Finite element method

Origins: structural mechanics, calculus of variations for elliptic BVPs

Boundary value problem

( Lu=f in
U = go on I'y
< n-Vu=gqg on I'y
| n-Vu-+au=gs only

Minimization problem

Given a functional J : V — R
find w €V such that

J(u) < J(w), YweV
subject to the imposed BC

¢ the functional contains derivatives of lower order

5 solutions from a broader class of functions are admissible

‘& boundary conditions for complex domains can be handled easily

& sometimes there is no functional associated with the original BVP

Modern FEM: weighted residuals formulation (weak form of the PDE)




Theory: 1D minimization problem
Minimize fxo ¥ (z,w, %) dz over w eV =C?([xg,x1])
subject to the boundary condition w(xg) = go

Find v € V such that J(u) < J(w) for all admissible w

w(zx) = u(x) + \v(x), AeR, velVy={veV: v(xg) =0}

. du dv
= J(u+>\f0):/xo @D(:l:?ﬁ—)«)% )\d:c) dx = I1(\)

By construction w(x) =wu(z) for AX=0 so that

dl
I(0) < I(N), VXeR = — =0, Ywvely
dA | \_g
Necessary condition of an extremum
d the first variation of the

0J (u, U) — ﬁ‘](u +Av) =0 =0, Wwelh functional must vanish




Necessary condition of an extremum

. . d
Chain rule for the function ¢ = ¢ (z,w,w’), w' =
dy _ Oy dx 0Y dw oY dw’ dr __ dw __ dw’ _ dv
N — drdx T awdx T aw a where G5 =0, =0, Gx =

First variation of the functional

:/ [8_%+ oY d”] de =0, YoeV,

d
o (wtAv) ow ow’ dx

d\

A=0

Integration by parts using the boundary condition wv(xg) =0 yields

LO [35 dr ((‘hqf/)] af:f/ (z1)v(z1) = 0, Yv eV

including YoeV={veVy: v(z;) =0} = g—i—%(gf,>:()

Substitution = gf, (1) v(z1) =0, YwelVy = gf, (x1) =0
——

arbitrary




Du Bois Reymond lemma

LEMMA. Let f € C([a,b]) be a continuous function and assume that

/ e 0, YoeV={vel(ab]): va)=uv(b) =0}
Then (x) =0, Vx € [a,b].

PROOF. Suppose 3 xg € (a,b) such that f(xg) #0, e.g. f(xg) >0

f is continuous = f(x) >0, z€ (xg—9,x9+9)C (a,b)

Let ’U(x) = eXp (_ 52—(331—x0)2> lf ‘SU - xo‘ < 5 A
0 if |z —x0| >4 | | ‘

1‘0*5 Zo $0+(5

veV but f; f(z)v(z)dz f;00+5 f(z)exp (— 52_(331_330)2) dr >0

= f(z)=0, Vze€ (a,b) feC(a,b) = [f=0 inla,b O




Example: 1D Poisson equation

Constraints imposed on the solution w = u of the minimization problem

2

\

Poisson equation: the solution

1
1
minimizes the functional J(w) = / [5 (
0

1

/ —
w(aj7w7w)_2
oY dw
ow'  dx’

g—zﬁ — % (gff,) =0 FEuler-Lagrange equation
u(xo) = go essential boundary condition
g;/’, (r1) =0 natural boundary condition

ueV,={veC?*0,1]) : v(0) = go}

dw 2 — fw| dx, we,
dx ’ g
2 ( 2 .
aw — fw, 6_w:_f —272‘:]‘ in (0,1)
dx ow
§ u(0) =go Dirichlet BC
d ([ 0y d*w .
de \ow' ) — dz2 | 7(1) =0 Neumann BC




