Galerkin finite element method

Boundary value problem —  weighted residual formulation

p

Lu=f in {2 partial differential equation

U = g on I'y Dirichlet boundary condition
) n-Vu =g on I'4 Neumann boundary condition
| n- Vu+au =g, onls Robin boundary condition

1. Multiply the residual of the PDE by a weighting function w vanishing

on the Dirichlet boundary I'g and set the integral over {2 equal to zero
2. Integrate by parts using the Neumann and Robin boundary conditions

3. Represent the approximate solution u, =~ u as a linear combination of

polynomial basis functions ¢; defined on a given mesh (triangulation)
4. Substitute the functions u, and ¢; for u and w in the weak formulation

5. Solve the resulting algebraic system for the vector of nodal values w;




Construction of 1D finite elements

. ) A A
1. Linear finite elements ! 2

Consider the barycentric coordinates

M(z)= 22 (x) =

ZTo — I ’ To — X1 3} o

r — I

defined on the element e = [x71, x3]
° )\Z-GPl(e), 1 =1,2
o )\i(xj):(sija Z,]:1,2
e \i(x)+X(x)=1, Vzee

dv 1 _dda gnetant derivatives |
dx To—T1 dx !
U1 3

Basis functions O1le = A1, P2]e = A2

up(2) = w11 (z) + uspe(z), Vree 2 2




Construction of 1D finite elements

2. Quadratic finite elements

{A(x), A2(z)}  barycentric coordinates

r1 ={1,0}, x2={0,1} endpoints

T1o = % = %, %} midpoint

Basis functions @1, @2, p12 € Pa(e)

Shape function up|e

up(r) = u1p1(2) + u2p2(T) + u12012()

Z I3

®1 P12 ©2

Z1 Z12 L2




Construction of 1D finite elements

3. Cubic finite elements
{A1(x), X2(x)}  barycentric coordinates
L1 = {1,0}, T12 = 2£U1+£U2 {37 3

L2 = {07 1}7 L21 = a:1+2a:2 {37 3

Basis functions 1, 2, 012, p21 € Ps(e) Us
p1(x) = 3A1(2)(BA1(z) — 2) (31 (x) — 1) vy
2 (1) = Lha(x) (3o () — 2)(3ha(x) — 1) s
p12(z) = FA1(2) A2 () (31 () — 1) . e e
p21(2) = FA1(2) A2 () (3Aa(z) — 1) Tt

Shape function — up(x) = urp1(x) + u2p2(r) + u12012(x) + U21021 ()




Construction of triangular finite elements

X3
Let x = (xay) — {)\1(X),)\2(X),>\3(X)} e
Construct 2D barycentric coordinates
X
)\i EPl(e), Ai(xj)zéija i,j:1,2,3 :
Polynomial fitting:  A;(X) = ¢;1 + Ciox + ¢i3Y *1 X2
(
Ai(X1) = i1 + ciaw1 + cizyr = din 1 =1 vy i1 i1
q Ai(X2) = ci1 + CiaTa + CizY2 = dio Iz yo cio | = | di2
L Ai(x3) = ci1 + Ciox3 + ci3Yy3 = 053 N ! xi Y3 p €3 i3
A

We have 3 systems of 3 equations for 9 unknowns. They can be solved for the

unknown coeflicients ¢;; by resorting to Cramer’s rule.

det A = x2y3 + T1y2 + Tay1 — T2Y1 — T3Y2 — T1Y3

Area of the triangle |e| = 1|det A|  (also needed for quadrature rules)




Construction of triangular finite elements

Connect the point x to the vertices x;, 1=1,2,3 X3
3 €
to construct the barycentric splitting e = |J e;
i=1 .
Areas of the triangles |e;(x)| = 1| det A;(x)| X %3
Lz vy Lz Lz
Ai= |1 z2 y2 |, A=|1 2 y |, As=|1 w2 y
1 z3 ys 1 z3 ys 1L z y
Solution of the linear systems:  \;(x) = |ei|§|<)| = de;iigx) ., 1=1,2,3

