
Properties of numerical methods

The following criteria are crucial to the performance of a numerical algorithm:

1. Consistency The discretization of a PDE should become exact as the

mesh size tends to zero (truncation error should vanish)

2. Stability Numerical errors which are generated during the solution

of discretized equations should not be magnified

3. Convergence The numerical solution should approach the exact solution of

the PDE and converge to it as the mesh size tends to zero

4. Conservation Underlying conservation laws should be respected at the

discrete level (artificial sources/sinks are to be avoided)

5. Boundedness Quantities like densities, temperatures, concentrations etc.

should remain nonnegative and free of spurious wiggles

These properties must be verified for each (component of the) numerical scheme



Consistency

Relationship: discretized equation ←→ differential equation

Truncation errors should vanish as the mesh size and time step tend to zero

Example. Pure convection equation ∂u
∂t + v ∂u

∂x = 0 discretized by

CDS in space, FE in time:
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residual of the difference scheme for the exact nodal values um
j = u(j∆x, m∆t)



Stability

Relationship:
numerical solution of
discretized equations

←→
exact solution of

discretized equations

Definition 1 Numerical errors (roundoff due to final precision of computers)

should not be allowed to grow unboundedly

Definition 2 The numerical solution itself should remain uniformly bounded

Stability analysis: can only be performed for a very limited range problems

Matrix method: Aun+1 = Bun ⇒ un+1 = Cun, where C = A−1B

is assumed to be a linear operator. In practice un = ūn + en so that

un+1 = Cun for the numerical solution un of the discretized equations

ūn+1 = Cūn for the exact solution ūn of the discretized equations

en+1 = Cen for the roundoff error en incurred in the solution process



Matrix method for stability analysis

In the linear case un+1 = Cun = . . . = Cnu0, en+1 = Cen = . . . = Cne0

i.e., the error evolves in the same way as the solution and is bounded by

||e|| ≤ ||C||n||e0||, ||C|| ≥ ρ(C) = maxi |λi| spectral radius of C

Unstable schemes: if ρ(C) > 1 then ||C|| ≥ 1 and the errors may grow

Example. Convection-diffusion equation ∂u
∂t + v ∂u

∂x = d∂2u
∂x2 discretized by

CDS in space, FE in time:
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where ν = v ∆t
∆x is the Courant number, δ = d ∆t

(∆x)2 is the diffusion number



Matrix method for stability analysis
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Eigenvectors ϕ
(m)
j = cos θmj + i sin θmj = eiθmj , θm = m π

N , i2 = −1

Eigenvalues aϕ
(m)
j+1 + bϕ

(m)
j + cϕ

(m)
j−1 = λmϕ

(m)
j , divide by ϕ

(m)
j = eiθmj

⇒ λm = 1 + 2δ(cos θm − 1) + i2ν sin θm, ∀m = 1, . . . , N

Stability condition |λm|
2 = [1 + 2δ(cos θm − 1)]2 + 4ν2 sin2 θm ≤ 1

pure convection: δ = 0 ⇒ |λm| ≥ 1 unconditionally unstable :-(

pure diffusion: ν = 0 ⇒ |λm| ≤ 1 if δ ≤ 1
2 conditionally stable



Von Neumann’s stability analysis

Objective: to investigate the propagation and amplification of numerical errors

Assumptions: linear PDE, constant coefficients, periodic boundary conditions

Continuous error representation

e(x, t) =
∑

m
am(t)eikmx Fourier series

i2 = −1, eikmx = cos kmx + i sin kmx

i.e. the error is a superposition of harmonics

characterized by their wave number km = 2π
lm

(for wave length lm) and amplitide am(t)

L0�L x
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∆x−L
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0 L

lmin = 2∆x

lmax = 2L

Discretization ∆x = L
N ⇒ km = m π

L = mπ
N∆x , θm = km∆x = m π

N

Here θm is the phase angle, m is the number of waves fitted into the interval

(−L, L) and ∆x determines the highest frequency resolvable on the mesh



Von Neumann’s stability analysis

Representation of numerical error (trigonometric interpolation)