Example: 2D Poisson equation

Find ueV,={veC?*(Q)NC(Q) :v|r, = go} that minimizes the functional

1
J(w):/ [—]Vw[Q—fw] dx—/ glwds—/ ggwds+g/ w?ds, wEV,
QL2 T Ty 2 Jr,

where f=f(x), go=00(%), g1 =091(x), g2=g2(x), a>0

Admissible functions w=u-+ v, veVy={ve C*Q)NC(Q):v|r, =0}

Necessary condition of an extremum %J (u + v 0, Yvel

)‘A:O -




Example: 2D Poisson equation

Integration by parts using Green’s formula

/[—Au—f]vdx+/ (n-Vu)vds—/ glvds—/ gzvds+a/ uvds = 0
Q 'hurs I'1 I's s
V’U - V() iIlChldiIlg Vv E OZ(Q) N C(Q) : ’U|I‘ =0 = fQ[_Au o f]’UdX — 0

Du Bois Reymond lemma: —Au=f in () Fuler-Lagrange equation

/[n-Vu—gﬂvds—F/ n-Vu+oau—glvds =0, Yvel
Fl FQ

Consider v € C2(Q)NC(Q) : v|ryur, =0 = fr2 =0, n-Vu+au=gs

Substitution yields [, =0, n-Vu=g; and the following BVP

[ Au= f in O 2D Poisson equation
u = go on I'y Dirichlet BC (essential)
) n-Vu=g; on I'y Neumann BC (natural)
| n-Vu+au=gs only Robin BC (natural)




Rayleigh-Ritz method

Exact solution Approximate solution
00 N
ueV: /UJZSOO_'_ZCJ'SO]' ’u,hEVh; uh:SOO—i_ZCjSOj
g=1 j=1
©0o an arbitrary function satisfying ¢g = g9 on I'g
©; basis functions vanishing on the boundary part I'j
Continuous problem Discrete problem
Find v € V such that Find u; € V}, such that
J(u) < J(w), YweV J(up) < J(wp), Ywp €V
7 V= min Jwn) = -0 i=1,....N
C1,...,cN) = min J(w =0, 1=1,...,
1 N wp €V, h aCi
Linear system: Ac=0b, AcRN*N  pec RN, c=lc,...,en]t




Example: 1D Poisson equation

Find the coefficients ¢y, ..., cy that minimize the functional

1 1 dwh 2 N
J(wh) — /O 5 (%) — f'UJh dCU, Wh = ZCJQDJ
j=1
Necessary condition of an extremum
_ ) i,
0 0 |1 [' [~ dy, L i
(967;:(967; 5/0 ch% dx—/o f chgoj dr| =0
Jj=1 7j=1
1 N 1
dp; dy
/0 . chd—xj dxr = i fo; dx, 1=1,...,N
j:
This is a linear system of the form Ac =b with coefficients
1 1
dp; dp; T
azg:/o dxd—a,;jdx’ bz:L f@deE’, C:[Cla'”)CN]




Example: poor choice of the basis functions

Consider the polynomial basis g =0, ¢; =2 i=1,...,N

~ I ij b
uh(w):;cjaﬂ, aq;j:/O ij T dr = P bi:/o fa'dx
1 1 1 1 ] [ b, | [ ¢ |
1 4/3 6/4 8/5 - 2N/(N-+1) by e
L |1 6/4 9/5 12/6 - 3N/(N+2) R BT B
1 8/5 12/6 16/7 - AN/(N +3) by ca
1. .. . NY@2N-1) by .

e A is known as the Hilbert matrix which is SPD but full and ill-conditioned

so that the solution is expensive and corrupted by round-off errors.

e for A to be sparse, the basis functions should have a compact support




Fundamentals of the FEM

The Finite Element Method is a systematic approach to generating
piecewise-polynomial basis functions with favorable properties

e The computational domain €2 is subdivided into many
small subdomains K called elements: Q = Jxcr K.

e The triangulation 7; is admissible if the intersection of
any two elements is either an empty set or a common

vertex / edge / face of the mesh.
e The finite element subspace V), consists of piecewise-polynomial functions.

