Operator splitting techniques

Divide-and-conquer strategy: decompose unwieldy (systems of) PDEs into simpler

subproblems and treat them individually using specialized numerical algorithms

Differential splitting

Discretization order: time, space
(operator splitting is applied to £
before the discretization in space)

L4 represent physical phenomena
(convection, diffusion, reaction etc.)

BC are needed for each subproblem

Objective: decoupling of physical
effects in complex IBVPs

Algebraic splitting

ou
o +Lu=0, L=> L,
Discretization order: space, time
(operator splitting is applied to L = L,
resulting from the space discretization)

L, represent discrete operators
(sparse matrices of arbitrary origin)
BC are built into L beforehand

Objective: segregated solution of

the (semi-)discretized equations




First-order operator splitting

Initial value problem % + Lu=0 in (0,7) u(0) = ug

S
(Marchuk-)Yanenko method L=> Ls (differential or algebraic)
s=1

ous)
ot

u(s) (tn) _ u(s—l) (tn+1)’ u(O) (tn+1) _ un) un+1 _ u(S) (tn—l—l)

+ Loul®) = in (¢, "t s=1,...,8

e subproblems can be discretized independently using different methods
e the splitting error is O(At) so that a first-order time-stepping will do
e it is possible to treat some subproblems explicitly and some implicitly

e substepping (different time steps for different subproblems) is feasible

S S
Remark. The decomposition of £ is non-unique: L= > L;= > L,
s=1 s=1




Yanenko splitting in the case S =2

Initial value problem Fractional-step method
Ou n n+1/2 n+1
o TLu=f L=Lit+Ly u' — u — u

Subproblems discretized in time by the backward Euler method

w2 —qn 1/2 1/2 1
1. A7 + Liu" /2 =, w2 = [T 4+ Aty
un—l—l . un—|—1/2
2. + Lou™t = f [T + AtLoluntt = w12 4 At f"

At

Hence, [Z + AtLy]([T + AtLoJu™t — Atf™) = u”

tn+1
un—l— 1 u™

At

tn

+ Lu™T = [+ ALy (f — Lou™t)

Remark. Yanenko splitting is first-order accurate and unconditionally stable
if the discrete counterparts of £; and L5 are nonnegative definite matrices




Example: 1D convection-diffusion equation

Convection-dominated problem u

t=20 t=T
2 .
Ju 1 pdu — g4 in (0,X) x (0,7) N
u(0) =u(l) =0, wult=0 = ug o /' \\d>0
o % N
Caution: standard Galerkin FEM is unstable! 0 X 2

Taylor series expansion — u"*t! = u™ + At (%)n + (A;)Q (?;;‘) + O(At)?

Time derivatives 5 = Lu, 8t2 = Lu, where L = v d-2 8902

It is obvious that Lax-Wendroff/Taylor-Galerkin methods with a fourth-order
operator £? are not applicable to (multi-)linear finite element approximations

Crank-Nicolson scheme in incremental form

GH = L% =LY L O(AY) = [T+ 5EL) Y5 = —Lun

Remark. Stabilization term vanishes in the steady state limit v+t = "




Example: 1D convection-diffusion equation

Yanenko splitting for the convection-diffusion operator £ = £ + Lo

1. Convection step: Euler-TG method (explicit, third-order accurate)

(At)? ] untV2—yn . A o 0
[I 5 L7 Az = —Liu"+ 5 Liu", where L, =va

The pure convection equation is hyperbolic so that the boundary conditions
should be imposed only at the inlet: «(0) =0if v >0, u(l)=0ifv <0

2. Diffusion step: Crank-Nicolson scheme (implicit, second-order accurate)

= — _Loynt1/2 — _d=
[I 5 EQ] ; ,CQU R where [,2 dax2

The pure diffusion equation is parabolic so that the homogeneous boundary

conditions are to be prescribed at both endpoints: «(0) = u(1) =0

Remark. The overall temporal accuracy is O(At) due to the splitting error




Example: coordinate splitting in two dimensions

Consider the PDE =~ 2% — a% + 0 ‘3273 discretized in space by CDS

ot
92w ~ Ui—1,5—2U; j+UiL1 d%u o Ui j—1—2U j UG 41
Ox? i ~ (Ax)? ) Dy>2 i ~ (Ay)2

Problem: the resulting matrix is banded but not tridiagonal (5-point stencil)

Alternating Direction Implicit (ADI) method L=L+ Lo
1. Sweep in the xr—direction L1 = ozaa—; y L,
e T A e
At = (Ax)?

Yj+1

1D subproblems along the line y; = const

Yj Ly

2. Sweep in the y—direction Lo =7 88—;2

Yj—1
n+1 n+1/2 n+1 n+1 n+1
i Wi :5%,3'—1_2“@',3' UGt
(Ay)?

