
Galerkin finite element method

Boundary value problem → weighted residual formulation






Lu = f in Ω partial differential equation

u = g0 on Γ0 Dirichlet boundary condition

n · ∇u = g1 on Γ1 Neumann boundary condition

n · ∇u+ αu = g2 on Γ2 Robin boundary condition

1. Multiply the residual of the PDE by a weighting function w vanishing

on the Dirichlet boundary Γ0 and set the integral over Ω equal to zero

2. Integrate by parts using the Neumann and Robin boundary conditions

3. Represent the approximate solution uh ≈ u as a linear combination of

polynomial basis functions ϕi defined on a given mesh (triangulation)

4. Substitute the functions uh and ϕi for u and w in the weak formulation

5. Solve the resulting algebraic system for the vector of nodal values ui

Construction of 1D finite elements

1. Linear finite elements

Consider the barycentric coordinates

λ1(x) =
x2 − x

x2 − x1
, λ2(x) =

x− x1

x2 − x1

defined on the element e = [x1, x2]

• λi ∈ P1(e), i = 1, 2

• λi(xj) = δij , i, j = 1, 2

• λ1(x) + λ2(x) = 1, ∀x ∈ e

dλ1

dx = − 1
x2−x1

= −dλ2

dx constant derivatives

Basis functions ϕ1|e = λ1, ϕ2|e = λ2

uh(x) = u1ϕ1(x) + u2ϕ2(x), ∀x ∈ e

x2x1 e
�1 �2

x2
'2

x1
'1

e
x2x1 e

u2u1

Construction of 1D finite elements

2. Quadratic finite elements

{λ1(x), λ2(x)} barycentric coordinates

x1 = {1, 0}, x2 = {0, 1} endpoints

x12 = x1+x2

2 = { 1
2 ,

1
2} midpoint

Basis functions ϕ1, ϕ2, ϕ12 ∈ P2(e)

ϕ1(x) = λ1(x)(2λ1(x) − 1)

ϕ2(x) = λ2(x)(2λ2(x) − 1)

ϕ12(x) = 4λ1(x)λ2(x)

Shape function uh|e

uh(x) = u1ϕ1(x) + u2ϕ2(x) + u12ϕ12(x)

x2x1 e
�1 �2

x2x1 ex12
'1 '12 '2

x2x1 x12
u1 u12 u2

e

Construction of 1D finite elements

3. Cubic finite elements

{λ1(x), λ2(x)} barycentric coordinates

x1 = {1, 0}, x12 = 2x1+x2

3 = { 2
3 ,

1
3}

x2 = {0, 1}, x21 = x1+2x2

3 = { 1
3 ,

2
3}

Basis functions ϕ1, ϕ2, ϕ12, ϕ21 ∈ P3(e)

ϕ1(x) = 1
2λ1(x)(3λ1(x) − 2)(3λ1(x) − 1)

ϕ2(x) = 1
2λ2(x)(3λ2(x) − 2)(3λ2(x) − 1)

ϕ12(x) = 9
2λ1(x)λ2(x)(3λ1(x) − 1)

ϕ21(x) = 9
2λ1(x)λ2(x)(3λ2(x) − 1)

x2x1 e
�1 �2

x2ex1
u1 u12 u2

x12 x21
u21

Shape function uh(x) = u1ϕ1(x) + u2ϕ2(x) + u12ϕ12(x) + u21ϕ21(x)

Construction of triangular finite elements

Let x = (x, y) = {λ1(x), λ2(x), λ3(x)}

Construct 2D barycentric coordinates

λi ∈ P1(e), λi(xj) = δij , i, j = 1, 2, 3

Polynomial fitting: λi(x) = ci1 + ci2x+ ci3y

x1 x2
x3e x







λi(x1) = ci1 + ci2x1 + ci3y1 = δi1

λi(x2) = ci1 + ci2x2 + ci3y2 = δi2

λi(x3) = ci1 + ci2x3 + ci3y3 = δi3





1 x1 y1
1 x2 y2
1 x3 y3





︸ ︷︷ ︸

A





ci1
ci2
ci3



 =





δi1
δi2
δi3





We have 3 systems of 3 equations for 9 unknowns. They can be solved for the

unknown coefficients cij by resorting to Cramer’s rule.

