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Abstract

The algebraic flux correction (AFC) paradigm is extended to finite element dis-
cretizations with a consistent mass matrix. It is shown how to render an implicit
Galerkin scheme positivity-preserving and remove excessive artificial diffusion in re-
gions where the solution is sufficiently smooth. To this end, the original discrete
operators are modified in a mass-conserving fashion so as to enforce the algebraic
constraints to be satisfied by the numerical solution. A node-oriented limiting strat-
egy is employed to control the raw antidiffusive fluxes which consist of a convective
part and a contribution of the consistent mass matrix. The former offsets the ar-
tificial diffusion due to ‘upwinding’ of the spatial differential operator and lends
itself to an upwind-biased flux limiting. The latter eliminates the error induced by
mass lumping and calls for the use of a symmetric flux limiter. The concept of a
target flux and a new definition of upper/lower bounds make it possible to combine
the advantages of algebraic FCT and TVD schemes introduced previously by the
author and his coworkers. Unlike other high-resolution schemes for unstructured
meshes, the new algorithm reduces to a consistent (high-order) Galerkin scheme in
smooth regions and is designed to provide an optimal treatment of both stationary
and time-dependent problems. Its performance is illustrated by application to the
linear advection equation for a number of 1D and 2D configurations.

Key Words: convection-dominated problems; high-resolution schemes;
flux correction; finite elements; consistent mass matrix

1 Introduction

For decades, the development of numerical methods for convection-dominated flows has
been one of the primary research directions in Computational Fluid Dynamics. A variety
of stabilization techniques and high-resolution schemes based on flux/slope limiting were
proposed to combat the onset of nonphysical oscillations but no universally effective rem-
edy has been found to date. A typical disadvantage of currently available discretization
techniques is the lack of generality. The foundations of modern high-resolution schemes
were developed in the finite difference framework using essentially one-dimensional con-
cepts and, typically, geometric design criteria. As a result, many popular algorithms are
limited to Cartesian meshes and/or explicit time-stepping schemes.
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The design of genuinely multidimensional high-resolution schemes for finite element
discretizations on unstructured meshes has proved to be a particularly challenging task.
In the late 1980s and early 1990s, flux-corrected transport (FCT) and total variation
diminishing (TVD) algorithms were carried over to explicit Galerkin schemes based on
linear/bilinear finite elements [2],[27],[28],[29],[33],[34]. In spite of some inherent limita-
tions to be mentioned below, these straightforward extensions produced very promising
results but were met with little enthusiasm by FEM practitioners. The current trend in the
unstructured grid community is to use finite volume upwinding [12],[36], residual distribu-
tion / fluctuation splitting [6],[9] or discontinuous Galerkin methods [7],[8]. Stabilization
without shock capturing (streamline diffusion, edge stabilization / interior penalty) has
also been widely used in the FEM context, especially for incompressible flows.

In a series of recent publications, the author and his collaborators introduced an
algebraic approach to the design of high-resolution schemes which has made it possible
to incorporate flux limiters of FCT and TVD type into implicit finite element schemes
[20],[21],[22],[23]. The underlying algebraic flux correction paradigm can be summarized
as follows: take the matrix resulting from an arbitrary discretization of the convective
term and modify it so as to enforce the M-matrix property making sure that

• all modifications are conservative, i.e., there is no loss or gain of ‘mass’;

• the original high-order discretization is recovered in regions of smoothness.

To this end, a positivity-preserving low-order scheme is constructed by resorting to mass
lumping followed by a conservative elimination of negative off-diagonal coefficients. Then
the accuracy is enhanced by adding a limited amount of compensating antidiffusion,
whereby the raw antidiffusive fluxes are limited node-by-node so as to satisfy the imposed
algebraic constraints. Remarkably, all the necessary information is provided by the matrix
coefficients, so that flux limiting can be performed in a “black-box” fashion.

Flux correction of FCT type is applicable to Galerkin schemes with a consistent mass
matrix [21],[27] and yields highly accurate solutions to time-dependent problems. How-
ever, the amount of admissible antidiffusion is inversely proportional to the time step,
which compromises the advantages of unconditionally stable implicit schemes. Moreover,
severe convergence problems are observed in the steady-state limit. On the other hand,
flux correction of TVD type is independent of the time step and optimal for the treat-
ment of stationary problems. Standard TVD limiters can be integrated into unstructured
grid codes and applied edge-by-edge [2],[28] or node-by-node [22],[23], so as to control
the slope ratio for a local 1D stencil or the net antidiffusive flux, respectively. In either
case, the resulting scheme proves local extremum diminishing (LED) but mass lumping
is mandatory and there is an alarming ambiguity in the choice of the limiter function.

In fact, standard limiters like minmod or superbee are designed to constrain the anti-
diffusive flux for the 1D convection equation discretized by finite differences on a uniform
mesh. They are defined as functions lying in the second-order TVD region, which corre-
sponds to a nonlinear combination of the Lax-Wendroff and Beam-Warming methods. At
the same time, the flux limiter for a finite element scheme should be designed to recover
a consistent-mass (Taylor-)Galerkin discretization, as in the case of multidimensional
FEM-FCT schemes. The use of one-dimensional TVD limiters is not to be recommended
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because a certain amount of artificial (anti-)diffusion is added even if there is no need
for limiting. Hence, the resulting approximation does not reduce to the original Galerkin
scheme and cannot be guaranteed to be second-order accurate for smooth data.

In the present paper, we recapitulate the principles of algebraic flux correction and
focus on the choice of upper/lower bounds for the antidiffusive flux which corresponds to a
conventional Galerkin discretization. Building on our experience with algebraic FCT and
TVD schemes, we design a symmetric flux limiter for the contribution of the consistent
mass matrix and blend it with an upwind-biased flux limiter for the discretized convective
term. As a result, we obtain a new high-resolution finite element scheme which yields
time-accurate solutions to transient problems and, moreover, does not suffer from a loss of
accuracy if large time steps are employed when the solution approaches a highly convective
steady state. Numerical examples are presented for 1D and 2D benchmark problems.

