Properties of numerical methods

The following criteria are crucial to the performance of a numerical algorithm:
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. Consistency

. Stability

. Convergence

. Conservation

. Boundedness

The discretization of a PDE should become exact as the

mesh size tends to zero (truncation error should vanish)

Numerical errors which are generated during the solution

of discretized equations should not be magnified

The numerical solution should approach the exact solution of

the PDE and converge to it as the mesh size tends to zero

Underlying conservation laws should be respected at the

discrete level (artificial sources/sinks are to be avoided)

Quantities like densities, temperatures, concentrations etc.

should remain nonnegative and free of spurious wiggles

These properties must be verified for each (component of the) numerical scheme




Consistency

Relationship: discretized equation| <«— |differential equation

Truncation errors should vanish as the mesh size and time step tend to zero

Example. Pure convection equation % + v% = (0 discretized by

un—l—l . un n un

CDS in space, FE in time: . A7 L —|—fuui+12;x =L — O[(At)4, (Az)P]

2
Taylor series expansions: — u”t! = ul' + At ( ) + (At) ((,%2 > + ...

n )2 ” x
uPyy = ul + Az (22)" 4 (B2) (2;2)¢<A> (axg)er---

n n
o — (% —I—U%)i +e€e, =0 where

. A; (g; )" B U(Ag:)2 (gi";)n + O[(At)?, (Ax)Y]

residual of the difference scheme for the exact nodal values u’* = u(jAx, mAt)

J




Stability

Relationshio: numerical solution of exact solution of
P discretized equations discretized equations

Definition 1  Numerical errors (roundoff due to final precision of computers)
should not be allowed to grow unboundedly

Definition 2 The numerical solution itself should remain uniformly bounded

Stability analysis: can only be performed for a very limited range problems

Matrix method: Au"™! = Bu® = "™ =Cu", where C = A™'B
is assumed to be a linear operator. In practice u"™ = u™ 4+ e™ so that
u" Tl = Cu” for the numerical solution u™ of the discretized equations

gt = Cun for the exact solution ™ of the discretized equations

entl = (Cem for the roundoff error €™ incurred in the solution process




Matrix method for stability analysis

In the linear case u"*!' =Cu" =...=C"u°, entl =Cen =...=C"e’
i.e., the error evolves in the same way as the solution and is bounded by

lell < [ICIMMIe°],  NICIl = p(C) = max; [Ai|  spectral radius of C

Unstable schemes: if p(C') > 1 then |[|C|| > 1 and the errors may grow

. . . . ou ou __ o%u . .
Ezample. Convection-diffusion equation 4r +vg: = d3—z discretized by
in space, in time: gt v = Bz)
n+l _ n v n n n n n
or u; = Uy — §(U¢+1 — ) +0(uiy — 2uy +ugy )

where v = v% is the Courant number, 6 = d(AA—;)Q is the diffusion number




Matrix method for stability analysis

high frequencies low frequencies
a=0+ %
a b c 2
C = a b c b=1-—20

a b C c = 5 v m=N m=0

I ] 5) ) .
. m . . . . y y .
Eigenvectors gpg ) — cos 0,f +isinb,,j =efmi 0, = m% 2 =—1

Eigenvalues agpyﬂ + bgpjm) + Cgp(ﬂj% _ )\mgpgm), divide by Spg_m) _ ifmj

J

=  Am =14+2(cosb,, — 1)+ i2vsinb,,, Vm=1,...,N

Stability condition | [\, |2 = [1 4+ 26(cos b, — 1)]? 4+ 42 sin?6,, < 1

pure convection: =0 = |\,|>1 unconditionally unstable :-(

pure diffusion: v=0 = | A,/ <1 if §< % conditionally stable




Von Neumann’s stability analysis

Objective: to investigate the propagation and amplification of numerical errors

Assumptions: linear PDE, constant coefficients, periodic boundary conditions

Continuous error representation

e(x,t) = an(t)et**  Fourier series
m

i =—1, e¥n® =cosk,,x+isink,z

i.e. the error is a superposition of harmonics

characterized by their wave number k,,, = ZQ—W
(for wave length [,,,) and amplitide a,, (t)
Discretization Az = % =  knm=mT = Frs On=FEknldzr=mg

Here 6,,, is the phase angle, m is the number of waves fitted into the interval

(=L, L) and Az determines the highest frequency resolvable on the mesh




Von Neumann’s stability analysis

Representation of numerical error (trigonometric interpolation)

