Time-stepping techniques

Unsteady flows are parabolic in time = use ‘time-stepping’ methods to

advance transient solutions step-by-step or to compute stationary solutions

:itme Initial-boundary value problem u = u(x,t)
zone of influence
present ( 9u 4 Lu=f inQx(0,7) time-dependent PDE
past doperniance § Bu=0 onI' x (0,7T) boundary conditions
U = Ug in 2 att=0 initial condition

space

Time discretization 0=t<t'<t?<...<tM=T u ~ug in Q

e Consider a short time interval (¢*,t"*!) | where "™ =" 4+ At

e Given u" ~ u(t"™) use it as initial condition to compute v ~ u(t"*1)




Space-time discretization
Space discretization:  finite differences / finite volumes / finite elements
Unknowns:  wu;(t) time-dependent nodal values / cell mean values
Time discretization: (i) before or (ii) after the discretization in space

The space and time variables are essentially decoupled and can be discretized

independently to obtain a sequence of (nonlinear) algebraic systems

A(u™ T u™) ™ = b(u") n=0,1,....M -1

Method of lines (MOL) L — L, yields an ODE system for wu;(t)

du
d—th + Lpup = fr on (¢™,t" ) semi-discretized equations

N
FEM approximation up(x,t) = Y ui(t)pi(x), ul ~ u(x;, t")
j=1




Galerkin method of lines

Weak formulation fQ (‘?9—"; + Lu — f) vdx =0, YveV, Vte ("t

b (u,v) + a(u,v) =1l(v), Vv eV —  L(uy,vp) +alup,vp) = (vp), Yo, €V,

Differential-Algebraic Equations MC% + Au=1> te (t", )

where Mc = {m;;} is the mass matriz and u(t) = [u1(t),...,un(t)]"
Matrix coefficients mi; = (@i, 9;), aij = alei,¢;), bi=1pi)
Mass lumping  Mc — My = diag{m;}, m; =3 mi; = (pi, 2 @) = Jo i dx
J J

due to the fact that > ¢,; =1. In the 1D case FDM=FVM=FEM + lumping
J




Two-level time-stepping schemes
Lumped-mass discretization M2 + Au=10b, R(u,t) =M, " [Au—b]

% + R(u,t) =0 for t € (tn,th)

First-order ODE system
u(t") = u", Vn=0,1,...,. M —1

Standard #—scheme (finite difference discretization of the time derivative)

un—l—l —um

At

+ [0R(u™ T ") + (1 — 0)R(u™,t™")] = 0 0<6<1

where At =t"t1 — " is the time step and 6 is the implicitness parameter

0=0 forward Euler scheme explicit, O(At)
0=1/2 Crank-Nicolson scheme implicit, O(At)?
=1 backward Euler scheme implicit, O(At)




Fully discretized problem

Consistent-mass discretization Mg + Au =b, R(u,t) = Mg [Au — b]

[Mc + 0AtAlu™ ™ = [Mg — (1 — ) AtAju™ + At b7

where "t =0p"tl (1 -0)", 0<60<1, n=0,...,M—1
In general, time discretization is performed using numerical methods for ODEs

Tt = f(tu(t))

u(t™) = u”

Initial value problem on (t",t"*1)

du n+1 n AaE
o g dt=utT =t = L f(tu(t)) dt

Exact integration

u"tt =u + f(r,u(r))At, 7€ (t",t""1) by the mean value theorem

Idea: evaluate the integral numerically using a suitable quadrature rule




Example: standard time-stepping schemes

the interval (¢",¢""

Y

Numerical integration on




Properties of time-stepping schemes

Time discretization t" =nAt, At= % = M= Alt

Accumulation of truncation errors n=0,...,.M—1

dc =0ty = P = Ml = oAl

T

Remark. The order of a time-stepping method (i.e., the asymptotic rate at

which the error is reduced as At — 0) is not the sole indicator of accuracy

The optimal choice of the time-stepping scheme depends on its purpose:

e to obtain a time-accurate discretization of a highly dynamic flow problem

(evolution details are essential and must be captured) or

e to march the numerical solution to a steady state starting with some

reasonable initial guess (intermediate results are immaterial)

The computational cost of explicit and implicit schemes differs considerably




Explicit vs. implicit time discretization

Pros and cons of explicit schemes

easy to implement and parallelize, low cost per time step
a good starting point for the development of CFD software

& small time steps are required for stability reasons, especially
if the velocity and/or mesh size are varying strongly

& extremely inefficient for solution of stationary problems unless

local time-stepping i.e. At = At(x) is employed

Pros and cons of implicit schemes

stable over a wide range of time steps, sometimes unconditionally
constitute excellent iterative solvers for steady-state problems