It is obvious that the barycentric coordinates satisfy — \;(x;) = d;;

le1(X)] + |ea(x)| + les(x)| = le], Vx€e = A(x)+ A (x) + A3(x) =1

€2 €1

A similar interpretation is possible in one dimension:

I € )




Construction of triangular finite elements

Nodal barycentric coordinates X123 = {%, %, %} X3

x1 = {1,0,0}, x5 =1{0,1,0}, x3=1{0,0,1} s -
Xlgz{%,%,O}, X13:{%,O,%}, X23:{0,%,%} ) . )
1. Linear elements up(x) = c1 + cox + c3y € Pi(e)
vertex-oriented 01 = A1, P2 =2XA2, @3= A3 (standard)

madpoint-oriented 12 = 1 — 23, 013 =1 — 2\, o3 =1 — 2\

2. Quadratic elements  uy(x) = ¢1 + cox + c3y + c4x? + cswY + coy? € Pole)

Standard P, basis (6 nodes) Extended P, basis (7 nodes)
Y1 = )\1 (2)\1 — 1), P12 = 4)\1)\2 Y; = )\z(2)\z — 1) -+ 3)\1)\2)\3
Y2 = )\2(2)\2 - 1), P13 = 4)\1)\3 Pij = 4)\Z>\] — 12)\1)\2)\3

w3 = A3(2X3 — 1), a3 = 4Aa)3 Y123 = 2T 1 A2 A3, 1,7 =1,2,3




Construction of tetrahedral finite elements

Let x = (waya Z) — {Al(x)v)‘2(X)7)‘3(X)7)‘4(X)}
Construct A\, € Pi(e) @ \i(x;) =i, 4,5=1,...,4

Polynomial fitting:  \;(X) = ¢;1 + Ciox + i3y + Ciu2

I 21 y1 = Ci1 0i1 Barycentric splitting e = | e;
1z y2 2o ci2 | _ | di2 =1
I x5 ys =3 Ci3 043 Ai(x) = \ei(x)|7 i=1,....4
| 1 x4 ysa z4 ] | Cia | | dia €]
1. Linear elements up(X) = c1 + cox + c3y + ¢4z € Py(e)

vertex-oriented 01 =A1, P2=2>A2, @w3=A3, 4=y (standard)

=1—3\4, =1—-3)\ x;4x
face-oriented P12 SR 3 Xijk = i X +Xk

0134 = 1 —3X2, o34 =1—3)\

2. Higher-order approximations are possible but rather expensive in 3D




Coordinate and element transformations

Idea: define the basis functions on a geometrically simple reference element

Y
X3 1l
0 é 1 ¢
1 ; 0 1
21 Ty T X1 Xy &
Yy ‘ Fe V4 Xy
F, X3
X1
< : / X3
X1
e X9 X2
1 Ty X x x
. . . n A
Linear mapping in R F.. e—e y




Coordinate and element transformations

Mapping of the reference element € onto an element e with vertices x;

n+1
F.: e=F.(é) x=F.(X) =) xM&), Vxce
=1

where \; are the barycentric coordinates. This mapping is of the form
Fo(X) = BeX + be, B, e R™" b, ¢ R"

It is applicable to arbitrary simplex elements with straight sides

n=1 B, = 19 — 21, b. = 11
n =2 B, = T2 =1 I3 = I , b, = 1

Y2 — Y1 Ys — Y1 N

o —T1 gy — L1 T4 — A1 I
n=3 Be=|Y%2—Y1 ¥Y3—Y1 Ya—Wy1 |, be = | N1

29 —RXR1 R3 — Rl R4 — X1 21




Coordinate and element transformations

Properties of the linear mapping F.(X) = B.Xx + b,
e vertices are mapped onto vertices x; = Fo(X;)

e midpoints of sides are mapped onto midpoints of sides

X;+X, }A(Z—I—)A( A
Xjj = ~5 - =T ( j) = Fe(xij)

2 2

e barycenters are mapped onto barycenters

Xi+X;+Xk Xi+X;+X A
Xijk = —a—— = Fe <+) = Fo(Xijr)