At
1D subproblems along the line x; = const T T Tin P

u




Second-order operator splitting

Initial value problem L=L14 L5 -
s,
a—? Y Lu=0 in(0,7)  u(0)=u s
Symmetrized Strang splitting S = 2 " un \ﬂnﬂ/z
1. 24 Liu=0 in (1", t"F1/2) u(th) = ut — APTY2 = (¢t T/2)
2. 2Ly Lou=0 in (", t"F) w(t”) = a2 — T2 = g (1)
3. %—1‘ + Liu =0 in (/2 ¢t w(thTH2) = gt 1/2 gt = g (¢t

e Strang splitting is second-order accurate and unconditionally stable if the

discrete counterparts of £; and L, are positive definite matrices

e time-stepping of (at least) second order is mandatory for all subproblems

e for S > 2 the operators can be grouped in different ways, e.g. as follows

£=£1—|—£2—|—£3=(£1+£2)—|—£3:£1+([,2—|—£3):A1—|—.A2




Second-order operator splitting

Initial value problem Fractional step method S =2
0
8_?: + Lu=f, u(0)=ug ut —— T 2 ]
Predictor-corrector scheme L=L+ Ly (differential or algebraic)
nt1/4_
1. % + Lquntl/4 = fntl/2 e first-order accurate Yanenko splitting

is employed to predict u at gnti/2

n+1/2  n+1/4
e the explicit midpoint rule corrector
3 u"+1 "4 Luntl/2 = fn+1/2 yields a second-order accurate u""*
.. . . n+1/2__, n
Elimination of u?t1/4 gives G+ %,Cu”“/2 + %Elﬁgunﬂﬂ = %f”+1/2

n+1_ n n+1 n At 2
LunTt1l/2 — fn—|—1/2 _u - u . yntl/2 — 2—|—u _( 4) £1£2un—|—1/2

u"+

Hence, “ =" 4 [ (&) = /2 4 %Eﬁlﬁgunﬂm, where

n+1/2 (I—f- Atﬁ ) (I—l— %El)_l (un i %fﬂ—l—l/Q) — "+ O(At)




Second-order operator splitting

Predictor-corrector =  Crank-Nicolson up to the second order

L () = /2 B L o 4 O(AL?

un+

unconditionally stable, at least if the discrete operators are positive-definite

Peaceman-Rachford scheme ut — /2 gyt
n+1/2 n n n n
1. W+£ u +1/2 — f +t1/2 _ EQU
i1y popular ADI solver
2 U A_tl;Q +£2un—|—1 — fn—|-1/2 _ £1Un+1/2
second-order accurate, unconditionally stable for £; = 8‘9 in 2D (not in 3D)
Douglas-Rachford scheme u — /2 gyt
ntl/2_gn n n n .
1. =%+ Lyu T2 = fm — Lou can be generalized to the
9 un+1_Al;n+1/2 . £2un—|—1 = Lou™ case L=L1+Ly+ L3
first-order accurate but unconditionally stable for £; = 8‘9— in 2D and in 3D




Second-order operator splitting

Iliin’s generalization Let 7= ﬁ—tp, where p € (—1,1] is a parameter
1. W# + Lou T2 = A2 _ oy DR scheme for p = 0
2. “nJrl_f_‘nJrl/z + Lo(u™th — ") = pw PR scheme for p =1

n+1/2 u™

Rewrite (1) as + Lo(unt/2 — )y = Y2 oyt L=L + Ly

n—4+1

) _.n unH1/2
Rewrite (2) as  “—"

un

+ Lo(u™ —un) = (1+p)2 and substitute

n+1l/2_ . n

the ratio % Ul — (T4 7L1) ("2 — Lum)  into the right-hand side

This yields (Z + 7L1)(Z + 7L2)(u™T —u™) = 7(1 + p)(f*1/2 — Lu™)

un—i—l_un un-i—l u™ n A 1_u
T=15 = St tL (th)) = friy/z - B0 L (T)

Properties: Iliin’s method is second-order accurate for p = 1 (Peaceman-Rachford)

and first-order accurate otherwise, unconditionally stable for any p € (—1,1]




