How to gain speedups of 1000 on single processors with fast FEM solvers
Benchmarking numerical and computational efficiency

Michael Koster, Dominik Géddeke, Hilmar Wobker, Stefan Turek and the FEAST group
Applied Mathematics, Technische Universitdt Dortmund
feastOmath.tu-dortmund.de

Abstract

In Computational Science and in particular in the numerical simulation of PDE prob-
lems, optimal serial performance is essential for a successful scale-out to the tera- and
petascale dimensions. In this paper, we propose a simple yet fundamental benchmark
setting for a PDE problem that we believe any reasonably flexible Finite Element based
software should be able to handle effortlessly. The Poisson problem used in these tests
allows reliable performance estimates for more challenging simulations.

Our performance evaluation focuses on numerical methodology and data layouts rather
than implementational fine-tuning. To enable a fair and realistic comparison independent
of the underlying numerical methodology, we define the metric total efficiency. Results are
presented for two different solver classes, multigrid and Krylov-subspace methods, obtained
in single-core computations with our solver packages FEAT2 and FEAST. We quantitatively
emphasise the effect of different storage techniques and numbering (reordering) schemes,
which constitute the crucial factor in view of the memory wall problem that ultimately
determines performance of all Finite Element codes. We demonstrate a speed-up of more
than a factor 1000 by migrating from a naive implementation of a standard Krylov solver
to a sophisticated implementation of an advanced multigrid solver, without applying any
adaptivity.

1 Motivation

The simulation of real-world phenomena is a challenging task, and of utmost importance
in Computational Science, e.g. engineering, logistics, and natural and life sciences. Typical
problems are highly dynamic in both space and time, and are often modeled by systems
of Partial Differential Equations (PDEs). Their accurate discretisation in space with Finite
Elements leads to huge sparse linear systems of equations, which need to be solved many
times when an implicit discretisation in time is applied, or when the underlying problem is of
nonlinear nature. Typical numbers are in the order of 10° unknowns and 10° timesteps.

Obviously, such systems can not be solved with just one computer, and large tera- and
petascale installations with tens of thousands of CPUs need to be employed. In the estab-
lished TOP500 lists of supercomputers, ‘petascale’ is defined by the runtime of a Linpack
benchmark, the computation of the LU decomposition of a large dense linear system. Despite
the undoubted merits of this list, this metric is essentially meaningless for the PDE problems
and application domains we are interested in. Therefore, we follow a rather ‘hands-on’ ap-
proach assuming ideal weak scalability: If a problem with 10% unknowns can be solved in less
than one second on a PC, then a problem with 10° unknowns should be solved in the same
time on a terascale system, and a problem with 10" unknowns should still require less than
one second on a petascale machine.

In practice, this is tremendously hard to achieve because due to Amdahl’s Law, hardware
limitations and many other aspects, codes do not scale perfectly in parallel. However, and this
is the main motivation of our paper, excellent performance of a given code on a single CPU is

the basis of parallel High Performance Computing. As we demonstrate in this paper, excellent
performance is achieved only by the combination of numerical methodology (in particular fast
solvers with linear run-time in the number of unknowns, independent of the refinement level
of the underlying discretisation) and implementational aspects (in particular optimal data
structures, spatial and temporal blocking). We define a simple yet fundamental benchmark
problem and assess these aspects quantitatively. In our experience, commercial codes are
unable to achieve the performance level we expect. We cordially invite other researchers to
apply their solvers to the benchmark problem we propose in this paper, and to share results.

2 Test Problem

The computational domain €2 for our benchmark tests is defined as a rectangle enclosing an
inner circle (cf. Figure 2.1 (left)):

Q:=1[0,1] x [0,1.25] \ B.(0.5,0.5), 7 =+0.02

Let I'1 define the outer boundary component and I'y define the inner boundary component
(i.e. the circle). On this domain, we solve the Poisson problem with Dirichlet boundary
conditions:

—Au = 0 in €,
u = 0 on I'y

u = 1 on I'y

Figure 2.1 (right) depicts the computed solution.

