Finite volume method

The finite volume method is based on (I)

rather than (D). The integral conservation Integral conservation law (I)

law is enforced for small control volumes / f -ndS = / qdV
defined by the computational mesh: S v
s " f = vu—dVu
N e
V = U Vi, VinV,=0, Vi#j ‘ ' flux function
i=1
1 : —
U; = / wdV  mean value /v V-fdV /v qdv
Vil Jv,

Partial differential equation (D)
To be specified

X V- -f=gq inV
e concrete choice of control volumes

. . . . ou __
e type of approximation inside them In steady state 73 = 0 so that

e numerical methods for evaluation V- (uv) =V - (dVu) +q

of integrals and fluxes




Definition of control volumes

Vertex-centered FVM

1D U;

Li—1/2 Li+1/2

2D

1D

Cell-centered FVM

U;
©
! Uit+1

2D

Li-1 Li—1/2 | Li

Different grids / control volumes can be used for different variables (v,p,. ..




Discretization of local subproblems

Integral equation for a single finite volume

7z ). 1l )
f-n,dS = i U; = udV, i = dV
yv;-y; g A vil v, v

e the integral conservation law is satisfied for each CV and for the entire domain

e to obtain a linear system, integrals must be expressed in terms of mean values

Numerical integration pn(z)

/V FO) AV~ 3 wif ()

where w; > 0 are the weights and x; are

the nodes of the quadrature rule 2 z; ,

Such formulae can be derived by exact integration of an interpolation polynomial




Newton-Cotes quadrature rules for intervals

1D [ o o r12 = MTM, V:(SUl,SUz), ’V‘ = T2 — I
L1 L12 L2
Midpoint rule / F(x)dV ~ |V fia exact for f € P(V)
1%
Trapezoidal rule / f(x)dV ~ |V Ji+fo exact for f € P1(V)
2
1%

Simpson’s rule / flz)dV ~ |V| fi+4fiz+fo exact for f e Py(V)
6
1%

Numerical integration for quadrilaterals/hexahedra

y 1
1 use a mapping onto a unit square
- v and apply 1D quadrature rules in

each coordinate direction




2D

X1

Newton-Cotes quadrature rules for triangles

X3
Midpoints
X0 — X1 + X2
X138 x5 ® X23 12 = "5 )
[ J
o Center of gravity
X12 X9

[ v = Vi
;

/f(x)de]V\fl—i_];Q—i_fi”
1%

/ f(x)dV =~ \V’fl? +f§3 + f13
1%

X1 + X3 Xo + X3
X13 — 2 5 X23 — 2

X1 + X9 + X3
X123 = 3

exact for f € P (V)
exact for f € P (V)

exact for f € Py(V)

AJ&MV%Wﬁ%+b+h*”ﬁme+h@+ﬂm3

exact for f € P5(V)




Newton-Cotes quadrature rules for tetrahedra

3D X4
Center of gravity
X3 X1 + X9 + X3 + X4
X1234 —
4
X1
X2

/ f(X) dV =~ ’V‘f1234 exact for f € Pl(V)

%4
/f(X)dV%‘V’f1+f2+f3+f4 exact fOI'fEPl(V)

4
v

/V F(x)dV ~ |V]f1 + ot f3;:)f4 + 161234 exact for f € Pa(V)




Interpolation techniques

Problem: the solution is available only at computational nodes (CV centers)

Interpolation is needed to obtain the function values at quadrature points

Volume integrals u; = ﬁ qu; udV ~ u(x;) midpoint rule

Surface integrals f=vu—dVu = |‘}2;| >k fSk f-n.dS=1.+1,

1 1
I. = / (v - ng)udS, I; = / d(ny - Vu)dS
Vi), Vi),
Approximation of convective fluxes vertex-centered FVM
ID:  |Vil=Az =1, z,=iAz I B
Uy — Ui—
I.=v +1/2 1/2, v = const

Ax

How to define the interface values ;11 /27 Tiap o Tig




Upwind difference approximation (UDS)

Piecewise-constant solution Upwind-biased interface values
Ui—1/2 Uitr1/2 N N
3 3 3 3 v >0 Ui—1/2 R Ui—1,  Uip1/2 = Uy
| | w
| | \—e—l
| | u; | Ui — Ui—1 .
| S | I. ~v———— backward difference
! (77 ! ! AZI;’
——— | |
| | Az 0 - -
. . . v < Uj—1/2 R Uiy Ujp1/2 = Uit
Ti-1 L Tit1
| | Ui+1 — Uq .
Ti1jo Tii1) I.~v———Mm forward difference