detA = x2y3 + x1y2 + x3y1 − x2y1 − x3y2 − x1y3

Area of the triangle |e| = 1
2 |detA| (also needed for quadrature rules)

Construction of triangular finite elements

Connect the point x to the vertices xi, i = 1, 2, 3

to construct the barycentric splitting e =
3⋃

i=1

ei

Areas of the triangles |ei(x)| = 1
2 |detAi(x)| x1 x2

x3e e3e1e2

A1 =





1 x y

1 x2 y2
1 x3 y3



 , A2 =





1 x1 y1
1 x y

1 x3 y3



 , A3 =





1 x1 y1
1 x2 y2
1 x y





Solution of the linear systems: λi(x) = |ei(x)|
|e| =

∣
∣
∣
det Ai(x)

det A

∣
∣
∣ , i = 1, 2, 3

It is obvious that the barycentric coordinates satisfy λi(xj) = δij

|e1(x)| + |e2(x)| + |e3(x)| = |e|, ∀x ∈ e ⇒ λ1(x) + λ2(x) + λ3(x) ≡ 1

A similar interpretation is possible in one dimension: x1 x2e1e2 e

Construction of triangular finite elements

Nodal barycentric coordinates x123 = { 1
3 ,

1
3 ,

1
3}

x1 = {1, 0, 0}, x2 = {0, 1, 0}, x3 = {0, 0, 1}

x12 = { 1
2 ,

1
2 , 0}, x13 = { 1

2 , 0,
1
2}, x23 = {0, 1

2 ,
1
2} x1 x2x23x123x13 x3

x12

1. Linear elements uh(x) = c1 + c2x+ c3y ∈ P1(e)

vertex-oriented ϕ1 = λ1, ϕ2 = λ2, ϕ3 = λ3 (standard)

midpoint-oriented ϕ12 = 1 − 2λ3, ϕ13 = 1 − 2λ2, ϕ23 = 1 − 2λ1

2. Quadratic elements uh(x) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 ∈ P2(e)

Standard P2 basis (6 nodes)

ϕ1 = λ1(2λ1 − 1), ϕ12 = 4λ1λ2

ϕ2 = λ2(2λ2 − 1), ϕ13 = 4λ1λ3

ϕ3 = λ3(2λ3 − 1), ϕ23 = 4λ2λ3

Extended P+
2 basis (7 nodes)

ϕi = λi(2λi − 1) + 3λ1λ2λ3

ϕij = 4λiλj − 12λ1λ2λ3

ϕ123 = 27λ1λ2λ3, i, j = 1, 2, 3

Construction of tetrahedral finite elements

Let x = (x, y, z) = {λ1(x), λ2(x), λ3(x), λ4(x)}

Construct λi ∈ P1(e) : λi(xj) = δij , i, j = 1, . . . , 4

Polynomial fitting: λi(x) = ci1 + ci2x+ ci3y + ci4z

x1 x2 x3
x4e

x123x124 x134x234







1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4













ci1
ci2
ci3
ci4







=







δi1
δi2
δi3
δi4







Barycentric splitting e =
4⋃

i=1

ei

λi(x) =
|ei(x)|
|e| , i = 1, . . . , 4

1. Linear elements uh(x) = c1 + c2x+ c3y + c4z ∈ P1(e)

vertex-oriented ϕ1 = λ1, ϕ2 = λ2, ϕ3 = λ3, ϕ4 = λ4 (standard)