We define the following geometric points on the circle: z7 := (0.4,0.4), x2 := (0.4,0.6),
x3 = (0.6,0.6), x4 := (0.4,0.6). Connecting these points with horizontal and vertical lines to
the boundary defines a mesh 77 consisting of 8 quadrilateral cells. This mesh is used as the
coarse mesh for the calculation, finer meshes 7, ...,7;; are created by regular refinement of
each cell into four new cells via edge bisection. To prevent mesh tangling during refinement of
the cells adjacent to the circle, new boundary points are projected onto the circle and element
midpoints on the coarse grid forming vertices on the fine grid are corrected to the geometric
mean of the surrounding vertices (stemming from the edge midpoints). An alternative coarse
mesh may be created by subdividing each quadrilateral into two triangles; the triangles are
again refined regularly. Table 2.1 lists the number of vertices and elements for the levels of
refinement under consideration in this benchmark proposal.

The computational grids remain static during the entire computation; in this first bench-
mark proposal, advanced techniques such as adaptive mesh refinement or p-adaptivity are not
considered.

On the resulting mesh, the Poisson equation is discretised using (bi-)linear Finite Elements.
In case of the FEAT2 and FEAST results presented below, the bilinear conforming parametric
quadrilateral @)1 element is chosen. The discretisation leads to a linear system Ax = b, where
the unknowns coincide with the vertices in the mesh.

The test problem is chosen so that it can be computed on a typical workstation, and
should fit well into 4-8 GByte of RAM. As outlined in the previous Section, we aim at solving
the largest problem (refinement level 10) in less than eight seconds, although currently, we

(1.0,1.25) Cells sol
x]
1

0.9

— 08
1A 2010 ann

- 07

6 g 11 B
(0.5,0.5)
B = ann
— 04

(0.4,0.4)

- 03

0.2

7 6111 a1

0.1

(0'0) 0

Figure 2.1: Left: Domain and coarse grid 7;. Right: Solution on 7y.

only achieve roughly 25% of this performance. In this first stage of the benchmark proposal,
we concentrate on the time to solution and prescribe a fixed reduction in the norms of the
residuals. In the long term, we will enhance this criterion by goal-oriented error estimators,
e.g. to reduce the real errors to a prescribed accuracy.

Lv. | NVT NEL
7 33 280 32 768
8| 132006 131072
9| 526336 524288
10 | 2101248 2097 152
11 | 8396800 8 388 608

Table 2.1: Number of vertices (NVT) and number of elements (NEL) for different refinement levels.

3 Target Hardware

The goal of the proposed benchmarks is to evaluate the performance of different numerical
techniques and data layouts, rather than implementational fine-tuning. Consequently, the
benchmark proposal does not fully prescribe the compiler and the machine to use. Fine-
grained performance differences in the order of few seconds are not relevant. Nonetheless, the
benchmark hardware should be a commodity based compute server or workstation, and only
one core is used in case of multicore CPUs. A performance comparison of parallel computations
(either distributed or shared memory) will be addressed in a follow-up proposal.

4 Benchmark Scenarios & Solver Configurations
The tests in this benchmark proposal are divided in three categories:

Matrix-Vector To isolate the effects of data layouts and numbering schemes for the un-
knowns, performance of a defect calculation of the form d = b — Ax for arbibrary
vectors x and b is measured separately:

The matrix is assembled only for the restriction of the computational domain to the
coarse grid cell adjacent to the point (0,0), and only the triangulations 77,...,77; are
considered. Boundary conditions are completely ignored. Performance is measured in
MFLOP/s: For the @1 Finite Element, nine entries per matrix row are nonzero except for
boundary entries, hence, performance of the matrix-vector multiplication is calculated
as P = (18- N)/(T -105) MFLOP/s for N = (2¥ 4+ 1)? unknowns on 7 and a measured
time 7". The test is executed for the same matrix ordering schemes (c.f. Section 5.1) as
used for the CG and MG benchmarks.