Second-order operator splitting

C :
Glowinski’s fractional-step 8—scheme Parameter 0 < 6 < %
n+0_ . n nal
L. % + ‘Clun+9 — fn - £2un gn+1 Y
un+179 _I‘Cl
yntI—0 _ nto nil—0 o 6 16 | e Qe :
2. (1—-20)At + Lou =f — Lyu un+o Lo
tn+9 ,,,,,,,,
3. un+1gZ:+1—9 +£1un—{—1 — fn+1—9 . £2un+1—9 i f£1
un

e second-order accurate for 6 =1 — g and first-order accurate otherwise
e a complete analysis of stability is not available but the results are good
e strongly A-stable if used as a time-stepping method (without splitting)

e particularly useful for the treatment of the Navier-Stokes equations

Remark. The notions “operator splitting” and “fractional step methods” are used
as synonyms in the literature. In fact, the former should refer to the decomposition
L = > L, underlying a particular time-stepping scheme denoted by the latter

S




Incompressible flow problems

Navier-Stokes equations Boundary condition
Sl u(x,t)=g on I'x(0,7T)
E—l—u-Vu: —Vp +rvAu

Initial condition

Vu:() IHQX<O,T> U(X,O)ZUO(X) an

Solvability conditions V-uy =0, n-u=n-g, fpn-gds=0
e this is a coupled PDE system for the velocity u and pressure p

e the pressure is determined up to an arbitrary additive constant and

acts as a Lagrange multiplier for the incompressibility constraint

Pressure Poisson equation (can be used instead of V -u = 0)

—Ap=V-[u-Vu—vAu] in Q, n-Vp:n-[VAu—u-Vu—%—ﬂ onI

Caution: the approximation spaces for u and p should satisfy the LBB stability
condition or the discretized equations should be stabilized by extra terms




Chorin’s projection scheme
Idea: decouple u and p and separate convection-diffusion from incompressibility

Fractional-step method u” — uttl/2 — (untl prth
1. Omit the pressure gradient in the momentum equation, disregard the
incompressibility constraint and solve the viscous Burgers equation

un—|—1/2 —u”

At

+ un—|—1/2 ) vun—l—l/Q _ VAu”+1/2, un+1/2 —g on T

2. Project the velocity u™1/2 onto the subspace of solenoidal functions

unH_Al;nH/Q = —Vp"t! Inviscid low = tangential slip
V-u'tl =0 n-u"t'=n.-g onT
Poisson equation ~—Ap"*t!l =—-LV. uwt2 n.vprtl =0 onT

e wrong BC results in a spurious pressure boundary layer of width O(v/vAt)

e Chorin’s method is O(At), stable for equal-order interpolations if At > Ch?




Example: three-step projection scheme

Fractional-step method u? — utVt o grtl/2 o (unt pnt)
1. Convection step: Lax-Wendroff (explicit, second-order accurate)

n+1/4 _ .n At
- At = =g —-0uu”,  wTVt =g at the inlet Iy

Time derivatives Oiu = —u - Vu, where u=u(x,t) =

Opu=—(0u)-Vu—u-V(du) = (u-Vu)-Vu+u-V(u-Vu)

Variational formulation  (a,b):= [,a-bdx, (a,b)r:= [.a -bds
(At)?
2

+% (w,(u"-Vu") -Vu") —(wV.u",u" - vVu") — (wu" -n,u" - Vu")r_,,|

(w,u" T4 —u") = —At(w,u” - Vu") —

(u" - Vw,u" - Vu")

Linear system Mcou"t/* = | Mo + AtK + %S u” can be solved by

a simple Jacobi-like iteration preconditioned by the lumped mass matrix M7y,




Example: three-step projection scheme

2. Diffusion step: Crank-Nicolson scheme (implicit, second-order accurate)

un+1/2 _ un+1/4 U

N _ §[Aun—{—1/2 _‘_Aun—l—l/4]7 un—i—1/2 —g on T
(w,un /2 —gntl/4) = ALy [(Vw, Vu"t1/2) + (Vw, Vurtl/4)]
Linear system (Mc — StvLju"tl/? = [Mc + &ty Ljunt1/4

3. Projection step: Pressure Poisson equation (elliptic, ill-conditioned)
—Aptt = — GV w2 (Va, Vp'*) = =27 {(q, V- u™+1/2)
n-Vp"tl=0 onT —Lpn Tt = — L BTunt1/2
Remark. Advanced linear algebra tools (CG, multigrid) are needed.
Velocity update u™t! = u"t1/2 — Atvpnt! n-u"'=n-g onT

<W, un—l—l . un—|—1/2> _ —At<W, vpn—|—1> un—l—l _ un—|—1/2 o AtMEprn—l—l




Van Kan’s projection scheme

Fractional-step method (u™,p") — utt/?2 (untt pnth)

1. Insert the old pressure gradient into the momentum equation, disregard the
incompressibility constraint and solve the viscous Burgers equation
un+1 /2 u” 1