face-oriented
ϕ123 = 1 − 3λ4, ϕ124 = 1 − 3λ3

ϕ134 = 1 − 3λ2, ϕ234 = 1 − 3λ1

xijk =
xi+xj+xk

3

2. Higher-order approximations are possible but rather expensive in 3D

Coordinate and element transformations

Idea: define the basis functions on a geometrically simple reference element

^e

n = 3n = 2n = 1

FeFe
^x1 ^x2

x1
0 1 ^x

xx2 x2 x3x1 x4
^x

x
1 1 0 1^x4^z

z
y

^y ^x3

e e
^e10 ^e

y Fe
x2x1 x3e

^y

x
^x1 1 ^x^x2^x1 ^x2

^x3^e

n = 3n = 2n = 1

FeFe
^x1 ^x2

x1
0 1 ^x

xx2 x2 x3x1 x4
^x

x
1 1 0 1^x4^z

z
y

^y ^x3

e e
^e10 ^e

y Fe
x2x1 x3e

^y

x
^x1 1 ^x^x2^x1 ^x2

^x3^e

n = 3n = 2n = 1

FeFe
^x1 ^x2

x1
0 1 ^x

xx2 x2 x3x1 x4
^x

x
1 1 0 1^x4^z

z
y

^y ^x3

e e
^e10 ^e

y Fe
x2x1 x3e

^y

x
^x1 1 ^x^x2^x1 ^x2

^x3
Linear mapping in R

n Fe : ê −→ e

Coordinate and element transformations

Mapping of the reference element ê onto an element e with vertices xi

Fe : e = Fe(ê) x = Fe(x̂) =

n+1∑

i=1

xiλi(x̂), ∀x ∈ e

where λi are the barycentric coordinates. This mapping is of the form

Fe(x̂) = Bex̂ + be, Be ∈ R
n×n, be ∈ R

n

It is applicable to arbitrary simplex elements with straight sides

n = 1 Be = x2 − x1, be = x1

n = 2 Be =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]

, be =

[
x1

y1

]

n = 3 Be =





x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1



 , be =





x1

y1
z1





Coordinate and element transformations

Properties of the linear mapping Fe(x̂) = Bex̂ + be

• vertices are mapped onto vertices xi = Fe(x̂i)

• midpoints of sides are mapped onto midpoints of sides

xij =
xi+xj

2 = Fe

(
x̂i+x̂j

2

)

= Fe(x̂ij)

• barycenters are mapped onto barycenters

xijk =
xi+xj+xk

3 = Fe

(
x̂i+x̂j+x̂k

3

)

= Fe(x̂ijk)

The values of ϕi on the physical element e are defined by the formula

ϕi(x) = ϕ̂i(F
−1
e (x)), ∀x ∈ e ϕi(x) = ϕ̂i(x̂), x = Fe(x̂)

Note that ϕi(xj) = ϕ̂i(x̂j) = δij and the degree of basis functions (linear,

quadratic, cubic etc.) is preserved since x depends linearly on x̂

Coordinate and element transformations

Derivative transformations ϕi(x) = ϕ̂i(x̂), x ∈ e, x̂ ∈ ê

Chain rule ∇̂ϕ̂i = J∇ϕi where J is the Jacobian of the (inverse)

mapping as introduced before in the context of the finite difference method

∂ϕi

∂x = 1
det J

[
∂ϕ̂i

∂x̂
∂y
∂ŷ − ∂ϕ̂i

∂ŷ
∂y
∂x̂

]

∂ϕi

∂y = 1
det J

[
∂ϕ̂i

∂ŷ
∂x
∂x̂ − ∂ϕ̂i

∂x̂
∂x
∂ŷ

] J =





∂x
∂x̂

∂y
∂x̂

∂x
∂ŷ

∂y
∂ŷ




must be nonsingular

for Fe to be invertible

Isoparametric mappings: it is possible to define curved elements e using a

mapping Fe of the same degree as the basis functions on the reference element ê

Example. Extended quadratic element P+
2

e = Fe(ê) x̂i → xi, x̂ij → xij , x̂123 → x123

x = Fe(x̂) =
3

P

i=1

xiϕ̂i(x̂) +
P

ij

xijϕ̂ij(x̂) + x123ϕ̂123(x̂)

