11.5 n/a
10 7 7 47.9 42.1 6.5 6.5 69.2 52.4 6.5 n/a 49.0 n/a

local operator anisotropy. This justifies our ‘emulation’
of a stronger smoother on the GPU by performing eight
smoothing steps with the Jacobi. Since in general not
all local problems can be resolved with more smoothing
steps of the Jacobi, the GPU will also need to be
enhanced with more powerful smoothers in the future
(cf. Section 4.3).

We finally note that a similar type of anisotropy
occurs in fluid dynamics simulations, where it is often
necessary to resolve boundary layers more accurately
than the inside of the flow domain. The resulting high
element aspect ratios typically influence the condition
number of the system matrix comparably to anisotropies
in the elliptic operators.

6 Weak scalability

In this section, we analyse weak scalability of
our GPU-enhanced solver in comparison to the
unaccelerated case. The configurations used in these tests
comprise two variations of the standard benchmark test
case in CSM (see Section 5.3), modified so that each
subdomain remains square when doubling the number
of subdomains. We increase the number of nodes (and
hence, DOFs) from 4, 8, 16, 32 to 64 (32–512Mi, L = 10).
As we do not have access to enough nodes with modern
GPUs, we had to execute the runs on the outdated DQ
cluster described in the previous section.

Figure 7 demonstrates good weak scalability of our
approach for both the accelerated and the unaccelerated
solver. The relatively poor performance gain of the GPUs
is attributed to the outdated GPUs in the DQ cluster,
in particular, their small amount of local memory can
only hold the data associated with a single subdomain,

and consequently, the entire matrix data is paged out
from video memory for each subdomain.

Figure 7 Weak scalability (see online version for colours)

As mentioned in Section 3.1, the parallel computation is
completely decoupled, data is exchanged asynchronously
only between neighbouring subdomains. The only
exception is the solution of the global coarse grid
problem of the data-parallel multigrid solver, which we
perform on the master node while the compute nodes are
idle. The size of this coarse grid problem depends only
on the number of subdomains (to be more precise, on
the number of DOF implied by the coarse grid formed
by the collection of subdomains) and is in particular
independent of the level of refinement and the number of
parallel processes. Due to the robustness of our solver,
comparatively few global iterations suffice. In accordance
with similar approaches (see, for example, Bergen et al.,
2005), we can safely conclude that the global coarse grid
solver, which is the only sequential part of the otherwise
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parallel execution, is not the bottleneck in terms of weak
scalability. As a concrete example, the solution of the
global coarse grid problems in the scalability tests in
Figure 7 contributes at most 3% to the total runtime.

As previous experiments with the prototypical scalar
Poisson equation on up to 160 nodes resulted in equally
good scalability (Göddeke et al., 2007a), combining these
results we may argue that our heterogeneous solution
approach for the more demanding application discussed
in this paper would also scale very well beyond 100 GPU
nodes.

7 Performance studies

We use 16 nodes of an advanced cluster – USC – to
compare the performance of the accelerated solver
with the unaccelerated case. Table 3 lists the relevant
hardware details.

Table 3 Hardware configuration of each node in the USC
cluster

Node Graphics card

AMD Opteron Santa Rosa NVIDIA Quadro FX5600
dual-core, 1.8 GHz 600 MHz,
2 MiB L2 cache max. 171 W
800 W power supply
8 GiB DDR2 667 1.5 GiB GDDR3
12.8 GB/s bandwidth 76.8 GB/s bandwidth
4x DDR InfiniBand PCIe bus
1.6 GB/s peak 4 GB/s peak
(0.8–1.2 GB/s benchmarked) (0.8–1.5 GB/s benchmarked)

We employ four configurations that are prototypical for
practical applications. Figure 8 shows the coarse grids,
the prescribed boundary conditions and the partitioning
for the parallel execution of each configuration. The
BLOCK configuration (Figure 8(a)), as introduced in
Section 5.3, is a standard test case in CSM, a block
of material is vertically compressed by a surface load.
The PIPE configuration (Figure 8(b)) represents a
circular cross-section of a pipe clamped in a bench
vise. It is realised by loading two opposite parts of
the outer boundary by surface forces. With the CRACK
configuration (Figure 8(c)) we simulate an industrial
test environment for assessing material properties.
A workpiece with a slit is torn apart by some
device attached to the two holes. In this configuration
the deformation is induced by prescribed horizontal
displacements at the inner boundary of the holes, while
the holes are fixed in the vertical direction. For the
latter two configurations we exploit symmetries and
consider only sections of the real geometries. Finally,
the STEELFRAME configuration (Figure 8(d)) models
a section of a steel frame, which is fixed at both ends and
asymmetrically loaded from above.

