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Abstract

This paper is concerned with the development of general-purpose algebraic
flux correction schemes for continuous (linear and multilinear) finite elements.
In order to enforce the discrete maximum principle (DMP), we modify the
standard Galerkin discretization of a scalar transport equation by adding
diffusive and antidiffusive fluxes. The result is a nonlinear algebraic system
satisfying the DMP constraint. An estimate based on variational gradient
recovery leads to a linearity-preserving limiter for the difference between the
function values at two neighboring nodes. A fully multidimensional version of
this scheme is obtained by taking the sum of local bounds and constraining
the total flux. This new approach to algebraic flux correction provides a
unified treatment of stationary and time-dependent problems. Moreover,
the same algorithm is used to limit convective fluxes, anisotropic diffusion
operators, and the antidiffusive part of the consistent mass matrix.

The nonlinear algebraic system associated with the constrained Galerkin
scheme is solved using fixed-point defect correction or a nonlinear SSOR
method. A dramatic improvement of nonlinear convergence rates is achieved
with the technique known as Anderson acceleration (or Anderson mixing).
It blends a number of last iterates in a GMRES fashion, which results in
a Broyden-like quasi-Newton update. The numerical behavior of the pro-
posed algorithms is illustrated by a grid convergence study for convection-
dominated transport problems and anisotropic diffusion equations in 2D.
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1. Introduction

A major bottleneck in finite element simulation of transport phenomena
is the inability of the standard Galerkin discretization to satisfy the relevant
maximum principles and/or maintain positivity on general meshes. This de-
ficiency manifests itself in spurious oscillations (undershoots and overshoots)
that pop up in regions of insufficient mesh resolution. Discontinuous weak
solutions to hyperbolic conservation laws are particularly difficult to com-
pute using continuous finite elements. The Galerkin “best approximations”
to elliptic and parabolic transport equations may also exhibit nonphysical
artifacts in proximity to unresolved small-scale features [30, 33]. An effective
remedy to this problem must be found when it comes to the development of
general-purpose finite element codes for Computational Fluid Dynamics.

The traditional approach to stabilization of finite element schemes for
convection-dominated transport problems involves adding artificial diffusion
or using modified test functions in the weak form of the governing equations.
We refer to John et al. [20, 21, 22] for a comprehensive survey and a com-
parative study of such variational stabilization techniques. Their practical
utility is undermined by the presence of problem-dependent free parameters.
The failure to find a ‘right’ value of these parameters may result in a violation
of the maximum principle or give rise to excessive numerical diffusion.

A fundamentally different way to enforce the discrete maximum principle
in CFD codes is the use of flux or slope limiting. High-resolution schemes
based on this design philosophy trace their origins to the flux-corrected trans-
port (FCT) algorithm [6, 50]. The basic idea is very simple: use a given high-
order scheme in smooth regions and a nonoscillatory low-order approximation
elsewhere. The work of Harten [15] and Sweby [47] has established a rigor-
ous theoretical framework for the design of total variation diminishing (TVD)
limiters in 1D. The implementation of FCT and TVD in finite element codes
dates back to the late 1980s [2, 35, 43, 44]. The development of edge-based
data structures [36, 38, 42, 45] has formed the basis for many straightforward
generalizations of 1D limiting techniques to unstructured grids [38].

The principle of algebraic flux correction introduced by the author and
his collaborators [24, 25, 28] offers a new interpretation of classical high-
resolution schemes and a general framework for the design of multidimen-
sional flux limiters. In contrast to the mainstream approach, we add and
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remove artificial diffusion at the discrete level. Given a discrete operator
resulting from a linear or multilinear Galerkin approximation, we extract its
nonoscillatory low-order part. The remainder is an antidiffusive correction
which admits a conservative flux decomposition [28]. The discrete maximum
principle holds if the antidiffusive part proves local extremum diminishing
(LED). The purpose of flux limiting is to enforce Jameson’s LED constraint
[17, 18] by adjusting the magnitudes of antidiffusive fluxes if necessary.

During the last decade, we have experimented with many algebraic flux
correction schemes which are based on the same design principles and differ
only in the definition of the LED bounds for the sum of limited antidiffusive
fluxes. The first representative of such schemes was an implicit version of
the FEM-FCT algorithm [23, 26, 28, 31]. The in-depth comparative study
by John and Schmeyer [22] indicates that FEM-FCT is far superior to main-
stream stabilization techniques for finite elements when it comes to solving
strongly time-dependent transport problems with small or vanishing diffu-
sion. However, flux correction of FCT type turns out to be inappropriate for
steady-state computations since the results depend on the pseudo-time step,
and severe convergence problems may occur. Moreover, the use of large time
steps increases the amount of numerical diffusion. Thus, we recommend FCT
for truly evolutionary problems which require the use of small time steps.

As an alternative to FCT, we have developed several multidimensional
flux limiters which are independent of the time step and produce a TVD
scheme in the 1D case [24, 25, 28]. As this methodology has evolved and
matured, we realized that the definition of upper and lower bounds for a
generalized TVD scheme must guarantee linearity preservation on arbitrary
meshes. In other words, the constrained approximation must reduce to the
underlying Galerkin scheme if the solution is a linear function. This property
implies consistency and second-order accuracy for smooth data [7, 39]. In
the context of algebraic flux correction, it can be enforced using variational
gradient recovery to obtain the LED bounds for the slope limiter [30].

Another open problem in the design of TVD-like schemes for finite ele-
ments was the treatment of the consistent mass matrix which is essential for
maintaining the high accuracy of the Galerkin scheme for time-dependent
problems. Our multidimensional limiters of TVD type were designed to con-
strain the entries of the discrete convection operator, and our first attempts
to limit the consistent mass matrix independently were rather unsuccessful.
This has led us to marry FCT and ‘TVD’ within the framework of a general-
purpose flux limiter [24]. Unfortunately, the resulting scheme inherited not
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only the advantages but also some drawbacks of the two limiting techniques
(dependence on the time step, lack of linearity preservation, artificial coupling
between the antidiffusive fluxes associated with different discrete operators).
Moreover, the increased complexity of the algorithm has made it too expen-
sive for practical purposes. For some time, we continued using the more
efficient special-purpose limiting techniques: FCT for time-dependent prob-
lems and lumped-mass ‘TVD’ for steady-state computations. In this paper,
we present a new linearity-preserving (LP) algebraic flux correction scheme
that can handle both situations equally well. This concludes our quest for
the development of a universal flux limiter for general-purpose CFD codes.

The algorithm to be presented is a fully multidimensional counterpart of
the slope limiter we developed in [30] for anisotropic diffusion problems. In
what follows, we extend it to steady and unsteady convective transport. The
contribution of the consistent mass matrix is taken into account by applying
the LP limiter to the vector of discretized time derivatives. Furthermore, we
constrain the sum of raw antidiffusive fluxes instead of individual fluxes or
slopes. This revision results in a marked gain of accuracy as compared to
unidirectional slope limiting. In contrast to [24], the antidiffusive fluxes as-
sociated with convective transport, anisotropic diffusion, and mass lumping
errors are limited separately. Moreover, there is no need for ad hoc ‘prelimit-
ing’, a trick which is frequently employed in FCT algorithms to ensure that
the antidiffusive correction has a steepening effect on the solution profiles.

