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Abstract

A macroscopic two-fluid model of compressible particle-laden gas flows is
considered. The governing equations are discretized by a high-resolution
finite element method based on algebraic flux correction. A multidimen-
sional limiter of TVD type is employed to constrain the local characteristic
variables for the continuous gas phase and conservative fluxes for a sus-
pension of solid particles. Special emphasis is laid on the efficient com-
putation of steady state solutions at arbitrary Mach numbers. To avoid
stability restrictions and convergence problems, the characteristic bound-
ary conditions are imposed weakly and treated in a fully implicit manner.
A two-way coupling via the interphase drag force is implemented using
operator splitting. The Douglas-Rachford scheme is found to provide a
robust treatment of the interphase exchange terms within the framework
of a fractional-step solution strategy. Two-dimensional simulation results
are presented for a moving shock wave and for a steady nozzle flow.

Key words: Particle-laden gas flows, inviscid two-fluid model, Euler
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1. Introduction

Compressible flows of an inviscid gas carrying small particles or droplets
commonly occur in nature and in industrial equipment. Their applications
in science and engineering include dusty detonations, condensation in a
(nuclear) power plant, volcanic eruptions, diesel injection into an engine,
and spraying processes. In recent years, computational fluid dynamics
(CFD) has gained popularity as a tool for investigation of such problems.
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During the past few decades, many mathematical models and numeri-
cal methods have been developed for multiphase/multicomponent flows.
Most numerical studies are concerned with incompressible gas-liquid mix-
tures. At the macroscopic level, a two-fluid model is set up using postu-
lation or averaging theory [5]. The result is a system of balance laws that
can be solved, for example, by a pressure correction scheme like SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) with strong cou-
pling via the interphase slip/partial elimination algorithm (IPSA /PEA).

In contrast to significant recent advances in the development of CFD
methods for disperse gas-liquid flows, publications dealing with macro-
scopic two-fluid models of compressible particle-laden gas flows have re-
mained relatively scarce. In most cases, computations are performed by
(explicit) finite volume schemes [14, 15, 16, 17] in 1D or using dimensional
splitting. A notable exception to this rule is the adaptive finite element
flux-corrected transport (FEM-FCT) algorithm developed by Sivier et al.
[12, 18] for simulation of dusty shock flows on unstructured meshes.

The numerical treatment of boundary conditions for compressible two-
phase flows is rarely discussed in the literature, although it requires spe-
cial care even in the case of a pure gas [2, 7, 19]. Moreover, the widespread
use of explicit schemes is not to be recommended for steady-state compu-
tations, especially in the presence of low Mach number regions. Implicit
methods are better suited for marching the solution to a steady state but
their implementation in a multiphase CFD code must ensure a proper in-
terplay of all algorithmic components (discretization, linearization, boun-
dary conditions, preconditioning etc.) to achieve high performance.

The research reported in the present paper is aimed at the development
of a strongly implicit high-resolution finite element scheme for an inviscid
two-phase flow model. A challenging long-term goal is numerical simula-
tion of arc spraying processes. In a typical industrial application, a carrier
gas is injected into a nozzle at high pressure. Small metallic particles are
created by melting an arc wire and shot onto a substrate, where solidifica-
tion takes place. This simple technology results in a very robust coating.

The remainder of this paper is organized as follows. The employed
mathematical model is presented in the next section. Next, the discretiza-
tion and iterative solution of the governing equations are addressed. The
topics to be covered include algebraic flux correction, numerical treatment
of nonlinearities, implementation of boundary conditions, and operator
splitting. Finally, simulation results are presented for 2D test problems.
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2. Mathematical Model

Eulerian models of particle-laden gas flows are based on macroscopic con-
servation laws that can be derived by averaging the (exact) single-phase
balance equations. The averaging procedure presented by Drew and Pass-
man [5] yields a set of partial differential equations that express the con-
servation of mass, momentum, and energy for the continuous gas phase
(index g) and dispersed particles (index p). The inviscid two-fluid model
reads

di(agog) +V - (agoeug) = 0, (1)

Oi(agpeug) + V- (ag(pgug ® ug + Py7)) = P;,V(xg —fp, ()
dt(agpgEg) +V - (ag(pgEg + Polug) = u' - (Pézv“g —fp) —qr, )
dt(apop) + V- (apppup) = 0, 4)

