
Dimensionless form of equations

Motivation: sometimes equations are normalized in order to

• facilitate the scale-up of obtained results to real flow conditions

• avoid round-off due to manipulations with large/small numbers

• assess the relative importance of terms in the model equations

Dimensionless variables and numbers

t∗ =
t

t0
, x∗ =

x

L0
, v∗ =

v

v0
, p∗ =

p

ρv2
0

, T ∗ =
T − T0

T1 − T0

Reynolds number Re = ρv0L0

µ
inertia

viscosity

Froude number Fr = v0√
L0g

inertia
gravity

Peclet number Pe = v0L0

κ
convection
diffusion

Mach number M = |v|
c

Strouhal number St = L0

v0t0

Prandtl number Pr = µ
ρκ



Model simplifications

Objective: derive analytical solutions / reduce computational cost

Compressible Navier-Stokes equations

Incompressible Navier-Stokes equations Compressible Euler equations

ρ = const µ = 0

Stokes flow boundary layer inviscid Euler equations potential flow

Derivation of a simplified model

1. determine the type of flow to be simulated

2. separate important and unimportant effects

3. leave irrelevant features out of consideration

4. omit redundant terms/equations from the model

5. prescribe suitable initial/boundary conditions



Viscous incompressible flows

Simplification: ρ = const, µ = const

continuity equation ∂ρ
∂t

+∇ · (ρv) = 0 −→ ∇ · v = 0

inertial term
∂(ρv)
∂t

+∇ · (ρv ⊗ v) = ρ
[
∂v
∂t

+ v · ∇v
]

= ρdv
dt

stress tensor ∇ · τ = µ∇ · (∇v +∇vT ) = µ(∇ · ∇v +∇∇ · v) = µ∆v

k

g

z0z Let ρg = −ρgk = −∇(ρgz) = ∇p0

p0 = ρg(z0 − z) hydrostatic pressure

p̃ = p−p0
ρ

= p
ρ
− g(z0 − z) reduced pressure

ν = µ/ρ kinematic viscosity

Incompressible Navier-Stokes equations

∂v

∂t
+ v · ∇v = −∇p̃+ ν∆v−βg(T − T0)

︸ ︷︷ ︸

Boussinesq

momentum equations

∇ · v = 0 continuity equation



Natural convection problems

Internal energy equation ρ = ρ(T ), ∇ · v = 0, κ = const

ρ
∂e

∂t
+ ρv · ∇e = κ∆T + ρq + µ∇v : (∇v +∇vT ), e = cvT

Temperature equation (convection-diffusion-reaction)

∂T

∂t
+ v · ∇T = κ̃∆T + q̃, κ̃ =

κ

ρcv
, q̃ =

q

cv
+

ν

2cv
|∇v +∇vT |2

Linearization: ρ(T ) = ρ(T0) +
(
∂ρ
∂T

)

T=T∗
(T − T0) Taylor series

ρ0 = ρ(T0), β ≈ − 1
ρ0

(
∂ρ
∂T

)

T=T∗
thermal expansion coefficient

Boussinesq approximation for buoyancy-driven flows

ρ(T ) =







ρ0[1− β(T − T0)] in the term ρg

ρ0 elsewhere



Viscous incompressible flows

Stokes problem (Re→ 0, creeping flows)

dv

dt
≈ ∂v

∂t
≈ 0 ⇒

∂v

∂t
= −∇p̃+ ν∆v momentum equations

∇ · v = 0 continuity equation

Boundary layer approximation (thin shear layer)

y

v

x

pipe flow

v = (u, v)

• ∂v
∂t
≈ 0 and u≫ v

• ν ∂2u
∂x2 can be neglected

• ∂p̃
∂y
≈ 0 ⇒ p̃ = p̃(x)

Navier-Stokes equations

u
∂u

∂x
+ v

∂u

∂y
= −∂p̃

∂x
+ ν

∂2u

∂y2

0 = −∂p̃
∂y

∂u

∂x
+
∂v

∂y
= 0



Inviscid incompressible flows

Incompressible Euler equations

ν = 0 ⇒
∂v

∂t
+ v · ∇v = −∇p̃

∇ · v = 0

y xEuler equations potential 
owboundary layer

' = 
onst

 = 
onst

Irrotational / potential flow ω = ∇× v = 0 (vanishing vorticity)