Another highlight of the present paper is a new iterative solver for the
constrained Galerkin approximation. We introduce a nonlinear SSOR scheme
which updates the nodal values of the numerical solution and the limited an-
tidiffusive fluxes in a single loop over the nodes of the computational mesh.
To speed up convergence, we use Anderson acceleration [3, 49], also known
as Anderson mixing [9, 10]. As shown by Eyert [9], the accelerated iterative
solver belongs to the Broyden family of Jacobian-free quasi-Newton methods.
In the case of a linear system, it is essentially equivalent to the (precondi-
tioned) GMRES method [41, 49]. The efficiency of this approach is confirmed
by our numerical study for an anisotropic diffusion equation. On fine meshes,
the number of SSOR iterations is reduced by a factor of 60 and more.

The paper is structured as follows. In the next section, we discretize a
linear convection-diffusion equation using the (continuous) Galerkin method.
In Sections 3-5, we formulate sufficient conditions of a discrete maximum
principle and introduce the new linearity-preserving limiter for algebraic flux
correction schemes. In Section 6, we address the design and acceleration of
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iterative solvers for the nonlinear algebraic system. A grid convergence study
for three benchmark problems is presented in Section 7. Finally, we summa-
rize the results and outline some promising directions for further research.

2. Galerkin discretization

The linear model problem that will serve as a vehicle for the presentation
of our high-resolution scheme is the unsteady convection-diffusion equation

∂u

∂t
+∇ · (vu−D∇u) = 0 in Ω (1)

which describes the transport of a conserved quantity u in a bounded domain
Ω ⊂ Rn, n ∈ {1, 2, 3}. The velocity v and the diffusion tensor D are assumed
to be known. The Dirichlet-Neumann boundary conditions are given by{

u = g on ΓD,
n · ∇u = 0 on ΓN ,

(2)

where n is the unit outward normal to the boundary Γ = ∂Ω. If D 6= 0 then
ΓN ∪ ΓD = Γ. In the hyperbolic limit (D = 0) we have ΓN = ∅ and

ΓD = {x ∈ Γ |v · n < 0}.

If the steady-state solution to (1) is of interest, then the problem statement
is complete. Otherwise, we prescribe an initial condition of the form

u(x, 0) = u0(x), ∀x ∈ Ω. (3)

The variational form of the above (initial-)boundary value problem reads∫
Ω

w

(
∂u

∂t
+∇ · (vu)

)
dx +

∫
Ω

∇w · (D∇u) dx = 0 (4)

for all admissible test functions w vanishing on the Dirichlet boundary ΓD.
In this paper, we discretize (4) in space using the Galerkin finite ele-

ment method. Let {ϕj} denote a finite set of continuous piecewise-linear or
multilinear basis functions. The numerical solution uh is defined as

uh =
∑
j

ujϕj. (5)
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The unknowns of the semi-discrete problem are the coefficients uj which
represent the time-dependent values of uh at the vertices of the mesh. The
diffusive term is evaluated using the consistent discrete gradient

∇uh =
∑
j

uj∇ϕj. (6)

The Galerkin discretization of the convective term is given by the formula

∇ · (vuh) = (∇ · v)uh + v · ∇uh. (7)

In many cases, it is more convenient to work with Fletcher’s [12, 13] group
finite element interpolant of the convective flux. We define

(vu)h =
∑
j

(vjuj)ϕj (8)

which implies the following discretization of the convective term

∇ · (vu)h =
∑
j

uj(vj · ∇ϕj). (9)

Using approximations (5), (6), and (9) in the Galerkin weak form (4) with
the test function wh = ϕi, we obtain the following semi-discrete equation∑

j

(∫
Ω

ϕiϕj dx

)
duj
dt

= −
∑
j

vj ·
(∫

Ω

ϕi∇ϕj dx

)
uj

−
∑
j

(∫
Ω

∇ϕi · (D∇ϕj) dx

)
uj. (10)

The system of equations for all unknowns can be written in the generic form

MC
du

dt
= (K − L)u, (11)

where u is the vector of unknowns and MC = {mij} is the consistent mass
matrix. The convective and diffusive part of the discrete transport operator
are denoted by K = {kij} and L = {lij}, respectively. According to (10)

mij =

∫
Ω

ϕiϕj dx, lij =

∫
Ω

∇ϕi · (D∇ϕj) dx, (12)
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and

kij = −vj · cij, cij =

∫
Ω

ϕi∇ϕj dx. (13)

In the case of an unsteady velocity field, the convective part of the discrete
transport operator must be updated at each time step. If the mesh is fixed,
then the coefficients cij of the discrete gradient operator C = {cij} do not
change and need to be evaluated just once. Hence, the group finite element
formulation makes it possible to update K in a very efficient way.

Let 0 = t0 < t1 < t2 < . . . < tM = T be a sequence of discrete time levels
for the time integration of system (11). For simplicity, we assume that the
time step ∆t = tn+1 − tn is constant so that tn = n∆t. We have

MC(un+1 − un) =

∫ tn+1

tn
(K − L)u dt. (14)

The integral is approximated using a suitable quadrature rule. In particular,
we will consider the fully discrete problem for the standard θ-scheme

[MC − θ∆t(K − L)]un+1 = [MC + (1− θ)∆t(K − L)]un, (15)

where θ ∈ [0, 1] is the degree of implicitness. We remark that the forward
Euler (θ = 0) version is unstable for convection-dominated transport prob-
lems and gives rise to severe time step restrictions in the case of dominating
diffusion. For this reason, we restrict ourselves to the unconditionally stable
Crank-Nicolson (θ = 1

2
) and backward Euler (θ = 1) time stepping.

3. Discrete maximum principles

Under certain assumptions, one can prove that the solution of the con-
tinuous problem is bounded by its initial and/or boundary values. A survey
of maximum principles for elliptic, hyperbolic, and parabolic transport equa-
tions can be found in [27]. Of course, a good numerical scheme must preserve
important properties of the exact solution. In this section, we briefly review
algebraic constraints which imply a discrete maximum principle and guaran-
tee positivity preservation. In the next section, we will use these sufficient
conditions to constrain discrete Galerkin operators in an adaptive way.

Given an approximation of the form (15) or its steady-state counterpart
(un+1 = un = u), the extended linear system can be partitioned as follows(

AΩΩ AΩΓ

0 I

)(
uΩ

uΓ

)
=

(
BΩΩ BΩΓ

0 I

)(
gΩ

gΓ

)
, (16)

7



where uΩ is the vector of unknowns and uΓ = gΓ is the vector of Dirichlet
boundary values. In the case of unsteady problems and pseudo-time stepping
schemes, we have uΩ = un+1

Ω and gΩ = unΩ. If the (pseudo-)time derivative is
omitted, one obtains a system of the form (16) with BΩΩ = 0 and BΩΓ = 0.

The algebraic equation for the i−th component of uΩ can be written as

aiiui = biigi +
∑
j∈Si

(bijgj − aijuj), (17)

where Si = {j 6= i | aij 6= 0∨ bij 6= 0} is the set of nearest neighbors of node i.

Definition 1. A numerical scheme of the form (17) satisfies the local dis-
crete maximum principle (DMP) at node i if [4]

ui ≤ umax
i := max{gi,max

j∈Si

gj,max
k∈Si

uk} (18)

In a similar vein, the local discrete minimum principle holds at node i if

ui ≥ umin
i := min{gi,min

j∈Si

gj,min
k∈Si

uk} (19)

Importantly, this property implies local positivity preservation. That is,

umin
i ≥ 0 ⇒ ui ≥ 0.