^y y
x

Fe
1

1
0 0^x12 12 ^e

e

Construction of quadrilateral finite elements

Idea: construct 2D basis functions as a tensor product of 1D ones defined on ê

1. Bilinear finite elements

Let λ1(t) = 1 − t, λ2(t) = t, t ∈ [0, 1]

ϕ̂1(x̂) = λ1(x̂)λ1(ŷ), ϕ̂3(x̂) = λ2(x̂)λ2(ŷ)

ϕ̂2(x̂) = λ2(x̂)λ1(ŷ), ϕ̂4(x̂) = λ1(x̂)λ2(ŷ)

Fe^y y
x1 0^x

1
0 x2x1

x3^x1^x4 ^x3 e^e ^x2 x4

The space Q1(ê) spanned by ϕ̂i consists of functions which are P1 for each variable

In general Qk(ê) = span{xk1

1 x
k2

2 . . . xkn
n }, 0 ≤ ki ≤ k, i = 1, . . . , n

Isoparametric mapping x = Fe(x̂) =
4∑

i=1

xiϕ̂i(x̂), ϕi(x) = ϕ̂i(F
−1
e (x))

The physical element e = Fe(ê) is a quadrilateral with straight sides which must be

convex for Fe to be invertible. It is easy to verify that Fe(x̂i) = xi, i = 1, . . . , 4

Construction of quadrilateral finite elements

2. Nonconforming rotated bilinear elements (Rannacher and Turek, 1992)

Let Q̃1(ê) = span{1, x̂, ŷ, x̂2 − ŷ2}

uh(x) = c1 + c2x̂+ c3ŷ + c4(x̂
2 − ŷ2)

x = Fe(x̂) =
4∑

i=1

αixi bilinear mapping

F
e

ŷ y

x1 0

1

0

e

ê

x̂1 x̂

x̂2x̂4

x2

x4

x1

x3x̂3

Degrees of freedom: ui = 1
|Si|

∫

Si
uh(x(s)) ds ≈ uh(xi) edge mean values

Edge-oriented basis functions: uh(x) =
4∑

j=1

ujϕ̂j(x̂) =
4∑

j=1

cjψ̂j(x̂), ∀x ∈ e

u = [u1, u2, u3, u4]
T , ϕ̂ = [ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4]

T , ui =
∑

j aijcj

c = [c1, c2, c3, c4]
T , ψ̂ = [1, x̂, ŷ, x̂2 − ŷ2]T , aij = 1

|Si|

∫

Si
ψ̂j(x̂)ds

Coefficients: Ac = u ⇒ ψ̂T c = ψ̂TA−1u = ϕ̂Tu ⇒ ϕ̂T = ψ̂TA−1

Construction of quadrilateral finite elements

Midpoint rule: aij ≈ ψ̂j(x̂i), ui ≈ uh(xi) exact for linear functions

Q̃a
1 {edge mean values}

A =










1 1
2 0 1

3

1 1 1
2

2
3

1 1
2 1 − 2

3

1 0 1
2 − 1

3










ϕ̂1(x̂) = 3
4 + 3

2 x̂− 5
2 ŷ − 3

2 (x̂2 − ŷ2)

ϕ̂2(x̂) = − 1
4 − 1

2 x̂+ 3
2 ŷ + 3

2 (x̂2 − ŷ2)

ϕ̂3(x̂) = − 1
4 + 3

2 x̂− 1
2 ŷ − 3

2 (x̂2 − ŷ2)

ϕ̂4(x̂) = 3
4 − 5

2 x̂+ 3
2 ŷ + 3

2 (x̂2 − ŷ2)