Conjugate Gradients As a representative of ‘simple’ Krylov subspace solvers, the Conju-
gate Gradient algorithm is employed. Only solving times are relevant, matrix assembly
time and any pre- and postprocessing is not considered. The stopping criterion is set to
reduce the initial residual by eight digits:

Hb_AXnH2 -8
—_— = Jeg:=10"°.
[[b — Axoll2 —

For different numbering schemes, two Conjugate Gradient variants are considered. The
first one, labeled CG-simple, uses a Jacobi preconditioner (a simple scaling by the in-
verse of matrix diagonal, not damped). The second one, labeled CG-advanced, uses the
preconditioner considered ‘optimal’ in the Finite Element toolkit under evaluation, bal-
ancing execution time with numerical robustness. For all tests, the number of iterations
until convergence, the convergence rate and the time to solution in seconds are recorded.

Multigrid Analogously, MG-simple uses a multigrid solver with 4 4+ 4 Jacobi pre- and post-
smoothing steps (damped by w = 0.7) in an F-cycle. The multigrid scheme may use a
direct solver (e.g. UMFPACK) to solve the coarse grid problems. The test MG-advanced
uses an advanced smoother, again assumed to be ‘optimal’ in the Finite Element toolkit
under evaluation. The stopping criterion and timing goals are the same as for the
Conjugate Gradient tests. 77 is always the minimum level used in the grid hierarchy.

In all configurations, the initial guess xg is the zero vector, with boundary conditions already
applied. By running both solvers in two configurations, we try to separate implementational
from numerical aspects as much as possible, as Jacobi preconditioning and smoothing are
trivial and should be supported by all solver packages.

5 Results

We present some initial results based on the FEM toolkits FEAT2 and FEAST, which are
actively being developed in our group [2,4,5].

5.1 Data layout techniques

For all benchmark problems defined above, the following numbering schemes are employed [9,
11]:

a) 2-1v: In the two-level numbering, the numbers of the degrees of freedom at the vertices
on each finer mesh coincide with the numbers on the corresponding coarse mesh.

b) CM: standard Cuthill-McKee renumbering strategy.

c) XYZ: The vertices are numbered based on their geometric coordinates of the vertices, i. e.
sorted first by the X- and then for the Y-coordinate.

d) Stoch.: fully random ordering. This is a seemingly artificial worst-case scenario to
maximise cache miss rates, which is justified as an emulation of fully adaptive approaches.

e) Hier.: In the hierarchical renumbering, the degrees of freedom of fine grid cells are
recursively collected and numbered according to the coarse grid cells.

f) Banded (B): This strategy is basically the same as XYZ numbering, but for each refined
coarse grid cell independently. The approach stems from domain decomposition, a ‘vir-

tual’ global matrix is constructed from local matrices assembled on each refined coarse
grid cell [2].

g) Banded-Const (BC): The matrices corresponding to square coarse grid cells are not fully
assembled; instead, matrix-vector multiplication is reduced to the application of simple
9-point stencils, at least in the interior of the refined cell.

The numbering schemes 2-1v, CM, XYZ, Stoch. and Hier. are used in the FEAT2 FEM
package with a CSR matrix format, while the FEAST software provides support for the Banded
and Banded-Const numbering strategy, storing matrix bands as vectors and hence uses direct
memory access. The const format is only applied to the coarse grid cells 1, 3, 5 and 7, due
to the sheared elements in the other coarse grid cells, FEAST assembles the corresponding
submatrices explicitly.