Theorem 1. Suppose that the coefficients of the i-th equation (18) satisfy

aii > 0, bii ≥ 0, aij ≤ 0, bij ≥ 0, ∀j ∈ Si. (20)

Then (18) is locally positivity-preserving. Moreover, the local discrete maxi-
mum and minimum principles hold under the additional condition [11, 27]∑

j

aij =
∑
j

bij. (21)

Proof. Suppose that umin
i ≥ 0, which implies uj ≥ 0, ∀j ∈ Si and gj ≥ 0,

∀j ∈ Si ∪ {i}. Due to (20), the right-hand side of (17) is nonnegative and
aii > 0, whence ui ≥ 0. Thus, the scheme is locally positivity-preserving.

To prove the local DMP property, we introduce wj := uj − umax
i and

vj := gj − umax
i . By definition, wj ≤ 0, ∀j ∈ Si and vj ≤ 0,∀j ∈ Si ∪ {i}.

Using (17) and the additional row sum condition (21), we obtain

aiiwi = biivi +
∑
j∈Si

(bijvj − aijwj). (22)
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Due to (20), the right-hand side of this equation is nonpositive and aii > 0.
It follows that wi ≤ 0, i.e., ui ≤ umax

i . Similarly, we have ui ≥ umin
i . �

The above Theorem implies that the solution value ui is bounded by the
solution values in a neighborhood of node i. If this is the case for all nodes,
global maxima and minima must occur on the Dirichlet boundary or at the
previous time level, in accordance with the continuous maximum principle.

Definition 2. A discretization of the form (16) satisfies the global discrete
maximum/minimum principle for nodal values if

min g ≤ uΩ ≤ max g, (23)

where g = (gΩ, gΓ)T is the vector of initial/boundary data for problem (16).
The corresponding definition of global positivity preservation is as follows

g ≥ 0 ⇒ u ≥ 0.

Again, a typical proof imposes certain restrictions of the coefficients of the
discrete problem. We will need the following set of sufficient conditions:

Theorem 2. Consider a discrete problem of the form Au = Bg, where all
entries of A and B satisfy conditions (20). If A is strictly or irreducibly
diagonally dominant, then the discretization is globally positivity-preserving.
Moreover, the global DMP holds if the row sums of A and B are equal.

Proof. We refer to [27] for a proof based on the concept of monotonicity.

Definition 3. A regular matrix A is called monotone if A−1 ≥ 0 [48]. An
equivalent definition of monotonicity is: Au ≥ 0 for any vector u ≥ 0.

Obviously, the solution to Au = Bg is positivity-preserving if A is mono-
tone and B ≥ 0 so that un+1 = A−1Bun ≥ 0 whenever un ≥ 0. If A and B
have equal row sums, one can prove the global DMP for nodal values.

4. Algebraic flux correction

If convective effects are too strong or the diffusion tensor is anisotropic,
then the standard Galerkin discretization (15) fails to satisfy the conditions
of Theorems 1 and 2 even on a uniform mesh of linear or multilinear finite el-
ements. This may result in a violation of the discrete maximum principle and
give rise to nonphysical negative values. To suppress undershoots/overshoots
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and ensure positivity preservation, we will adjust the coefficients of the
Galerkin scheme so as to enforce conditions (20) for an equivalent nonlin-
ear problem. We call this methodology algebraic flux correction [24, 28].

The discrete problem (15) associated with the implicit Galerkin approx-
imation of equation (1) is a linear system of the form Aun+1 = Bun. The
diagonal entries of A and B are positive, at least for sufficiently small time
steps ∆t. However, a violation of conditions (20) may be caused by

• positive off-diagonal entries of the consistent mass matrix MC ;

• negative off-diagonal entries of the discrete convection operator K;

• positive off-diagonal entries of the discrete diffusion operator L.

In the process of algebraic flux correction, the contribution of these entries
is constrained by adding a certain amount of discrete diffusion. First, the
consistent mass matrix MC is replaced with its lumped counterpart

ML := diag{mi}, mi =
∑
j

mij. (24)

Next, we fix K by adding a discrete diffusion operator D = {dij} with [23, 31]

dij = max{−kij, 0,−kji} = dji, ∀j 6= i (25)

so that K+D has no negative off-diagonal coefficients. The diagonal entries
of D are defined so that this symmetric matrix has zero row sums

dii := −
∑
j 6=i

dij. (26)

Due to symmetry, the column sums are also equal to zero. In the 1D case,
the lumped-mass Galerkin approximation on a uniform mesh of linear finite
elements is equivalent to the central difference scheme, while the modified
operator K +D corresponds to the first-order upwind difference [31].

If the computational mesh and/or the diffusion tensor are anisotropic,
some off-diagonal entries of L may be strictly positive. We set them equal to
zero and modify the diagonal entries so that the row and column sums remain
unchanged. The result is the discrete diffusion operator L− := L−L+, where
L+ = {l+ij} stands for the antidiffusive part of the stiffness matrix [30]

l+ii := −
∑
j 6=i

l+ij , l+ij := max{0, lij}, ∀j 6= i. (27)
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In summary, the semi-discrete Galerkin scheme (11) can be split as follows

ML
du

dt
= (K +D − L−)u+ f(u), (28)

where f(u) is the sum of antidiffusive terms that may destroy positivity

f(u) = (ML −MC)
du

dt
− (D + L+)u. (29)

Each component of this vector admits a conservative flux decomposition

fi =
∑
j 6=i

fij, fji = −fij. (30)

The formula for fij follows from our definition of ML, D, and L+. We have

(MLu̇−MC u̇)i = miu̇i −
∑
j

miju̇j =
∑
j 6=i

mij(u̇i − u̇j), (31)

(Du)i =
∑
j

dijuj = diiui +
∑
j 6=i

dijuj =
∑
j 6=i

dij(uj − ui), (32)

(L+u)i =
∑
j

l+ijuj = l+iiui +
∑
j 6=i

l+ijuj =
∑
j 6=i

l+ij(uj − ui), (33)

where u̇i stands for
(

du
dt

)
i
. Thus, the net antidiffusive flux fij is given by

fij = fM
ij + fK

ij + fL
ij , (34)

fM
ij = mij (u̇i − u̇j) , (35)

fK
ij = dij(ui − uj), (36)

fL
ij = l+ij(ui − uj). (37)

By the symmetry of MC , D, and L, we have fji = −fij for all j 6= i. This
property implies discrete conservation since the sum of all fluxes is zero.

The above representation of f(u) makes it possible to undo the unneces-
sary modifications of the Galerkin operators in order to minimize the amount
of numerical diffusion. To this end, we replace each flux fij with

f̄ij = αM
ij f

M
ij + αK

ij f
K
ij + αL

ijf
L
ij , (38)
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where αij ∈ [0, 1] is a solution-dependent correction factor. The multiplica-
tion by αij is supposed to reduce the magnitude of the antidiffusive flux in
regions where undershoots or overshoots would occur otherwise.

The semi-discrete form of the constrained Galerkin discretization reads

ML
du

dt
= (K +D − L−)u+ f̄(u), (39)

where
f̄i =

∑
j 6=i

f̄ij, f̄ji = −f̄ij. (40)

In accordance with the FCT philosophy [6, 35, 50] and the LED constraint
[17, 18], the definition of f̄ij must guarantee that the remaining antidiffusion
cannot generate new local extrema or accentuate existing ones. Let

umax
i := max{ui,max

j∈Si

uj}, (41)

umin
i := min{ui,min

j∈Si

uj}. (42)

The local maxima and minima of the time derivative vector u̇ are defined in
the same way. We will denote them by u̇max

i and u̇min
i , respectively.

