

Properties of numerical methods

The following criteria are crucial to the performance of a numerical algorithm:

1. Consistency The discretization of a PDE should become exact as the mesh size tends to zero (truncation error should vanish)
2. Stability Numerical errors which are generated during the solution of discretized equations should not be magnified
3. Convergence The numerical solution should approach the exact solution of the PDE and converge to it as the mesh size tends to zero
4. Conservation Underlying conservation laws should be respected at the discrete level (artificial sources/sinks are to be avoided)
5. Boundedness Quantities like densities, temperatures, concentrations etc. should remain nonnegative and free of spurious wiggles

These properties must be verified for each (component of the) numerical scheme

Consistency

Relationship:

discretized equation \longleftrightarrow differential equation

Truncation errors should vanish as the mesh size and time step tend to zero

Example. Pure convection equation $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$ discretized by

CDS in space, FE in time: $\frac{u_i^{n+1} - u_i^n}{\Delta t} + v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} = \mathcal{O}[(\Delta t)^q, (\Delta x)^p]$

Taylor series expansions: $u_i^{n+1} = u_i^n + \Delta t \left(\frac{\partial u}{\partial t} \right)_i^n + \frac{(\Delta t)^2}{2} \left(\frac{\partial^2 u}{\partial t^2} \right)_i^n + \dots$

$u_{i\pm 1}^n = u_i^n \pm \Delta x \left(\frac{\partial u}{\partial x} \right)_i^n + \frac{(\Delta x)^2}{2} \left(\frac{\partial^2 u}{\partial x^2} \right)_i^n \pm \frac{(\Delta x)^3}{6} \left(\frac{\partial^3 u}{\partial x^3} \right)_i^n + \dots$

Hence, $\frac{u_i^{n+1} - u_i^n}{\Delta t} + v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} - \left(\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} \right)_i^n + \epsilon_\tau = 0$ where

$$\epsilon_\tau = -\frac{\Delta t}{2} \left(\frac{\partial^2 u}{\partial t^2} \right)_i^n - v \frac{(\Delta x)^2}{6} \left(\frac{\partial^3 u}{\partial x^3} \right)_i^n + \mathcal{O}[(\Delta t)^2, (\Delta x)^4]$$

residual of the difference scheme for the *exact* nodal values $u_j^m = u(j\Delta x, m\Delta t)$

Stability

Relationship:

Definition 1 Numerical errors (roundoff due to final precision of computers) should not be allowed to grow unboundedly

Definition 2 The numerical solution itself should remain uniformly bounded

Stability analysis: can only be performed for a very limited range problems

Matrix method: $Au^{n+1} = Bu^n \Rightarrow u^{n+1} = Cu^n$, where $C = A^{-1}B$

is assumed to be a linear operator. In practice $u^n = \bar{u}^n + e^n$ so that

$u^{n+1} = Cu^n$ for the numerical solution u^n of the discretized equations

$\bar{u}^{n+1} = C\bar{u}^n$ for the exact solution \bar{u}^n of the discretized equations

$e^{n+1} = Ce^n$ for the roundoff error e^n incurred in the solution process

Matrix method for stability analysis

In the linear case $u^{n+1} = Cu^n = \dots = C^n u^0, \quad e^{n+1} = Ce^n = \dots = C^n e^0$

i.e., the error evolves in the same way as the solution and is bounded by

$$\|e\| \leq \|C\|^n \|e^0\|, \quad \|C\| \geq \rho(C) = \max_i |\lambda_i| \quad \text{spectral radius of } C$$

Unstable schemes: if $\rho(C) > 1$ then $\|C\| \geq 1$ and the errors may grow

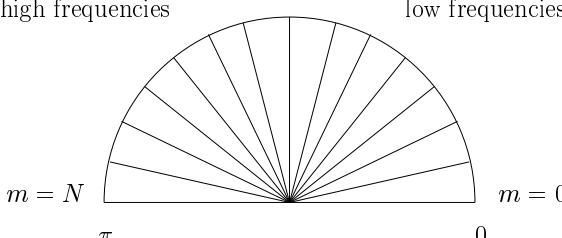
Example. Convection-diffusion equation $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = d \frac{\partial^2 u}{\partial x^2}$ discretized by