Az

Taylor series expansion

- - VAL <8u> U(Ax)2 (82u> N
i+1/2 = VU; — — .
+/ 2 Ox i+1/2 8 Ox? i+1/2

a first-order accurate flux approximation, the leading truncation error resembles

a diffusive flux dg—g with d = ”gx being the numerical diffusion coefficient




Central difference approximation (CDS)

Piecewise-linear solution Interpolation polynomial
Ui—1/2 Uiy1)/2 IR — X r— L
it 1/ p1(x) =up—— +ugp———
‘ TR — XL, TR — X,
Uit1 |

Averaged interface values

” U1 Uy . Ui+ Ui
Az i—1/2 9 ) i+1/2 9
@ @ @
| | | Uj41 — Uj—1 :
Tioy T T I, ~p—=F oA ’ central difference
x
Li-1/2 Lit1/2
Taylor series expansions
B Az (Du (Ax)® (0%u
Uitl = Uit1/2 T 5 (8x>i—|—1/2 T8 927 ) 11/ T
e — Az (Ou (Az)* (0% _
Ui = Ujt1/2 2 (8:17)7j+1/2+ 8 Ox? i+1/2

; ; A 2 82
Hence, ui+1/2 = Ui + U +1 — ( x> ( u) 4+ ... (SeCOHd—OI’deI’ accuracy)
i+1/2

2 8 ox?




Linear upwind difference scheme (LUDS)

Piecewise-linear solution Upwind-biased extrapolation
Ui U; Ui 1 — Ui
: 211/2 1<:|>1/2 : ui—1/2 ~y OWi 12 Ui—2
v | | | | v>0
LA : : Uit1 | ~ SU;—U;_1
‘ ‘ - : Uit1/2 ¥ — 5
Su; — 4ui—1 + U2
I.~wv
2Ax
! | Bui—uUit1
| | | | Ui ~
~ SUif1—Uip2
Ti—1/2 Tit1/2 Ujtr1/2 ~ 5
LUDS is second-order accurate, equivalent I~ —v Bui — dUip1 + Uigo

2Ax

to the one-sided 3-point finite difference

The matrix is no longer tridiagonal (shifted, upper/lower triangular if I; = 0)

Defect correction: Ig{}gls) = I((]%ng) + [Igg')ps — I((]%)S], m=0,1,2,...




Quadratic upwind difference scheme (QUICK)

Quadratic Upwind Interpolation for Convective Kinematics

T—T M
T, —XM TR—ZIL

p2(513) = ur,
Ug—1/2

Uir1/2

— s o Ui

rT—xf

TR—X

Ti-2 i1 | Z; i Tit1

Ti—1/2 Ti+1/2

e third-order flux approximation

e second-order overall accuracy

(because of the midpoint rule)

e marginally better than LUDS

TM—TL TR—TM

‘|—UR

rT—xp

T—T M

TR—XL TR—ITM

Upwind-biased interface values

v>0

I. ~

Uj—1/2

Uit1/2

~ Su;+6u; _1—u; 2

~ 8
~ OUit1+6u;—u;_1
~ 8

v<0

Ic%_

Uj—1/2

Uit1/2

3wy + 3u; — Tui—1 + Uj—2
v

SAx

~ SU;_1+6U;—U;41
~ 8
~ SU;+6U; L1 —U;f2
~ 8

3ui—1 + 3u; — TWip1 + Uiy
v

SAx




Evaluation of surface integrals

Approximation of convective fluxes

e any second-order finite volume scheme is a linear combination of C'DS and

LUDS approximations (e.g. Iourcx = %ICDS + i[LUDS)

e high-order schemes can be readily derived by polynomial fitting based on
pm(x), m > 2 but pay off only if the quadrature rule matches their accuracy

e a high-order scheme is guaranteed to produce better results than a low-order
one only asymptotically i.e. for sufficiently fine meshes

Approximation of diffusive fluxes

ou U — Ui ou Uil — Uy slopes of the
0 )i 1 Az 0 ) ;119 T Az straight lines
Second-order accurate central difference
0 0
7 d (6_1:;)7;“/2 —d (6_2)7;4/2 N gLt~ 2u; + Ui
d= — —

Az ~ (Az)?




Discretization of transport problems

Convective transport —  first derivatives a%, a%’ %
V-(pv)=0 continuity equation (hyperbolic)
ok ok ok

Diffusive transport ~—  second derivatives 5, 5% DT

V- (,kVT)=0 heat conduction (parabolic/elliptic)

Dimensionless numbers: ratio of convection and diffusion

Pe = % Peclet number Re = % Reynolds number

Convection-dominated transport equations (such that Pe > 1 or Re > 1)
are essentially hyperbolic, which may give rise to numerical difficulties.