The limited antidiffusive term (40) proves local extremum diminishing if

qMi (u̇min
i − u̇i) ≤

∑
j 6=i

αM
ij f

M
ij ≤ qMi (u̇max

i − u̇i), (43)

qKi (umin
i − ui) ≤

∑
j 6=i

αK
ij f

K
ij ≤ qKi (umax

i − ui), (44)

qLi (umin
i − ui) ≤

∑
j 6=i

αL
ijf

L
ij ≤ qLi (umax

i − ui) (45)

for some positive constants qMi , qKi , and qLi independent of u. In the next
section, we will use this criterion to determine the correction factors αij.

5. Linearity-preserving limiters

The purpose of flux limiting is to calculate a set of correction factors such
that inequalities (43)–(45) hold for a given solution. In this paper, we use
the same algorithm to determine the values of αM

ij , αL
ij, and αL

ij. Without
loss of generality, we consider raw antidiffusive fluxes of the form

fij = dij(ui − uj) (46)

12



and present the generic limiting strategy that delivers αij = αji satisfying

qi(u
min
i − ui) ≤

∑
j 6=i

αijfij ≤ qi(u
max
i − ui) (47)

for a given qi > 0. Under this LED condition, the sum of limited antidiffusive
fluxes is nonpositive if ui is a local maximum and nonnegative if ui is a
local minimum. The trivial solution is αij = 0 but a well-designed limiter
should deliver αij ≈ 1 in regions where the Galerkin solution is smooth. In
particular, the definition of qi should guarantee that αij = 1 is acceptable
whenever the solution varies linearly in a neighborhood of node i. This
important design principle is called linearity preservation [5, 7, 39]. It keeps
the scheme consistent and implies second-order accuracy for smooth data.

5.1. Gradient-based slope limiting

To begin with, we present the symmetric linearity-preserving (LP) slope
limiter we developed in [30] in the context of steady anisotropic diffusion.
This algorithm belongs to the family of slope-limited positive (SLIP) methods
in which the fluxes are constrained individually so as to limit the jumps of
the solution gradient along the line connecting two nodes [17, 34, 38, 42].

Obviously, a raw antidiffusive flux of the form (46) requires limiting if the
difference between the nodal values ui and uj is too large. In this case, the
‘slope’ ui − uj should be replaced with its limited counterpart

s̄ij := αij(ui − uj), (48)

where αij ∈ [0, 1] is the correction factor for the limited antidiffusive flux

f̄ij = αijdij(ui − uj) = dij s̄ij. (49)

To derive a formula for s̄ij, we consider the following linear approximation

ui − uj ≈ sij := gi · (xi − xj), (50)

where gi is an approximation to ∇u at node i. In the context of SLIP
schemes, gi is commonly defined by differentiating the solution in the first
element crossed by the line through xi and xj. Alternatively, a continuous
approximation gh to ∇u can be constructed with superconvergent gradient
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recovery techniques which are often used for error estimation purposes. We
determine the nodal values of gh using the lumped-mass L2-projection

gi =
1

mi

∑
k

cikuk, (51)

where mi is a diagonal entry of the lumped mass matrix ML, and cik is a
vector-valued coefficient of the discrete gradient operator C given by (13).

Since the gradients of Lagrange basis functions sum to zero, we have∑
k cik = 0. This enables us to express the right-hand side of (51) thus:

gi =
1

mi

∑
k 6=i

cik(uk − ui). (52)

We will use this representation to derive the LED bounds for the extrapolated
slope sij, and then we will use these bounds to define s̄ij.

Plugging (52) into the definition of sij, we obtain the following estimates

sij ≤
1

mi

∑
k 6=i

|cik · (xi − xj)|(umax
i − ui), (53)

sij ≥
1

mi

∑
k 6=i

|cik · (xi − xj)|(umin
i − ui). (54)

To make the bounds less restrictive, we multiply them by 2 and define

γij :=
2

mi

∑
k 6=i

|cik · (xi − xj)|. (55)

Since the coefficient γij is nonnegative, the LED constraint (47) holds if the
limited slope s̄ij that appears in the definition (49) of f̄ij satisfies

γij(u
min
i − ui) ≤ s̄ij ≤ γij(u

max
i − ui). (56)

If the flux f̄ji does not require limiting, the following definition of s̄ij will do

s̄ij =

{
min{γij(umax

i − ui), ui − uj}, if ui > uj,
max{γij(umin

i − ui), ui − uj}, if ui < uj.
(57)

The one-sided limiting strategy is appropriate if j is a node on the Dirich-
let boundary or the original Galerkin operator is skew-symmetric (see Section
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5.3). In all other cases, the contribution of f̄ji to node j must also be LED.
Hence, the limited slope s̄ij = −s̄ji must satisfy not only (56) but also

γji(uj − umax
j ) ≤ s̄ij ≤ γji(uj − umin

j ). (58)

A formula that guarantees the LED property for both nodes reads [30]

s̄ij =

{
min{γij(umax

i − ui), ui − uj, γji(uj − umin
j )}, if ui > uj,

max{γij(umin
i − ui), ui − uj, γji(uj − umax

i )}, if ui < uj.
(59)

This symmetric limiting strategy corresponds to a double application of the
one-sided slope limiter (57). As the mesh is refined, the value of s̄ij ap-
proaches ui − uj. Moreover, we can prove linearity preservation.

Theorem 3. If the numerical solution uh is a linear function, then the
lumped-mass L2 projection (51) is exact and sij = ui − uj = s̄ij.

Proof. Suppose that uh is a linear. Then the gradient of uh is constant and

ui − uj = ∇uh · (xi − xj).

It follows that sij = ui − uj if gi = ∇uh. According to (51), we have

gi =
1

mi

∫
Ω

ϕi∇uh dx = ∇uh
(

1

mi

∫
Ω

ϕi dx

)
= ∇uh (60)

since the diagonal entry of the lumped mass matrix is given by

mi =
∑
j

mij =

∫
Ω

ϕi

(∑
j

ϕj

)
dx =

∫
Ω

ϕi dx.

Thus, the L2 projection is exact and sij = ui − uj. By definition of γij, the
slope s̄ij = sij satisfies (56) and (58), whence no limiting is performed. �

5.2. Relationship to TVD schemes

To illustrate the relationship of the proposed slope limiters to classical
TVD schemes, we consider a 1D mesh with uniform spacing ∆x. In this
case, the coefficients of (51) are given by mi = ∆x and ci±1/2 = ±1/2. The
resulting formula for gi is equivalent to the second-order central difference

gi =
1

2

[
ui − ui−1

∆x
+
ui+1 − ui

∆x

]
=
ui+1 − ui−1

2∆x
.
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For any interior node, the local maxima and minima of the grid function are

umax
i = max{ui−1, ui, ui+1}, umin

i = min{ui−1, ui, ui+1}.

Furthermore, γij = 2 for j = i+ 1 since estimate (53)–(54) corresponds to

umin
i − ui ≤ ∆xgi ≤ umax

i − ui.

The one-sided slope limiter (57) can be written as a single-line formula

s̄ij = minmod{2(ui−1 − ui), ui − ui+1}, (61)

and the corresponding formula for the symmetric slope limiter (59) reads

s̄ij = minmod{2(ui−1 − ui), ui − ui+1, 2(ui+1 − ui+2)}. (62)

The minmod limiter function returns the argument with the smallest magni-
tude if all arguments have the same sign and zero otherwise. That is,

minmod{a, b, . . .} =


min{a, b, . . .}, if a > 0, b > 0, . . .
max{a, b, . . .}, if a < 0, b < 0, . . .
0, otherwise.