CDS in space, FE in time: $\frac{u_i^{n+1} - u_i^n}{\Delta t} + v \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} = d \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{(\Delta x)^2}$

or $u_i^{n+1} = u_i^n - \frac{\nu}{2}(u_{i+1}^n - u_{i-1}^n) + \delta(u_{i-1}^n - 2u_i^n + u_{i+1}^n)$

where $\nu = v \frac{\Delta t}{\Delta x}$ is the *Courant number*, $\delta = d \frac{\Delta t}{(\Delta x)^2}$ is the *diffusion number*

Matrix method for stability analysis

$$C = \begin{bmatrix} \cdot & \cdot & \cdot & & \\ & a & b & c & \\ & a & b & c & \\ & a & b & c & \\ & & & \cdot & \cdot & \cdot \end{bmatrix} \quad \begin{aligned} a &= \delta + \frac{\nu}{2} & \text{high frequencies} \\ b &= 1 - 2\delta & \\ c &= \delta - \frac{\nu}{2} & \text{low frequencies} \end{aligned}$$


Eigenvectors $\varphi_j^{(m)} = \cos \theta_m j + i \sin \theta_m j = e^{i\theta_m j}$, $\theta_m = m \frac{\pi}{N}$, $i^2 = -1$

Eigenvalues $a\varphi_{j+1}^{(m)} + b\varphi_j^{(m)} + c\varphi_{j-1}^{(m)} = \lambda_m \varphi_j^{(m)}$, divide by $\varphi_j^{(m)} = e^{i\theta_m j}$

$$\Rightarrow \lambda_m = 1 + 2\delta(\cos \theta_m - 1) + i2\nu \sin \theta_m, \quad \forall m = 1, \dots, N$$

Stability condition $|\lambda_m|^2 = [1 + 2\delta(\cos \theta_m - 1)]^2 + 4\nu^2 \sin^2 \theta_m \leq 1$

pure convection: $\delta = 0 \Rightarrow |\lambda_m| \geq 1$ unconditionally unstable :-)

pure diffusion: $\nu = 0 \Rightarrow |\lambda_m| \leq 1$ if $\delta \leq \frac{1}{2}$ conditionally stable

Von Neumann's stability analysis

Objective: to investigate the propagation and amplification of numerical errors

Assumptions: linear PDE, constant coefficients, periodic boundary conditions

Continuous error representation

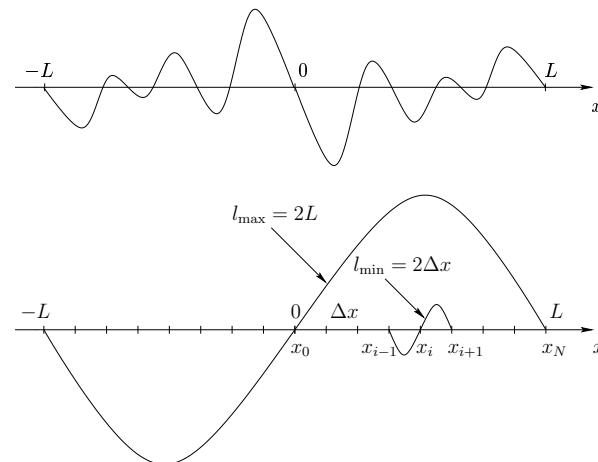
$$e(x, t) = \sum_m a_m(t) e^{i k_m x} \quad \text{Fourier series}$$

$$i^2 = -1, \quad e^{i k_m x} = \cos k_m x + i \sin k_m x$$

i.e. the error is a superposition of harmonics characterized by their wave number $k_m = \frac{2\pi}{l_m}$ (for wave length l_m) and amplitude $a_m(t)$

$$\text{Discretization} \quad \Delta x = \frac{L}{N} \quad \Rightarrow \quad k_m = m \frac{\pi}{L} = \frac{m\pi}{N\Delta x}, \quad \theta_m = k_m \Delta x = m \frac{\pi}{N}$$