Example: 1D convection-diffusion equation

Boundary value problem Exact solution
Pex
2 ) e —1 v
'Ug_g_d% :O 1n (071) uzepe—_l’ Pe:a
u(0) =0, wu(l)=1 where Pe is the Peclet number
Vertex-centered finite volume method
(58) i1/ — (52)
Pe Uit1/2 — Wi—1/2  \Ox/it1/2 Oz /)i—1/2 _ 0
Ax Ax
Solution behavior for v > 0 x; =1Ar, Ax= %, 1=0,1,...N
u u u
1] 1] . 1t L
Pe =40 smearing ‘:" wiggles
Az = 0.1
0 f——F——1—F—+—+— 1} . 0 \’\’\”F‘TT’T‘} } 1} . 0 = H \/1 .

exact solution upwind difference central difference




Discretized convection-diffusion equation

Upwind difference scheme

Ui — Uj—1  WUi—1 — 2U; + Uj41 .
Pe ——MM — =0 =1.....N—-1
" Az (Ax)? o PT

Central difference scheme

Ujp1 — U1 Uj—1 — 2U; + Ui q

P = =0 =1,...,N—1
° 2Azx (Az)2 ) t e
Boundary conditions up =0, uy=1
Linear system Au=F AeRN-IXN-1 , FecRN-1
i b C T B ul ] — 0 -
1 a b C U9 0
A = (A:C)2 a b C , u = us , F — O
- a b L UN-1 |~ (Ba)”

where A is a tridiagonal, nonsymmetric matrix with constant coefficients




Exact solution of the difference scheme

Linear equation for an interior node

au;—1 + bu; + cu;p1 =0 a<0, b>0, a+b+c=0
a b c
upwind difference —1—PeAx 2+ Pe Ax —1
central difference | —1 — 0.5Pe Ax 2 —140.5Pe Ax
Trial solution u; = a + A7, up =0, wuy =1 (boundary conditions)

ar’ P+ bt +er'tt =0, b= —(a+c) = cr’ —(a+c)r+a=0

(a+c)x+/(a+c)2—4ac (a+c)£(a—rc) a
r1,2 = = : rn=-—, re=1
’ 2c 2c c

A constant solution does not satisfy the BC = r =2 is the root we need.




Numerical behavior of the difference scheme

Trial solution u; =a+ (3 (%)Z subject to the boundary conditions

up = a+ 5 =0, uN:oH—ﬁ(%)N:l = a:—ﬁ:w

(&

Hence, wu; = = (2) ~ = g is the exact solution of the difference scheme.

o>1 = P<0, Q<0 = wu;>0

c<0] a<0, £>0

0<e<l = P>0, @>0 = u;>0
positivity-preserving

c>0] a<0, 2<0; a+c=-b0<0 = c<-a = <<-1

P changes its sign so that sign(u;) = —sign(u;+1) = nonphysical oscillations

c=0 ui:—%ui_lzo, izl,...,N—l uO:O, uy =1

no spurious oscillations but the accuracy leaves a lot to be desired




Evaluation of the central difference scheme

Criterion: the difference scheme produces no oscillations if ¢ <0

Under this condition the matrix A is diagonally dominant

b| = |a| + |¢| for ¢ <O
a<0, b=—-(a+c) =
b] < |a| +|¢| forec>0

Moreover, A is an M-matrix so that all the entries of its inverse are nonnegative

Central difference scheme

Pe A
© xg() = PeAx <2

c=—1+

wiggles

e this condition is very restrictive for large Pe

e wiggles occur just in the vicinity of steep gradients

e local mesh refinement is useful for moderate Pe




Evaluation of the upwind difference scheme

Upwind difference scheme c = —1 is negative unconditionally
0 Ax)? [ 0? Ax)3 (03
Taylor series U;j+1 = U; = Az ((9—:“13&)2 + ( ;) (8337;)l + ( gj) (8337;)2 +
Ui — Ui Ui — 2U; + Ujaq ou 0%u Pe Ax [ 0%*u 5
P — =Pe | — | —-|=— ] — O(A
T Az (Az)? © ((9:1:)Z ((9:62 ; 2 0z? ), +0(az)

The truncation error is O(Ax) for the original equation
but O(Ax)? for the so-called modified equation

A 2
v@—(d+v x)@uzo

ox 2 0x?

vAzx
2

where is the numerical (artificial) diffusion coefficient

UDS is nonoscillatory but not to be recommended because of its low accuracy.