(63)

It follows that the slope limiter is activated only if two consecutive gradients
have opposite signs or their magnitudes differ by a factor of 2 and more.

5.3. Multidimensional flux limiting

So far we have limited the antidiffusive flux fij independently of all other
fluxes into node i. This is convenient but the results are quite sensitive to the
orientation of mesh edges. In this section, we convert the above stand-alone
slope limiter into the format we have used to design fully multidimensional
algebraic flux correction schemes of FCT and TVD type [24, 25, 27, 28].

A set of correction factors αij satisfying the generic LED constraint (47)
for the sum of limited antidiffusive fluxes can be calculated as follows:

1. Compute the sums of positive/negative antidiffusive fluxes to be limited

P+
i =

∑
j 6=i

max{0, fij}, P−i =
∑
j 6=i

min{0, fij}. (64)
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2. Define local extremum diminishing upper/lower bounds of the form

Q+
i = qi(u

max
i − ui}, Q−i = qi(u

max
i − ui}. (65)

3. Compute the nodal correction factors for positive/negative fluxes

R+
i = min

{
1,
Q+

i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
. (66)

4. Limit the fluxes fij and fji using the common correction factor

αij ≤
{
R+

i , if fij > 0,
R−i , if fij < 0,

αji = αij. (67)

This limiting strategy traces its origins to Zalesak’s FCT algorithm [50] but
does not involve computation of a provisional low-order solution.

The above definition of αij implies (47). Indeed, it is easy to verify that

Q−i ≤ R−i P
−
i ≤

∑
j 6=i

αijfij ≤ R+
i P

+
i ≤ Q+

i . (68)

To maintain linearity preservation, we define Q±i as the sum of the LED
bounds we imposed in (56) on individual slopes/fluxes. That is, we set

qi :=
∑
j 6=i

γijdij. (69)

It remains to define the correction factor αij for (67). This definition depends
on whether a one-sided or a symmetric limiting strategy is appropriate.

Since the discrete convection operator K is nonsymmetric, the limiter can
take advantage of the fact that kji and kij have opposite signs. Without loss
of generality, we assume kij < 0 ≤ kji. This convention implies that node i
is located upwind [24, 28]. The constrained entry of row j is given by

k̄ji := kji + (1− αij)dij.

Thus k̄ij ≥ 0 for any αij ∈ [0, 1], so it is safe to limit fij using αij = R±i .
In the unlikely case of kij ≤ kji < 0, we redefine the flux fij as follows

fij := minmod{fij, (kji + dij)(ui − uj)}, fji := −fij. (70)
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After this ‘prelimiting’, the value of k̄ji will be nonnegative for any αij = R±i .
In the one-sided version of the generic flux limiter (64)–(67), the contri-

butions of upwind fluxes (kij > kji) are removed from the sums P±i

P+
i =

∑
kij≤kji

max{0, fij}, P−i =
∑

kij≤kji

min{0, fij}. (71)

For each pair of off-diagonal coefficients kij ≤ kji, upwind-biased flux limiting
is performed using the nodal correction factor for the upwind node

αij =

{
R+

i , if fij ≥ 0,
R−i , if fij < 0,

αji := αij. (72)

In the case of a symmetric Galerkin operator like MC and L, the anti-
diffusive flux may violate the LED constraint for both nodes. Thus, all fluxes
are added to the sums P±i and limited in a symmetric fashion using

αij =

{
min{R+

i , R
−
j }, if fij ≥ 0,

min{R−i , R+
j }, if fij < 0,

αji := αij. (73)

The bounds Q±i for the antidiffusive mass fluxes fM
ij must be defined in terms

of u̇ rather than u. At the fully discrete level, the time derivative is replaced
with the finite difference approximation u̇ ≈ (un+1 − un)/∆t. Note that the
same correction factor αM

ij is applied to the explicit and implicit part of fM
ij .

6. Solution of nonlinear systems

After the discretization in time, the nonlinear algebraic system associated
with the flux-corrected Galerkin discretization (39) can be written as

Aun+1 = Bun + f̄(un+1, un), (74)

where f̄(un+1, un) denotes the sum of limited antidiffusive fluxes and

A =
1

∆t
ML − θ(K +D − L−), (75)

B =
1

∆t
ML + (1− θ)(K +D − L−). (76)

If the governing equation is nonlinear or the velocity field is time-dependent,
then the coefficients of A and B may change as the solution evolves.
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To prove positivity preservation, one can express (74) as Āun+1 = B̄un,
where Ā and B̄ are nonlinear operators satisfying (20). The existence of such
an equivalent representation follows from inequalities (43)–(45). The formal
proof is straightforward and similar to the proofs presented in [27, 28].

Since the antidiffusive term depends on the unknown solution, the non-
linear discrete problem must be solved in an iterative way. In general, only
the fully converged solution is guaranteed to conserve mass and preserve
positivity. Therefore, it is essential to make sure that iterations converge.
Moreover, convergence must be fast enough to keep the cost of algebraic flux
correction reasonable. Thus, the robustness and efficiency of the iterative
solver are just as important as the accuracy of the flux limiting procedure.

6.1. Iterative defect correction

The structure of the nonlinear algebraic system (74) suggests the use of
a fixed-point iteration with a lagged treatment of the antidiffusive term

Au(m) = Bun + f̄(u(m−1), un). (77)

A more general class of defect correction schemes can be formally written as

u(m) = u(m−1) + ωÃ−1r(m−1), (78)

where ω is a relaxation parameter, Ã is a ‘preconditioner’ (see below), and

r(m−1) = Bun − Au(m−1) + f̄(u(m−1), un), (79)

is the residual vector. In practice, we update the new solution as follows:

Algorithm 1: Defect correction scheme

1. Set u(0) := un.

2. For all m = 1, 2, . . . do

• Solve the linear system Ã∆u(m) = r(m−1).

• Update the solution u(m) := u(m−1) +ω∆u(m).

• Check the stopping criteria, exit if converged.

3. Set un+1 = u(m), go to the next time step.
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The iteration process is typically terminated when certain norms of ∆u(m)

and/or r(m) become smaller than a prescribed tolerance. More elaborate
stopping criteria based on the FEM theory can be found in [1].

Clearly, the rates of convergence and the overall efficiency of the above
defect correction scheme are strongly influenced by the choice of ω and Ã.
The default is ω := 1 and Ã := A, which corresponds to (77). By con-
struction, A is monotone. This property results in fast convergence of inner
iterations but the convergence of outer iterations may be rather slow.

Some advanced preconditioning and underrelaxation techniques are dis-
cussed in [27, 30, 40]. In quasi-Newton methods, Ã is defined as a suitable
approximation to the Jacobian of the nonlinear system. Due to the com-
plex structure and nondiferentiability of the limited antidiffusive term, the
assembly of such preconditioners is very complicated and expensive. Thus,
Jacobian-free solvers are to be preferred. In particular, the convergence ac-
celeration method described in Section 6.3 leads to a Newton-like scheme in
which the memory effect is exploited to avoid numerical differentiation.

6.2. Nonlinear SSOR method

A major drawback of fixed-point methods like (77) is the fully explicit
treatment of the nonlinear antidiffusive term. An attempt to build implicit
antidiffusion into the preconditioner Ã for the defect correction scheme ag-
gravates convergence problems if all correction factors are taken from the
previous outer iteration. This has led us to update the solution values, the
fluxes, and the correction factors simultaneously in a loop over nodes. The
resulting algorithm can be classified as a nonlinear SSOR method.