• ∃ ϕ such that v = −∇ϕ and ∇ · v = −∆ϕ = 0 Laplace equation

• in 2D there also exists a stream function ψ such that u = ∂ψ
∂y
, v = −∂ψ

∂x

Computation of the pressure

v · ∇v = −v ×∇× v +
1

2
∇(v · v) = ∇

( |v|2
2

)

∂v

∂t
= 0 ⇒ p̃ = −|v|

2

2
Bernoulli equation



Compressible Euler equations

Simplifications: µ = 0, κ = 0, g = 0

Divergence form

∂U

∂t
+∇ · F = 0

Quasi-linear formulation

∂U

∂t
+ A · ∇U = 0

Conservative variables and fluxes

U = (ρ, ρv, ρE)
T

F = (F 1, F 2, F 3)
F =







ρv

ρv ⊗ v + pI
ρhv







h = E + p
ρ

γ = cp/cv

Jacobian matrices A = (A1, A2, A3)

F d = AdU, Ad =
∂F d

∂U
, d = 1, 2, 3

Equation of state

p = (γ − 1)ρ
(
E − |v|2/2

)



Classification of partial differential equations

PDEs can be classified into hyperbolic, parabolic and elliptic ones

• each class of PDEs models a different kind of physical processes

• the number of initial/boundary conditions depends on the PDE type

• different solution methods are required for PDEs of different type

Hyperbolic equations Information propagates in certain directions at

finite speeds; the solution is a superposition of multiple simple waves

Parabolic equations Information travels downstream / forward in time;

the solution can be constructed using a marching / time-stepping method

Elliptic equations Information propagates in all directions at infinite speed;

describe equilibrium phenomena (unsteady problems are never elliptic)



Classification of partial differential equations

First-order PDEs a0 + a1
∂u
∂x1

+ . . .+ aD
∂u
∂xD

= 0 are always hyperbolic

Second order PDEs −
D∑

i,j=1

aij
∂2u

∂xi∂xj
+

D∑

k=1

bk
∂u

∂xk
+ cu+ d = 0

coefficient matrix: A = {aij} ∈ R
D×D, aij = aij(x1, . . . , xD)

symmetry: aij = aji, otherwise set aij = aji :=
aij+aji

2

PDE type n+ n− n0

elliptic D 0 0

hyperbolic D − 1 1 0

parabolic D − 1 0 1

n+ number of positive eigenvalues

n− number of negative eigenvalues

n0 number of zero eigenvalues

n+ ←→ n−



Classification of second-order PDEs

2D example −a11
∂2u

∂x2
1

− (a12 + a21)
∂2u

∂x1∂x2
− a22

∂2u

∂x2
2

+ . . . = 0

D = 2, A =




a11 a12

a21 a22



 , detA = a11a22 − a2
12 = λ1λ2

elliptic type detA > 0 −∂2u
∂x2 − ∂2u

∂y2 = 0 Laplace equation

hyperbolic type detA < 0 ∂2u
∂t2
− ∂2u

∂x2 = 0 wave equation

parabolic type detA = 0 ∂u
∂t
− ∂2u

∂x2 = 0 diffusion equation

mixed type detA = f(y) −y ∂2u
∂x2 − ∂2u

∂y2 = 0 Tricomi equation



Classification of first-order PDE systems

Quasi-linear form A1
∂U
∂x1

+ . . .+AD
∂U
∂xD

= B U ∈ R
m, m > 1

Plane wave solution U = Ûeis(x,t), Û = const, s(x, t) = n · x
where n = ∇s is the normal to the characteristic surface s(x, t) = const

B = 0 →
[
D∑

d=1

ndAd

]

Û = 0, det

[
D∑

d=1

ndAd

]

= 0 −→ n(k)

Hyperbolic systems There are D real-valued normals n(k), k = 1, . . . , D

and the solutions Û (k) of the associated systems are linearly independent

Parabolic systems There are less than D real-valued solutions n(k) and Û (k)

Elliptic systems No real-valued normals n(k) ⇒ no wave-like solutions



Second-order PDE as a first-order system

Quasi-linear PDE of 2nd order a∂
2ϕ
∂x2 + 2b ∂

2ϕ
∂x∂y

+ c∂
2ϕ
∂y2 = 0

Equivalent first-order system for u = ∂ϕ
∂x
, v = ∂ϕ

∂y







a∂u
∂x

+ 2b∂u
∂y

+ c∂v
∂y

= 0

−∂u
∂y

+ ∂v
∂x

= 0

[
a 0
0 1

]

