Dimensionless form of equations

Motivation: sometimes equations are normalized in order to

e facilitate the scale-up of obtained results to real flow conditions
e avoid round-off due to manipulations with large/small numbers

e assess the relative importance of terms in the model equations

Dimensionless variables and numbers
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Model simplifications

Objective: derive analytical solutions / reduce computational cost

Compressible Navier-Stokes equations

p:COnf/ \LZO

Incompressible Navier-Stokes equations Compressible Euler equations

Stokes flow  boundary layer inviscid Euler equations  potential flow

Derivation of a simplified model

determine the type of flow to be simulated
separate important and unimportant effects
leave irrelevant features out of consideration

omit redundant terms/equations from the model
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prescribe suitable initial/boundary conditions




Simplification:
continuity equation
inertial term

stress tensor
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p = const,

Viscous incompressible flows

Q= const
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Incompressible Navier-Stokes equations
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continuity equation




Natural convection problems

Internal energy equation p=p(T), V-v=0, k=const
p%—l—pV'VGZKAT—I—,Oq—l—,LLVV:(VV—I—VVT), e =c,T
Temperature equation  (convection-diffusion-reaction)
%—erv-VT:z;ATJrg, R= p’;, g:é
Linearization: p(T) = p(Th) + (3—p>T:T* (T — Tp) Taylor series
po = p(Th), RS —p—lo (%)T:T* thermal expansion coefficient

Boussinesq approximation for buoyancy-driven flows
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Viscous incompressible flows

Stokes problem (Re — 0, creeping flows)

dv  0Ov = —Vp+vAv momentum equations

V-v=20 continuity equation

Boundary layer approximation (thin shear layer)

! pipe flow Navier-Stokes equations
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Inviscid incompressible flows

Incompressible Euler equations —_— T
Euler equations potential flow
-
boundary layer
A - =
— +v:-Vv=-Vp
v=0 = ot
V.v=
Irrotational / potential flow w=V xv=0 (vanishing vorticity)

e J¢psuchthat v=—-Vp and V.-v=—-Ap =0  Laplace equation
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e in 2D there also exists a stream function 1) such that u = 9y e

v =

Computation of the pressure
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Compressible Euler equations

Simplifications: u=0 k=0, g=0

Divergence form Quasi-linear formulation
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Conservative variables and fluxes
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Jacobian matrices A = (Al, A% A3) Equation of state
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Classification of partial differential equations

PDEs can be classified into hyperbolic, parabolic and elliptic ones
e cach class of PDEs models a different kind of physical processes
e the number of initial /boundary conditions depends on the PDE type

e different solution methods are required for PDEs of different type

Hyperbolic equations Information propagates in certain directions at

finite speeds; the solution is a superposition of multiple simple waves

Parabolic equations Information travels downstream / forward in time;

the solution can be constructed using a marching / time-stepping method

Elliptic equations Information propagates in all directions at infinite speed;

describe equilibrium phenomena (unsteady problems are never elliptic)




Classification of partial differential equations

First-order PDEs ag + a1 g—; +...4+ap 88;; = (0 are always hyperbolic

D
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symmetry: Qij = Qjj, otherwise set ;5 = Qj; = 5
PDE type nt n~ | n° nt  number of positive eigenvalues
o n~ number of negative eigenvalues
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Classification of second-order PDEs

2D example

elliptic type

hyperbolic type

parabolic type

mixed type
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Classification of first-order PDE systems

Quasi-linear form Alg—z + ...+ Ap 8850(; — B UeR™, m>1
Plane wave solution U=Uesxt U =const, s(x,t)=n-x

where n = Vs is the normal to the characteristic surface s(x,t) = const

D N D
B=0 — [Z ndAd] U= O, det [Z ndAd] =0 — n(k)
d=1 d=1

Hyperbolic systems There are D real-valued normals nt®), k=1,...,D

and the solutions U of the associated systems are linearly independent

Parabolic systems There are less than D real-valued solutions n(*) and U *)

Elliptic systems No real-valued normals n®*) = no wave-like solutions




Second-order PDE as a first-order system

Quasi-linear PDE of 2nd order a s

+ 2b8x8y + c =0
Equivalent first-order system for u = g—i, v = g—‘g
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Matrix form Al‘g—g + AQ%_Z —0, U=Uenx = [eilneatnyy)

plane wave

The resulting problem  [n,A; + nyAg]U = (0 admits nontrivial solutions if
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Second-order PDE as a first-order system

Characteristic lines

0s 0s ’

ds = 8—d:1; + a—dy = nydx + nydy = 0 tangent |
L Y m
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The PDE type depends on D = b? — 4ac

D >0 two real characteristics hyperbolic equation
D=0 just one root g—g = % parabolic equation
D <0 no real characteristics

elliptic equation
Transformation to an ‘unsteady’ system
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Geometric interpretation for a second-order PDE

Domain of dependence: x € Q which may influence the solution at point P

Zone of influence: x € Q which are influenced by the solution at point P

Hyperbolic PDE Parabolic PDE
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domain of
dependence
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steady supersonic flows steady boundary layer flows

unsteady inviscid flows unsteady heat conduction

Elliptic PDE

domain of dependence

zone of influence

steady subsonic/inviscid

incompressible flows




Space discretization techniques

Objective: to approximate the PDE by a set of algebraic equations

p

Lu=f in €2 stationary (elliptic) PDE

U = go on I'y Dirichlet boundary condition
) n-Vu=g on I'y Neumann boundary condition
| n-Vutau=gy only Robin boundary condition

Boundary value problem BVP = PDE + boundary conditions

Ty
Getting started: 1D and 2D toy problems
1. —Au=f Poisson equation

L, 2. V- (uv) =V - (dVu) convection-diffusion

N}




Computational meshes

Degrees of freedom for the approximate solution are defined on a computational

mesh which represents a subdivision of the domain into cells/elements

seal

structured block-structured unstructured

Structured (regular) meshes
e families of gridlines do not cross and only intersect with other families once

e topologically equivalent to Cartesian grid so that each gridpoint (or CV) is
uniquely defined by two indices in 2D or three indices in 3D, e.g., (i, j, k)

e can be of type H (nonperiodic), O (periodic) or C (periodic with cusp)

e limited to simple domains, local mesh refinement affects other regions




Computational meshes

Block-structured meshes
e multilevel subdivision of the domain with structured grids within blocks
e can be non-matching, special treatment is necessary at block interfaces

e provide greater flexibility, local refinement can be performed blockwise

Unstructured meshes
e suitable for arbitrary domains and amenable to adaptive mesh refinement
e consist of triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D

e complex data structures, irregular sparsity pattern, difficult to implement
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Discretization techniques

Finite differences / differential form
e approximation of nodal derivatives

e simple and effective, easy to derive

e limited to (block-)structured meshes 3D stencil

Finite volumes / integral form

2D volume

e approximation of integrals

e conservative by construction

3D volume

e suitable for arbitrary meshes

Finite elements / weak form

2D element

3D element ﬂ

e weighted residual formulation
e remarkably flexible and general

e suitable for arbitrary meshes