Here θ_m is the phase angle, m is the number of waves fitted into the interval $(-L, L)$ and Δx determines the highest frequency resolvable on the mesh



Von Neumann's stability analysis

Representation of numerical error (trigonometric interpolation)

$$e_j^0 = \sum_m a_m^0 e^{i\theta_m j} \Rightarrow e_j^n = \sum_m a_m^n e^{i\theta_m j}, \quad \text{where } a_m^n = a_m^0 \lambda_m^n$$

Due to linearity, the error satisfies the discretized equation and so does each harmonic. Hence, it suffices to check stability for $e_j^n = a_m^n e^{i\theta_m j}, \quad \forall m$

Amplification factor

$$G_m = \frac{a_m^{n+1}}{a_m^n} = \lambda_m$$

the enhancement of the m -th harmonic during one time step

Stability condition

$$|G_m| \leq 1, \quad \forall m$$

guarantees that the error component $e_j^n = (G_m)^n e_j^0$ remains bounded

Remark. The accuracy of approximation can be assessed by analyzing phase errors i.e. the actual speed of harmonics as compared to the exact speed

Example: pure convection equation in 1D

1. Let $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$ be discretized by CDS in space, FE in time

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + v \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = 0 \quad \text{and substitute } e_j^n = a^n e^{i\theta j}$$

The resulting difference equation for the error can be written as

$$(a^{n+1} - a^n) e^{i\theta j} + \frac{\nu}{2} a^n (e^{i\theta(j+1)} - e^{i\theta(j-1)}) = 0, \quad \nu = v \frac{\Delta t}{\Delta x}$$

Divide by $e^{i\theta j} \Rightarrow a^{n+1} = a^n - \frac{\nu}{2} a^n (e^{i\theta} - e^{-i\theta})$ and note that

$$e^{i\theta} - e^{-i\theta} = \cos \theta + i \sin \theta - \cos \theta + i \sin \theta = 2i \sin \theta$$

Amplification factor $G = \frac{a^{n+1}}{a^n} = 1 - i\nu \sin \theta$ is responsible for stability

$|G|^2 = 1 + \nu^2 \sin^2 \theta \geq 1 \Rightarrow$ the scheme is unconditionally unstable :-(

Example: pure convection equation in 1D

2. Let $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$ be discretized by BDS in space, FE in time

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + v \frac{u_j^n - u_{j-1}^n}{\Delta x} = 0 \quad \text{and substitute } e_j^n = a^n e^{i\theta j}$$

which yields $(a^{n+1} - a^n)e^{i\theta j} + \nu a^n(e^{i\theta j} - e^{i\theta(j-1)}) = 0, \quad \nu = v \frac{\Delta t}{\Delta x}$

$$G = 1 - \nu + \nu e^{-i\theta} = 1 - \nu + \nu(\cos \theta - i \sin \theta) = 1 - 2\nu \sin^2 \frac{\theta}{2} - i\nu \sin \theta$$

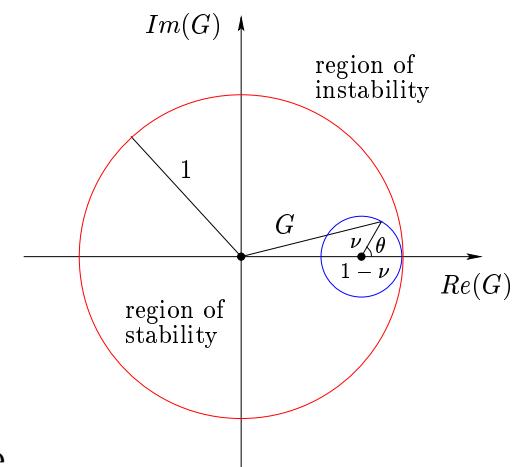
$$Re(G) = 1 - \nu + \nu \cos \theta, \quad Im(G) = -\nu \sin \theta$$

Stability restriction $|G|^2 \leq 1$ means that G must lie within the unit circle in the complex plane.