A + 5 [ t/2. a2 Lyt vu] = —Vp" + g [Au" 12 4 Au”]

subject to the no-slip boundary condition u"*'/2=g onT

2. Project the velocity u™t1/2 onto the subspace of solenoidal functions

un+1_Al;n+1/2 _ _vqn—l—l pn—l—l — pn + 2qn—|—1
V-u'tl =0 n-u"t'=n.-g onT
Poisson equation —Ag"t! =—-LV. w2, n.-v¢g"t'=0 onT

e wrong BC results in a spurious pressure boundary layer of width O(,/vAt)

e Van Kan’s method is O(At)?, stable for equal-order interpolations if At > Ch




Glowinski’s splitting scheme

Fractional-step method with parameters 0 <6 < % and 0 <n<1

1. Linear Stokes problem u’ — (ut? pnt?) urt? =g onT

un+9 —u”
N nvAu"t? 4 vpnt? = (1 — n)vAu" —u" - V"
V-u"t? =0 can be solved by a variational CG algorithm

2. Viscous Burgers equation u't? — urtt=f yrtlf%—=g onl
uti=f — gt 1-0 1-0 1-0 0 0
(1—20)At —(1=nrAa™™ =0 a0 vun T = At - Vptt

convection and diffusion can be separated by means of operator splitting

3. Linear Stokes problem utt=0 —— (untt prth), urtl=g onT

un—|—1 L un—|—1—9

OAt

V-u"tt =0 can be solved by a vartational CG algorithm

. nVAun+1 + Vpn—|—1 _ (1 . n)VAun—l-l—G . un—|—1—9 . Vun—|—1—9




Pressure Schur Complement methods
Discretized Navier-Stokes equations
Au+ AtBp =1, A= Mg —0At[K(u)+ vij A AtB| |u f

T
u=A'f-AtBp], BTu=0 B* 0 p 0

Substitution yields BTA™'[f - AtBp]=0 = |[-BTA'Bp=-LBTA™'f

Richardson iteration for the PSC equation p(O) =0 or p(o) = p"

pttY = pO 4 ' BTATE — AtBpW]AL T, [=0,...,L

Additive preconditioners Cl=Y.C "~ [BTA'B|! (Turek, 1995)

Global MPSC C1.:= onA]Tj -+ ozKAl}l - aLAzl operator splitting
Ay =~BTM;'B, Ax ~BTK'B, A, ~BTL'B

Local MPSC C~t:= Z[BhA@Bmi]_l exact solution on patches €2,




Discrete projection methods

Observation: at high Reynolds numbers the time step must be small for accuracy
reasons so that A ~ Mo ~ M; and C := BT M I 1B is a good preconditioner

Practical implementation of a global PSC cycle [=0,...,L

1. Insert the last pressure iterate p¥) into the viscous Burgers equation
Aa = f — AtBpY (linearized or nonlinear)

and compute an intermediate velocity t such that BY 1 # 0 in general

2. Solve the discrete counterpart of the Pressure Poisson equation

1
~-B'M;'Bg = —EBTﬁ (p and ¢ may be piecewise constant)

3. Apply the pressure correction and render u discretely divergence-free
pD) = p 4 g, ul*h =5 — AtML_qu

Remark. For L = 0 this algorithm is equivalent to classical projection schemes
(Chorin if p(® = 0, Van Kan if p(®) = p™) based on discrete operator splitting




Strongly coupled solution strategy

Basic iteration for a local MPSC method (Turek, 1999)

—1

Np A (1)

e N G s Ajg, AtBpg, oul
l Y

pt+y pt =1 | B, 0 op;

where IV, denotes the total number of patches, w1 ig a relaxation parameter,
and the global defect vector restricted to a single patch §2; is given by

sul! A AtB || u®

In practice, an auxiliary problem is solved for the solution increment

o g ] [V ] [5a®]  [u@0] [a@] o [ee
+1) | N | |lz1 = |lz — w(tHy I+1
S Rl R )l ) Rl




Iterative treatment of nonlinearities

Nonlinear algebraic system Alu)u = f must be solved iteratively

Defect correction scheme: compute successive approximations
wmHD) = () 4 AN T — A(u(™)u ™), m=20,1,2,...
where A(u(™)) is a suitable ‘preconditioner’ and w(™ is a relaxation parameter

Ezample.  Au(™) = A(u™), o™ .=1 =A™yt = f

Practical implementation of a defect correction step
1. Evaluate the residual r(™) = f — A(u(™)u(™) of the nonlinear system

2. Solve the auxiliary linear problem fl(u(m))&c(m) — (™) using a direct

or iterative method (a moderate number of inner iterations will suffice)

3. Multiply the resulting solution increment éu(™ by the (under-)relaxation
factor w(™) and apply it to the last iterate w(™+1) = (™) 4 (™) 5y (M)




