
Finite volume method

The finite volume method is based on (I)

rather than (D). The integral conservation

law is enforced for small control volumes

defined by the computational mesh:

V̄ =

N
⋃

i=1

V̄i, Vi ∩ Vj = ∅, ∀i 6= j

ui =
1

|Vi|

∫

Vi

u dV mean value

To be specified

• concrete choice of control volumes

• type of approximation inside them

• numerical methods for evaluation

of integrals and fluxes

Integral conservation law (I)

∂

∂t

Z

V

u dV +

Z

S

f · n dS =

Z

V

q dV

f

n

V

S

dS

f = vu − d∇u

flux function

Z

V

∂u

∂t
dV +

Z

V

∇ · f dV =

Z

V

q dV

Partial differential equation (D)

∂u

∂t
+∇ · f = q in V

In steady state ∂u

∂t
= 0 so that

∇ · (uv) = ∇ · (d∇u) + q



Definition of control volumes

Vertex-centered FVM

1D
xi xi+1xi�1

ui�1 ui ui+1Vixi�1=2 xi+1=2
2D Vi Vi

Cell-centered FVM

1D ui�1 ui ui+1
xiVixi�1 xi�1=2

2D

Vi Vi
Different grids / control volumes can be used for different variables (v, p, . . .)



Discretization of local subproblems

Integral equation for a single finite volume

∂ui

∂t
+

1

|Vi|

∑

k

∫

Sk

f · nk dS = qi, ui =
1

|Vi|

∫

Vi

u dV, qi =
1

|Vi|

∫

Vi

q dV

• the integral conservation law is satisfied for each CV and for the entire domain

• to obtain a linear system, integrals must be expressed in terms of mean values

Numerical integration

∫

V

f(x) dV ≈
n

∑

i=0

wif(xi)

where wi ≥ 0 are the weights and xi are

the nodes of the quadrature rule xix0 xn
pn(x)

Such formulae can be derived by exact integration of an interpolation polynomial



Newton-Cotes quadrature rules for intervals

1D x1 x2x12 x12 = x1+x2

2 , V = (x1, x2), |V | = x2 − x1

Midpoint rule
∫

V

f(x) dV ≈ |V |f12
exact for f ∈ P1(V )

Trapezoidal rule
∫

V

f(x) dV ≈ |V |
f1 + f2

2
exact for f ∈ P1(V )

Simpson’s rule
∫

V

f(x) dV ≈ |V |
f1 + 4f12 + f2

6
exact for f ∈ P3(V )

Numerical integration for quadrilaterals/hexahedra

�
�

x
y V 1

1
0 ^V use a mapping onto a unit square

and apply 1D quadrature rules in

each coordinate direction



Newton-Cotes quadrature rules for triangles

2D

x1 x2x23x123x13 x3
x12

Midpoints

x12 =
x1 + x2

2
, x13 =

x1 + x3

2
, x23 =

x2 + x3

2

Center of gravity x123 =
x1 + x2 + x3

3

∫

V

f(x) dV ≈ |V |f123 exact for f ∈ P1(V )

∫

V

f(x) dV ≈ |V |
f1 + f2 + f3

3
exact for f ∈ P1(V )

∫

V

f(x) dV ≈ |V |
f12 + f23 + f13

3
exact for f ∈ P2(V )

∫

V

f(x) dV ≈ |V |
3(f1 + f2 + f3) + 8(f12 + f23 + f13) + 27f123

60

exact for f ∈ P3(V )



Newton-Cotes quadrature rules for tetrahedra

3D

x1 x2 x3x1234x4
Center of gravity

x1234 =
x1 + x2 + x3 + x4

4

∫

V

f(x) dV ≈ |V |f1234
exact for f ∈ P1(V )

∫

V

f(x) dV ≈ |V |
f1 + f2 + f3 + f4

4
exact for f ∈ P1(V )

∫

V

f(x) dV ≈ |V |
f1 + f2 + f3 + f4 + 16f1234

20
exact for f ∈ P2(V )