2 Conservative flux decomposition

Let us start with the definition of diffusive and antidiffusive fluxes for finite element
discretizations. The reader who is already familiar with algebraic flux correction [23] may
want to skip this section. Consider the time-dependent continuity equation

∂u

∂t
+ ∇ · (vu) = 0 (1)

discretized in space by a high-order finite element (Galerkin or Taylor-Galerkin) method
which yields a DAE system for the vector of time-dependent nodal values

MC
du

dt
= Ku, (2)

where MC = {mij} denotes the consistent mass matrix and K = {kij} is the discrete
transport operator resulting from the discretization of the convective term.

It is well known that even stabilized high-order methods may produce nonphysical
undershoots and overshoots in the vicinity of steep gradients. On the other hand, upwind-
like approximations are nonoscillatory but overly diffusive. This is why modern high-
resolution schemes use flux or slope limiters to switch between such linear approximations
in an adaptive way. Roughly speaking, the high-order method is used in regions where the
solution is sufficiently smooth and the low-order method elsewhere. In order to blend these
methods automatically without resorting to artificial parameters typical of hybrid upwind
discretizations [36], one needs to define certain mathematical criteria which guarantee that
the numerical solution remains nonoscillatory. These criteria can be expressed as algebraic
constraints to be imposed on a linear high-order discretization like (2).

A very handy criterion, which represents a generalization of Harten’s TVD theorem,
was introduced by Jameson [15],[16] who proved that a semi-discrete scheme of the form

dui

dt
=

∑

j 6=i

cij(uj − ui), cij ≥ 0, ∀j 6= i (3)
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is local extremum diminishing (LED). After the discretization in time, such schemes remain
positivity-preserving provided that each solution update un → un+1 or the converged
steady-state solution un+1 = un satisfies an equivalent algebraic system [23]

Aun+1 = Bun, (4)

where A = {aij} is an M-matrix and B = {bij} has no negative entries so that

un ≥ 0 ⇒ un+1 = A−1Bun ≥ 0. (5)

This extra requirement yields a readily computable upper bound for admissible time steps.
In the linear case, the above algebraic criteria can be readily enforced by means of

‘discrete upwinding’ as proposed in [19],[20]. For a finite element scheme of the form (2),
the required matrix manipulations are as follows

• replace the consistent mass matrix MC by its lumped counterpart ML = diag{mi},

• render the operator K local extremum diminishing by adding an artificial diffusion
operator D = {dij} so as to eliminate all negative off-diagonal coefficients.

At the end of the day, this gives a linear LED counterpart of (2) which reads

ML
du

dt
= Lu, where L = K + D. (6)

The artificial diffusion operator D is designed to be a symmetric matrix with zero row and
column sums. Therefore, the term Du can be decomposed into a sum of skew-symmetric
internodal fluxes associated with the edges of the sparsity graph [23]

(Du)i := −
∑

j 6=i

fd
ij, fd

ij = dij(ui − uj) = −fd
ji. (7)

A natural choice of the artificial diffusion coefficient dij for the edge
−→
ij is [20]

dij = max{−kij, 0,−kji} = dji. (8)

Alternatively, one can apply discrete upwinding to the skew-symmetric part 1
2
(K − KT )

of the high-order transport operator K, which corresponds to

dij =
|kij − kji|

2
−

kij + kji

2
= dji. (9)

In either case, the off-diagonal coefficients of the low-order operator lij := kij +dij ≥ 0 are

nonnegative so that the LED criterion is satisfied. Without loss of generality, the edge
−→
ij

is oriented so that lij ≤ lji, which implies that node i is located ‘upwind’ and corresponds
to the row number of the eliminated negative coefficient [22],[23].

The raw antidiffusive fluxes which offset the error induced by mass lumping and dis-
crete upwinding so that the original Galerkin scheme (2) is recovered are given by

fij =

[

mij
d

dt
+ dij

]

(ui − uj) = fm
ij + fd

ij, fm
ij = mij(u̇i − u̇j). (10)
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Note that the above expression contains a time derivative which still needs to be dis-
cretized (cf. [20],[21]). In order to prevent the formation of nonphysical local extrema,
the raw antidiffusive fluxes are multiplied by suitable correction factors (see below)

f ∗
ij := αijfij, where 0 ≤ αij ≤ 1. (11)

Inserting these fluxes into the right-hand side of (6) one obtains a nonlinear combination
of the low-order scheme (αij ≡ 0) and the original high-order one (αij ≡ 1). The task of
the flux limiter is to determine an optimal value of each correction factor αij so as to
remove as much artificial diffusion as possible without generating spurious oscillations.

3 Flux correction in one dimension

In order to introduce some useful concepts in a rather simple setting, let us start with
flux correction for the one-dimensional linear advection equation

∂u

∂t
+ v

∂u

∂x
= 0, v > 0 (12)

discretized in space on a uniform mesh of linear finite elements. It is well known that the
lumped-mass Galerkin scheme is equivalent to the central difference method. In this case,
the elimination of negative off-diagonal coefficients leads to the classical upwind difference
scheme [23]. The corresponding artificial diffusion coefficient (8) equals dij = v/2.

In the one-dimensional case, the overly diffusive upwind approximation can be trans-
formed into a second-order scheme by adding antidiffusive fluxes of the form

fij = φidij(ui − uj), (13)

where j = i + 1 and φi is a function of the slope ratio evaluated at node i, for instance

φi = ξ + (1 − ξ)ri, ri =
ui−1 − ui

ui − ui+1

. (14)

For any value of 0 ≤ ξ ≤ 1, the scaled antidiffusive correction (13) renders the upwind
discretization second-order accurate. The central difference scheme is recovered for ξ = 1,
whereas ξ = 0 corresponds to a backward difference approximation of second order. In
general, the multiplier φi is supposed to adjust the antidiffusion coefficient dij so that
a certain high-order discretization (‘target scheme’) is recovered if no flux limiting is
performed. This interpretation of (13) leads to the following definition, cf. [39]

Definition. A target flux represents the amount of raw antidiffusion that converts a
low-order approximation of the convective term into the desired high-order one.