Q̃b
1 {edge midpoint values}

A =










1 1
2 0 1

4

1 1 1
2

3
4

1 1
2 1 − 3

4

1 0 1
2 − 1

4










ϕ̂1(x̂) = 3
4 + x̂− 2ŷ − (x̂2 − ŷ2)

ϕ̂2(x̂) = − 1
4 + ŷ + (x̂2 − ŷ2)

ϕ̂3(x̂) = − 1
4 + x̂− (x̂2 − ŷ2)

ϕ̂4(x̂) = 3
4 − 2x̂+ ŷ + (x̂2 − ŷ2)

Nonparametric version: construct the basis functions directly using a local

coordinate system rather than the transformation to a reference element

Construction of quadrilateral finite elements

3. Biquadratic finite elements

θ1(t) = (1 − t)(1 − 2t), θ2(t) = t(1 − 2t), θ3(t) = 4t(1 − t), t ∈ [0, 1]

Products of 1D quadratic basis functions spanning the space Q2(ê)

ϕ̂1(x̂) = θ1(x̂)θ1(ŷ), ϕ̂4(x̂) = θ1(x̂)θ2(ŷ), ϕ̂7(x̂) = θ3(x̂)θ2(ŷ)

ϕ̂2(x̂) = θ2(x̂)θ1(ŷ), ϕ̂5(x̂) = θ3(x̂)θ1(ŷ), ϕ̂8(x̂) = θ1(x̂)θ3(ŷ)

ϕ̂3(x̂) = θ2(x̂)θ2(ŷ), ϕ̂6(x̂) = θ2(x̂)θ3(ŷ), ϕ̂9(x̂) = θ3(x̂)θ3(ŷ)

Basis functions on the physical element ϕi(x) = ϕ̂i(F
−1
e (x)), ∀x ∈ e

Mapping: subparametric (bilinear) or isoparametricy
x0 x2x1x4 e x6x7 x3x8 x9 ^x3^x2 ^x

^y
1

1
0 ^x1^x4 y
x0 x2x1x4 e

^x5^x9 x5 x6x9^x6^x8 x3x7x8^x7x5
^eF 1e F 2e

x = Fe(x̂) =
9∑

i=1

xiϕ̂i(x̂)

e = Fe(ê) is curved

Construction of hexahedral finite elements

1. Trilinear finite elements λ1(t) = 1 − t, λ2(t) = t, t ∈ [0, 1]

Products of 1D linear basis functions spanning the space Q1(ê)

ϕ̂1(x̂) = λ1(x̂)λ1(ŷ)λ1(ẑ), ϕ̂5(x̂) = λ1(x̂)λ1(ŷ)λ2(ẑ)

ϕ̂2(x̂) = λ2(x̂)λ1(ŷ)λ1(ẑ), ϕ̂6(x̂) = λ2(x̂)λ1(ŷ)λ2(ẑ)

ϕ̂3(x̂) = λ2(x̂)λ2(ŷ)λ1(ẑ), ϕ̂7(x̂) = λ2(x̂)λ2(ŷ)λ2(ẑ)

ϕ̂4(x̂) = λ1(x̂)λ2(ŷ)λ1(ẑ), ϕ̂8(x̂) = λ1(x̂)λ2(ŷ)λ2(ẑ)

Basis functions on the physical element ϕi(x) = ϕ̂i(F
−1
e (x)), ∀x ∈ e

Fe x1 ^x 0^y y
z^z1

1

x1 x2x3x4 x6x7e^e x8x5^x3^x1 ^x2^x4
^x5 ^x6^x7^x8 0 Isoparametric mapping

x = Fe(x̂) =
8∑

i=1

xiϕ̂i(x̂)

2. Rotated trilinear elements (6 nodes, face-oriented degrees of freedom)

Finite element matrix assembly

Example: 1D Poisson equation







−d2u
dx2 = f in (0, 1)

u(0) = 0, du
dx (1) = 0 xk�1 xk

'k'k�1
ek

Galerkin discretization: uh =
N∑

j=1

ujϕj (linear finite elements)

u0 = 0,

N∑

j=1

uj

∫ 1

0

dϕi

dx

dϕj

dx
dx =

∫ 1

0

fϕi dx, ∀i = 1, . . . , N

Decomposition of integrals into element contributions ek = [xk−1, xk]

