
Getting started: CFD notation

PDE of p-th order f
(

u,x, t, ∂u
∂x1

, . . . , ∂u
∂xn

, ∂u
∂t

, ∂2u
∂x1∂x2

, . . . , ∂pu
∂tp

)

= 0

scalar unknowns u = u(x, t), x ∈ R
n, t ∈ R, n = 1, 2, 3

vector unknowns v = v(x, t), v ∈ R
m, m = 1, 2, . . .

Nabla operator ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

x = (x, y, z), v = (vx, vy, vz)

∇u = i∂u
∂x

+ j∂u
∂y

+ k∂u
∂z

=
[

∂u
∂x

, ∂u
∂y

, ∂u
∂z

]T

gradient

∇ · v = ∂vx

∂x
+

∂vy

∂y
+ ∂vz

∂z
divergence

∇× v = det







i j k

∂
∂x

∂
∂y

∂
∂z

vx vy vz







=







∂vz

∂y
− ∂vy

∂z

∂vx

∂z
− ∂vz

∂x

∂vy

∂x
− ∂vx

∂y







curl

∆u = ∇ · (∇u) = ∇2u = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 Laplacian

x

y

z

k

i j

v



Tensorial quantities in fluid dynamics

Velocity gradient

∇v = [∇vx,∇vy,∇vz] =







∂vx

∂x

∂vy

∂x
∂vz

∂x

∂vx

∂y

∂vy

∂y
∂vz

∂y

∂vx

∂z

∂vy

∂z
∂vz

∂z






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Remark. The trace (sum of diagonal elements) of ∇v equals ∇ · v.

Deformation rate tensor (symmetric part of ∇v)

D(v) =
1

2
(∇v + ∇vT ) =








∂vx

∂x
1

2

(
∂vy

∂x
+ ∂vx

∂y

)
1

2

(
∂vz

∂x
+ ∂vx

∂z

)

1

2

(
∂vx

∂y
+

∂vy

∂x

)
∂vy

∂y
1

2

(
∂vz

∂y
+

∂vy

∂z

)

1

2

(
∂vx

∂z
+ ∂vz

∂x

)
1

2

(
∂vy

∂z
+ ∂vz

∂y

)
∂vz

∂z








Spin tensor S(v) = ∇v −D(v) (skew-symmetric part of ∇v)



Vector multiplication rules

Scalar product of two vectors

a,b ∈ R
3, a · b = aT b = [a1 a2 a3]







b1

b2

b3







= a1b1 + a2b2 + a3b3 ∈ R

Example. v · ∇u = vx

∂u

∂x
+ vy

∂u

∂y
+ vz

∂u

∂z
convective derivative

Dyadic product of two vectors

a,b ∈ R
3, a ⊗ b = abT =







a1

a2

a3







[b1 b2 b3] =







a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3






∈ R

3×3



Elementary tensor calculus

1. αT = {αtij}, T = {tij} ∈ R
3×3, α ∈ R

2. T 1 + T 2 = {t1ij + t2ij}, T 1, T 2 ∈ R
3×3, a ∈ R

3

3. a · T = [a1, a2, a3]






t11 t12 t13
t21 t22 t23
t31 t32 t33




 =

3∑

i=1

ai [ti1, ti2, ti3]
︸ ︷︷ ︸

i-th row

4. T · a =






t11 t12 t13
t21 t22 t23
t31 t32 t33











a1

a2

a3




 =

3∑

j=1






t1j

t2j

t3j




 aj (j-th column)

5. T 1 · T 2 =






t111 t112 t113
t121 t122 t123
t131 t132 t133











t211 t212 t213
t221 t222 t223
t231 t232 t233




 =

{
3∑

k=1

t1ikt2kj

}

6. T 1 : T 2 = tr (T 1 · (T 2)T ) =
3∑

i=1

3∑

k=1

t1ikt2ik



Divergence theorem of Gauß

Let Ω ∈ R
3 and n be the outward unit normal to the boundary Γ = Ω̄\Ω.