︸ ︷︷ ︸

A1

∂

∂x

[
u
v

]

︸ ︷︷ ︸

U

+

[
2b c
−1 0

]

︸ ︷︷ ︸

A2

∂

∂y

[
u
v

]

︸ ︷︷ ︸

U

= 0

Matrix form A1
∂U
∂x

+A2
∂U
∂y

= 0, U = Ûein·x = Ûei(nxx+nyy) plane wave

The resulting problem [nxA1 + nyA2]Û = 0 admits nontrivial solutions if

det[nxA1 + nyA2] = det

[
anx + 2bny cny
−ny nx

]

= 0 ⇒ an2
x + 2bnxny + cn2

y = 0

a

(
nx
ny

)2

+ 2b

(
nx
ny

)

+ c = 0 ⇒ nx
ny

=
−b±

√
b2 − 4ac

2a



Second-order PDE as a first-order system

Characteristic lines

ds =
∂s

∂x
dx+

∂s

∂y
dy = nxdx+ nydy = 0 tangent

dy

dx
= −nx

ny
= −−b±

√
b2 − 4ac

2a
curve

x

y

y(x)

The PDE type depends on D = b2 − 4ac

D > 0 two real characteristics hyperbolic equation

D = 0 just one root dy
dx

= b
2a parabolic equation

D < 0 no real characteristics elliptic equation

Transformation to an ‘unsteady’ system

∂U

∂x
+ Ã

∂U

∂y
= 0, Ã = A−1

1 A2 =

[
1
a

0

0 1

] [
2b c

−1 0

]

=

[
2b
a

c
a

−1 0

]

det[Ã− λI] = λ2 −
(

2b

a

)

λ+
c

a
= 0 ⇒ λ1,2 =

−b±
√
b2 − 4ac

2a



Geometric interpretation for a second-order PDE

Domain of dependence: x ∈ Ω̄ which may influence the solution at point P

Zone of influence: x ∈ Ω̄ which are influenced by the solution at point P

Hyperbolic PDE
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A

B

P

C zone of influence

domain of
dependence

steady supersonic flows

unsteady inviscid flows

Parabolic PDE
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P

zone of influence

domain of
dependence

steady boundary layer flows

unsteady heat conduction

Elliptic PDE
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P

A

C

domain of dependence 

zone of influence
B

steady subsonic/inviscid

incompressible flows



Space discretization techniques

Objective: to approximate the PDE by a set of algebraic equations







Lu = f in Ω stationary (elliptic) PDE

u = g0 on Γ0 Dirichlet boundary condition

n · ∇u = g1 on Γ1 Neumann boundary condition

n · ∇u+ αu = g2 on Γ2 Robin boundary condition

Boundary value problem BVP = PDE + boundary conditions

�0

�1 �2

Getting started: 1D and 2D toy problems

1. −∆u = f Poisson equation

2. ∇ · (uv) = ∇ · (d∇u) convection-diffusion



Computational meshes

Degrees of freedom for the approximate solution are defined on a computational

mesh which represents a subdivision of the domain into cells/elements

structured block-structured unstructured

Structured (regular) meshes

• families of gridlines do not cross and only intersect with other families once

• topologically equivalent to Cartesian grid so that each gridpoint (or CV) is

uniquely defined by two indices in 2D or three indices in 3D, e.g., (i, j, k)

• can be of type H (nonperiodic), O (periodic) or C (periodic with cusp)

• limited to simple domains, local mesh refinement affects other regions



Computational meshes

Block-structured meshes

• multilevel subdivision of the domain with structured grids within blocks

• can be non-matching, special treatment is necessary at block interfaces

• provide greater flexibility, local refinement can be performed blockwise

Unstructured meshes

• suitable for arbitrary domains and amenable to adaptive mesh refinement

• consist of triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D

• complex data structures, irregular sparsity pattern, difficult to implement



Discretization techniques

Finite differences / differential form

• approximation of nodal derivatives

• simple and effective, easy to derive

• limited to (block-)structured meshes

Finite volumes / integral form

• approximation of integrals

• conservative by construction

• suitable for arbitrary meshes

Finite elements / weak form

• weighted residual formulation

• remarkably flexible and general

• suitable for arbitrary meshes