Au = F,

N∑

j=1

uj

N∑

k=1

ak
ij

︷ ︸︸ ︷∫

ek

dϕi

dx

dϕj

dx
dx

︸ ︷︷ ︸

aij

=

N∑

k=1

F k
i

︷ ︸︸ ︷∫

ek

fϕi dx

︸ ︷︷ ︸

Fi

, ∀i = 1, . . . , N

Example: 1D Poisson equation / linear elements

Idea: evaluate element contributions and insert them into the global matrix

aij =
N∑

k=1

ak
ij =

∫ 1

0
dϕi

dx
dϕj

dx dx ak
ij 6= 0 only for i, j ∈ {k − 1, k}

Fi =
N∑

k=1

F k
i =

∫ 1

0
fϕi dx F k

i 6= 0 only for i ∈ {k − 1, k}

Element stiffness matrix and load vector ek = [xk−1, xk]

a
k =





∫

ek

dϕk−1

dx
dϕk−1

dx dx
∫

ek

dϕk−1

dx
dϕk

dx dx

∫

ek

dϕk

dx
dϕk−1

dx dx
∫

ek

dϕk

dx
dϕk

dx dx



 , f
k =





∫

ek
fϕk−1 dx

∫

ek
fϕk dx





Coefficients of the global system Au = F which are to be augmented

A =







· · · ·
· ak−1 k−1 ak−1 k ·
· ak k−1 ak k ·
· · · ·






, F =







·
Fk−1

Fk

·







Example: 1D Poisson equation / linear elements

Special case: 3 elements, ∆x = 1
3 , f ≡ 1

ϕk−1(x) = xk−x
xk−xk−1

= k∆x−x
∆x ,

dϕk−1

dx = − 1
∆x

ϕk(x) = x−xk−1

xk−xk−1

= x−(k−1)∆x
∆x , dϕk

dx = 1
∆x

x2
'2

x1
'1

10
'0 '3

e1 e2 e3x0 x3

∀x ∈ ek = [xk−1, xk] Hence, a
k = 1

∆x

[
1 −1

−1 1

]

, f
k = ∆x

2

[
1

1

]