e0
j =

∑

m

a0
meiθmj ⇒ en

j =
∑

m

an
meiθmj , where an

m = a0
nλn

m

Due to linearity, the error satisfies the discretized equation and so does each

harmonic. Hence, it suffices to check stability for en
j = an

meiθmj , ∀m

Amplification factor

Gm =
an+1

m

an
m

= λm

the enhancement of the m−th

harmonic during one time step

Stability condition

|Gm| ≤ 1, ∀m

guarantees that the error component

en
j = (Gm)ne0

j remains bounded

Remark. The accuracy of approximation can be assessed by analyzing phase

errors i.e. the actual speed of harmonics as compared to the exact speed



Example: pure convection equation in 1D

1. Let ∂u
∂t + v ∂u

∂x = 0 be discretized by CDS in space, FE in time

un+1
j − un

j

∆t
+ v

un
j+1 − un

j−1

2∆x
= 0 and substitute en

j = aneiθj

The resulting difference equation for the error can be written as

(an+1 − an)eiθj +
ν

2
an(eiθ(j+1) − eiθ(j−1)) = 0, ν = v

∆t

∆x

Divide by eiθj ⇒ an+1 = an − ν
2an(eiθ − e−iθ) and note that

eiθ − e−iθ = cos θ + i sin θ − cos θ + i sin θ = 2i sin θ

Amplification factor G = an+1

an = 1− iν sin θ is responsible for stability

|G|2 = 1 + ν2 sin2 θ ≥ 1 ⇒ the scheme is unconditionally unstable :-(



Example: pure convection equation in 1D

2. Let ∂u
∂t + v ∂u

∂x = 0 be discretized by BDS in space, FE in time

un+1
j − un

j

∆t
+ v

un
j − un

j−1

∆x
= 0 and substitute en

j = aneiθj

which yields (an+1 − an)eiθj + νan(eiθj − eiθ(j−1)) = 0, ν = v ∆t
∆x

G = 1− ν + νe−iθ = 1− ν + ν(cos θ − i sin θ) = 1− 2ν sin2 θ
2 − iν sin θ

Re(G) = 1− ν + ν cos θ, Im(G) = −ν sin θ

Stability restriction |G|2 ≤ 1 means that G must

lie within the unit circle in the complex plane.

This leads to the CFL condition 0 ≤ ν ≤ 1

v > 0 upwind scheme, stable for ∆t ≤ ∆x
v

v < 0 downwind scheme, unconditionally unstable

G
Im(G)

Re(G)
region ofinstability

stabilityregion of 1� �1 ��



Example: pure convection equation in 1D

The numerical domain of dependence should contain the analytical one:

• if ν > 1, then the data at some grid point may

affect the true solution but not the numerical one

• on the other hand, for ν < 1 some grid points in-

fluence the solution although they should not

• for accuracy reasons it is desirable to have ν ≈ 1;

some schemes are exact for ν = 1 (unit CFL property)
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3. Let ∂u
∂t + v ∂u

∂x = 0 be discretized by CDS in space, BE in time

un+1
j − un

j

∆t
+ v

un+1
j+1 − un+1

j−1

2∆x
= 0 and substitute en

j = aneiθj

(an+1 − an)eiθj + ν
2an+1(eiθ(j+1) − eiθ(j−1)) = 0 ⇒ G = 1

1+iν sin θ

It follows that |G|2 = G · Ḡ = 1
1+ν2 sin2 θ

≤ 1 unconditional stability



Spectral analysis of numerical errors

Consider ∂u
∂t + v ∂u

∂x = d∂2u
∂x2 convection-diffusion equation

Exact solution: u(x, t) = eik(x−vt)−k2dt = a(t)eikx, a(t) = e−ikvt−k2dt

a wave with exponentially decaying amplitude traveling at constant speed

Amplification factor Gex = a(tn+1)
a(tn) = e−(ikv+k2d)(n+1)∆t

e−(ikv+k2d)n∆t
= e−(δ+iω)

|Gex| = e−δ, δ = k2d∆t, ω = kv∆t = −arg(Gex)

Amplitude error ǫδ = |Gnum|
|Gex|

= |Gnum|e
δ numerical damping

Phase error ǫω =
arg(Gnum)
arg(Gex) =

arg(Gnum)
−ω = ṽ

v numerical dispersion

where ṽ =
arg(Gnum)

−k∆t is the numerical propagation speed

Harmonics travel too fast if ǫω > 1 (leading phase error)

and too slow in the case ǫω < 1 (lagging phase error)



Convergence

Relationship:
numerical solution of
discretized equations

←→
exact solution of the
differential equation

Definition: A numerical scheme is said to be convergent if it produces the

exact solution of the underlying PDE in the limit h→ 0 and ∆t→ 0

Lax equivalence theorem: stability + consistency = convergence

• For practical purposes, convergence can be investigated numerically by

comparing the results computed on a series of successively refined grids

• The rate of convergence is governed by the leading truncation error of

the discretization scheme and can also be estimated numerically:

u = uh + e(u)hp + . . . = u2h + e(u)(2h)p + . . . = u4h + e(u)(4h)p + . . .

u2h − uh ≈ e(u)hp(1− 2p)

u4h − u2h ≈ e(u)hp(1− 2p)2p
⇒ p ≈

log
(

u4h−u2h

u2h−uh

)

log 2



Conservation

Physical principles should apply at the discrete level: if mass, momentum

and energy are conserved, they can only be distributed improperly

Integral form of a generic conservation law

∂

∂t

∫

V

u dV +

∫

S

f · n dS =

∫

V

q dV, f = vu− d∇u

accumulation influx source/sink flux function

Caution: nonconservative discretizations may produce reasonably looking

results which are totally wrong (e.g. shocks moving with a wrong speed)