Then

∫

Ω

∇ · f dx =

∫

Γ

f · n ds for any differentiable function f(x)

Example. A sphere: Ω = {x ∈ R
3 : ||x|| < 1}, Γ = {x ∈ R

3 : ||x|| = 1}

where ||x|| =
√

x · x =
√

x2 + y2 + z2 is the Euclidean norm of x

Consider f(x) = x so that ∇ · f ≡ 3 in Ω and n = x

||x|| on Γ

volume integral:

∫

Ω

∇ · f dx = 3

∫

Ω

dx = 3|Ω| = 3

[
4

3
π13

]

= 4π

surface integral:

∫

Γ

f · n ds =

∫

Γ

x · x
||x|| ds =

∫

Γ

||x|| ds =

∫

Γ

ds = 4π



Governing equations of fluid dynamics

Physical principles

1. Mass is conserved

2. Newton’s second law

3. Energy is conserved

Mathematical equations

• continuity equation

• momentum equations

• energy equation

It is important to understand the meaning and significance of each equation

in order to develop a good numerical method and properly interpret the results

Description of fluid motion

Eulerian monitor the flow characteristics

in a fixed control volume

Lagrangian track individual fluid particles as

they move through the flow field x

y

z

k

i j

v

(x0; y0; z0)(x1; y1; z1)



Description of fluid motion

Trajectory of a fluid particle

x

y

z

k

i j

v
(x0; y0; z0)(x1; y1; z1) x = x(x0, t)

x = x(x0, y0, z0, t)

y = y(x0, y0, z0, t)

z = z(x0, y0, z0, t)

dx

dt
= vx(x, y, z, t), x|t0 = x0

dy

dt
= vy(x, y, z, t), y|t0 = y0

dz

dt
= vz(x, y, z, t), z|t0 = z0

Definition. A streamline is a curve which is tangent to the velocity vector

v = (vx, vy, vz) at every point. It is given by the relation

dx

vx

=
dy

vy

=
dz

vz

x

y

v

y(x)

dy
dx

=
vy

vx

Streamlines can be visualized by injecting tracer particles into the flow field.



Flow models and reference frames

Eulerian

V

S

fixed CV of a finite size

Lagrangian

V

S

moving CV of a finite size

in
te

gr
al

dS
dV

fixed infinitesimal CV

dS
dV

moving infinitesimal CV d
iff

er
en

ti
al

Good news: all flow models lead to the same equations



Eulerian vs. Lagrangian viewpoint

Definition. Substantial time derivative d
dt

is the rate of change for a moving

fluid particle. Local time derivative ∂
∂t

is the rate of change at a fixed point.

Let u = u(x, t), where x = x(x0, t). The chain rule yields

du

dt
=

∂u

∂t
+

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
+

∂u

∂z

dz

dt
=

∂u

∂t
+ v · ∇u

substantial derivative = local derivative + convective derivative

Reynolds transport theorem

d

dt

∫

Vt

u(x, t) dV =

∫

V ≡Vt

∂u(x, t)

∂t
dV +

∫

S≡St

u(x, t)v · n dS

rate of change in

a moving volume
=

rate of change in

a fixed volume
+

convective transfer

through the surface



Derivation of the governing equations

Modeling philosophy

1. Choose a physical principle

• conservation of mass

• conservation of momentum

• conservation of energy

2. Apply it to a suitable flow model

• Eulerian/Lagrangian approach

• for a finite/infinitesimal CV

3. Extract integral relations or PDEs

which embody the physical principle

Generic conservation law

∂

∂t

Z

V

u dV +

Z

S

f · n dS =

Z

V

q dV

f

n

V

S

dS

f = vu − d∇u

flux function

Divergence theorem yields
Z

V

∂u

∂t
dV +

Z

V

∇ · f dV =

Z

V

q dV

Partial differential equation

∂u

∂t
+ ∇ · f = q in V



Derivation of the continuity equation

Physical principle: conservation of mass

dm

dt
=

d

dt

∫

Vt

ρ dV =

∫

V ≡Vt

∂ρ

∂t
dV +

∫

S≡St

ρv · n dS = 0

accumulation of mass inside CV = net influx through the surface

Divergence theorem yields Continuity equation

∫

V

[
∂ρ

∂t
+ ∇ · (ρv)