Assembly of the global stiffness matrix and load vector

A = 1
∆x






1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0




 + 1

∆x






0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0




 + 1

∆x






0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1




 ⇒

A = 1
∆x






1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1




 , F = ∆x

2






1
1
0
0




 + ∆x

2






0
1
1
0




 + ∆x

2






0
0
1
1




 = ∆x

2






1
2
2
1






Example: 1D Poisson equation / linear elements

Recall that u0 = 0 so the first equation drops out and the system shrinks to

1

(∆x)2





2 −1 0
−1 2 −1

0 −1 1









u1

u2

u3



 =





1
1
1
2



 ⇒
u1 = 5

2 (∆x)2, u2 = 4(∆x)2

u3 = 9
2 (∆x)2, ∆x = 1

3

Implementation of Dirichlet boundary conditions

1. Row/column elimination: u0 = g0 ⇒ the first equation is superfluous

whereas the second one turns into a11u1 + a12u2 + a13u3 = F1 − a10g0

2. Row modification (replacement by a row of the identity matrix)

a00 := 1, a0j := 0, j = 1, 2, 3, F0 := g0

3. Penalty method / addition of a large number α to the diagonal

a00 := a00 + α, F0 := F0 + αg0 symmetry is preserved

Implementation of Neumann boundary conditions

du
dx (1) = g1 ⇒ FN =

∫

eN
fϕN dx+ g1 a surface integral is added

Example: 1D Poisson equation / quadratic elements

Galerkin FEM:
N∑

j=1/2

uj

N∑

k=1

∫

ek

dϕi

dx
dϕj

dx dx =
N∑

k=1

∫

ek
fϕi dx, ∀i = 1, . . . , N

ek = [xk−1, xk], x = {λ1(x), λ2(x)}

ϕk−1 = λ1(2λ1 − 1), dϕk−1

dx = − 4λ1−1
∆x

ϕk = λ2(2λ2 − 1),
dϕk−1/2

dx = 4λ2−1
∆x

ϕk−1/2 = 4λ1λ2,
dϕk

dx = 4λ1−λ2

∆x xk
'k

xk�1
'k�1 'k�1=2

xk�1=2ek

Element stiffness matrix and load vector

a
k =

2

6

6

4

R

ek

dϕk−1

dx

dϕk−1

dx
dx

R

ek

dϕk−1

dx

dϕk−1/2

dx
dx

R

ek

dϕk−1

dx

dϕk
dx

dx
R

ek

dϕk−1/2

dx

dϕk−1

dx
dx

R

ek

dϕk−1/2

dx

dϕk−1/2

dx
dx

R

ek

dϕk−1/2

dx

dϕk
dx

dx
R

ek

dϕk
dx

dϕk−1

dx
dx

R

ek

dϕk
dx

dϕk−1/2

dx
dx

R

ek

dϕk
dx

dϕk
dx

dx

3

7

7

5

= 1

3∆x

2

4

7 −8 1
−8 16 −8

1 −8 7

3

5

f
k =





∫

ek
fϕk−1 dx∫

ek
fϕk−1/2 dx∫

ek
fϕk dx



 = ∆x
6





1
4
1




Global system: Au = F, where

u = [u1/2 u1 u3/2 . . . uN−1/2 uN]T

Numerical integration for finite elements

Change of variables theorem
∫

e

f(x) dx =
∫

ê

f̂(x̂)|det J | dx̂

ϕi(x) = ϕ̂i(F
−1
e (x)), ∀x ∈ e ∇̂ϕ̂i = J∇ϕi ⇒ ∇ϕi = J−1∇̂ϕ̂i

For instance, the entries of the element stiffness matrix are given by

aij =

∫

e

∇ϕi · ∇ϕj dx =

∫

ê

(J−1∇̂ϕ̂i) · (J−1∇̂ϕ̂j)|det J | dx̂

Numerical integration
∫

ê

ĝ(x̂) dx̂ ≈
n∑

i=0

ŵiĝ(x̂i), ĝ(x̂) = f̂(x̂)|det J |

Newton-Cotes formulae can be used but Gaussian quadrature is preferable:

∫

ê
ĝ(x̂) dx̂ ≈ ĝ(x̂1)+ĝ(x̂2)

2 , x̂1 = 1
2 − 1

6

√
3, x̂2 = 1

2 + 1
6

√
3, ê = [0, 1]

exact for ĝ ∈ P3(ê) as compared to P1(ê) for the trapezoidal rule

Storage of sparse matrices

Banded matrices: store the nonzero diagonals as 1D arrays

Arbitrary matrices: store the nonzero elements as a 1D array

1. Coordinate storage (inconvenient access)

A(NNZ) nonzero elements in arbitrary order

IROW(NNZ) auxiliary array of row numbers

ICOL(NNZ) auxiliary array of column numbers

2. Compact storage (convenient access)

A(NNZ) nonzero elements stored row-by-row

ILD(N+1) pointers to the beginning of each row

ICOL(NNZ) auxiliary array of column numbers

Example

A =






1 2 0 7
2 4 3 0
0 3 6 5
7 0 5 8






A = (1, 2, 7, 4, 2, 3, 6, 3, 5, 8, 7, 5)

ICOL = (1, 2, 4, 2, 1, 3, 3, 2, 4, 4, 1, 3)

IROW = (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4)

NNZ = 12, ILD = (1, 4, 7, 10, 13)