• even nonconservative schemes can be consistent and stable

• correct solutions are recovered in the limit of very fine grids

Problem: it is usually unclear whether or not the mesh is sufficiently fine



Discrete conservation

1. Any finite volume scheme is conservative by construction both locally

(for every single control volume) and globally (for the whole domain)

2. A finite difference scheme is conservative if it can be written in the form

un+1
i − un

i

∆t
+

fi+1/2 − fi−1/2

∆x
= q

which is equivalent to a vertex-centered finite volume discretization

3. Any finite element scheme is conservative, at least globally
N

∑

i=1

ϕi ≡ 1,

∫

V

ϕi

[

∂uh

∂t
+∇ · fh − qh

]

dV = 0, i = 1, . . . , N

Summation over i yields a discrete counterpart of the integral conservation law

∫

V

[

∂uh

∂t +∇ · fh − qh

]

dV = 0 ⇒ ∂
∂t

∫

V
uh dV +

∫

S
fh · n dS =

∫

V
qh dV



Boundedness

Convection-dominated / hyperbolic PDEs Pe≫ 1, Re≫ 1

• spurious undershoots and overshoots occur in the vicinity of steep gradients

• quantities like densities, temperatures and concentrations become negative

• the method may become unstable or converge to a wrong weak solution
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Idea: make sure that important properties of the exact solution (monotonicity,

positivity, nonincreasing total variation) are inherited by the numerical one



Design of nonoscillatory methods

Monotone methods ∂u
∂t + ∂f

∂x = 0 → un+1
i = H(un; i) such that

∂H(un; i)

∂un
j

≥ 0, ∀i, j Then vn
i ≥ un

i , ∀i ⇒ vn+1
i ≥ un+1

i , ∀i

Example. Let ∂u
∂t + v ∂u

∂x = 0 be discretized by UDS in space, FE in time

un+1
i − un

i

∆t
+ v

un
i − un

i−1

∆x
= 0, H(un; i) = un

i − v
∆t

∆x
(un

i − un
i−1)

Derivatives ∂H(un;i)
∂un

i
= 1− ν,

∂H(un;i)
∂un

i−1
= ν, where ν = v ∆t

∆x

⇒ monotone under the CFL condition ν ≤ 1 (cf. stability analysis)

Lax-Wendroff theorem: If a monotone consistent and conservative method

converges, then it converges to a physically acceptable weak solution



Design of nonoscillatory methods

Godunov’s theorem: Monotone method are at most first-order accurate

Monotonicity-preserving methods (monotone if linear)

u0
i ≥ u0

i+1, ∀i ⇒ un
i ≥ un

i+1, ∀i, ∀n

If the initial data u0 is monotone, then so is the solution un at all times

It is known that the total variation defined as TV (u) =
∞
∫

−∞

∣

∣

∂u
∂x

∣

∣ dx is a

nonincreasing function of time for any physically admissible weak solution

Total variation diminishing methods (monotone if linear)

TV (un+1) ≤ TV (un), where TV (un) =
∑

i
|un

i − un
i−1|

Classification monotone ⇒ TVD ⇒ monotonicity-preserving



Total variation diminishing methods

Harten’s theorem: An explicit finite difference scheme of the form

un+1
i − un

i

∆t
= ci−1/2(u

n
i−1 − un

i ) + ci+1/2(u
n
i+1 − un

i )

is total variation diminishing (TVD) provided that the coefficients satisfy

ci−1/2 ≥ 0, ci+1/2 ≥ 0, ci−1/2 + ci+1/2 ≤ 1

Semi-discrete problem dui

dt +
fi+1/2−fi−1/2

∆x = 0 conservation form

Idea: switch between high- and low-order flux approximations depending on

the local smoothness of the solution so as to enforce Harten’s conditions:

fi+1/2 = fL
i+1/2 + Φi+1/2[f

H
i+1/2 − fL

i+1/2]

where 0 ≤ Φi+1/2 ≤ 2 is a solution-dependent correction factor (flux limiter)



TVD discretization of convective terms

Example. Pure convection equation ∂u
∂t + v ∂u

∂x = 0, v > 0, f = vu

Linear flux approximations

fL
i+1/2 = vui upwind difference

fH
i+1/2 = v

ui+1+ui

2 central difference

Smoothness indicator

ri =
ui − ui−1

ui+1 − ui

Nonlinear TVD flux fi+1/2 = vui + v
2Φ(ri)(ui+1 − ui)

Harten’s coefficients ci−1/2 = v
2∆x

[

2 + Φ(ri)
ri
− Φ(ri−1)

]

, ci+1/2 = 0

Standard flux limiters: Φ(r) = r+|r|
1+|r| Van Leer

Φ(r) = max{0,min{1, r}} minmod

Φ(r) = max{0,min
{

1+r
2 , 2, 2r

}

} MC

Φ(r) = max{0,min{1, 2r},min{2, r}} superbee

1D stencil
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