Interpolation techniques

Problem: the solution is available only at computational nodes (CV centers)

Interpolation is needed to obtain the function values at quadrature points

Volume integrals ui = 1
|Vi|

∫

Vi

u dV ≈ u(x̄i) midpoint rule

Surface integrals f = vu − d∇u ⇒ 1
|Vi|

∑

k

∫

Sk

f · nk dS = Ic + Id

Ic =
1

|Vi|

∑

k

∫

Sk

(v · nk)u dS, Id =
1

|Vi|

∑

k

∫

Sk

d(nk · ∇u) dS

Approximation of convective fluxes

1D: |Vi| ≡ ∆x = 1
N , xi = i∆x

Ic = v
ui+1/2 − ui−1/2

∆x
, v = const

How to define the interface values ui±1/2?

vertex-centered FVM

xi xi+1xi�1
ui�1 ui ui+1Vixi�1=2 xi+1=2



Upwind difference approximation (UDS)

Piecewise-constant solution Upwind-biased interface values
xi xi+1xi�1

ui�1 uiui�1=2 ui+1ui+1=2
xi�1=2 xi+1=2�x

v > 0 ui−1/2 ≈ ui−1, ui+1/2 ≈ ui

Ic ≈ v
ui − ui−1

∆x
backward difference

v < 0 ui−1/2 ≈ ui, ui+1/2 ≈ ui+1

Ic ≈ v
ui+1 − ui

∆x
forward difference

Taylor series expansion

vui+1/2 = vui −
v∆x

2

(

∂u

∂x

)

i+1/2

− v
(∆x)2

8

(

∂2u

∂x2

)

i+1/2

+ . . .

a first-order accurate flux approximation, the leading truncation error resembles

a diffusive flux d∂u
∂x with d = v∆x

2 being the numerical diffusion coefficient



Central difference approximation (CDS)

Piecewise-linear solution Interpolation polynomialui
xi xi+1xi�1

ui�1=2 ui+1ui+1=2
xi�1=2 xi+1=2�xui�1 p1(x) = uL

xR − x

xR − xL
+ uR

x − xL

xR − xL

Averaged interface values

ui−1/2 ≈
ui−1 + ui

2
, ui+1/2 ≈

ui + ui+1

2

Ic ≈ v
ui+1 − ui−1

2∆x
central difference

Taylor series expansions

ui+1 = ui+1/2 + ∆x
2

(

∂u
∂x

)

i+1/2
+ (∆x)2

8

(

∂2u
∂x2

)

i+1/2
+ . . .

ui = ui+1/2 −
∆x
2

(

∂u
∂x

)

i+1/2
+ (∆x)2

8

(

∂2u
∂x2

)

i+1/2
− . . .

Hence, ui+1/2 =
ui + ui+1

2
−

(∆x)2

8

(

∂2u

∂x2

)

i+1/2

+ . . . (second-order accuracy)



Linear upwind difference scheme (LUDS)

Piecewise-linear solution Upwind-biased extrapolation

ui
xi xi+1xi�1

ui�1=2 ui+1ui+1=2
xi�1=2 xi+1=2�xxi�2

v ui�1ui�2

LUDS is second-order accurate, equivalent

to the one-sided 3-point finite difference

v > 0
ui−1/2 ≈ 3ui−1−ui−2

2

ui+1/2 ≈ 3ui−ui−1

2

Ic ≈ v
3ui − 4ui−1 + ui−2

2∆x

v < 0
ui−1/2 ≈ 3ui−ui+1

2

ui+1/2 ≈ 3ui+1−ui+2

2

Ic ≈ −v
3ui − 4ui+1 + ui+2

2∆x

The matrix is no longer tridiagonal (shifted, upper/lower triangular if Id = 0)

Defect correction: I
(m+1)
LUDS = I

(m+1)
UDS + [I

(m)
LUDS − I

(m)
UDS ], m = 0, 1, 2, . . .