In the course of flux correction, each target flux fij is replaced by its limited counterpart
f ∗

ij = αijfij to make sure that the resulting semi-discrete scheme

dui

dt
+

vui+1/2 − vui−1/2

∆x
= 0, vui+1/2 := vui + f ∗

ij (15)
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remains local extremum / total variation diminishing. For our purposes, it is worthwhile
to represent the limited antidiffusive flux for a classical TVD scheme as follows

f ∗
ij := max{0, min{2, φi, 2ri}}dij(ui − uj). (16)

Note that the effective correction factor αij = f ∗
ij/fij is bounded by 0 and 1, whereas the

limited coefficient φi may vary between 0 (backward difference) and 2 (forward difference).
By construction, the limited antidiffusive flux admits the representation f ∗

ij = cik(uk−ui),
where k = i − 1 and cik ≥ 0. The LED criterion and Harten’s TVD conditions for the
downwind node j are also satisfied, since the antidiffusive flux fji is neutralized by the
diffusive contribution lji(ui − uj) of the low-order operator (see the next section).

The above interpretation of TVD schemes, which can be traced back to [39], reveals
that the numerous ‘limiter functions’ proposed in the literature differ merely in the defi-
nition of the underlying target flux. The most popular representatives are

minmod φi = min{1, ri},

Van Leer φi = 2ri/(1 + ri),

MC φi = (1 + ri)/2,

Koren φi = (2 + ri)/3,

superbee φi = max{1, ri}.

The best accuracy attainable within Sweby’s second-order TVD region is provided by
Koren’s limiter [18] which has been repeatedly reinvented under different names [1],[35].
Due to the fact that the leading terms in the modified equation cancel out, the resulting
scheme is third-order accurate for sufficiently smooth data.

Flux limiters of TVD type based on the above definitions of φi can also be interpreted
as limited average operators [15],[16] and used to enforce the LED property in the finite
element framework [22],[28],[30]. However, the associated target fluxes (13) are certain to
ensure second-order accuracy only for a constant velocity v on a uniform mesh, whereas
the real target fluxes for a finite element scheme are uniquely defined by (10). Therefore,
straightforward generalizations of TVD schemes to multidimensions (including those pro-
posed by the author) are likely to pollute the solution in smooth regions, and second-order
accuracy can no longer be guaranteed. For this reason, the use of standard TVD limiters
is not to be recommended for finite element discretizations on unstructured meshes.

On the other hand, it is instructive to examine the mechanism which guarantees that
the limited antidiffusive flux does not violate the LED criterion. As a matter of fact, the
constraints imposed in (16) are not optimal, since the left boundary of the TVD region
depends on the Courant number [14],[39]. However, ignoring this dependence in favor
of the simple formula αijφi = max{0, min{2, φi, 2ri}} makes such limiters remarkably
efficient and directly applicable to stationary problems. That is, instead of computing a
sharp bound for a given time step (which is particularly expensive in multidimensions)
one can use some reasonable fixed bounds and adjust the time step if this is necessary to
satisfy a CFL-like condition. In what follows, we will use a similar approach to design
the upper and lower bounds for our algebraic flux correction schemes.
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4 Flux correction in multidimensions

The discussion of one-dimensional TVD discretizations in the previous section gives an
insight into the design philosophy of modern high-resolution schemes which carries over to
multidimensions. Antidiffusive fluxes which violate the LED criterion (3) and, therefore,
need to be limited are of the form fij = pij(uj − ui), where pij ≤ 0. On the other hand,
edge contributions with nonnegative coefficients resemble diffusive fluxes and are harmless.
Therefore, some antidiffusion is admissible as long as there exists a solution-dependent
coefficient qik ≥ 0 such that fij = qik(uk − ui). In other words, the antidiffusive flux from
node j into node i should be interpreted as a diffusive flux from another node. In order
to enforce this sufficient condition, we resort to a node-based limiting strategy which was
largely inspired by Zalesak’s limiter [38] but is even more general. As we are about to
see, it can be used to construct a variety of algorithms which differ in the definition of
upper/lower bounds as well as in the type of flux limiting (upwind or symmetric).

In the multidimensional case, the net antidiffusive correction to each node may consist
of both positive and negative edge contributions. Assuming the worst-case scenario, we
shall limit them separately according to the following generic algorithm

1. Compute the sums of positive and negative antidiffusive fluxes represented as edge
contributions fij = pij(uj − ui) with negative coefficients pij ≤ 0

P+
i =

∑

j 6=i

pij min{0, uj − ui}, P−
i =

∑

j 6=i

pij max{0, uj − ui}. (17)

2. Define the upper and lower bounds to be imposed in the course of flux correction
as a sum of edge contributions with nonnegative coefficients qij ≥ 0

Q+
i =

∑

j 6=i

qij max{0, uj − ui}, Q−
i =

∑

j 6=i

qij min{0, uj − ui}. (18)

3. Evaluate the nodal correction factors for positive/negative antidiffusive fluxes

R+
i = min{1, Q+

i /P+
i }, R−

i = min{1, Q−
i /P−

i }. (19)

4. Multiply the target flux fij by a combination of R±
i and R∓

j such that

f ∗
ij = αijfij, αij =

{

α(R+
i , R−

j ), if fij > 0,
α(R−

i , R+
j ), otherwise.