© difficult to implement and parallelize, high cost per time step

© insufficiently accurate for truly transient problems at large At

© convergence of linear solvers deteriorates/fails as At increases




Example: 1D convection-diffusion equation

G+t —as (0.3 x 0.7

tou(t)) = —p2u d82—“
U(O) = u(l) = O, u‘tzO = U f( ,’LL( )) Vox + Ox2
2
Lagrangian representation du(as;tt), t) — d% pure diffusion equation
x
where % is the substantial derivative along the characteristic lines dfi(tt) =V
Initial profile is convected at speed v “ L0 f_T
and smeared by diffusion if d > 0 S
du(z(t), 1) R N
d=0 =0 3 | / \
dt 3 | / \
: . : | i / \\ d>0
For the pure convection equation u is § / \J‘

constant along the characteristics 0 X




Example: 1D convection-diffusion equation

Uniform space-time mesh

t Az Az
x; = 1Ax, A:U—N 1=0,...,N ' .
g
_ T _ £
"=nAt, At=4;, n=0,...,.M 2
tn+1
u — u" T ud = ug(xy) At
tn
Fully discretized equation 0<0<1 1 At
ufth =l + [0+ (1-0) 1A
Central difference / lumped-mass FEM 0 oo m o X
U?H — Uy 9 u?—:_ll - U?Jrll n dUZ”+11 — 2un+1 + u?—:_ll
= —v
At 2Ax (Ax)?

YA YL L um
+ (1_9) [—’U 1+1 1—1 —I—d 7—1

a sequence of tridiagonal linear systems

2Ax

i=1,...

—2u tufy,
(Ax)?




Example: 1D convection-diffusion equation

Standard #—scheme (two-level)

up t —up n Uu:'fle —up _ up®y = 200
At 2Ax (Ax)?
u? = gut 4 (1 — G)u?, 0<0<1 -
Forward Euler (6 = 0) ul ™ = h(ulg,ul,ul ) g
Backward Euler (0 =1)  u!*" = h(u!"] ul,ul ) CN
Crank-Nicolson (6 = 1) ul Tt = Rl ult ul g, u?jll) e
t" e—— oo
Leapfrog time-stepping u,?“ = u?”_l + 2Atf7
ul N UU?H —ul _ du?_l — 2ui +uy
2At 2Ax (Ax)?

(explicit, three-level) ul Tt = h(ulg Tl ul )




Fractional-step f/—scheme

Given the parameters 6 € (0,1), 8/ =1 — 260, and « € [0, 1] subdivide the time
interval (t",¢"1) into three substeps and update the solution as follows

Step 1. w9 = u™ + [af(t" 7, u"T0) + (1 — @) F(t", u™)]0AL
Step 2. w170 =" 4 [(1 — ) FE"T0, W) £ af (170w TY)) 0 AL

Step 3. u"T! =" L [af (T ) £ (1 — @) F(ETE0 w0 AL

Properties of this time-stepping method

e second-order accurate in the special case 6 =1 — ?

e coefficient matrices are the same for all substeps if a = 11_—_290

e combines the advantages of Crank-Nicolson and backward Euler




Predictor-corrector and multipoint methods
Objective: to combine the simplicity of explicit schemes and robustness of
implicit ones in the framework of a fractional-step algorithm, e.g.,
1. Predictor a"*tt =™ + f(t",u"™)At forward Euler

2. Corrector u™™' =u™ 4+ L[f(t", u™) + f(t"T,a"T1)]At  Crank-Nicolson

or u"tl=u"+ ft" T A" At backward Euler

Remark. Stability still leaves a lot to be desired, additional correction steps

usually do not pay off since iterations may diverge if At is too large

Order barrier: two-level methods are at most second-order accurate, so

extra points are needed to construct higher-order integration schemes

Adams methods tntl oot om=0,1,...

Runge-Kutta methods tnte e [tn vt a e [0,1]




Adams methods

Derivation: polynomial fitting f
past  present future

Truncation error:  €&°> = O(At)P

for polynomials of degree p — 1 which
interpolate function values at p points

tnf2 tnfl tn tn+1

Adams-Bashforth methods  (explicit)

p=1 u™ Tt =" + ALf(t", u™) forward Euler
p= 2 uv Tl = + %[gf(tn7 un) . f(tn—l,un—l)]
p=3 un Tl =y 2LR3F(t un) — 16f (¢ un ) + 5 F (02, un2))]

Adams-Moulton methods  (implicit)
p=1 u™tt =" + Atf(t" T u"Tl)  backward Euler
p=2 untl =y + S FE T un ) + f(¢7,u™)]  Crank-Nicolson
p=3  wrtl=un o AL w485, un) — (T un )]