]

dV = 0 ⇒ ∂ρ

∂t
+ ∇ · (ρv) = 0

Lagrangian representation

∇ · (ρv) = v · ∇ρ + ρ∇ · v ⇒ dρ

dt
+ ρ∇ · v = 0

Incompressible flows: dρ
dt

= ∇ · v = 0 (constant density)



Conservation of momentum

Physical principle: f = ma (Newton’s second law)

dV n

g

h

dS
total force f = ρg dV + h dS, where h = σ · n
body forces g gravitational, electromagnetic,. . .

surface forces h pressure + viscous stress

Stress tensor σ = −pI + τ momentum flux

For a newtonian fluid viscous stress is proportional to velocity gradients:

τ = (λ∇ · v)I + 2µD(v), where D(v) =
1

2
(∇v + ∇vT ), λ ≈ −2

3
µ

Normal stress: stretching

τxx = λ∇ · v + 2µ ∂vx

∂x

τyy = λ∇ · v + 2µ
∂vy

∂y

τzz = λ∇ · v + 2µ ∂vz

∂z

�xx
x

y

Shear stress: deformation

τxy = τyx = µ
“

∂vy

∂x
+ ∂vx

∂y

”

τxz = τzx = µ
`

∂vx

∂z
+ ∂vz

∂x

´

τyz = τzy = µ
“

∂vz

∂y
+

∂vy

∂z

”

x

y �yx



Derivation of the momentum equations

Newton’s law for a moving volume

d

dt

∫

Vt

ρv dV =

∫

V ≡Vt

∂(ρv)

∂t
dV +

∫

S≡St

(ρv ⊗ v) · n dS

=

∫

V ≡Vt

ρg dV +

∫

S≡St

σ · n dS

Transformation of surface integrals
∫

V

[
∂(ρv)

∂t
+ ∇ · (ρv ⊗ v)

]

dV =

∫

V

[∇ · σ + ρg] dV, σ = −pI + τ

Momentum equations
∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρg

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = ρ

[
∂v

∂t
+ v · ∇v

]

︸ ︷︷ ︸

substantial derivative

+ v

[
∂ρ

∂t
+ ∇ · (ρv)

]

︸ ︷︷ ︸

continuity equation

= ρ
dv

dt



Conservation of energy

Physical principle: δe = s + w (first law of thermodynamics)

dV n

g

h

dS δe accumulation of internal energy

s heat transmitted to the fluid particle

w rate of work done by external forces

Heating: s = ρq dV − fq dS

q internal heat sources

fq diffusive heat transfer

T absolute temperature

κ thermal conductivity

Fourier’s law of heat conduction

fq = −κ∇T

the heat flux is proportional to the

local temperature gradient

Work done per unit time = total force × velocity

w = f · v = ρg · v dV + v · (σ · n) dS, σ = −pI + τ



Derivation of the energy equation

Total energy per unit mass: E = e + |v|2

2

e specific internal energy due to random molecular motion
|v|2

2
specific kinetic energy due to translational motion

Integral conservation law for a moving volume

d

dt

∫

Vt

ρE dV =

∫

V ≡Vt

∂(ρE)

∂t
dV +

∫

S≡St

ρE v · n dS accumulation

=

∫

V ≡Vt

ρq dV +

∫

S≡St

κ∇T · n dS heating

+

∫

V ≡Vt

ρg · v dV +

∫

S≡St

v · (σ · n) dS work done

Transformation of surface integrals
∫

V

[
∂(ρE)

∂t
+ ∇ · (ρEv)

]

dV =

∫

V

[∇ · (κ∇T ) + ρq + ∇ · (σ · v) + ρg · v] dV,

where ∇ · (σ · v) = −∇ · (pv) + ∇ · (τ · v) = −∇ · (pv) + v · (∇ · τ) + ∇v : τ



Different forms of the energy equation

Total energy equation

∂(ρE)