5.2 Solver configuration details

The basic solver configurations CG-simple and MG-simple can be used with all solvers for the
renumbering strategies described above. The xxx-advanced configurations however depend
on the underlying software package and renumbering strategy:

CG-advanced For the 2-1v, CM, XYZ, Stoch. and Hier. renumbering strategies: CG solver,
undamped ILU preconditioner. No test results are available at the moment for the
Banded and Banded-Const renumbering strategies.

MG-advanced For the 2-1v, CM, XYZ, Stoch. and Hier. renumbering strategies: Multigrid
solver, ILU smoother [3,7] damped with w = 0.9. V-cycle, 2 pre- and 2 postsmoothing
steps. We use UMFPACK to solve the coarse grid problems exactly (and compute the
factorisation in a preprocessing step, not included in the timings). For the Banded and
Banded-Const renumbering strategies: Multigrid solver, linewise alternating directions
GauB-Seidel smoother (ADI-TRIGS, tuned to the underlying generalised tensorproduct
structure of the refined coarse grid cells [2]). V-cycle, 2 pre- and 2 postsmoothing steps,
UMFPACK as coarse grid solver.

All tests have been carried out on an AMD Opteron 2214 machine, 2.2 GHz, 1 MB L2-
cache, SUSE Linux 10.2 64-bit operating system. Only one core has been used, the second core
remained idle, and numactl has been employed to avoid known issues with the Linux scheduler
in kernel version 2.6.16.21-0.25-smp. The codes were compiled with the Intel Fortran compiler
V9.1.040 and tuned optimisation flags.

FEAT2 is a more mathematically oriented FEM toolkit, and despite being reasonably well
tuned, leaves most optimisations to the compiler. In contrast, FEAST employs special spatial
and temporal blocking techniques in the core components (matrix-vector multiplication and
application of smoothers) to improve data locality.

5.3 Matrix-vector multiplication

Table 5.1 presents the results of the raw performance tests of the matrix-vector multiplication
for the restriction of the computational domain to the refined bottom left coarse grid cell.
Our first observation is surprisingly important: Even in 2008, with non-naive evolved imple-
mentations, sophisticated compilers and powerful hardware, the application of the ‘wrong’
renumbering strategy still leads to extremely poor performance. Only 50 MFLOP/s (of a
theoretical peak performance of more than 6 GFLOP/s per core) are achieved in case of the
(admittedly artificial, but instructive) stochastic numbering scheme which also serves to em-
ulate fully adaptive discretisations. It is interesting to note that these 50 MFLOP /s have
remained constant over the last 7 years [11], despite tremendous improvements of processor
performance.

Level
Strategy 7 8 9 10 11
2-1v 257 161 144 133 127
CM 260 166 160 147 134
XYZ 263 163 167 162 161
Stoch. 259 145 116 62 50
Hier. 260 169 159 154 154
B 1445 718 627 615 550
BC 2709 2155 2091 1714 1597

Table 5.1: Matrix-vector-product test. MFLOP/s rate for different sorting strategies. Row 1-5:
Sorting strategies in FEAT2. Row 6+7: Data layout strategies in FEAST.

The other sorting strategies perform as expected: The XYZ-sorting and the hierarchical
sorting are fastest in FEAT2, and the MFLOP /s rate slowly decreases with increasing level,
consistently for all numbering schemes. The benefits of the data locality optimisations and
block memory accesses in the Banded and Banded-Const data layouts in FEAST are clearly vis-

ible, outperforming all other matrix renumbering strategies by a factor of 5—10. In particular,
the crossover point as soon as all data does not fit into cache anymore is obvious.
5.4 Solver timings

Table 5.2 summarises detailed timing measurements and the number of iterations needed until
convergence for the different solver configurations.