Adams methods

Predictor-corrector algorithm
1. Compute %"t using an Adams-Bashforth method of order p — 1

2. Compute ¢! using an Adams-Moulton method of order p with
predicted value f(¢"™1, a"™1) instead of f(t" 1, u"*!)

Pros and cons of Adams methods

methods of any order are easy to derive and implement

only one function evaluation per time step is performed

error estimators for ODEs can be used to adapt the order
© other methods are needed to start/restart the calculation

time step is difficult to change (coefficients are different)

D

© tend to be unstable and produce nonphysical oscillations




Runge-Kutta methods

Multipredictor-multicorrector algorithms of order p

p=2 a2 = yn 4 BL(, um) forward FEuler / predictor
u Tl =y Atf(tnT/2 gnti/2) midpoint rule / corrector
p=4 G2 = yn 4 BLF(, um) forward FEuler / predictor
Y2 =y 4+ &L f(en Y2 grtl/2) backward Euler / corrector
At = u™ 4+ Atf (/2 gntl/2) midpoint rule / predictor
un Tl =y B un) + 2f (T2, gntl/2) Simpson rule
+ 2f (/2 qrtl/2) 4 fen gt corrector

Remark. There exist ‘embedded’” Runge-Kutta methods which perform extra
steps in order to estimate the error and adjust At in an adaptive fashion




General comments

Pros and cons of Runge-Kutta methods

self-starting, easy to operate with variable time steps
more stable and accurate than Adams methods of the same order

& high order approximations are rather difficult to derive; p function

evaluations per time step are required for a p—th order method

& more expensive than Adams methods of comparable order

Adaptive time-stepping strategy A At At At At At AL At

makes it possible to achieve the desired accuracy at a relatively low cost

Explicit methods: wuse the largest time step satisfying the stability condition

Implicit methods: estimate the error and adjust the time step if necessary




Automatic time step control

Objective: make sure that ||lu —ua¢|| = TOL  (prescribed tolerance)

Local truncation error Heuristic error analysis
1. uar = u+ At?e(u) + O(AL)? UmAt — UAY
e(u) ~
. 2 A ,2 4 At?2(m? — 1)
2. umar = u+m-At?e(u) + O(At)

Remark. 1t is tacitly assumed that the error at ¢t = t" is equal to zero.

Estimate of the relative error Adaptive time stepping
AL\ 2 lua; — At2(m? — 1
|u —uae, || = ( ) luac > adl _por At? =TOL (m” — 1)
At m* — 1 |uar — Umatl]

Richardson extrapolation: eliminate the leading term

2
mua¢ — u
u = A’; 1mAt + O(A)* fourth-order accurate
m —_




Practical implementation

Automatic time step control can be executed as follows

Given the old solution u" do:
1.
2. Make m small substeps of size At to compute uay
3. Evaluate the relative solution changes ||uas — tmatl]
4.

5. If At, < At, reset the solution and go back to step 1
6

. Set u™t! = ua; or perform Richardson extrapolation

Make one large time step of size mAt to compute u, Ay

Calculate the ‘optimal’ value At, for the next time step

© Note that the cost per time step increases substantially (u,,aA; may be as

expensive to obtain as ua; due to slow convergence at large time steps).

> On the other hand, adaptive time-stepping enhances the robustness of the

code, the overall efficiency and the credibility of simulation results.




Evolutionary PID controller

Another simple mechanism for capturing the dynamics of the flow:

e Monitor the relative changes e, = IIU“;II of an indicator variable u
o If e, > € reject the solution and repeat the time step using At, = =At,

e Adjust the time step smoothly so as to approach the prescribed tolerance

kp kr 2 kp
€ TOL es
ve= () (7)) (G0h) &
€n €n €En€n—2
e Limit the growth and reduction of the time step so that

Atn—l—l
At,

Atmin S Atn+1 S Atmaxa [ S S L

Empirical PID parameters kp = 0.075, k;y =0.175, kp =0.01




Pseudo time-stepping

Solutions to boundary value problems of the form Lu = f represent the

steady-state limit of the associated time-dependent problem

%+£u = f, u(x,0) = ug(x) in Q

where ug is an ‘arbitrary’ initial condition. Therefore, the numerical solution

can be ‘marched’ to the steady state using a pseudo time-stepping technique.

can be interpreted as an iterative solver for the stationary problem

the artificial time step represents an adjustable relaxation parameter
evolution details are immaterial = At should be as large as possible
the unconditionally stable backward Euler method is to be recommended
explicit schemes can be used in conjunction with local time-stepping

it is worthwhile to perform an adaptive time step control (e.g., PID)