Typically, Vi, ={v e C™(Q) :v|x € P, VK € Tp, }.

e Any function v € V}, is uniquely determined by a finite number of degrees
of freedom (function values or derivatives at certain points called nodes).

e Each basis function ¢; accommodates exactly one degree of freedom and

has a small support so that the resulting matrices are sparse.




Finite element approximation

The finite element is a triple (K, P, ), where

e K is a closed subset of Q
e P is the polynomial space for the shape functions

e X is the set of local degrees of freedom

Basis functions possess the property
1 if 1= / \

pj(xi) = 055 =
’ ’ 0 if i

x0 xi—] xi xi+1 xN

N N N
un() =Y ugpi() = un(w) = Y uypi(mi) = > by =
j=1 j=1 j=1

Approximate solution: the nodal values uq,...,un can be computed by the

Ritz method provided that there exists an equivalent minimization problem




Find the nodal values uq, ..

Example: 1D Poisson equation

.,un that minimize the functional

1 1 dwh 2 N
Tlon) = / 2 (d—) = fun| dz, wn = use;
0 X =

Local basis functions for e; = [x;_1, x;]

pi—1(z) =

Approximate solution for x € ¢;

up(xr) =

r, — & r — ;-1
— pi(r) = —
Ly — Tj—1 i — Ti—1

N
E :“ﬂ’j = Uj—1Pi—1 T Ui P;
J=1
T — Tj-1
Uj—1 + —(Uz — Ui—1)
Tj — Ti—1

Pi—1 Pi

U1 3 Uj—1

Uj+1

continuous, piecewise-linear




Example: 1D Poisson equation

The Ritz method yields a linear system of the form Au = F', where

N do: do. N
Pij kz1/€k dr dx “ ‘ v

=1"YCk

These integrals can be evaluated exactly or numerically (using a quadrature rule)

Stiffness matriz and load vector for a uniform mesh with Az = +

~ and f =1
9 1 | 1
1 2 -1 1
a1t =
= (AP o | _
1 2 -1 1
11 1/2

This is the same linear system as the one obtained for the finite difference method!




Existence of a minimization problem

Sufficient conditions for an elliptic PDE ~ Lu=f in, wulr=0

to be the Euler-Lagrange equation of a variational problem read

e the operator L is linear

e the operator L is self-adjoint (symmetric)

JovLudr = [, ulvdx for all admissible u, v

e the operator L is positive definite

Jquludz >0 for all admissible u; u=0 if [,uludr=0

In this case, the unique solution u minimizes the functional

J(w):%/QwLwdas—/wadaz

over the set of admissible functions. Non-homogeneous BC modify this set
and/or give rise to additional terms in the functional to be minimized




Example: 1D Poisson equation

Laplace operator L = —f—; is linear and self-adjoint

1
du dv
/O'Uﬁuda: = /@vdaj—/ %%daz

20
= —/ u@dq} _/0 uwlvdx

. . 2
Positive-definiteness: fol uludr = — fo ugi% = fol (g—";) dx >0

If fol (Z—";)Q dr=0 then £ =0 = wu=0 since u(0)=0

Functional for the minimization problem

sw) = | 1 E (fl—j) - fw] dr,  w(0)=0

Non-homogeneous BC u(0)=9g0 — w(0)=go (essential)

)y=g — J(w)= [, [% (3—‘;’)2 — fw] dr — grw(l)  (natural)




Least-squares method

Idea: minimize the residual of the PDE
R(w)=Lw—f suchthat R(u)=0 = Lu=f

Least-squares functional — J(w) = [,(Lw — f)*dx always exists

Necessary condition of an extremum

d d

a.](u%—)\v) )\:0: Y [/Q(E(u%—kv)—fydfb ,\:OZO

Integration by parts:  [,(Lu — f)Lvdx = [, L*(Lu — flvde — [,[...]ds =0

Fuler-Lagrange equation LLu=L*f where L£* is the adjoint operator

e corresponds to a derivative of the original PDE
e requires additional boundary conditions and extra smoothness

e it makes sense to rewrite a high-order PDE as a first-order system

Advantage: the matrices for a least-squares discretization are symmetric




Weighted residuals formulation

Idea: render the residual orthogonal to a space of test functions

Lu=f in

Let wu= ) a;p; €Vy be the solution of
j=1 u=20 on I

Residual is zero if its projection onto each basis function equals zero

Lu—f=0 & Jo(Lu — flpidz =0 Vi=1,2,...