0 __ 0 10,7 n __ n 10,7 n _ _0\n
e; = g ame” " = ey = g a, e’ ™,  where a, =a,\,
m m

Due to linearity, the error satisfies the discretized equation and so does each

harmonic. Hence, it suffices to check stability for e} = am emi  Ym

Amplification factor Stability condition
1
o m G| <1, Vm
m an m
m
the enhancement of the m—th guarantees that the error component
harmonic during one time step e; = (Gm)"eg remains bounded

Remark. The accuracy of approximation can be assessed by analyzing phase

errors i.e. the actual speed of harmonics as compared to the exact speed




Example: pure convection equation in 1D

1. Let % + v% = (0 be discretized by CDS in space, FE in time

ur.H_l —un u™, . —ut .
. AL L+ JHZA =1 — 9 and substitute e} = a" e’
x
The resulting difference equation for the error can be written as
g
Y L o At
an+1 —a® 6@93 Zam ez@(g+1) . 67,0(]—1) —0 U=

Divide by e = a"t' =a" — %a"(e"’ — e ") and note that

el _ =10 — cosf +1sinf — cosf + 1sinf = 21sin b

n+1

a’I’L

Amplification factor |G =2

=1—1ivsinb is responsible for stability

IG|?=1+1%sin*0 >1 = the scheme is unconditionally unstable :-(




Example: pure convection equation in 1D

2. Let 8“ + vg“ = (0 be discretized by BDS in space, FE in time

ut u” — u”
J J J J—1 . n _i07j
+ v =0 and substitute e" = a"e'”’
At Ax J
which yields  (a™™ — a™)e? + va" (e’ — 0 —1)) =0, v =0yt

G=1-v+rve®=1—-v+v(cosh—isinf) =1 —21/s1nzg 1w sin 0

Re(G)=1—v+wvcosh, Im(G)=—vsinb Im(C)
region of
. L. instability
Stability restriction |G|* <1 means that G must
lie within the unit circle in the complex plane. !
G
v/
U Re(G)

This leads to the CFL condition 0<rv<<l

region of
stability

v >0 upwind scheme, stable for At < %

v <0 downwind scheme, unconditionally unstable




Example: pure convection equation in 1D

The numerical domain of dependence should contain the analytical one:

e if v > 1, then the data at some grid point may '

affect the true solution but not the numerical one dt —

n+1

e on the other hand, for v < 1 some grid points in-

fluence the solution although they should not

tn
e for accuracy reasons it is desirable to have v ~ 1;

some schemes are exact for v = 1 (unit CFL property)

3. Let % + v% = (0 be discretized by CDS in space, BE in time

-y whh — ] .
/ A L+ ]+12A =L — and substitute e} = a"e'?
x
(a1 — am)eifi 4 Lgntl(efU+1) — (0G=1) = 0 N G — 1—|—7j1/181n9
It follows that |G]?=G -G = m <1 unconditional stability




Spectral analysis of numerical errors

ou du _ 70%u : . . .
5t T vas =d3= convection-diffusion equation

Consider
a(t) = p—ikvt—k*dt

w(z, t) = eikz(m—vt)—k:2dt _ &(t)eikm,

Exact solution:
a wave with exponentially decaying amplitude traveling at constant speed

_ 6—(5+iw)

a(t™th) e—(ikv+k2d)(n—|—1)At

Gex = a(tm) e— (ikv+k2d)nAt

Amplification factor
w = kvAt = —arg(Gey)

Gox| = 79, § = k?dAt,
Amplitude error €5 = % = |Guum|€’ numerical damping
numerical dispersion

Q|

Phase error €, = a;Igg(féI:S) = arg(_cifum) —

arg(Gnum)
—kAt

c Harmonics travel too fast if ¢, > 1 (leading phase error)
and too slow in the case ¢, <1 (lagging phase error)

is the numerical propagation speed

where v




Convergence

numerical solution of exact solution of the

Relationship: discretized equations differential equation

Definition: A numerical scheme is said to be convergent if it produces the
exact solution of the underlying PDE in the limit h — 0 and At — 0

Lax equivalence theorem: stability 4+ consistency = convergence

e For practical purposes, convergence can be investigated numerically by
comparing the results computed on a series of successively refined grids

e The rate of convergence is governed by the leading truncation error of
the discretization scheme and can also be estimated numerically:

u=up+e(w)h? + ... =ugp +e(u)(2h)P + ... = ugp + e(u)(4h)? + ...