(20)

The last part calls for further explanation. Recall that the edges of the sparsity graph are
oriented so that 0 ≤ lij ≤ lji = kji + dij. Furthermore, the nodal correction factors (19)
are designed so as to enforce the LED constraint |R±

i P±
i | ≤ |Q±

i | for the upwind node i.
After flux limiting, the contribution of the edge ~ij to the downwind node j is given by

lji(ui − uj) − f ∗
ij = (lji + αijpij)(ui − uj), (21)

and also proves local extremum diminishing provided that the (negative) antidiffusion
coefficient pij and the correction factor αij satisfy the inequality lji + αijpij ≥ 0.
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In light of the above, algebraic flux correction can be performed in two different ways:

• Upwind-biased flux correction: ‘prelimit’ the target flux fij = pij(uj − ui) to satisfy
the positivity constraint for node j before computing the sums P±

i in (17)

f ′
ij = min{−pij, lji}(ui − uj) (22)

and use the correction factors αij = R±
i to enforce the LED property for node i.

• Symmetric flux correction: limit fij using the minimum of nodal correction factors
for both nodes, i.e., αij = min{R±

i , R∓
j } so that the following estimates hold

Q−
i ≤ R−

i P−
i ≤

∑

j 6=i
αijfij ≤ R+

i P+
i ≤ Q+

i . (23)

In the FEM context, the optimal choice of the limiting strategy depends on the magnitude
of the antidiffusion coefficient pij = fij/(uj −ui) for the target flux fij as defined by (10).

The above methodology is not to be confused with Zalesak’s multidimensional FCT
algorithm [38],[40]. In fact, standard (two-step) FCT methods do not fit into this frame-
work, since the computation of a provisional low-order solution makes them inherently
explicit. However, we intentionally use the same notation to emphasize the common fea-
tures such as the node-oriented approach to flux correction which makes it possible to
control the interplay of multiple antidiffusive fluxes acting in concert. The main advantage
of the algorithm (17)–(20) as compared to the classical Zalesak limiter is a remarkable
flexibility in the choice of upper/lower bounds Q±

i which makes it possible to bridge the
gap between algebraic flux correction schemes of FCT and TVD type.

4.1 Treatment of convective antidiffusion

For the time being, let us assume that the problem at hand is stationary and neglect the
contribution of the consistent mass matrix which will be considered in the next subsection.
The prelimited target flux (22) for a lumped-mass Galerkin discretization is given by

f ′
ij = min {dij, lji} (ui − uj), (24)

where dij is the artificial diffusion coefficient for discrete upwinding. It is worth mentioning
that there is actually no need for prelimiting as long as lji−αijdij = kji +(1−αij)dij ≥ 0.
Therefore, the above target flux reduces to fd

ij as defined in (7), unless both off-diagonal
coefficients of the high-order operator K were negative (a rather unusual situation).

In this particular case, the upwind-biased limiting strategy is preferable. The total
amount of raw antidiffusion received by node i from its downwind neighbors is given by

P±
i =

∑

j∈Ji

max
min

{0, f ′
ij}, where Ji = {j 6= i | 0 = lij < lji}. (25)

The nonnegative off-diagonal coefficients of the low-order operator L can be used to define
the upper/lower bounds as in the case of algebraic TVD schemes [22],[23]

Q±
i =

∑

j 6=i

lij
max
min

(uj − ui), lij ≥ 0, ∀j 6= i. (26)
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Flux limiting is performed using the nodal correction factor for the upwind node:

f ∗
ij =

{

R+
i f ′

ij, if f ′
ij > 0,

R−
i f ′

ij, otherwise,
f ∗

ji := −f ∗
ij. (27)

Remarkably, all the necessary information is extracted from the original matrix K and
there is no need to know the coordinates of nodes or any other geometric details.

In one dimension, the resulting algorithm reduces to the flux-limited central difference
scheme which corresponds to f ∗

ij = max{0, min{1, 2ri}}dij(ui−uj) in accordance with (16).
A family of local extremum diminishing schemes based on standard TVD limiters can be
derived using target fluxes of the form (13), where the artificial diffusion coefficient dij is
given by (9) and φi is a function of the smoothness indicator ri. The latter is redefined
as the ratio of edge contributions with positive and negative coefficients [22],[23]

r±i =

∑

j 6=i max{0, kij − kji}
max
min

{0, uj − ui}
∑

j 6=i min{0, kij − kji}
min
max

{0, uj − ui}

which reduces to the usual slope ratio in the 1D case. Even though this ad hoc approach to
the design of target fluxes works well in practice, it is no longer possible to guarantee that
a high-order Galerkin approximation is recovered in smooth regions. For the flux-limited
scheme to be consistent with the original one (2), it is necessary to use the target flux fij

given by (10), as in the case of multidimensional FEM-FCT algorithms [21],[27]. Hence,
it is a waste of time to design an optimal formula for φi as a function of the smoothness
sensor ri. In the finite element context, the accuracy of algebraic flux correction schemes
should depend solely on the resolving power [40] of the underlying high-order method and
can be enhanced by a suitable choice of basis functions in the variational formulation.

4.2 Treatment of mass antidiffusion

For genuinely time-dependent problems, mass lumping degrades the phase accuracy of
finite element schemes and deprives them of a significant advantage in comparison to finite
difference and finite volume methods. Berzins [3],[4] recognized the need for including the
consistent mass matrix in a positivity-preserving fashion and presented some ideas as to
how this can be accomplished. As of this writing, no truly multidimensional extension of
his methodology seems to be available, so we need to look for another way to embed the
consistent mass matrix into algebraic flux correction schemes.

The contribution of the mass matrix to target fluxes of the form (10) may be large
enough to render the upwind-biased limiting strategy impractical. Furthermore, the upper
and lower bounds based on the coefficients of the low-order operator (26) are independent
of the time step and may turn out to be too restrictive. In this subsection, we concentrate
on the treatment of mass antidiffusion (ML − MC)u̇ assuming that the convective part
fd

ij of the target flux vanishes. In this case, the flow direction (upwind/downwind) is
unknown and the antidiffusive flux may violate the positivity condition for both nodes.
Therefore, we adopt the symmetric limiting strategy and discuss the choice of constraints
to be imposed on the fully discretized target flux fm

ij which corresponds to

fij =
mij

∆t
(un+1

i − un+1
j ) −

mij

∆t
(un

i − un
j ). (28)
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Interestingly enough, this flux consists of a truly antidiffusive implicit part and a diffusive
explicit part which has a strong damping effect. In fact, explicit mass diffusion of the
form (MC −ML)un has frequently been used to construct a ‘monotone’ low-order method
in the framework of high-resolution finite element schemes [11],[33],[34].