Quadratic upwind difference scheme (QUICK)

Quadratic Upwind Interpolation for Convective Kinematics

p2(x) = uL
x−xM

xL−xM

xR−x
xR−xL

+ uM
x−xL

xM−xL

xR−x
xR−xM

+ uR
x−xL

xR−xL

x−xM

xR−xMui
xi xi+1xi�1

ui�1=2 ui+1ui+1=2
xi�1=2 xi+1=2�xxi�2

v ui�1ui�2

• third-order flux approximation

• second-order overall accuracy

(because of the midpoint rule)

• marginally better than LUDS

Upwind-biased interface values

v > 0
ui−1/2 ≈ 3ui+6ui−1−ui−2

8

ui+1/2 ≈ 3ui+1+6ui−ui−1

8

Ic ≈ v
3ui+1 + 3ui − 7ui−1 + ui−2

8∆x

v < 0
ui−1/2 ≈ 3ui−1+6ui−ui+1

8

ui+1/2 ≈ 3ui+6ui+1−ui+2

8

Ic ≈ −v
3ui−1 + 3ui − 7ui+1 + ui+2

8∆x



Evaluation of surface integrals

Approximation of convective fluxes

• any second-order finite volume scheme is a linear combination of CDS and

LUDS approximations (e.g. IQUICK = 3
4ICDS + 1

4ILUDS)

• high-order schemes can be readily derived by polynomial fitting based on

pm(x), m > 2 but pay off only if the quadrature rule matches their accuracy

• a high-order scheme is guaranteed to produce better results than a low-order

one only asymptotically i.e. for sufficiently fine meshes

Approximation of diffusive fluxes
(

∂u

∂x

)

i−1/2

≈
ui − ui−1

∆x
,

(

∂u

∂x

)

i+1/2

≈
ui+1 − ui

∆x

slopes of the

straight lines

Second-order accurate central difference

Id = −
d

(

∂u
∂x

)

i+1/2
− d

(

∂u
∂x

)

i−1/2

∆x
≈ −d

ui+1 − 2ui + ui−1

(∆x)2



Discretization of transport problems

Convective transport → first derivatives ∂
∂x , ∂

∂y , ∂
∂z

∂ρ

∂t
+∇ · (ρv) = 0 continuity equation (hyperbolic)

Diffusive transport → second derivatives ∂2

∂x2 , ∂2

∂y2 , ∂2

∂z2 , . . .

∂T

∂t
−∇ · (κ∇T ) = 0 heat conduction (parabolic/elliptic)

Dimensionless numbers: ratio of convection and diffusion

Pe = v0L0

d Peclet number Re = v0L0

ν Reynolds number

Convection-dominated transport equations (such that Pe ≫ 1 or Re ≫ 1)

are essentially hyperbolic, which may give rise to numerical difficulties.



Example: 1D convection-diffusion equation

Boundary value problem







v ∂u
∂x − d∂2u

∂x2 = 0 in (0, 1)

u(0) = 0, u(1) = 1

Exact solution

u =
ePe x − 1

ePe − 1
, Pe =

v

d

where Pe is the Peclet number

Vertex-centered finite volume method

Pe
ui+1/2 − ui−1/2

∆x
−

(

∂u
∂x

)

i+1/2
−

(

∂u
∂x

)