This leads to the *CFL condition* $0 \leq \nu \leq 1$

$v > 0$ upwind scheme, stable for $\Delta t \leq \frac{\Delta x}{v}$

$v < 0$ downwind scheme, unconditionally unstable



Example: pure convection equation in 1D

The numerical domain of dependence should contain the analytical one:

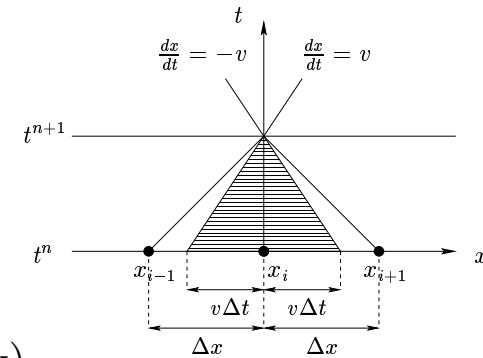
- if $\nu > 1$, then the data at some grid point may affect the true solution but not the numerical one
- on the other hand, for $\nu < 1$ some grid points influence the solution although they should not
- for accuracy reasons it is desirable to have $\nu \approx 1$; some schemes are exact for $\nu = 1$ (unit CFL property)

3. Let $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$ be discretized by CDS in space, BE in time

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + v \frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2\Delta x} = 0 \quad \text{and substitute } e_j^n = a^n e^{i\theta j}$$

$$(a^{n+1} - a^n) e^{i\theta j} + \frac{\nu}{2} a^{n+1} (e^{i\theta(j+1)} - e^{i\theta(j-1)}) = 0 \quad \Rightarrow \quad G = \frac{1}{1 + i\nu \sin \theta}$$

It follows that $|G|^2 = G \cdot \bar{G} = \frac{1}{1 + \nu^2 \sin^2 \theta} \leq 1$ unconditional stability



Spectral analysis of numerical errors

Consider $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = d \frac{\partial^2 u}{\partial x^2}$ convection-diffusion equation

Exact solution: $u(x, t) = e^{ik(x-vt)-k^2 dt} = a(t)e^{ikx}, \quad a(t) = e^{-ikvt-k^2 dt}$

a wave with exponentially decaying amplitude traveling at constant speed

Amplification factor

$$G_{\text{ex}} = \frac{a(t^{n+1})}{a(t^n)} = \frac{e^{-(ikv+k^2 d)(n+1)\Delta t}}{e^{-(ikv+k^2 d)n\Delta t}} = e^{-(\delta+i\omega)}$$

$$|G_{\text{ex}}| = e^{-\delta}, \quad \delta = k^2 d \Delta t, \quad \omega = kv \Delta t = -\arg(G_{\text{ex}})$$

Amplitude error $\epsilon_\delta = \frac{|G_{\text{num}}|}{|G_{\text{ex}}|} = |G_{\text{num}}| e^\delta$ numerical damping

Phase error $\epsilon_\omega = \frac{\arg(G_{\text{num}})}{\arg(G_{\text{ex}})} = \frac{\arg(G_{\text{num}})}{-\omega} = \frac{\tilde{v}}{v}$ numerical dispersion

where $\tilde{v} = \frac{\arg(G_{\text{num}})}{-k \Delta t}$ is the numerical propagation speed

Harmonics travel too fast if $\epsilon_\omega > 1$ (leading phase error)
and too slow in the case $\epsilon_\omega < 1$ (lagging phase error)

Convergence

Relationship:

numerical solution of
discretized equations

exact solution of the
differential equation

Definition: A numerical scheme is said to be convergent if it produces the exact solution of the underlying PDE in the limit $h \rightarrow 0$ and $\Delta t \rightarrow 0$

Lax equivalence theorem: **stability + consistency = convergence**

- For practical purposes, convergence can be investigated numerically by comparing the results computed on a series of successively refined grids
- The rate of convergence is governed by the leading truncation error of the discretization scheme and can also be estimated numerically:

$$u = u_h + e(u)h^p + \dots = u_{2h} + e(u)(2h)^p + \dots = u_{4h} + e(u)(4h)^p + \dots$$

$$\begin{aligned} u_{2h} - u_h &\approx e(u)h^p(1 - 2^p) \\ u_{4h} - u_{2h} &\approx e(u)h^p(1 - 2^p)2^p \end{aligned} \Rightarrow p \approx \frac{\log \left(\frac{u_{4h} - u_{2h}}{u_{2h} - u_h} \right)}{\log 2}$$