If the standard FEM-FCT algorithm is employed, the corresponding upper and lower
bounds Q±

i depend on the local extrema ũ±
i of the low-order solution ũ = un +∆tM−1

L Lun

which reduces to un in the case L = 0 (no convection). In order to avoid the computation
of ũ and accommodate the contribution of the convective term in what follows, we use a
weaker constraint and redefine the auxiliary quantities P±

i and Q±
i as follows

P±
i =

∑

j 6=i

max
min

{0, fij}, Q±
i =

∑

j 6=i

mij

∆t
max
min

{0, un
j − un

i }, (29)

where the off-diagonal coefficients of the consistent mass matrix mij are tacitly assumed
to be nonnegative. Note that the nodal correction factors R±

i = min{1, Q±
i /P±

i } are
independent of the time step, since both P±

i and Q±
i are inversely proportional to it.

If the coefficient pn
ij = fij/(u

n
j − un

i ) is nonnegative, the target flux (28) turns out to
be diffusive, which may or may not be desirable. Otherwise, it may violate the positivity
constraint for both nodes and should be limited in a symmetric fashion

f ∗
ij =

{

min{R+
i , R−

j }fij, if fij > 0,
min{R−

i , R+
j }fij, otherwise,

f ∗
ji = −f ∗

ij. (30)

Another way to define Q±
i is to replace un

j in (29) by the local extrema u+
i = maxj un

j and
u−

i = minj un
j evaluated over j such that mij 6= 0. This yields Q±

i = mi−mii

∆t
(u±

i − un
i ),

where mi −mii =
∑

j 6=i mij is the difference between the diagonal entries of ML and MC .

4.3 General-purpose flux limiter

Now that we have a stand-alone flux limiter for convective antidiffusion (see Section 4.1)
and a stand-alone flux limiter for mass antidiffusion (see Section 4.2) at our disposal, we
can proceed to the treatment of antidiffusive fluxes (10) which involve both contributions.
The operator splitting approach, i.e., a segregated limiting of fd

ij and fm
ij is feasible but

the results are rather disappointing, especially if the two components have different signs.
In particular, the magnitude of the antidiffusive flux may increase, which is clearly un-
acceptable. Furthermore, our experience with flux correction of FCT type indicates that
it is worthwhile to prelimit fij so as to prevent it from becoming diffusive and creating
numerical artifacts [20],[23]. Therefore, let us adjust the target fluxes thus:

fij := min{0, pij}(uj − ui), pij = (fd
ij + fm

ij )/(uj − ui). (31)

It remains to specify the upper/lower bounds Q±
i and choose the flux limiting strategy.

Both algorithms considered so far are directly applicable to target fluxes of the form (31)
but their performance is highly problem-dependent. It is not unusual that pij + lji < 0
if mass antidiffusion is strong enough, which means that a significant portion of the
target flux cannot be recovered by the upwind-biased flux limiter alone. In other cases,
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symmetric flux limiting may produce inferior results because taking the minimum of nodal
correction factors turns out to be more restrictive than prelimiting based on (22).

A straightforward but inefficient way to combine the two flux limiting techniques is to
apply them sequentially. For instance, one can use the upwind-biased algorithm (25)–(27)
to predict f ∗

ij and limit the rejected antidiffusion ∆fij = fij − f ∗
ij according to (29)-(30)

or vice versa. In any event, the effective upper and lower bounds for the sum of limited
antidiffusive fluxes f ∗

ij + ∆f ∗
ij consist of the ‘stationary’ upwind part (26) and the ‘time-

dependent’ symmetric part (29) which complement each other in the following way

• the former makes sure that a certain fraction of admissible antidiffusion is indepen-
dent of the time step, which prevents a loss of accuracy in steady-state computations;

• the latter makes sure that solutions to truly time-dependent problems become more
accurate as ∆t is refined, since a larger portion of the target flux may be retained.

Both constituents of Q±
i were constructed using heuristic arguments rather than the

intrinsic ‘CFL’ condition which requires that the diagonal coefficient in the right-hand
side of (4) be nonnegative for a given ∆t. Such estimates would be expensive to obtain
and sometimes overly restrictive, e.g., for stationary problems solved by time marching.
Therefore, we deliberately relax them to make the algorithm more efficient, improve the
convergence rates, and satisfy the discrete maximum principle in the steady-state limit.

Instead of limiting the target fluxes by the algorithms (25)–(27) and/or (29)-(30) in a
segregated way or sequentially, it is worthwhile to combine the corresponding quantities
P±

i and Q±
i , which leads to the following general-purpose (GP) limiting strategy

1. Use prelimiting (22) to split the target flux (31) into the ‘upwind’ part f ′
ij and the

remainder ∆fij := fij − f ′
ij which violates the positivity constraint for node j.

