Getting started: CFD notation
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Tensorial quantities in fluid dynamics

Velocity gradient
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Spin tensor S(v) = Vv —D(v) (skew-symmetric part of Vv)




Vector multiplication rules

Scalar product of two vectors
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Elementary tensor calculus
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Divergence theorem of GGaufl

Let Q € R3 and n be the outward unit normal to the boundary I' = Q\Q.

Then / V. -fdx = / f-nds for any differentiable function f(x)
Q r

Erxample. A sphere: Q ={x e R?:|x|| <1}, TI'={xeR3:||x||=1}

where ||x|| = /X -x = /22 +y2+ 22 is the Euclidean norm of x

Consider f(x)=x sothat V-f=3 inQQ andn=%; onTl
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volume integral: / V- -fdx=3 /
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surface integral: / f-nds=
r




Governing equations of fluid dynamics

Physical principles Mathematical equations
1. Mass is conserved | e continuity equation
2. Newton’s second law e momentum equations
3. Emergy is conserved e energy equation

It is important to understand the meaning and significance of each equation

in order to develop a good numerical method and properly interpret the results

Description of fluid motion z
\Y
FEulerian monitor the flow characteristics </((J)
in a fixed control volume O o)

Lagrangian  track individual fluid particles as
they move through the flow field




Description of fluid motion

Trajectory of a fluid particle
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Definition. A streamline is a curve which is tangent to the velocity vector

Vv = (vg, vy, V) at every point. It is given by the relation

y

= = //<<<@
Vi Uy UV

S
8
Y
<
SH
A\
&|&
SRS
S
<

Streamlines can be visualized by injecting tracer particles into the flow field.




Flow models and reference frames

Eulerian

ds

fixed infinitesimal CV

Lagrangian

///f*s\'

R

moving CV of a finite size

/\

ds

— ][

moving infinitesimal CV

Good news: all flow models lead to the same equations

integral

differential




Eulerian vs. Lagrangian viewpoint

d
dt
1s the rate of change at a fixed point.

Definition. Substantial time derivative

0

fluid particle. Local time derivative

Let u = u(x,t), where x = x(xg,t). The chain rule yields

du Ou Oudr Oudy Oudz Ou
= + + + = +v-Vu

dt Ot Oxdt Oydt Ozdt Ot

substantial derivative = local derivative + convective derivative

Reynolds transport theorem

d 0 t
— | u(x,t)dV = / Oulx, ) dVv + / u(x,t)v-ndS
dt Jy, v=y, Ot S=S5,

rate of change in ~ rate of change in convective transfer

a moving volume  a fized volume through the surface

s the rate of change for a mouving




Derivation of the governing equations

Modeling philosophy

1. Choose a physical principle
e conservation of mass
e conservation of momentum

e conservation of energy

2. Apply it to a suitable flow model
e FKulerian/Lagrangian approach

e for a finite/infinitesimal CV

3. Extract integral relations or PDEs
which embody the physical principle

Generic conservation law

Ll udV+/f-ndS:/qu
ot Jy s v

s n f = vu—dVu

<A
‘ f flux function

Divergence theorem yields
—dV+/V fdV = /qu

Partial differential equation

%—FV f=q in V




Derivation of the continuity equation

Physical principle: conservation of mass

dm d / op
pdV = / —dV—l—/ pv-ndS =0
dt dt V=V ot S=S,;

accumulation of mass inside CV = net influx through the surface

Divergence theorem yields Continuity equation
dp dp
/[8t+ (p )] >tV (pv) =0

Lagrangian representation

d
V-(v)=v -Vp+pV-v = d’t)+pv v=0

Incompressible flows: 22 =V .v =0 (constant density)




Conservation of momentum

Physical principle: f =ma (Newton’s second law)

total force f=pgdV +hdS, where h=o0-n

idv _on body forces g gravitational, electromagnetic,. ..

e h surface forces h  pressure + viscous stress

Stress tensor o=—-pL+T momentum flux

For a newtonian fluid viscous stress is proportional to velocity gradients:

1 2
T=(AV -v)T +2uD(v), where D(v)= §<VV +Vvvh), A= —3H
Normal stress: stretching Shear stress: deformation
Tex = AV -V + 2/J 81)33 ’ Tey = Tyx = (avy + 87):6) y
Tyy = AV v+ 2/1’ 8Uy . Tez = Tzzx = (8%0 + 8vz>
Tz = AV -V + 2,u 6vz Tyz = Tzy = (avz + avy)