Level 7 8 9 10 11
Solver Sort. Time #It. | Time #It. | Time #It. Time #It. Time #It.
CG- 2-1v 2.8 502 24.9 962 | 202.4 1882 | 1595.6 3675 | 16808.2 7110
simple CM 2.8 502 23.8 962 | 190.9 1882 | 1511.9 3675 | 15740.3 7110
XYZ 2.7 501 22.6 962 175.8 1882 | 1366.7 3675 | 13202.0 7110
Stoch. 3.2 502 38.0 962 | 396.5 1882 | 3356.0 3675 | 43863.2 7110
Hier. 2.8 501 23.1 962 178.6 1882 | 1393.5 3675 | 13510.2 7110
B 1.3 506 10.4 1002 82.0 1966 635.8 3815 5066.0 7364
BC 1.2 506 9.5 1002 71.0 1966 563.7 3815 4374.8 7364
CG- 2-1v 1.7 221 22.5 436 | 197.7 866 | 1569.8 1700 9667.0 3322
advanced CM 1.6 187 17.4 339 | 1454 652 | 1178.8 1268 8994.8 2423
XYZ 0.9 120 15.0 233 86.9 452 708.6 903 4868.9 1768
Stoch. 2.1 206 37.8 404 | 418.0 752 | 3583.0 1465 | 34984.1 2821
Hier. 1.5 183 16.9 341 | 134.9 659 835.6 1284 7234.9 2498
B
BC
MG- 2-1v 1.3 17 6.2 17 27.4 17 113.8 17 583.2 17
simple CM 1.3 17 6.2 17 26.6 17 110.9 17 570.9 17
XYZ 1.3 17 5.9 17 24.6 17 99.9 17 467.9 17
Stoch. 1.5 17 9.3 17 52.0 17 246.1 17 1670.5 17
Hier. 1.3 17 6.0 17 25.2 17 102.1 17 477.0 17
B 0.5 18 2.0 18 7.6 18 29.6 18 125.9 18
BC 0.5 18 1.7 18 6.2 18 24.1 18 99.7 18
MG- 2-1v 0.5 9 2.1 9 9.3 9 38.0 9 249.2 10
advanced CM 0.4 6 1.7 7 7.3 7 30.9 7 199.8 8
XYZ 0.3 6 1.3 6 5.4 6 21.9 6 114.3 6
Stoch. 0.6 8 3.2 8 19.8 8 105.2 9 766.5 9
Hier. 0.4 7 1.7 7 6.8 7 30.7 8 167.8 8
B 0.2 7 0.6 7 2.2 7 8.9 7 33.5 6
BC 0.2 7 0.5 7 1.9 7 7.8 7 29.2 6

Table 5.2: Time in seconds and number of iterations for different solver configurations and sorting
strategies. Note that the CG-advanced configuration is currently not supported in FEAST.

As expected, multigrid outperforms all Conjugate Gradient solvers, especially on higher
levels. The timings for the CG algorithm deteriorate by a factor of ~ 8 per refinement
level (four times more unknowns, doubled iterations). MG-simple exhibits a factor of = 4,
proportional to the number of unknowns, with a constant number of iterations independent
of the level. XYZ and hierarchical sorting again perform best, stochastic sorting worst by
factors. As implied by the raw matrix-vector multiplication test (Table 5.1), the cache misses
implied by stochastic sorting lead to an increase in time higher than the expected factors. The
differences in iteration numbers are attributed to the slightly different implementation of the
solvers in FEAT2 and FEAST.

The beneficial effects of the data locality optimisations in FEAST’s Banded and Banded-Const
data layouts are carried over to the entire solver: In all configurations, these strategies allow
a speedup of a factor up to ~ 3 — —5 in comparison to the non-banded data layouts.

The XYZ renumbering roughly performs 2 — —3x faster than the stochastic renumbering,
while the Banded data layout yields a factor of more than 10. Between the simple CG and

the advanced MG we observe (depending on the numbering and the refinement level) a factor
of 30 — —200, while the worst case best case comparison (stochastically renumbered CG and
advanced multigrid with Banded data layout) yields even a factor of more than 1300. We
explain the implications of these results in the next section.