2. Compute the total sums of raw antidiffusive fluxes which need to be constrained

P±
i =

∑

j∈Ji

max
min

{0, f ′
ij} +

∑

j 6=i

max
min

{0, ∆fij}. (32)

3. Define the combined upper/lower bounds to be enforced on P±
i as follows

Q±
i =

∑

j 6=i

[mij

∆t
+ lij

]

max
min

(uj − ui). (33)

4. Evaluate the nodal correction factors (19) for the flux limiting step

R±
i = min{1, Q±

i /P±
i }. (34)

5. In a loop over edges, compute the antidiffusive correction f ∗
ij + ∆f ∗

ij, where

f ∗
ij = R±

i f ′
ij, ∆f ∗

ij = min{R±
i , R∓

j }∆fij. (35)

Note that the first sum in (32) is evaluated over the set of downwind nodes Ji (see (25))
while the second one contains antidiffusive edge contributions from all neighboring nodes.
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The above algorithm reduces to its prototypes (25)–(27) and (29)-(30) in the special
cases of a lumped mass matrix (mij = 0) or zero velocity (dij = 0, lij = 0), respectively.
Of course, there are many other ways to select and enforce the upper/lower bounds. This
flexibility may be used to incorporate additional (geometric) constraints such as linearity

preservation [6] so as to provide optimal accuracy and/or consistency on irregular meshes.
Ideally, the limiter should be designed so that the high-order scheme is recovered if the
solution is smooth enough or h → 0. On the other hand, the accuracy of the target flux
rather than the choice of constraints and the type of flux limiting is decisive in many cases.
Hence, the use of higher-order finite elements and/or time-stepping schemes appears to
be a promising way to improve the performance of algebraic flux correction schemes.

5 Practical implementation

To make the presentation self-contained, we touch upon the iterative treatment of non-
linearities and discuss the practical implementation of the GP flux limiter (32)–(35) at
the end of this section. In this paper, emphasis is laid on implicit time discretizations,
since the fully explicit case is trivial from the viewpoint of linear algebra (no linear sys-
tems need to be solved). Moreover, if the use of small time steps is dictated by accuracy
considerations, the explicit FEM-FCT algorithm of Löhner et al. [27] can be employed to
constrain the target fluxes (31) in an efficient manner. Our goal is to develop a general
methodology which is applicable to implicit finite element discretizations and provides a
sufficiently accurate treatment of both stationary and time-dependent problems.

After the discretization in time by an implicit θ−scheme such that 0 < θ ≤ 1, the
flux-limited Galerkin scheme can be represented in the form

[ML − θ∆tL]un+1 = [ML + (1 − θ)∆tL]un + ∆tf∗, (36)

where the last term is assembled from the limited antidiffusive fluxes given by (35)

f ∗
i =

∑

j 6=i

[f ∗
ij + ∆f ∗

ij]. (37)

This nonlinear algebraic system must be solved iteratively. Let us compute successive
approximations to the solution un+1 using the straightforward defect correction scheme

u(m+1) = u(m) + [A(u(m))]−1r(m), m = 0, 1, 2. . . . (38)

where the residual r(m) consists of a low-order part plus limited antidiffusion

r(m) = [ML + (1 − θ)∆tL]un − [ML − θ∆tL]u(m) + ∆tf∗ (39)

and A(u(m)) is a suitably chosen ‘preconditioner’. Some typical choices are

A = ML (40)

(only suitable for very small ∆t) and the low-order operator [21],[22]

A = ML − θ∆tL (41)
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which was designed to be an M-matrix. Alternatively, algebraic flux/defect correction
schemes may be preconditioned by the nonlinear LED operator

A = ML − θ∆tL∗(u), (42)

where L∗(u) includes limited antidiffusion. The existence of this operator is guaranteed by
the flux limiter [22],[23]. This kind of preconditioning renders all intermediate solutions
u(m) positivity-preserving [17] but convergence is a prerequisite for mass conservation.

In practice, the ‘inversion’ of A is performed by solving the linear subproblem

A∆u(m+1) = r(m), m = 0, 1, 2, . . . (43)

After a certain number of inner iterations, the solution increment ∆u(m+1) is applied to
the last iterate, whereby un provides a reasonable initial guess

u(m+1) = u(m) + ∆u(m+1), u(0) = un. (44)

The iteration process is terminated when a certain norm of the defect r(m) or that of the
relative changes ∆u(m+1) becomes small enough. Explicit and/or implicit underrelaxation
techniques may be invoked to secure the convergence of outer iterations [13].

Let us summarize what we have said so far and piece together a practical algorithm
for node-oriented flux correction based on the general-pupose flux limiter (32)–(35)

1. For each pair of neighboring nodes i and j, orient the edge ~ij so that lij ≤ lji,
prelimit the flux fij in accordance with (22) and compute ∆fij := fij − f ′

ij.

2. Add the corresponding edge contributions to the sums of positive/negative fluxes

P±
i := P±

i +
max
min

{0, fij}, P±
j := P±

j +
max
min

{0,−∆fij}. (45)

3. Update the combined upper/lower bounds (33) for both nodes as follows

Q±
i := Q±

i +
[mij

∆t
+ lij

]

max
min

{0, uj − ui},

Q±
j := Q±

j +
[mji

∆t
+ lji

]

max
min

{0, ui − uj}. (46)

4. In a loop over nodes, compute the nodal correction factors to be applied

R±
i = min{1, Q±

i /P±
i }. (47)

5. Multiply the upwind part f ′
ij by R±

i and add its contribution to the defect r

f ∗
ij =

{

R+
i f ′

ij, if f ′
ij > 0,

R−
i f ′

ij, otherwise,
ri := ri + ∆tf∗

ij,
rj := rj − ∆tf∗

ij.
(48)

6. Limit the remainder ∆fij in a symmetric fashion and insert it into the defect

∆f ∗
ij =

{

min{R+
i , R−

j }∆fij, if ∆fij > 0,
min{R−

i , R+
j }∆fij, otherwise,

ri := ri + ∆t∆f ∗
ij,

rj := rj − ∆t∆f ∗
ij.

(49)

This ‘black-box’ algorithm can be readily integrated into existing finite element codes
based on both conventional (element-based) and edge-based data structures.
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6 Numerical examples

In order to illustrate the ideas presented in this paper, we apply the new limiting strategy
to the continuity equation (1) discretized in space by P1/Q1 finite elements. Throughout
this section, the numerical error will be estimated by measuring the difference between
the exact solution u and its finite element approximation uh in the discrete L1-norm

E1 =
∑

i

mi|u(xi, yi) − ui| ≈

∫

Ω

|u − uh| dx = ||u − uh||1 (50)

as well as in the discrete L2-norm defined by the formula

E2 =

√

∑

i

mi|u(xi, yi) − ui|2 ≈

√

∫

Ω

|u − uh|2 dx = ||u − uh||2, (51)

where mi =
∫

Ω
ϕi dx are the diagonal coefficients of the lumped mass matrix. The error

norms will be presented in Fig. 1-8 along with the corresponding numerical solutions.