The i-th equation of the limited Galerkin scheme (74) can be written as∑
j

aijuj = bi + f̄i, (80)

where f̄i depends on the solution u = un+1, whereas bi =
∑

j biju
n
j is known.

The calculation of u
(m)
i ≈ un+1

i begins with an update of the correction
factors αij for the nonlinear antidiffusive term f̄i. In the forward sweep, the

new values u
(m)
j are already available for all j < i. Thus, we have

uj =

{
u

(m)
j , if j < i,

u
(m−1)
j , if j ≥ i.

(81)
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In the backward sweep, the solution values are updated in the reverse order,
so the i-th step begins with uj = u

(m)
j for j > i and uj = u

(m−1)
j otherwise.

Given the array of current solution values ui, we recalculate the raw
antidiffusive fluxes fij, apply the limiter, and add the result to f̄i. For an
algebraic flux correction scheme of the form (64)–(67) the algorithm reads:

Algorithm 2: Flux limiting procedure

Set P±i := 0, Q± := 0.

For all j ∈ Si do

• Calculate fij = dij(ui − uj).

• Set P±i := P±i + max
min
{0, fij}.

• Set Q±i := max
min
{Q±i , qi(uj − ui)}.

Compute R±i = min{1, Q±i /P±i }.
For all j ∈ Si do

• Calculate αij = αij(R
±
i , R

∓
j ).

• Set f̄i := f̄i + αijfij.

Since the value of αij depends not only on R±i but also on R∓j , we store
the nodal correction factors in an auxiliary vector, so that they are readily
available when it comes to calculating αij. Due to the lag in evaluation of
f̄ij and f̄ji, intermediate approximations may fail to satisfy f̄ji = −f̄ij but
the skew-symmetry property is restored when the algorithm converges.

Given the updated value of f̄i, the old solution value ui is overwritten by

ui := ui +
1

ãii

(
bi −

∑
j

aijuj + f̄i

)
. (82)

Setting ãii := aii, one obtains the symmetric Gauß-Seidel (SGS) method
which may fail to converge if the implicit part of f̄i is too large compared to∑

j aijuj. A possible remedy is implicit underrelaxation of the form

ãii :=
aii
ω
, 0 < ω ≤ 1.

21



Equivalently, the value of ãii ≥ aii can be defined by adding a nonnegative
number to the diagonal entry. In our numerical experiments, we used

ãii := aii + θ
∑
j 6=i

(dij + l+ij).

The flow chart of the nonlinear SSOR method for solving (74) is as follows:

Algorithm 3: Nonlinear SSOR iteration

For all i = 1, . . . , NΩ do

• Update the antidiffusive term f̄i using Algorithm 2.

• Calculate the new solution value ui using (82).

For all i = NΩ, . . . , 1 do

• Update the antidiffusive term f̄i using Algorithm 2.

• Calculate the new solution value ui using (82).

The forward sweep can be written as (D̃ + L̃)∆u∗ := r, where r is the
residual, D̃ = diag{ãii} is a diagonal matrix, and L̃ is the strict lower tri-
angular part of A plus limited antidiffusion. Likewise, the backward sweep
can be written as (D̃ + Ũ)∆u := ∆u∗, where Ũ is a strict upper triangular
matrix. Thus, Algorithm 3 can written in the form (78) with ω = 1 and

Ã = (D̃ + L̃)D̃−1(D̃ + Ũ).

Luo et al. [37] used such a scheme as a preconditioner for a linear GMRES
solver. A nonlinear version of this solution strategy is recovered when the
method presented in Section 6.3 is employed to accelerate Algorithm 3.

In an iterative solver for steady transport equations, we set θ := 1 and
bi := 0. Furthermore, the contribution of the mass matrix is removed, which
corresponds to using an infinitely large pseudo-time step ∆t. A usable initial
guess can be obtained by solving the linear system with f̄i = 0 or f̄i = fi.

6.3. Anderson acceleration

Since the cost of recalculating the correction factors for the flux limiter
is rather high, slow convergence of an iterative method can make algebraic
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flux correction very expensive. The fixed-point defect correction scheme (78)
and the nonlinear SSOR iteration (82) generate a sequence of successive ap-
proximations but only the last iterate u(m−1) is used when it comes to the
computation of u(m). It turns out that including information from a num-
ber of previous iterates may dramatically improve the convergence behavior.
This idea is exploited in many vector extrapolation techniques for vector
sequences (see, e.g., [19, 46]). In this paper, we employ the convergence ac-
celeration technique known as Anderson mixing [3, 9, 10, 49]. As shown in [9],
this approach is equivalent to the Broyden scheme for the inverse Jacobian
but is easier to implement and explain. On linear problems, the accelerated
fixed point iteration is related to the preconditioned GMRES method [49].

Following Walker and Ni [49], we formulate Anderson acceleration thus:

Algorithm 4: Anderson acceleration

Set u(0) := un.
For all m = 1, 2, . . . do

• Compute ũ(m) := g(u(m−1)) with (78) or (82).

• Store ũ(m) and ∆u(m) := ũ(m) − u(m−1).

• Given k ≤ m iterates, determine the weights

ω(m) = (ω
(m)
1 , . . . , ω

(m)
k )T

by solving the constrained least-squares problem

min
ω(m)

∥∥∥∥∥
k∑

i=1

ω
(m)
i ∆u(m−k+i)

∥∥∥∥∥
2

s.t.
k∑

i=1

ω
(m)
i = 1.

• Set u(m) :=
k∑

i=1

ω
(m)
i ũ(m−k+i).

• Check the stopping criteria, exit if converged.

Set un+1 = u(m), go to the next time step.

In practice, it is worthwhile to calculate the weights by solving an equiv-
alent unconstrained least squares problem [49]. Furthermore, Anderson ac-
celeration may need to be restarted if the vectors ∆u(m) become (almost)
linearly dependent, or if the norm of ∆u(m) turns out to be much greater
than that of ∆u(m−1). For a detailed discussion of various improvements and
practical implementation details, we refer to the literature [9, 10, 41, 49].
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7. Numerical examples

In this section, we apply the proposed algorithms to a suite of 2D test
problems which have already been studied using other algebraic flux cor-
rection schemes [28, 26, 30, 27]. Given a reference solution u, we use the
following norms to assess the accuracy of a numerical approximation uh

E1(h) =
∑
i

mi|u(xi)− ui| ≈ ‖u− uh‖1, (83)

E2(h) =

√∑
i

mi|u(xi)− ui|2 ≈ ‖u− uh‖2, (84)

where mi =
∫

Ω
ϕi dx is a diagonal coefficient of the lumped mass matrix ML.

The objective of the below numerical study is to investigate the depen-
dence of E1 and E2 on the mesh size h and on the choice of the limiting
strategy. In particular, we use the solutions computed on the two finest
meshes to estimate the expected order of accuracy by the formula [32]

p = log2

(
E1(2h)

E1(h)

)
. (85)

In the last example, we also study the convergence behavior of the iterative
solver to give a flavor of efficiency gains offered by Anderson acceleration.

7.1. Solid body rotation

The solid body rotation test [32, 50] is often used to evaluate numerical
advection schemes. The problem to be solved is the continuity equation

∂u

∂t
+∇ · (vu) = 0 in Ω = (0, 1)× (0, 1). (86)

The velocity v describes a counterclockwise rotation about the center of Ω

v(x, y) = (0.5− y, x− 0.5). (87)

After each full revolution, the exact solution u coincides with the given initial
data u0. Hence, the challenge of this test is to preserve the shape of u0.