i−1/2

∆x
= 0

Solution behavior for v > 0 xi = i∆x, ∆x = 1
N , i = 0, 1, . . .N

Pe = 40

∆x = 0.1 x
u v

0 1
1

exact solution

x
u v

0 1
1 smearing

upwind difference

x
u v

0 1
1 wiggles

central difference



Discretized convection-diffusion equation

Upwind difference scheme

Pe
ui − ui−1

∆x
−

ui−1 − 2ui + ui+1

(∆x)2
= 0, i = 1, . . . , N − 1

Central difference scheme

Pe
ui+1 − ui−1

2∆x
−

ui−1 − 2ui + ui+1

(∆x)2
= 0, i = 1, . . . , N − 1

Boundary conditions u0 = 0, uN = 1

Linear system Au = F A ∈ R
N−1×N−1 u, F ∈ R

N−1

A =
1

(∆x)2











b c
a b c

a b c
. . .
a b











, u =











u1

u2

u3

·
uN−1











, F =











0
0
0
·

− c
(∆x)2











where A is a tridiagonal, nonsymmetric matrix with constant coefficients



Exact solution of the difference scheme

Linear equation for an interior node

aui−1 + bui + cui+1 = 0 a < 0, b > 0, a + b + c = 0

a b c

upwind difference −1 − Pe∆x 2 + Pe ∆x −1

central difference −1 − 0.5 Pe∆x 2 −1 + 0.5 Pe∆x

Trial solution ui = α + βri, u0 = 0, uN = 1 (boundary conditions)

ari−1 + bri + cri+1 = 0, b = −(a + c) ⇒ cr2 − (a + c)r + a = 0

r1,2 =
(a + c) ±

√

(a + c)2 − 4ac

2c
=

(a + c) ± (a − c)

2c
, r1 =

a

c
, r2 = 1

A constant solution does not satisfy the BC ⇒ r = a
c is the root we need.



Numerical behavior of the difference scheme

Trial solution ui = α + β
(

a
c

)i
subject to the boundary conditions

u0 = α + β = 0, uN = α + β
(a

c

)N

= 1 ⇒ α = −β =
1

1 −
(

a
c

)N

Hence, ui =
1−( a

c )
i

1−( a

c )
N = P

Q is the exact solution of the difference scheme.

c < 0 a < 0, a
c > 0







a
c > 1 ⇒ P < 0, Q < 0 ⇒ ui > 0

0 < a
c < 1 ⇒ P > 0, Q > 0 ⇒ ui > 0

positivity-preserving

c > 0 a < 0, a
c < 0; a + c = −b < 0 ⇒ c < −a ⇒ a

c < −1

P changes its sign so that sign(ui) = −sign(ui±1) ⇒ nonphysical oscillations

c = 0 ui = −a
b ui−1 = 0, i = 1, . . . , N − 1 u0 = 0, uN = 1

no spurious oscillations but the accuracy leaves a lot to be desired



Evaluation of the central difference scheme

Criterion: the difference scheme produces no oscillations if c ≤ 0

Under this condition the matrix A is diagonally dominant

a < 0, b = −(a + c) ⇒
|b| = |a| + |c| for c ≤ 0

|b| < |a| + |c| for c > 0

Moreover, A is an M-matrix so that all the entries of its inverse are nonnegative

Central difference scheme

c = −1 +
Pe ∆x

2
≤ 0 ⇒ Pe ∆x ≤ 2

• this condition is very restrictive for large Pe

• wiggles occur just in the vicinity of steep gradients

• local mesh refinement is useful for moderate Pe x
u v

0 1
1 wiggles



Evaluation of the upwind difference scheme

Upwind difference scheme c = −1 is negative unconditionally

Taylor series ui±1 = ui ±∆x

(

∂u

∂x

)

i

+
(∆x)2

2

(

∂2u

∂x2

)

i

±
(∆x)3

6

(

∂3u

∂x3

)

i

+ . . .

Pe
ui − ui−1

∆x
−

ui−1 − 2ui + ui+1

(∆x)2
= Pe

(

∂u

∂x

)

i

−

(

∂2u

∂x2

)

i

−
Pe∆x

2

(

∂2u

∂x2

)

i

+ O(∆x)2

The truncation error is O(∆x) for the original equation

but O(∆x)2 for the so-called modified equation

v
∂u

∂x
−

(

d +
v∆x

2

)

∂2u

∂x2
= 0

where v∆x
2 is the numerical (artificial) diffusion coefficient x

u v
0 1

1 smearing
UDS is nonoscillatory but not to be recommended because of its low accuracy.