6.1 Convection of a square wave

Let us start with a classical test problem which consists of solving the one-dimensional
convection equation (12) for the discontinuous initial data

u(x, 0) =

{

1 if |x − 0.2| ≤ 0.1
0 otherwise

(52)

depicted as dashed lines in Fig. 1. The dotted lines show the exact solution for v = 1
and t = 0.5 which is obtained by translation of the initial profile along the x−axis. The
domain (0, 1) is discretized by linear finite elements of equal length ∆x = 10−2, so that the
time step ∆t = 10−3 used to compute the solutions in Fig. 1 corresponds to the Courant
number ν = 0.1. The discretization in time is performed by the second-order accurate
Lax-Wendroff method so that dij = (1 − ν)v/2. The accuracy of numerical solutions
is evaluated in terms of the discrete error norms (50) and (51) which are included in
all diagrams. The behavior of standard TVD schemes for this simple test problem is
well known. As usual, the most diffusive results are produced by the minmod limiter,
while superbee performs best on such discontinuous solutions but tends to corrupt smooth
profiles due to artificial steepening. Limiters like MC produce acceptable results in either
case and are typically used by default. For the square wave problem, the MC limiter
proves far superior to minmod but less accurate than superbee, see Fig. 1a-c.

The target flux for the Lax-Wendroff scheme corresponds to that for a lumped-mass
(LM) Taylor-Galerkin method of second order. As shown in Fig. 1d, the resulting solution
is asymmetric, whereby the right flank of the square wave is reproduced much better than
the left one. The latter is smeared as much as that for minmod, which is due to mass
lumping. Adding the contribution of the consistent mass (CM) matrix yields a target flux
with improved phase characteristics [10]. Limiting it as before in accordance with (16)
is equivalent to the use of algebraic flux correction based on (25)–(27). The numerical
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Figure 1. Convection of a square wave: numerical solutions at t = 0.5.

solution displayed in Fig. 1e resembles that produced by superbee. Note that the upper
right corner of the square wave remains ‘rounded’ because the bounds (26) turn out to
be too restrictive for transient problems. This can be rectified by invoking the general-
purpose limiter (32)–(35) which is designed to become more accurate as the time step is
refined. An equally crisp resolution of both flanks is obtained for ∆t = 10−4, see Fig. 1f.
We conclude that the use of a consistent mass matrix is essential not only for the definition
of the target flux but also for the estimation of upper and lower bounds.
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6.2 Convection of a semi-ellipse

Our second test problem is a slightly modified version of the one used in [32],[39],[40] to
expose the ‘terracing’ phenomenon, an infamous byproduct of flux limiting. The linear
convection equation is solved for continuous initial data given by the formula

u(x, 0) =

√

1 −

(

x − 0.2

0.15

)2

if |x − 0.2| ≤ 0.15 (53)

and u(x, 0) = 0 otherwise. All discretization parameters are the same as in the first exam-
ple. The challenge of the second test consists in resolving the steep parts of the otherwise
smooth profile without generating spurious kinks or plateaus. Such a nonphysical solu-
tion behavior, which is a common drawback of many modern high-resolution schemes,
is referred to as terracing and can be interpreted as ‘an integrated, nonlinear effect of
residual phase errors’ [32] or, loosely speaking, ‘the ghosts of departed ripples’ [5].

Terracing was first discovered in the FCT context but it is also typical of compressive
TVD limiters like superbee, see Fig. 2a. At the same time, an excellent solution is produced
by Koren’s limiter (Fig. 2b) which is based on a third-order accurate target flux. In the
finite element framework, mass lumping tends to aggravate phase errors, which manifests
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Figure 2. Convection of a semi-ellipse: numerical solutions at t = 0.5.
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itself in a pronounced terracing (Fig. 2c). The solution displayed in Fig. 2d illustrates
the benefits of using the consistent mass matrix in conjunction with the general-purpose
flux limiter. Remarkably, the corresponding error norms are even smaller that those for
the optically perfect solution in Fig. 2b. The observed improvement in comparison to the
lumped-mass version supports the conjecture that terracing can be cured to some extent
by increasing the resolving power of the target flux so as to reduce the dispersive errors
[39],[40]. Numerical experiments indicate that the small but still noticeable deviations
from the exact shape at the right edge of the semi-ellipse in Fig. 2d are caused by the fluxes
that prove insufficiently antidiffusive (more diffusive than minmod and, consequently, not
linearity-preserving) in spite of the prelimiting performed in (31). Indeed, false diffusion
cannot be detected by the flux limiter and should be filtered out beforehand.

6.3 Solid body rotation

Let us proceed to the two-dimensional benchmark problem proposed by LeVeque [26]
which makes it possible to assess the ability of a high-resolution scheme to preserve both
smooth and discontinuous profiles. To this end, a slotted cylinder, a sharp cone and
a smooth hump are exposed to the nonuniform velocity field v = (0.5 − y, x − 0.5) and
undergo a counterclockwise rotation about the center of the unit square Ω = (0, 1)×(0, 1).
Each solid body lies within a circle of radius r0 = 0.15 centered at a point with Cartesian
coordinates (x0, y0). In the rest of the domain, the solution is initialized by zero. The
shapes of the three bodies as depicted in Fig. 3 can be expressed in terms of the normalized
distance function for the respective reference point (x0, y0) thus:

r(x, y) =
1

r0

√

(x − x0)2 + (y − y0)2.

The center of the slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its geometry in
the circular region r(x, y) ≤ 1 is given by

u(x, y, 0) =

{

1 if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,

0 otherwise.