=~ () (1~ 2) s (=)

Uap, — Uzp A e(u)hP (1 — 2P)2P b

log 2




Conservation

Physical principles should apply at the discrete level: if mass, momentum

and energy are conserved, they can only be distributed improperly

Integral form of a generic conservation law

g/udV—l—/f-ndSZ/qu, f =vu—dVu
ot Jy S 1%

accumulation influx  source/sink  flux function

Caution: nonconservative discretizations may produce reasonably looking

results which are totally wrong (e.g. shocks moving with a wrong speed)
e cven nonconservative schemes can be consistent and stable

e correct solutions are recovered in the limit of very fine grids

Problem: it is usually unclear whether or not the mesh is sufficiently fine




Discrete conservation

1. Any finite volume scheme is conservative by construction both locally

(for every single control volume) and globally (for the whole domain)

2. A finite difference scheme is conservative if it can be written in the form
U?H — u; 4 Jixv1/2 = fi—1/2 _
At Az

which is equivalent to a vertex-centered finite volume discretization

3. Any finite element scheme is conservative, at least globally

N
0
i=1 v Ot

Summation over ¢ yields a discrete counterpart of the integral conservation law

[y [ 4V fo—qp]dV =0 = 2 [ w,dV+ [(f, -ndS= [, q,dV




Boundedness

Convection-dominated / hyperbolic PDEs Pe>1, Re>1

e spurious undershoots and overshoots occur in the vicinity of steep gradients
e quantities like densities, temperatures and concentrations become negative

e the method may become unstable or converge to a wrong weak solution

low-order —

A

«— high-order

Idea: make sure that important properties of the exact solution (monotonicity,

positivity, nonincreasing total variation) are inherited by the numerical one




Design of nonoscillatory methods

Monotone methods o % =0 — ul™'=H(u";i) such that

OH (u";1) -

n —_— )
(9uj

'L —_—

Vi, g Then o >u?, Vi = o' >4l i

Example. Let % + ’U% = 0 be discretized by UDS in space, FE in time

n+1 n n n
w, T —ul ul —ul , At
L A7 Ly A = =0, lﬁl(u";z):u?—fu—A (ul —ul" q)
x x
Derivatives L“n’z) —1—v Lﬁﬂ) — 1. where v =2t
ou] ) oul ) Ax

= monotone under the CFL condition v < 1 (cf. stability analysis)

Lax-Wendroff theorem: If a monotone consistent and conservative method

converges, then it converges to a physically acceptable weak solution




Design of nonoscillatory methods
Godunov’s theorem: Monotone method are at most first-order accurate

Monotonicity-preserving methods (monotone if linear)

0 0 . n n .
U; > Ujyq, Vi = u; > Upyq, Vi, Vn

If the initial data u is monotone, then so is the solution u™ at all times

It is known that the total variation defined as TV (u) = [ |%} dr isa

nonincreasing function of time for any physically admissible weak solution

Total variation diminishing methods (monotone if linear)

TV (u") <TV(u"), where TV(u")=> |u —u |

Classification monotone = TVD = monotonicity-preserving




Total variation diminishing methods

Harten’s theorem:  An explicit finite difference scheme of the form
n+l _
7

At
is total variation diminishing (TVD) provided that the coefficients satisfy

n
U u;

n
71—

= Cz‘—l/z(u | —u) + ci—|—1/2(uzn—|—1 —u;')
Ci—1/2 = 0, Civ1/2 = 0, Ci—1/2 + Ciy1/2 <1

Semi-discrete problem dé@’i 4 Jery 2A_mf i=1/2 — ()  conservation form

Idea: switch between high- and low-order flux approximations depending on

the local smoothness of the solution so as to enforce Harten’s conditions:

Jiv1/2 = fzer1/2 + (I)i+1/2[fz€{1/2 a iLJrl/Q]

where 0 < @,/ < 2 is a solution-dependent correction factor (flux limiter)




TVD discretization of convective terms

Ezxample. Pure convection equation % -+ U% =0, v>0, f=wvu

Linear flux approximations Smoothness indicator
L = VU; upwind difference Ui — Uj—1
H o Uig1tus . Ujr1 — Uy
i1/ =V central difference

Nonlinear TVD flux fit1/2 = vu; + 5P(r) (wigr — wy;)

Harten’s coefficients Cim1/2 = FA= [2 1 Bl Q(ri_1)|,

T

Civ1/2 =0

1D stencil

Standard flux limiters:  ®(r) = 22l Van Leer

®(r) = max{0, min{1,7}} minmod
®(r) = max{0, min { £, 2,2r}} MC

2
®(r) = max{0, min{1, 2r}, min{2,r}} superbee