Conservation

Physical principles should apply at the discrete level: if mass, momentum and energy are conserved, they can only be distributed improperly

Integral form of a generic conservation law

$$\frac{\partial}{\partial t} \int_V u \, dV + \int_S \mathbf{f} \cdot \mathbf{n} \, dS = \int_V q \, dV, \quad \mathbf{f} = \mathbf{v}u - d\nabla u$$

accumulation *influx* *source/sink* *flux function*

Caution: nonconservative discretizations may produce reasonably looking results which are totally wrong (e.g. shocks moving with a wrong speed)

- even nonconservative schemes can be consistent and stable
- correct solutions are recovered in the limit of very fine grids

Problem: it is usually unclear whether or not the mesh is sufficiently fine

Discrete conservation

1. Any **finite volume scheme** is conservative by construction both locally (for every single control volume) and globally (for the whole domain)
2. A **finite difference scheme** is conservative if it can be written in the form

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{f_{i+1/2} - f_{i-1/2}}{\Delta x} = q$$

which is equivalent to a vertex-centered finite volume discretization

3. Any **finite element scheme** is conservative, at least globally

$$\sum_{i=1}^N \varphi_i \equiv 1, \quad \int_V \varphi_i \left[\frac{\partial u_h}{\partial t} + \nabla \cdot f_h - q_h \right] dV = 0, \quad i = 1, \dots, N$$

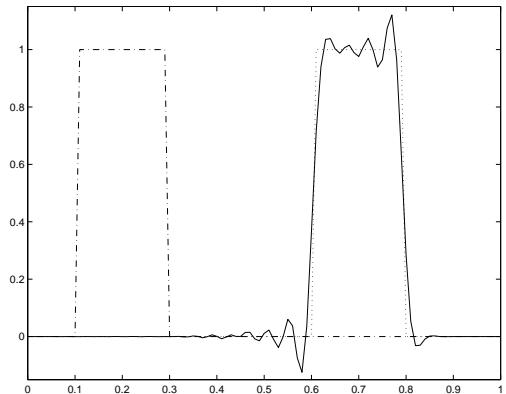
Summation over i yields a discrete counterpart of the integral conservation law

$$\int_V \left[\frac{\partial u_h}{\partial t} + \nabla \cdot f_h - q_h \right] dV = 0 \quad \Rightarrow \quad \frac{\partial}{\partial t} \int_V u_h dV + \int_S \mathbf{f}_h \cdot \mathbf{n} dS = \int_V q_h dV$$

Boundedness

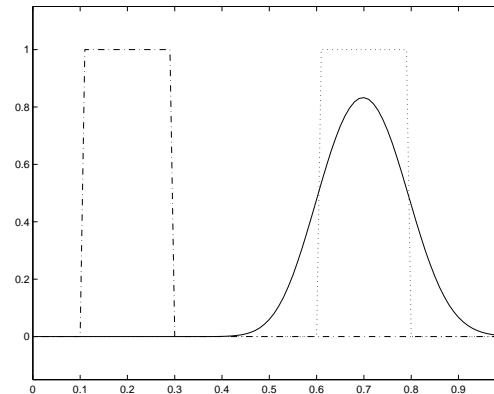
Convection-dominated / hyperbolic PDEs $Pe \gg 1, Re \gg 1$

- spurious undershoots and overshoots occur in the vicinity of steep gradients
- quantities like densities, temperatures and concentrations become negative
- the method may become unstable or converge to a wrong weak solution



low-order →

← high-order



Idea: make sure that important properties of the exact solution (monotonicity, positivity, nonincreasing total variation) are inherited by the numerical one

Design of nonoscillatory methods

Monotone methods $\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0 \rightarrow u_i^{n+1} = H(u^n; i)$ such that

$$\frac{\partial H(u^n; i)}{\partial u_j^n} \geq 0, \quad \forall i, j \quad \text{Then} \quad v_i^n \geq u_i^n, \quad \forall i \quad \Rightarrow \quad v_i^{n+1} \geq u_i^{n+1}, \quad \forall i$$