Following LeVeque [32], we simulate solid body rotation of a profile that
consists of a slotted cylinder, a sharp cone, and a smooth hump (see Fig. 1a).
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The geometry of each body is described by a given function G(x, y) defined
on a circle of radius r0 = 0.15 centered at some point (x0, y0). Let

r(x, y) =
1

r0

√
(x− x0)2 + (y − y0)2

be the normalized distance from (x0, y0). Then r(x, y) ≤ 1 inside the circle.
The slotted cylinder is centered at the point (x0, y0) = (0.5, 0.75) and

G(x, y) =

{
1 if |x− x0| ≥ 0.025 or y ≥ 0.85,

0 otherwise.

The cone is centered at (x0, y0) = (0.5, 0.25) , and its shape is given by

G(x, y) = 1− r(x, y).

The hump is centered at (x0, y0) = (0.25, 0.5), and the shape function is

G(x, y) =
1 + cos(πr(x, y))

4
.

In the rest of the domain, the solution to (86) is initialized by zero, and
homogeneous Dirichlet boundary conditions are prescribed at the inlets.

The snapshots presented in Figs 1 and 2 show the shape of the solution at
the final time T = 2π, which corresponds to one full rotation. All computa-
tions were performed on a uniform mesh of 128×128 bilinear elements using
the Crank-Nicolson time-stepping with the time step ∆t = 10−3. The results
obtained with αij := 1 and αij := 0 are shown in Figs 1b and 1c, respec-
tively. As expected, the unconstrained Galerkin solution exhibits spurious
oscillations, while its low-order counterpart is too diffusive. The solution
shown in Fig. 1d was computed using the FEM-FCT algorithm developed in
[26]. This algebraic flux correction scheme of predictor-corrector type pro-
duces excellent results when the time steps are small. However, its accuracy
deteriorates at large time steps, and steady-state solutions depend on ∆t.
In the consistent-mass FEM-FCT scheme, a common correction factor αij is
applied to fM

ij and fK
ij . Due to this coupling, ad hoc prelimiting is performed

to avoid spurious ripples in situations when the signs of fM
ij and fK

ij differ.

In the caption to Fig. 2, the abbreviations LPSL and LPFL refer to
the general-purpose limiting techniques described in Sections 5.1 and 5.3,
respectively (LP := Linearity Preserving, SL:= Slope Limiting, FL := Flux
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(a)
(b)

(c) (d)

Figure 1: Solid body rotation: (a) initial data / exact solution, (b) standard Galerkin
scheme, (c) discrete upwinding, (d) FCT flux correction. Discretization: Q1 elements
(h = 1/128), Crank-Nicolson time-stepping (∆t = 10−3). Simulation time: T = 2π.

Limiting). The results shown in Figs 2a and 2b indicate that LPFL is more
accurate than LPSL and almost as accurate as FCT. This is good news since
the solid body rotation test belongs to the class of problems for which FCT
is far superior to other shock-capturing methods [? ]. In contrast to flux
limiters of TVD type [24, 25], the new methodology is applicable to the
antidiffusive part of the consistent mass matrix which makes it possible to
attain fourth-order accuracy with linear finite elements (see [8], p. 96). To
demonstrate the importance of this result, we present the numerical solutions
obtained with the lumped mass matrix (αM

ij := 0) in Figs 2c and 2d.
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(a) (b)

(c) (d)

Figure 2: Solid body rotation: (a) LPSL, consistent mass (b) LPFL, consistent mass, (c)
LPSL, lumped mass (b) LPFL, lumped mass, Discretization: Q1 elements (h = 1/128),
Crank-Nicolson time-stepping (∆t = 10−3). Simulation time: T = 2π.

The diagram in Fig. 3 depicts the E1 convergence history for the con-
sistent and lumped-mass versions of LPSL and LPFL. The numerical values
values of E1 and E2 are listed in Tables 1 and 2. The local Courant number
ν = |v|∆t

h
equals zero at the center of the square domain and attains its

largest value νmax = 1√
2

∆t
h

at the corners. In the process of mesh refinement,

the time step was adjusted to maintain the fixed ratio ∆t
h

= 0.128.
The expected order of accuracy p is estimated using (85) with h = 1/256.

The rates of convergence for the algorithms labeled (a) through (d) in Fig. 2
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Figure 3: Solid body rotation, convergence history for LP limiters.

LPSL, lumped mass LPSL, consistent mass

h E1 E2 E1 E2

1/32 0.783E-01 0.163E+00 0.582E-01 0.135E+00

1/64 0.564e-01 0.144e+00 0.380E-01 0.111E+00

1/128 0.346e-01 0.109e+00 0.180E-01 0.704E-01

1/256 0.203e-01 0.803e-01 0.919E-02 0.509E-01

Table 1: Solid body rotation: LPSL grid convergence.

LPFL, lumped mass LPFL, consistent mass

h E1 E2 E1 E2

1/32 0.785E-01 0.165E+00 0.465E-01 0.125E+00

1/64 0.560E-01 0.147E+00 0.271E-01 0.907E-01

1/128 0.340E-01 0.110E+00 0.130E-01 0.612E-01

1/256 0.200E-01 0.806E-01 0.705E-02 0.459E-01

Table 2: Solid body rotation: LPFL grid convergence.
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are given by p = 0.96, 0.90, 0.77, and 0.77, respectively. The consistent-
mass LPFL produces smaller errors than LPSL. However, there is hardly
any difference if mass lumping is performed. In this case, both algorithms
converge at the rate p = 0.77, which is a typical value for a TVD scheme
that delivers p = 2 for smooth data. The use of the consistent mass matrix
results in a significant gain of accuracy and faster grid convergence. This
justifies the additional effort invested in the computation of αM

ij .

7.2. Circular convection

The second test problem is taken from [16]. Consider the hyperbolic PDE

∇ · (vu) = 0 in Ω = (−1, 1)× (0, 1) (88)

which describes steady circular convection if the velocity field is defined as

v(x, y) = (y,−x).

The exact solution and inflow boundary conditions for this test are given by

u(x, y) =

{
G(r), if 0.35 ≤ r =

√
x2 + y2 ≤ 0.65,

0, otherwise,

where G(r) is a given function that defines the shape of the solution profile.
To evaluate the performance of LPSL and LPFL for smooth data and

discontinuous solutions, we consider the following shape functions

G1(r) = cos2

(
5π

2r + 1

3

)
, G2(r) ≡ 1.

As before, computations are performed on a uniform mesh of bilinear finite
elements which is successively refined to perform a grid convergence study.

The exact solution to the circular convection problem is constant along
the streamlines of the stationary velocity field. Figure 4 displays the results
for G = G1 and G = G2 computed using the LPFL algorithm with h = 1/64.
The convergence history for LPSL and LPFL is presented in Tables 3 and 4,
respectively. In the case of the smooth profile G1, the E1 errors for LPSL
are approximately twice as large as those for LPFL. The expected orders of
accuracy are 2.22 and 2.11, respectively. In the case of the discontinuous
profile G2, the convergence rates drop to 0.91 for LPSL and 0.83 for LPFL.
The absolute values of the E1 errors differ by a factor of 1.5. We conclude
that the revised limiting strategy leads to a marked improvement not only
for transient convection problems but also in steady-state computations.
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(a)

(b)

Figure 4: Circular convection: LPFL results for (a) smooth and (b) discontinuous data.

smooth data discontinuous data

h E1 E2 E1 E2

1/32 0.318E-01 0.551E-01 0.821E-01 0.152E+00

1/64 0.104E-01 0.204E-01 0.449E-01 0.108E+00

1/128 0.251E-02 0.595E-02 0.259E-01 0.860E-01

1/256 0.537E-03 0.160E-02 0.138E-01 0.601E-01

Table 3: Circular convection: LPSL grid convergence.