Figure 5.1 summarises these results: We use the worst timing (CG-simple at level 11
with stochastic renumbering strategy) as a basis and normalise it to 1. The graph clearly
illustrates the speedup factors when using advanced numerical methods and hardware-oriented
implemententation techniques at the same time.

2000
1000F

2000
1000

I Stochastic
m XYZ

| = Banded

100

10

Speed-up

CG (simple) CG (advanced) MG (simple) MG (advanced)

Figure 5.1: Speedup gained by data structure and algorithm. CG-simple is normalised to 1. Note
that the CG-advanced configuration is currently not supported in FEAST, and the cyan plot shows
expected performance only.

5.5 Solver Efficiency

The time to solution as listed above is already an appropriate measure for the (computational
and numerical) efficiency of an algorithm. Unfortunately this measure is dependent on stop-
ping criteria and the number of unknowns in a system. A more abstract measure alleviates
these problems and allows a better comparison between different discretisations: Let T denote
the time to solution in seconds, N € N the number of unknowns, k£ the number of iterations
until solution and p = (M)(l/ k) the convergence rate of the solver. We define the total
efficiency, which measures the time in pus per unknown necessary to gain one digit in the

residual, as follows:

T 109
loglo(P) N -k

This metric reduces the efficiency of a given Finite Element solver to a single number. In
terms of our motivation (c.f. Section 1), our goal is to achieve a performance of less than
0.125 s for our relative stopping criterion e = 1078,

Corresponding to Table 5.2, Table 5.3 depicts the convergence rates and total efficiency
measures for the different solver strategies. We first observe that in this metric, the worst case
best case comparison (see Figure 5.1) yields even a factor of 1700, due to the reduced impact

Eiotal ==

of the relatively coarse grained convergence checks which are only performed once after each
solver iteration.

For the CG algorithm, the table shows that the time per unknown doubles with every
refinement level, as expected from the theory of the CG algorithm. For multigrid however,
this measure stays constant for almost all configurations, which is also expected from theory,
and using the best data layout allows to solve the system with less than 0.5 us per unknown
and digit. The only exception is the stochastic reordering strategy which shows a degeneration
of a factor of approx. 1.5 per refinement level in case of the multigrid solver, and a significant
drop in performance for refinement level 11 and the Krylov solver. As a consequence, the
theoretical statement that multigrid solves a system with linear complexity in the number of
unknowns is in practice not valid anymore if the ordering of the unknowns is not suitable.