Example. Let $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$ be discretized by UDS in space, FE in time

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + v \frac{u_i^n - u_{i-1}^n}{\Delta x} = 0, \quad H(u^n; i) = u_i^n - v \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n)$$

Derivatives $\frac{\partial H(u^n; i)}{\partial u_i^n} = 1 - \nu, \quad \frac{\partial H(u^n; i)}{\partial u_{i-1}^n} = \nu, \quad \text{where} \quad \nu = v \frac{\Delta t}{\Delta x}$

\Rightarrow monotone under the CFL condition $\nu \leq 1$ (cf. stability analysis)

Lax-Wendroff theorem: *If a monotone consistent and conservative method converges, then it converges to a physically acceptable weak solution*

Design of nonoscillatory methods

Godunov's theorem: *Monotone method are at most first-order accurate*

Monotonicity-preserving methods (monotone if linear)

$$u_i^0 \geq u_{i+1}^0, \quad \forall i \quad \Rightarrow \quad u_i^n \geq u_{i+1}^n, \quad \forall i, \quad \forall n$$

If the initial data u^0 is monotone, then so is the solution u^n at all times

It is known that the *total variation* defined as $TV(u) = \int_{-\infty}^{\infty} \left| \frac{\partial u}{\partial x} \right| dx$ is a

nonincreasing function of time for any physically admissible weak solution

Total variation diminishing methods (monotone if linear)

$$TV(u^{n+1}) \leq TV(u^n), \quad \text{where} \quad TV(u^n) = \sum_i |u_i^n - u_{i-1}^n|$$

Classification *monotone* \Rightarrow *TVD* \Rightarrow *monotonicity-preserving*

Total variation diminishing methods

Harten's theorem: *An explicit finite difference scheme of the form*

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = c_{i-1/2}(u_{i-1}^n - u_i^n) + c_{i+1/2}(u_{i+1}^n - u_i^n)$$

is total variation diminishing (TVD) provided that the coefficients satisfy

$$c_{i-1/2} \geq 0, \quad c_{i+1/2} \geq 0, \quad c_{i-1/2} + c_{i+1/2} \leq 1$$

Semi-discrete problem $\frac{du_i}{dt} + \frac{f_{i+1/2} - f_{i-1/2}}{\Delta x} = 0$ conservation form

Idea: switch between high- and low-order flux approximations depending on the local smoothness of the solution so as to enforce Harten's conditions:

$$f_{i+1/2} = f_{i+1/2}^L + \Phi_{i+1/2}[f_{i+1/2}^H - f_{i+1/2}^L]$$

where $0 \leq \Phi_{i+1/2} \leq 2$ is a solution-dependent correction factor (flux limiter)

TVD discretization of convective terms

Example. Pure convection equation $\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0, \quad v > 0, \quad f = vu$

Linear flux approximations

$$\begin{aligned} f_{i+1/2}^L &= vu_i && \text{upwind difference} \\ f_{i+1/2}^H &= v \frac{u_{i+1} + u_i}{2} && \text{central difference} \end{aligned}$$

Smoothness indicator

$$r_i = \frac{u_i - u_{i-1}}{u_{i+1} - u_i}$$

Nonlinear TVD flux $f_{i+1/2} = vu_i + \frac{v}{2}\Phi(r_i)(u_{i+1} - u_i)$

Harten's coefficients $c_{i-1/2} = \frac{v}{2\Delta x} \left[2 + \frac{\Phi(r_i)}{r_i} - \Phi(r_{i-1}) \right], \quad c_{i+1/2} = 0$

Standard flux limiters: $\Phi(r) = \frac{r+|r|}{1+|r|}$ Van Leer

$\Phi(r) = \max\{0, \min\{1, r\}\}$ minmod

$\Phi(r) = \max\{0, \min\{\frac{1+r}{2}, 2, 2r\}\}$ MC

$\Phi(r) = \max\{0, \min\{1, 2r\}, \min\{2, r\}\}$ superbee

1D stencil