The values of ¢; on the physical element e are defined by the formula

pi(x) = ¢i(F ' (x)), Vx€Ee pi(x) = @i(%), x=Fe(x)

Note that ;(x;) = ¢i(X;) = J;; and the degree of basis functions (linear,

quadratic, cubic etc.) is preserved since x depends linearly on X




Coordinate and element transformations

Derivative transformations i (x) = ¢;(%x), X€Ee, XE€é

Chain rule V@ = JV; where J is the Jacobian of the (inverse)

mapping as introduced before in the context of the finite difference method

Op; _ _1 9o Oy _ 99 Oy or Oy :

oz detJ | 0% 0y 0y Oz 7 % 0% must be nonsingular
00i _ 1 [0¢i0z 8¢ 0s | 9z 8y for F. to be invertible
oy ~— detJ | 0y 0% oz 0g oy 09

Isoparametric mappings: it is possible to define curved elements e using a
mapping F, of the same degree as the basis functions on the reference element é

Example. Extended quadratic element Py g y

F, e
1
e = Fe(é) Xi — Xi, Xij — Xij, X123 — X123 é

3
x = Fe(X) = > xipi(X) + X_ X4 Pij (X) + X123P123(X) 0
=1

1= 1]

[

N[
—
ISH
o




Construction of quadrilateral finite elements
Idea: construct 2D basis functions as a tensor product of 1D ones defined on é

1. Bilinear finite elements

(] y .
Let M(t)=1—t, X(t)=t, tec][0,1] 1 : X4@
4 X3 F
901 (}A() — )\ (:i'))‘ (?;)7 953(}2) — )‘2(:%))‘2(?;) % ‘ < Xy Xa
Pa(X) = X2 (2)A1 (), @a(Xx) = A1 (2)A2(9) 0 1 2 0 z

In general Qg (é) = span{z"'x52 .. zkn}, 0<k; <k, i=1,...,n
4
Tsoparametric mapping  x = Fu(%) = > xii(X),  9i(x) = gu(Fr (%)

The physical element e = F,(é) is a quadrilateral with straight sides which must be
convex for F, to be invertible. It is easy to verify that F.(x;) =x;, i=1,...,4




Construction of quadrilateral finite elements

2. Nonconforming rotated bilinear elements (Rannacher and Turek, 1992)
Let  Q1(é) =span{l,2,9,2* — 5%} A Yy ox
1 °
. - . 52 A2 X2
up(x) = c1 + o + 39 + c4 (27 — §°) I S Y F, X@
4 !
x = F. (%) = > a;x; Dbilinear mapping 0 w1 & 0 .
i=1
Degrees of freedom: u; = |Sli| sz’ up(x(s)) ds ~ up(x;) edge mean values
4 4 A
Edge-oriented basis functions: — up(x) = > u;9,(X) = > ¢;v;(x), Vx€e
j=1 j=1
U = [u17u27u37u4]T7 95: [@17@27¢37¢4]T7 Usg :Zj AijCj
C = [01702763764]Ta 772: [17'%7:&7:%2 _Qz]Ta Qg5 — ﬁfsz 772]()2)d‘S

Coefficients: Ac=u = ¢le=¢TAu=¢pTu = T =¢yTA41




Construction of quadrilateral finite elements

Midpoint rule:  a;; = ﬁj (X;), u; =up(x;) exact for linear functions

Q¢ {edge mean values} Q" {edge midpoint values}
i 1 1] i 1 1]
1 2 1 3
a- |tz L R
1 2 1 3
1 L1 2 T S T
1 1 1 1
|1 03 =3 |10 5 -1
P1(X) = 7+ 58— 30— 5(22 = 7?) Pr(X) = ¢ +& - 29— (@2 - %)
Pa(X) = —1 — 52+ 59+ 5(2* — 9% Pa(X) = —3 + 7+ (2% — 57
b0 =-1+38- 10— 3@ ) R =} i (- 9)
pa(%X) = § — 38+ 59+ 5(2° — 9°) pa(%) =5 =28+ G+ (22 - 9°)