Level 7 8 9 10 11
Solver Sort. P Eiotal P Eiotal P Eiotal P Eiotal P Eiotal
CG- 2-1v 0.964 10.493 | 0.981 23.528 | 0.990 48.050 | 0.995 94.906 | 0.998 323.808
simple CM 0.964 10.408 | 0.981 22.495 | 0.990 45.309 | 0.995 89.924 | 0.998 303.236
XYZ 0.964 10.296 | 0.981 21.325 | 0.990 41.737 | 0.995 81.293 | 0.998 254.335
Stoch. | 0.964 11.920 | 0.981 35.886 | 0.990 94.117 | 0.995 199.614 | 0.998 845.022
Hier. 0.964 10.482 | 0.981 21.833 | 0.990 42.404 | 0.995 82.886 | 0.998 260.273
B 0.964 4.848 | 0.982 9.960 | 0.991 20.183 | 0.995 36.424 | 0.998 94.230
BC 0.964 4.475 | 0.982 9.099 | 0.991 17.475 | 0.995 32.294 | 0.998 81.373
CG- 2-1v 0.920 6.508 | 0.959 21.255 | 0.979 46.864 | 0.989 93.352 | 0.994 143.869
advanced CM 0.906 5.910 | 0.947 16.411 | 0.972 34.431 | 0.986 70.101 | 0.992 133.884
XYZ 0.857 3.459 | 0.924 14.174 | 0.960 20.631 | 0.980 42.052 | 0.990 72.420
Stoch. | 0.914 7.788 | 0.955 35.711 | 0.976 99.214 | 0.988 213.072 | 0.993 520.788
Hier. 0.904 5.759 | 0.947 16.006 | 0.972 32.002 | 0.986 49.700 | 0.993 107.674
B
BC
MG- 2-1v 0.320 4.726 | 0.325 5.693 | 0.327 6.302 | 0.327 6.559 | 0.326 8.397
simple CM 0.320 4.762 | 0.325 5.636 | 0.327 6.129 | 0.327 6.395 | 0.326 8.219
XYZ 0.320 4.708 | 0.325 5.395 | 0.327 5.659 | 0.327 5.759 | 0.326 6.736
Stoch. | 0.320 5.396 | 0.325 8.506 | 0.327 11.956 | 0.327 14.188 | 0.326 24.050
Hier. 0.320 4.819 | 0.325 5.511 | 0.327 5.788 | 0.327 5.885 | 0.326 6.868
B 0.342 1.791 | 0.344 1.815 | 0.344 1.731 | 0.343 1.684 | 0.342 1.788
BC 0.342 1.791 | 0.344 1.543 | 0.344 1.412 | 0.343 1.371 | 0.342 1.416
MG- 2-1v 0.117 1.909 | 0.121 1.942 | 0.125 2.162 | 0.128 2.245 | 0.138 3.448
advanced CM 0.044 1.342 | 0.055 1.476 | 0.064 1.660 | 0.072 1.837 | 0.084 2.766
XYZ 0.036 1.199 | 0.041 1.202 | 0.044 1.256 | 0.045 1.290 | 0.045 1.680
Stoch. | 0.090 2.001 | 0.094 2.984 | 0.100 4.695 | 0.112 5.855 | 0.123 11.159
Hier. 0.058 1.465 | 0.062 1.479 | 0.069 1.587 | 0.083 1.684 | 0.088 2.366
B 0.057 0.690 | 0.056 0.518 | 0.053 0.468 | 0.050 0.465 | 0.044 0.490
BC 0.057 0.690 | 0.056 0.432 | 0.053 0.404 | 0.050 0.408 | 0.044 0.427

Table 5.3: Convergence rates and total efficiency (in us) for different solver configurations and sorting
strategies. Note that the CG-advanced configuration is currently not supported in FEAST.

6 Conclusions and Future Work

Our proposed benchmark has a rather simple character by construction and should be com-
putable by almost all numerical software packages designed for the simulation of PDEs. Our
own benchmark results underline the following basic principles in numerical simulation:

1.) The data layout is of great importance for the efficiency of algorithms running on modern
computer hardware. A simple re-sorting of the unknowns may improve the MFLOP /s
rate of the matrix vector multiplication by a factor of 3, better data layouts even by a

10

factor of 10 — 30. Very ‘bad’ data layouts (e.g. stochastic sorting) lets the performance
of processors plummet to less that 1% of the peak computational performance of modern
processors.

2.) The structure of the mathematical problem shall not get lost in the solvers for the lin-
ear subsystems that arise in the solution process. Utilising a hierarchical solver that
exploits multigrid structures quickly pays off and may lead — in combination with the
‘correct’ data layout — to a speedup of a factor of 1300 and even more in computation
time in comparison to a straightforward implementation of a simple numerical scheme.
These numbers are a very strong argument in favour of our general approach to improve
numerical and computational efficiency simultaneously: An extremely tuned implemen-
tation of a numerically poor algorithm is easily outperformed (despite the same linear
complexity in the number of unknowns) by a more advanced numerical scheme, and ad-
vanced solvers implemented without awareness of the underlying machine architecture
degrade asymptotically, indicating potential slowdowns on future hardware: It is not
safe to assume that codes will continue to run faster automatically on newer hardware.