Derivation of the momentum equations

Newton’s law for a moving volume

d 0
— [ pvdV = / (pv) dV + / (pv®Vv)-ndS
dt Jy, v=y, Ot S=S,

= / pgdV + / o-ndS
V=V, S=S,

Transformation of surface integrals

/V[@(apt")JrV-(pV@v)] dV:/‘/[v.a+pg] AV, o= plir
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Momentum equations +V- - (pv@vVv)=-Vp+V -7+ pg

d(pv)
ot

ov dp dv
+V-(pv®v)p[a+v-VV] + v [Entv-(pv)] =P

substantial derivative continuity equation




Conservation of energy

Physical principle: de = s+ w (first law of thermodynamics)

3 ds de accumulation of internal energy
dv| _ I,
R \hn s heat transmitted to the fluid particle
*g w  rate of work done by external forces
Heating: s = pgdV — f,dS Fourier’s law of heat conduction
q internal heat sources f, = —KkVT

Jq diffusive heat transfer

absolute temperature the heat flux is proportional to the

k  thermal conductivity local temperature gradient

Work done per unit time = total force x velocity

w=Ff-v=pg-vdV +v-(c-n)dS, o=—-pl+T




Derivation of the energy equation

2
Total energy per unit mass: F =e+ %

e specific internal energy due to random molecular motion
v|?

-  specific kinetic energy due to translational motion

Integral conservation law for a moving volume

d O(pE
— oE dV = / L) dV + / pEv-ndS accumulation
dt Jv, v=y, Ot s5=5,
= / pqdV + / kVT -ndS heating
VEVt SESt

+ / pg-vdV+/ v-(o-n)dS work done
VEVt SESt

Transformation of surface integrals

[ 2225 w)] v = [ 19 69T) g+ 903 + w1

where V:-(o0-v)==-V-(pv)+V-(7-v) ==V - -(pv)+v-(V-7)+Vv:rT




Different forms of the energy equation

Total energy equation
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substantial derivative continuity equation
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Momentum equations pd—‘tf =—-Vp+ V. -7+ pg (Lagrangian form)
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Summary of the governing equations

1. Continuity equation / conservation of mass

dp B
E#—V-(pv)—o

2. Momentum equations / Newton’s second law

d(pv)
ot

+V-(pveVv)=-Vp+V -7+ pg

3. Energy equation / first law of thermodynamics

d(pE
(gt)+V-(pEV):V-(K;VT)%—pq—V-(pv)+v-(V-T)+Vv:T+pg-v
2
E:e+%, 85,;6)+V~(pev):V-(/iVT)+pq—pV-v+Vv:T

This PDE system is referred to as the compressible Navier-Stokes equations




Conservation form of the governing equations

Generic conservation law for a scalar quantity

0
(’9_? +V-f=gq, where f = f(u,x,t) is the flux function

Conservative variables, fluxes and sources

p pv 0
U=| pv |, F= poVRV+pl—T , Q= Pg
| pE | (pE+p)v—rVT =T -v | plg+g-v)

Navier-Stokes equations in divergence form

aa_(t]+v.F:Q UecR’, FeR** QeR°

e representing all equations in the same generic form simplifies the programming

e it suffices to develop discretization techniques for the generic conservation law




Constitutive relations

Variables: p, v, e, p, 7, T FEquations: continuity, momentum, energy

A The number of unknowns exceeds the number of equations.

1. Newtonian stress tensor

1 2
T = (AV-v)I +2uD(v), D(v) = §(VV—|—VVT), )\z—glu
2. Thermodynamic relations, e.g.
p=pRT ideal gas law R specific gas constant
e =c,I' caloric equation of state c, specific heat at constant volume

Now the system is closed: it contains five PDEs for five independent variables
p, v, e and algebraic formulae for the computation of p, 7 and T'. It remains to

specify appropriate initial and boundary conditions.




Initial and boundary conditions
Initial conditions  pli—g = po(X), V|i=0 = vo(X), €|i=0 = eg(X) in €

Boundary conditions Let I' =T'j, UT' U o

Fw

Inlet Tin={xel:v-n<0}

P=Pin, V =Vin, €=Cin i Pou

prescribed density, energy and velocity

r

Solid wall Ty ={x€Tl:v-n=0} Outlet Toyww={x€l:v-n> 0}

v=20 no-slip condition V- =, or —p+n-7-n=>0
T'="1, given temperature or V-8 = Vs or s-7-n=290
(g%) = _f_; prescribed heat flux prescribed velocity vanishing stress

The problem 1s well-posed if the solution exists, i1s unique and depends continuously

on IC and BC. Insufficient or incorrect IC/BC may lead to wrong results (if any).