Nonparametric version: construct the basis functions directly using a local

coordinate system rather than the transformation to a reference element




Construction of quadrilateral finite elements

3. Biquadratic finite elements
O1(t) = (1 —1t)(1 —2t), 6O2(t)=1t(1—2t), 6O3(t)=4t(1—1t), te]l0,1]
Products of 1D quadratic basis functions spanning the space @Qz(é)
$1(X) = 01(2)01(9),  Ga(X) = 01(2)02(3),  Pr(X) = 03
902(>A<) = 02(2)01(9),  ¢5(%) = 03(2)01(9), s08(5<) = 01(2)05(9)
0 03

Basis functions on the physical element  ;(x) = ¢;(F1(x)), Vxe€e

Mapping: subparametric (bilinear) or isoparametric

e F! . é F? e
Y — Y X X3 )
X 7 _ A _ A A
Le e 4 x = Fe(X) = ) xipi(X)
X4 X7 X3 Xg 1=1
*xs ®. % X8 )
f 2% o % X e = F.(é) is curved




Construction of hexahedral finite elements

1. Trilinear finite elements M(t)=1—t, X(t)=t, tel0,1]

Products of 1D linear basis functions spanning the space Q1(€é)

P1(%) = A (2)A1(9)A1(2), P5(%) = A (2)A1(9)A2(2)
P2(X) = A2(2)A1(9)A1(2), P6 (%) = Aa(2)A1(9)A2(2)
P3(X) = A2(2)A2(9) A1 (2), Pr(%) = A2(2)A2(9)A2(2)
Pa(x) = A (T)A2(9)A1(2), Ps(x) = A1(2)A2(9)A2(2)

2 é
1 X4 'Xg
‘ Isoparametric mapping
Xg X7
X1 X 8
) 5 1'—>:c X = Fe(f{) = Z XZQ&L()A()
%5 & %4 i=1

g

2. Rotated trilinear elements (6 nodes, face-oriented degrees of freedom)




Finite element matrix assembly

Example: 1D Poisson equation

Pr—-1 Pk
2 .
_CdiTZQL — f 11 (07 1)
u(0) = 0, %(1) —0 . ex ;
Galerkin discretization: up = Y, u;jp; (linear finite elements)
j=1
N 1
dy; dp .
ug = 0, Zuj/() . d:cjdx_/o fo;dx, Vi=1,...,N
71=1
Decomposition of integrals into element contributions er = [Tk_1, Tk]
a’?j F’“
N N ~ d(pA i
_ , i U5 c
Au=TF, Zujzf% aakud B Z/ foide, Vi=l...N

j=1 k=1
A\

'
aij Fz'




Example: 1D Poisson equation / linear elements

Idea: evaluate element contributions and insert them into the global matrix

N
aj = Y. ay; = ;%%daﬁ ay; #0 only for i,j € {k—1,k}
k=1
N
F, =5 FF= fol foidx FF+#0 onlyforie {k—1,k}
k=1
Element stiffness matrix and load vector er = [Tr_1, Tk
dpr_1 dpi— dor—1 d
= .L% g s dr ﬁ% i ok ﬁ%.f¢k—1d$
dop dpr_ doy d ’ -
Jo, T [ CEEE da Je, Tordz

Coefficients of the global system  Au = F  which are to be augmented

© Ak—1k—1 Qk—1k - Fi_1
A= . =
Ak k—1 agk Fy,




Example: 1D Poisson equation / linear elements

Special case: 3 elements, Ax = %7 f=1 . ) } )
(@) = SEEE = M TR = 5
T - T L
VI € e = [Tp_1, 7] Hence, AF = A%B [ _1 _i ] | ok _ % [ 1 ]

Assembly of the global stiffness matrix and load vector

1 —1 007 0 0 007 00 0 07
1| -1 100 4]0 1 -10 53|00 0 0
A=z 0 oo0o0|T2a|o 1 10|22 o0 11| =
0 000, 0 0 00| 00 —1 1|
- 1 -1 0 07 1] F 0] F 0] 1
1 —1 2 —1 0 Az 1 Ax 1 Ax 0 Az 2
A=zl 01 21| =% o T2 || T2 1|77 |2
0 0 -1 1 | 0 | | 0 | | 1] 1