Our ‘roadmap’ in the evolution of this benchmark is as follows: On the numerical side, we
want to include — in the short term — techniques such as higher order finite elements, finite
differences, finite volumes and local adaptivity (e.g. with hanging nodes, mixed triangle- and
quad-meshes). In the longer run, we want to accept the more challenging (but much more
practically relevant) task to solve problems to a guaranteed, user-prescribed accuracy based on
suitable error indicators: Ultimately, the metric total efficiency will have to be reformulated to
reflect the time to gain this and that accuracy in the result. Global, goal-oriented adaptivity
will be an important technique to pursue in future work.

On the computational side, the exploitation of multi- and many-core processors for FEM
simulations is the next logical step. Current representatives of many-core architectures such
as GPUs or the Cell processor are in our opinion key future topics in scientific computing.
Our first results on GPUs show that we can meet our performance goals, a problem with 10°
unknowns is solved accurately in less than 0.1 seconds [6]. We currently are not able to solve
this benchmark problem with GPU acceleration, as our focus has been on the integration of
GPUs into large-scale parallel solvers [10].

In the long term, our claims need to be put to the test in large-scale parallel simulations,
and future work will have to investigate how scalability in parallel can be improved [10].

We kindly encourage everyone to perform these benchmark computations with other soft-
ware packages. Our proposed benchmark is quite open in nature and allows many variations:
While the CG-simple and MG-simple configurations are fixed to enable a direct compari-
son of different solver packages in terms of the total efficiency, the choice of an appropriate
xxx-advanced setting that performes best is left unspecified. We emphasise again that fine-
grained performance differences in the order of seconds are of no importance for this benchmark
proposal.

Acknowledgements

This work has in parts been supported by the German Research Foundation (DFG), projects
TU102/24-1 (SPP1253), TU102/22-1 and TU102/11-3.

11

References

1]

2]

= o=

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der Vorst. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM, 1994.

C. Becker, S. Buijssen, and S. Turek. FEAST: development of HPC technologies for FEM appli-
cations. In W. Nagel, D. Kroner, and M. Resch, editors, High Performance Computing in Science
and Engineering ‘07, pages 503-516. Springer, Berlin, 2007.

A. Chapman, Y. Saad, and L. Wington. High order ILU preconditioners for CFD problems.
International Journal for Numerical Methods in Fluids, 33(6):767-788, 2000.

FEAST - Finite Element Analysis and Solution Tools. http://www.feast.tu-dortmund.de.
FEATFLOW. http://www.featflow.de.

D. Goéddeke and R. Strzodka. Performance and accuracy of hardware-oriented native, emulated-
and mixed-precision solvers in FEM simulations (part 2: Double precision GPUs). Technical
report, Fakultat fiir Mathematik, Technische Universitdt Dortmund, 2008. Nummer 370, invited
talk at NVISION 2008 - The World of Visual Computing.

D. Hysom and A. Pothen. Level-based incomplete LU factorization: Graph model and algorithms.
Technical Report UCRL-JC-150789, U.S. Department of Energy, Nov. 2002. http://www.cs.odu.
edu/~pothen/papers.html.

Y. Saad and H. van der Vorst. Iterative solution of linear systems in the 20th century. Journal of
Computational and Applied Mathematics, 123(1-2):1-33, 2000.

S. Turek. On ordering strategies in a multigrid algorithm. In Proc. 8th GAMM-Seminar, volume 41
of Notes on Numerical Fluid Mechanics. Vieweg, 1992.

S. Turek, D. Géddeke, C. Becker, S. Buijssen, and H. Wobker. UCHPC - Unconventional high-
performance computing for finite element simulations. ISC’08, International Supercomputing
Conference, Dresden, June 2008.

S. Turek, A. Runge, and C. Becker. The FEAST indices — realistic evaluation of modern software
components and processor technologies. Computers and Mathematics with Applications, 41:1431—
1464, 2001.