∂t
+ ∇ · (ρEv) = ∇ · (κ∇T ) + ρq −∇ · (pv) + v · (∇ · τ) + ∇v : τ + ρg · v

∂(ρE)

∂t
+ ∇ · (ρEv) = ρ

[
∂E

∂t
+ v · ∇E

]

︸ ︷︷ ︸

substantial derivative

+ E

[
∂ρ

∂t
+ ∇ · (ρv)

]

︸ ︷︷ ︸

continuity equation

= ρ
dE

dt

Momentum equations ρ
dv

dt
= −∇p + ∇ · τ + ρg (Lagrangian form)

ρ
dE

dt
= ρ

de

dt
+ v · ρdv

dt
=

∂(ρe)

∂t
+ ∇ · (ρev) + v · [−∇p + ∇ · τ + ρg]

Internal energy equation

∂(ρe)

∂t
+ ∇ · (ρev) = ∇ · (κ∇T ) + ρq − p∇ · v + ∇v : τ



Summary of the governing equations

1. Continuity equation / conservation of mass

∂ρ

∂t
+ ∇ · (ρv) = 0

2. Momentum equations / Newton’s second law

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρg

3. Energy equation / first law of thermodynamics

∂(ρE)

∂t
+ ∇ · (ρEv) = ∇ · (κ∇T ) + ρq −∇ · (pv) + v · (∇ · τ) + ∇v : τ + ρg · v

E = e +
|v|2
2

,
∂(ρe)

∂t
+ ∇ · (ρev) = ∇ · (κ∇T ) + ρq − p∇ · v + ∇v : τ

This PDE system is referred to as the compressible Navier-Stokes equations



Conservation form of the governing equations

Generic conservation law for a scalar quantity

∂u

∂t
+ ∇ · f = q, where f = f(u,x, t) is the flux function

Conservative variables, fluxes and sources

U =







ρ

ρv

ρE







, F =







ρv

ρv ⊗ v + pI − τ

(ρE + p)v − κ∇T − τ · v







, Q =







0

ρg

ρ(q + g · v)







Navier-Stokes equations in divergence form

∂U

∂t
+ ∇ · F = Q U ∈ R

5, F ∈ R
3×5, Q ∈ R

5

• representing all equations in the same generic form simplifies the programming

• it suffices to develop discretization techniques for the generic conservation law



Constitutive relations

Variables: ρ, v, e, p, τ , T Equations: continuity, momentum, energy

The number of unknowns exceeds the number of equations.

1. Newtonian stress tensor

τ = (λ∇ · v)I + 2µD(v), D(v) =
1

2
(∇v + ∇vT ), λ ≈ −2

3
µ

2. Thermodynamic relations, e.g.

p = ρRT ideal gas law

e = cvT caloric equation of state

R specific gas constant

cv specific heat at constant volume

Now the system is closed: it contains five PDEs for five independent variables

ρ, v, e and algebraic formulae for the computation of p, τ and T . It remains to

specify appropriate initial and boundary conditions.



Initial and boundary conditions

Initial conditions ρ|t=0 = ρ0(x), v|t=0 = v0(x), e|t=0 = e0(x) in Ω

Boundary conditions

Inlet Γin = {x ∈ Γ : v · n < 0}

ρ = ρin, v = vin, e = ein

prescribed density, energy and velocity

Let Γ = Γin ∪ Γw ∪ Γout

�out

�w
�w

�in




Solid wall Γw = {x ∈ Γ : v · n = 0}
v = 0 no-slip condition

T = Tw given temperature or
(

∂T
∂n

)
= − fq

κ
prescribed heat flux

Outlet Γout = {x ∈ Γ : v · n > 0}
v · n = vn or −p + n · τ · n = 0

v · s = vs or s · τ · n = 0

prescribed velocity vanishing stress

The problem is well-posed if the solution exists, is unique and depends continuously

on IC and BC. Insufficient or incorrect IC/BC may lead to wrong results (if any).