Example: 1D Poisson equation / linear elements

Recall that ug = 0 so the first equation drops out and the system shrinks to

] 2 -1 0] | w 1 up = 2(Az)?,  ug = 4(Ax)?
-1 2 -1 |u|=]1 = . , )
(AQ}) 0 —1 1 us % uz = §(A£U) ) Az = 3

Implementation of Dirichlet boundary conditions

1. Row/column elimination: ug= g9 = the first equation is superfluous

whereas the second one turns into  ajiu1 + a12us + a13us = F1 — a1090
2. Row modification (replacement by a row of the identity matrix)
apo := 1, ag; =0, j=1,2,3, Fy := g0
3. Penalty method / addition of a large number « to the diagonal
ago = ago + Q, Fy == Fy + ago symmetry 1S preserved
Implementation of Neumann boundary conditions

2—2(1) =g = Fy= feN fondx+ g1 a surface integral is added




Example: 1D Poisson equation / quadratic elements

: . dSOZ dQOJ — . ) —
Galerkin FEM: Z U Z o, St de = Z J., fyidz, Vi=1,...,N
j=1/2 k=1 k=1
€k — [xk—17$k]7 L = {)\1(33)7 )\2(37)} Oh—1 Pr—1/2
ds_1 AN —1 ”
(10/6—1 — )\1(2)\1 T 1)7 dx - = Aliv
dor_1/2 ANy —1
Or = A2(2A2 — 1), 2 = 2
d A=)\
Or—1/2 = 4A1 )2, I v e
—1 —1/2
Element stiffness matrix and load vector
B f dpp—1 dek—1 ;.. f dep_1 dPK—1/2 dr f deg—1 d@k d
xXr
e dx dx e dx dx e dx 7
E __ dpg_1/2 d@k 1 ds% 1/2 ds% 1/2 d‘Pk 1/2 dgok 1 o
dyg dpp 1 dgok dpy 1/2 dcpk dcpk
B fek dx dx dx fek dx dx dx fek dx dx dx .
fek fop—1de 1 Global system: Au = F, where
rh= | [, for_1jpdr | =82 | 4 T
U = [Ul/z upug/2..-UN-1/2 UN]

e, ferdx 1




Numerical integration for finite elements

Change of variables theorem [ f(x)dx = [ f(%)|det J|dx

pi(x) =@i(F N (x)), Veee V¢ =JVy, = Ve=J Vg
For instance, the entries of the element stiffness matrix are given by

az-j:/wi-wj dx:/(,]—lwi)-(J—le)|det,]|df<

é

Numerical integration [9(x)dx ~ S wg(%:), §(X) = f(X)|det J|
2 i=0

Newton-Cotes formulae can be used but Gaussian quadrature is preferable:

[.9(@)di o SRIPIED - dy = - §V3, da =g §V3, e=[0,1]

exact for § € P3(é) as compared to P;(é) for the trapezoidal rule




Storage of sparse matrices

Banded matrices: store the nonzero diagonals as 1D arrays

Arbitrary matrices: store the nonzero elements as a 1D array

1. Coordinate storage (inconvenient access)

A(NNZ) nonzero elements in arbitrary order M : gt

IROW(NNZ) auxiliary array of row numbers

ICOL(NNZ) auxiliary array of column numbers . ‘{ﬂ Lg._li.
2. Compact storage (convenient access) P k
= et
A(NNZ) nonzero elements stored row-by-row =

ILD(N+1) pointers to the beginning of each row

ICOL(NNZ) auxiliary array of column numbers

- A=(1,2,7,4,2,3,6,3,5,8,7,5)
ICOL = (1,2,4,2,1,3,3,2,4,4,1,3)
IROW = (1,1,1,2,2,2,3,3,3,4,4,4)
i ] NNZ = 12, ILD = (1,4,7,10,13)

Example
A=

Cctoy WO
co OO

J O N =
O W B N