Test functions v =) B9, = [,(Lu— flvde=0, YveVy
j=1

Weak formulation: find u € V{ such that |a(u,v) =1(v)| YveV,

where a(u,v) = [, Luvdz is a bilinear form and I(v) = [, fvdx

Integration by parts: Lu=V-g(u) = a(u,v)=— [,8(u) Vvdz




Finite element discretization

Continuous problem Discrete problem
Find u € V{ such that Find u; € V), C V such that
a(u,v) =1l(v), Yv eV a(up,vp) = l(vy), Yo, €V

N N
FEM approximations: wuj, = Zujgoj e Vn, wvp= Zvj"gbj eV,
j=1 j=1
where Vj, =span{y1,...,on} and V! =span{ys,...,¢¥ny} may differ

(Bubnov-)Galerkin method Vi=Vy —  alu,p)=1Uwi), =y
Petrov-Galerkin method VIi#E Ve —  alu, ) =1(Yi), ¥ # @i

N
Linear algebraic system Z a(p;,vi)u; = 1(1;), Vi=1,...,N
j=1

Matrix form  Au=F  with coefficients a;; = a(p;,¢:), F; =1(1i)




Example: 1D Poisson equation

Boundary value problem Weak formulation u €V
) om0 (L2 PYuirmo, e
u(0) =0, (1) =0 o \ da?
Integration by parts yields Approximate solution
N
/ @vdaz—/ %j—zd:p uh(x):;ujgpj(a:)
Continuous problem  a(u,v) = I(v), fl dudv gp  (v) = fol fudx

Discrete problem a(up, pi) = 1(;), i=1,...,N (Galerkin method)

This is a (sparse) linear system of the form Au = F', where

dp; dp; !
aw:/o dr dafjd FZ:/O f¢2d$7 u:[u17"'7uN]T

The Galerkin and Ritz methods are equivalent if the minimization problem exists




Example: 2D Poisson equation

Boundary value problem Weak formulation ueVy
( .
—Au=f in € /[—Au—f]vdx:(), Yv eV
) U = g on I'y «
n-Vu=aq on I'y Vo={veV:vr, = g0}
n-Vu+au=gs only Vo ={veV:vlr, =0}

\

Integration by parts using Green’s formula
/Vu-Vvdx—/(n-Vu)vds:/fvdx, I'=Toul'yulsy
Q r Q

Boundary conditions fFo (n-Vu)vds =0 since v =0 on Iy

fFl (n-Vu)vds = fl“l grv ds, fr2 (n-Vu)vds = frg govds — « fm uv ds

N
Approximate solution up(x) = o+ D ujpi(x), wolr, = 90
=1




Example: 2D Poisson equation

Continuous problem a(u,v) =I(v) + frl grvds + fr2 gavds, Yv eV

a(u,v):/Vu-Vvdx+a/ uv ds, l(v):/fvdx
Q Ty Q

Discrete problem  a(up, ;) = l(p;) + frl g1p; ds + fF2 gapids, Vi=1,...

Piecewise-linear basis functions ¢; € C(Q), ¢;|x € P1, VK € T,

satisfying gOi(Xj) — 5ij7 v ’L,] = ]., c oy N

Linear system Au =F  where

aij:/Vgoi-Vgpjdx—l—oz/ uw; ds
Q 1P

FiZ/f%dX+/ 91¢id8—|—/ g2pi ds
Q 'y I's

The matrix A is SPD, sparse and banded for a proper node numbering