The corresponding analytical expression for the conical body reads

u(x, y, 0) = 1 − r(x, y), (x0, y0) = (0.5, 0.25),

whereas the shape and location of the hump at t = 0 are as follows

u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})], (x0, y0) = (0.25, 0.5).

After one full revolution (t = 2π) the exact solution of the continuity equation (1)
coincides with the initial data. The numerical solutions presented in Fig. 4-6 were com-
puted on a uniform mesh of 128 × 128 bilinear finite elements using the second-order
accurate Crank-Nicolson time-stepping (θ = 0.5) with ∆t = 10−3. The general-purpose
(GP) algorithm (32)-(35) produces the most accurate results shown in Fig. 4. The cone
and hump are reproduced very well and even the narrow bridge of the slotted cylinder
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Figure 3. Solid body rotation: initial data / exact solution.

Figure 4. Solid body rotation (GP), E1 = 0.0111, E2 = 0.0567.
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Figure 5. Solid body rotation (superbee), E1 = 0.0139, E2 = 0.0610.

Figure 6. Solid body rotation (MC), E1 = 0.0255, E2 = 0.0889.
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is largely preserved. Not surprisingly, this solution is very similar to that computed by
an FCT algorithm based on the same target flux [21]. In either case, the prelimiting of
antidiffusive fluxes in (31) is essential. If it is not performed, the ridges of the cylinder
are subject to spurious erosion which can be interpreted as a sort of terracing.

By contrast, the performance of standard TVD limiters for this time-dependent test
problem leaves a lot to be desired. The strong antidiffusion inherent to superbee alleviates
the diffusive effect of mass lumping and yields a fairly good resolution of the slotted
cylinder (Fig. 5) but entails a pronounced flattening of the smooth peaks. The numerical
solution produced by the ‘default’ MC limiter (Fig. 6) exhibits both a strong smearing of
the slotted cylinder and a noticeable distortion of the cone and hump.

6.4 Convection in space-time

If the problem at hand is stationary, the time derivative vanishes and so does the contri-
bution of the consistent mass matrix. Therefore, mass lumping is appropriate, i.e., the
raw antidiffusive flux is given by (24) and the upwind-biased algorithm (25)–(27) can be
employed. Due to the fact that the underlying upper/lower bounds (26) are independent
of the time step, it is possible to compute the steady-state solution directly or by means
of pseudo-time-stepping based on the fully implicit backward Euler scheme (θ = 1). In
the latter case, the time step represents a variable underrelaxation parameter [13] which
should be chosen as large as possible to reduce the computational cost. For an FCT-like
limiter, whereby each solution update is required to be positivity-preserving, this would
entail an irrecoverable loss of accuracy, since the nodal correction factors are inversely pro-
portional to ∆t. At the same time, our general-purpose algorithm is free of this drawback
because it becomes equivalent to (25)–(27) for large time steps.

Let us return to the square wave test and reformulate the one-dimensional convection
equation with v = 0.5 as a stationary problem of the form (1) with v = (0.5, 1). This
corresponds to computing the solution for all time levels simultaneously instead of doing
it step-by-step as usual [23]. The boundary conditions to be imposed at the ‘inlet’ of the
space-time domain Ω = (0, 1) × (0, 1) can be inferred from the exact solution given by

u(x, t) =

{

1 if |x − 0.5t − 0.2| ≤ 0.1,

0 otherwise.
(54)

The initial data can be chosen arbitrarily since they do not affect the converged steady-
state solution. For instance, the approximate solution can be initialized using (54). The
numerical results obtained using algebraic flux correction (25)–(27) based on the lumped-
mass (LM) Galerkin flux and the standard minmod limiter are presented in Fig. 7 and
Fig. 8, respectively. Both solutions were marched to the steady state by the backward
Euler method, whereby the time step ∆t = 1.0 was intentionally chosen to be very large.
The discontinuous initial profile is shown in the background, while the solution at time
t = 1 appears in the front. This example demonstrates that the algorithm to which our
GP limiter reduces in the stationary case performs much better than minmod, the only
standard TVD limiter which is consistent with the underlying finite element scheme.
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Figure 7. Convection in space-time (LM), E1 = 0.0179, E2 = 0.0698.

Figure 8. Convection in space-time (minmod), E1 = 0.0340, E2 = 0.0971.
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7 Conclusions

In this paper, we focused on the design of general-purpose flux limiters for implicit fi-
nite element discretizations including a consistent mass matrix. Algebraic constraints
were imposed node-by-node so as to control the sum of edge contributions with negative
coefficients. The choice of target fluxes was addressed and a fully multidimensional lim-
iting strategy was presented. The upper/lower bounds for the sum of positive/negative
antidiffusive fluxes were designed so as to enforce the LED property. A combination of
flux limiters derived separately for two special cases (consistent-mass L2-projection and
lumped-mass Galerkin approximation) was found to strike the balance between accuracy
and efficiency. The new algorithm, which combines the advantages of algebraic FCT and
TVD schemes [21],[22], proves sufficiently accurate for stationary and time-dependent
problems alike. An extension of the proposed methodology to the Euler and Navier-
Stokes equations of fluid dynamics can be readily performed as explained in [24],[37] in
the context of algebraic TVD schemes. The design of general-purpose flux limiters for
hyperbolic systems will be addressed in a forthcoming publication [25].

Algebraic flux correction of the form (17)-(20) provides a very general framework for
the derivation of new high-resolution schemes for finite element discretizations on unstruc-
tured meshes. The resolving power and phase characteristics of the high-order scheme can
be improved by adding some background diffusion or using a time-accurate approxima-
tion from the family of Taylor-Galerkin methods [10]. High-order finite elements / bubble
functions lend themselves to the design of target fluxes, whereas fluctuation splitting
techniques [6] seem to be a useful tool for the definition of upper/lower bounds. Last
but not least, the use of flux limiters as implicit subgrid scale models for Monotonically
Integrated Large Eddy Simulation (MILES) and/or error indicators for adaptive mesh
refinement [31] constitutes another promising direction for further research.
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