30



smooth data discontinuous data

h E1 E2 E1 E2

1/32 0.146E-01 0.266E-01 0.540-01 0.131E+00

1/64 0.377E-02 0.801E-02 0.295E-01 0.893E-01

1/128 0.944E-03 0.230E-02 0.185E-01 0.757E-01

1/256 0.218E-03 0.632E-03 0.104E-01 0.519E-01

Table 4: Circular convection: LPFL grid convergence.

7.3. Anisotropic diffusion

In the last example, we consider a steady anisotropic diffusion equation

−∇ · (D∇u) = 0 in Ω, (89)

where Ω = (0, 1)2\[4/9, 5/9]2 is a square domain with a hole in the middle.
The outer and inner boundary of Ω are denoted by Γ0 and Γ1, respectively

(see Fig. 5a). The following Dirichlet boundary conditions are prescribed

u(x, y) =

{
−1, if (x, y) ∈ Γ0,

1, if (x, y) ∈ Γ1.
(90)

The diffusion tensor D is a symmetric positive definite matrix defined as

D = R(−θ)
(
k1 0
0 k2

)
R(θ), (91)

where k1 and k2 are the positive eigenvalues and R(θ) is a rotation matrix

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (92)

The eigenvalues of D represent the diffusion coefficients associated with the
axes of the Cartesian coordinate system rotated by the angle θ. Let

k1 = 100, k2 = 1, θ = −π
6
.

By the continuous maximum principle, the exact solution to the above Dirich-
let problem is bounded by the prescribed boundary data u|Γ = ±1. However,
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Anisotropic diffusion: (a) computational domain, (b) reference solution, (c)
Galerkin, h = 1/36, (d) Galerkin, h = 1/288, (e) LPFL, h = 1/36, (f) LPFL, h = 1/288.

32



the diffusion tensor (91) is highly anisotropic, which may result in a violation
of the DMP even if a regular mesh of acute/nonnarrow type is employed.

The above benchmark problem was introduced by Lipnikov et al. [33].
The results obtained with the LPSL scheme can be found in [30]. In this
section, we discretize the anisotropic diffusion equation (89) using LPFL and
linear finite elements on uniform triangular meshes. Since no exact solution
is available, the reference solution depicted in Fig. 5b is calculated with the
standard Galerkin method on a very fine mesh (h = 1/1152). This solu-
tion is bounded by the prescribed Dirichlet boundary values, as required by
the maximum principle. The unconstrained Galerkin solutions computed on
coarser meshes exhibit spurious undershoots shown as the dark blue regions
in Figs 5c and 5d. Algebraic flux correction based on the LPFL algorithm
makes it possible to enforce the DMP constraint without excessive smearing.
The solutions for h = 1/36 and h = 1/288 are presented in Figs 5e and 5f.

The results of a grid convergence study are summarized in Tables 5 and 6.
On coarse meshes, the LPFL algorithm produces smaller errors than the un-

h E1 E2 p umin umax

1/18 0.826E-01 0.194E+00 -1.06565 1.00000

1/36 0.514E-01 0.136E+00 0.68 -1.05527 1.00000

1/72 0.298E-01 0.904E-01 0.79 -1.03944 1.00000

1/144 0.155E-01 0.544E-01 0.94 -1.01818 1.00000

1/288 0.684E-02 0.278E-01 1.18 -1.00133 1.00000

1/576 0.225E-02 0.103E-01 1.60 -1.00000 1.00000

Table 5: Anisotropic diffusion: Galerkin grid convergence.

h E1 E2 p NNL-A NNL

1/18 0.741E-01 0.181E+00 70 258

1/36 0.441E-01 0.128E+00 0.75 293 1,136

1/72 0.257E-01 0.874E-01 0.78 448 4,904

1/144 0.143E-01 0.547E-01 0.85 951 20,375

1/288 0.712E-02 0.292E-01 1.01 1,094 51,763

1/576 0.245E-02 0.111E-01 1.54 1,976 120,213

Table 6: Anisotropic diffusion: LPFL grid convergence.
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derlying Galerkin scheme. As the mesh is refined, the undershoots produced
by the latter method become smaller and eventually disappear. In the fourth
column, we list the rate of convergence (85) for each pair of meshes. Note
that the value of p increases monotonically as the mesh size h goes to zero.

The nonlinearity of the algebraic system associated with the flux-corrected
Galerkin discretization of the anisotropic diffusion equation is more severe
than in the case of pure convection. This phenomenon was first discovered
in [30]. The last two columns in Table 6 list the total number of nonlinear
SSOR iterations required to make the maximum norm of the residual smaller
than ε = 10−6. It is worth mentioning that the values of E1 and E2 converged
at early stages of the iteration process. Hence, a better choice of stopping
criteria would make the iterative solver more efficient [1]. The numbers in
the column labeled NNL-A were obtained with Anderson acceleration, as de-
scribed in Section 6.3. If it is switched off, a dramatic increase in the number
of nonlinear iterations NNL is observed (see the last column in Table 6).
The accelerated version is 60 times faster on the finest mesh. In the current
implementation of Anderson acceleration, we always mix k = 5 iterates and
calculate the corresponding weights using the LAPACK subroutine DGELS
to solve the (unconstrained) least squares problem. The improvements pro-
posed in [9, 10, 41, 49] are likely to result in a further gain of efficiency.

8. Conclusions

This paper has significantly advanced the state of the art in the design
of efficient general-purpose flux limiters for implicit finite element discretiza-
tions. We extended the linearity-preserving slope limiter based on gradient
reconstruction to unsteady convection-diffusion problems, converted it into a
fully multidimensional algebraic flux correction scheme, designed a nonlinear
SSOR method for solving the nonlinear algebraic system, and explored the
potential of the Anderson acceleration technique in this context. The pro-
posed methodology is closely related to the flux-corrected transport (FCT)
algorithm but is readily applicable to stationary problems, as well as to un-
steady transport processes which converge to a steady state equilibrium.

If the problem at hand is strongly time-dependent and the time steps
are rather small, the proposed scheme can be linearized in much the same
way as the FCT algorithm presented in [26]. This idea leads to a simple
predictor-corrector algorithm in which the antidiffusive fluxes are evaluated
using a provisional solution calculated without taking the antidiffusive term
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into account. In this linearized version, all fluxes must be limited in a sym-
metric fashion since the convective flux into the downwind node is no longer
balanced by the nonoscillatory part of the Galerkin transport operator.

In the case of stationary transport equations or large time steps, the lin-
earization of antidiffusive fluxes about a low-order predictor would degrade
the accuracy of the algebraic flux correction scheme and inhibit convergence.
Hence, there is no way to replace the iterative solution of a nonlinear sys-
tem with a single postprocessing step. Our results for the anisotropic diffu-
sion equation indicate that Anderson acceleration is a very powerful tool for
the design of efficient quasi-Newton iterative solvers. The nonlinear SSOR
method presented in this paper can also be used as a smoother within the
framework of a full multigrid / full approximation scheme (FMG-FAS).

In summary, the efficiency of algebraic flux correction schemes can be
enhanced by using the predictor-corrector strategy for small time steps and
convergence acceleration techniques otherwise. In the case of hyperbolic sys-
tems, the new linearity-preserving flux limiter can be applied to the primitive
or characteristic variables following the methodology developed in [14, 29].
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