In all tests we configure the solver scheme
(cf. Figure 2) to reduce the initial residuals by six

digits, the global multigrid performs one pre- and
postsmoothing step in a V cycle, and the inner multigrid
uses a V cycle with four smoothing steps. We consider
only the refinement level L = 10 (128Mi DOF), and
statically assign four subdomains per node, such as
to balance the amount of video memory on the USC
cluster with the total amount of memory available
per node. The four subdomains per node are either
collected in one MPI process (called single), leaving
the second core of the Opteron CPUs idle, or distributed
to two MPI processes per node, each of which comprises
two subdomains (called dual). As we only have one
GPU per node, we perform GPU tests in a single
configuration. We could also run one large GPU process
and one small CPU process per node in parallel, but
previous experiences show that this is only feasible
with a more advanced scheduler (Göddeke et al., 2008).
As explained in Section 4.1, we accelerate the plain CPU
solver with GPUs by replacing the scalar, local multigrid
solvers with their GPU counterparts. Otherwise, the
parallel solution scheme remains unchanged. All
computations on the CPUs are executed in double
precision.

Figure 8 Coarse grids, boundary conditions and static
partition into subdomains for the configurations:
(a) BLOCK; (b) PIPE; (c) CRACK and
(d) STEELFRAME (see online version for colours)

7.1 Absolute performance

Figure 9 shows the computed deformations of the four
geometries and the von Mises stresses, which are an
important measure for predicting material failure in
an object under load. Both the accelerated and the
unaccelerated solver compute identical results, according
to a comparison of the displacement of selected reference
points and the volume of the deformed bodies.

Figure 10 depicts time measurements for the four
configurations. We measure the absolute time to
solution for the three scheduling schemes CPU-single,
CPU-dual and GPU-single. Consistently for all four
configurations, the accelerated solver is roughly 2.6 times
faster than the unaccelerated solver using only one MPI
process per node, and the speed-up reaches a factor of
1.6 if we schedule two half-sized MPI processes per node.
The Opterons in the USC cluster have a very efficient
memory subsystem, so that the dual configuration runs
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Figure 9 Computed displacements and von Mises stress for the configurations used in the speed-up tests: (a) BLOCK; (b) PIPE;
(c) CRACK and (d) STEELFRAME (see online version for colours)

1.6 times faster than the single configuration. But
these absolute timings do not tell the whole story, and
favour the CPU in the CPU-dual vs. GPU-single
comparison. We investigate this effect further in the
following subsection.

Figure 10 Execution times for the elasticity solver with and
without GPU acceleration (see online version
for colours)

7.2 Performance analysis

One important benefit of our minimally invasive
integration of hardware acceleration is that the
heterogeneity is encapsulated within the nodes, and the
coarse-grained parallelism on the MPI level remains
unchanged. Therefore, the correct model to analyse the
speed-up achieved by the GPU is strong scalability
within the node, as the addition of GPUs increases the
available compute resources. Consequently, the portions
of the application dealing with the coarse-grained
parallelism constitute the ‘fixed’ part of the solution
process, as they are not accelerated. In other words, the
fraction of the execution time that can be accelerated
limits the achievable speed-up.

As the measured acceleration factors are consistent
for all four test configurations in the previous section, we
perform the analysis only with the BLOCK configuration.
To separate the accelerable from the unaccelerable

portions of the local solution process, we instrumented
the code with a special timer Tlocal that measures the
local multigrid solvers on each subdomain independently.
Tlocal does not include any stalls due to communication,
but it does include all data transfers between host
and co-processor. Table 4 additionally lists the total
time to solution Ttotal and the difference C := Ttotal −
Tlocal, i.e., the time spent in the outer solver, including
MPI communication. This data allows us to calculate
the fraction Racc := Tlocal/Ttotal of the accelerable part
of the code. We see that for the larger subdomains
(L = 9, L = 10) approximately 66% of the overall
time can be accelerated with fine-grained parallelism.
Consequently, the estimated maximally achievable total
speed-up is 1/(1 − 2/3) = 3.

The comparison of the local CPU and GPU
solution time gives us the local GPU speed-up
Slocal := TCPU

local /TGPU
local . In the context of Finite Element

simulations these numbers are impressive: For large
subdomains (L = 10) we achieve a GPU speed-up factor
9.0 against a single core and a factor 5.6 against
two cores. These factors decrease quickly for smaller
subdomains, because of the overhead of co-processor
configuration and data transport through the narrow
(in comparison to the bandwidth on the co-processor
board) PCIe bus.

Given the local GPU speed-up factor Slocal and the
accelerable fraction Racc we can deduce the total GPU
speed-up again as

Stotal :=
1

(1 − Racc) + (Racc/Slocal)
.

Note the similarity of the formula to Amdahl’s Law.
Figure 11 illustrates the relation between Racc, Slocal
and Stotal.

For the application presented in this paper on the
highest level of refinement (L = 10) with the accelerable
fraction Racc = 2/3, we obtain the total GPU speed-ups
of 2.5 for single and 2.2 for dual-core (3.0 is the
estimated maximum). The first number differs only
slightly from the measured factor 2.6 in the previous
section, because the unaccelerable portions differ only
slightly (C = 43.7 to C = 42.4). But the estimated total
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Table 4 For subdomains of different size (L = 8, 9, 10) and different configurations (CPU-single, CPU-dual, GPU) the table
lists the total and local execution time, their difference, the accelerable fraction, and local and total GPU speed-ups

Ttotal Tlocal C := Ttotal − Tlocal Racc := Tlocal/Ttotal Slocal := TCPU
local /TGPU

local Stotal

L single dual GPU single dual GPU single dual GPU single (%) dual (%) single dual single dual

8 8.3 5.3 6.8 5.1 3.1 3.5 3.2 2.2 3.3 61 58 1.5 0.9 1.3 0.9
9 33.8 20.7 16.9 22.4 13.5 5.5 11.4 7.2 11.4 66 65 4.1 2.5 2.0 1.6
10 133.9 83.3 52.4 90.2 55.8 10.0 43.7 27.5 42.4 67 67 9.0 5.6 2.5 2.2

GPU speed-up against the dual-core of 2.2 differs greatly
from the measured factor 1.6. We attribute this to the
larger difference in the C numbers (27.5 against 42.4):
The dual-core version has the unfair advantage of a
much faster execution of the global solver. For a fair
comparison the GPU solver would have to utilise all the
resources within the node instead of leaving one core idle.
Consequently, once we design an advanced scheduler
and a hybrid communication model that incorporates
parallelism among the resources within the node, this
problem will no longer be present: All processes will
benefit in the same way from interleaved communication
and computation.

Figure 11 Relation between Slocal and Stotal for three
different accelerable fractions Racc. The labels X
mark the estimated speed-up of a mixed-precision
SSE implementation on the CPU, and the
measured speed-up by our GPU-enhanced solver
(see online version for colours)

This analysis allows us to estimate the effectiveness
of our approach for other hardware configurations.
To illustrate this, we assess the maximum achievable
performance gain for a mixed precision solver running
entirely on the CPU, by using single precision in
all local multigrid solvers, analogously to the GPU
implementation. As the performance of the solver
is mostly bound by the memory bandwidth and
latency (see Section 3.1) we optimistically assume single
precision calculations to be performed twice as fast
as double precision, at least for a fully SSE-optimised
implementation. Substituting the values Racc = 2/3 and
Slocal = 2 in the above formula results in an estimated
ideal acceleration of Stotal = 1.5, which is still far away
from the estimated maximum of 3.0. In particular,

the gradient of the curve relating Slocal to the achievable
acceleration Stotal (see Figure 11) is steep at Slocal = 2,
such that further acceleration by GPUs significantly
improves the achievable speed-up. The speed-up factors
of the GPU for L = 10, however, are already very close
to the theoretical maximum. Consequently, the gradient
of the curve in Figure 11 is small and further local
acceleration would give only small returns. Instead, we
will have to concentrate on the increase of the accelerable
fraction Racc. Figure 11 also illustrates – for three
different values of Racc – that the performance difference
between the mixed precision CPU approach and GPU
acceleration grows rapidly for increasing Racc.

Note, that 2/3 is already a good value when operating
within a minimally invasive co-processor integration
without any modification of the user code. Since the
increase of Racc has a much bigger impact now, we will
aim at further improvement in future work. For instance,
stronger smoothing operators require more time and
consequently improve both numerical robustness and the
accelerable fraction Racc at the same time.

8 Conclusions and future work

FEAST reduces complex, vector-valued problems to
block-wise scalar operations. This allows to optimise
data structures, linear algebra operators, multigrid
smoothers and even entire local solvers once on the
intrinsic FEAST kernel level. These components are
then used to design robust schemes that perform well
out of the box, without much further application-
specific performance tuning. The reduction of different
problems onto the same global solver scheme also
allows a minimally invasive integration of the extension
FEASTGPU, which thus adds GPU acceleration to all
applications based on FEAST.

Using the unmodified application FEASTSolid, we
have conducted a thorough evaluation of this hardware
acceleration approach with respect to accuracy and
performance. Because of the hierarchical solver concept,
the final accuracy of the results does not suffer from
the local computations in single precision on the GPUs,
even in case of very ill-conditioned problems. Therefore,
despite emerging double precision co-processors, our
approach favours the local single precision computation
because it offers performance advantages without
accuracy limitations. New extensions to FEAST will
enable the use of different types of co-processors in the
future.
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Our performance analysis reveals that the local
computations are accelerated by a factor of 9 against
a single-core CPU. This acceleration applies to 2/3
of the total solution time and thus translates into a
2.5-fold performance improvement. Future work will
seek to increase the accelerable part, so that the local
acceleration translates into larger overall gains and
the unaccelerable part does not dominate the solution
process.

We can conclude that it is possible to significantly
accelerate unmodified applications with existing
co-processor technology, if the underlying solver concept
follows hardware-oriented design principles and the local
subproblems for the co-processor are sufficiently large.
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