Ot (apppup) + V- (ap(ppup, @ uy+ PpyI)) = P;;Voép +fp, ©)
At(apppEp) +V - (ap(opEp + Pp)up) = u'- (P,Vay +fp) +q1, (6)

where ay, pg, ug, Pr and Ej are the volume fraction, density, velocity, pres-
sure, and specific total energy of phase k. The interfacial pressures and
velocity are denoted by P! and u/, respectively. The rate of interphase
momentum and energy transfer due to the viscous drag force and heat ex-
change is given by the source/sink terms fp and gt to be defined below.
No other interphase transfer mechanisms are considered in this work.

We suppose that the flow is dilute and P, satisfies the ideal gas law. The
particles are rigid, so the interfacial pressures are assumed to be zero, i.e.,
Pi = P! = 0. Due to the small volume fraction of particles in dilute flows,
particle collisions are neglected, and we consider the particulate phase to
be pressureless, i.e., P, =0. Furthermore, u'’ is approximated by upy. With
these simplifications and P := P,, our model (1)—(6) can be written as

dt(agog) + V- (agpeug) = 0, (7)

dt(agoeug) + V- (ag(pgug ® ug + PT)) = —fp, 8)
0t(agpgEg) + V- (ag(pgEg + P)ug) = —up-fp—qr, (9
dt(apop) + V- (apppup) = 0, (10)

ot (apppup) + V- (apppup @u,) = fp, (11)

0t (apppEp) + V - (apppEpuy) u, - fp +qr. (12)



The particle mass density p, is assumed to be constant in these equations.
Since the continuous and disperse phase must fill the whole space,
their volume fractions are coupled by the saturation constraint

ag +ap = 1. (13)

The lack of pressure in the particulate phase equations may give rise to
delta shocks, and the effective particle density may become unbounded.
In the case of the two-fluid model, these nonphysical phenomena are not
observed [15], which can be attributed to the work of the drag force and
heat exchange. The assumption of dilute flow is essential. Otherwise,
particle collisions are nonnegligible and should be taken into account.

To close the system, a few constitutive laws need to be specified. The
total energies Ejy are expressed in terms of the internal energies ¢

1 1
The internal energies are proportional to the temperatures denoted by Ty

where ¢, are ¢y are the specific heats at constant volume. The pressure,
density, and energy of an ideal gas are related by the equation of state

P = (v —1)pgeg (16)

in which 7 is the constant ratio of specific heats. Since the density of par-
ticles p, exceeds the gas density p, by orders of magnitude, the virtual
mass force is neglected. The lift force, gravity, and other interfacial effects
are also negligible [12] as compared to the viscous drag force defined as

3 14
fp = ZCD Zpg|ug—up|(ug—up). (17)

In this formula, d is the particle diameter, and Cp is a dimensionless drag
coefficient which is assumed to be a function of the Reynolds number

Mg

Re (18)



The dependence of Cp on Re is given by the widely accepted correlation

_ {%(1 +0.15Re%%87), if Re < 1000, (19)

0.44, if Re > 1000.

The rate of heat transfer is proportional to the temperature difference

Nubxk
Ir=—0 S0, (Ty — Tp), (20)
where the Nusselt number Nu is a function of the Prandtl number Pr
Nu = 2+0.65ReiPrs,  Pr— C*’}f& 21)
8

The thermal conductivity «,, heat capacity at constant pressure ¢y, and
(microscopic) dynamic viscosity g of gas are assumed to be constant.

3. Numerical Method

The equations of the two-fluid model are discretized using (bi-)linear
finite elements on an unstructured mesh. Algebraic flux correction of TVD
type [10, 11] is performed to suppress spurious oscillations. All the neces-
sary information is inferred from the discrete operators, which makes this
approach very flexible and applicable in arbitrary dimensions. Therefore,
an extension of the current 2D implementation to 3D is straightforward.

In this work, we are mainly interested in steady state solutions. Since
explicit schemes are subject to severe stability restrictions, we discretize
in time using implicit methods. In particular, the unconditional (linear)
stability of the backward Euler scheme makes it a good choice for steady
state computations. An implicit approach is also suitable for nonstation-
ary problems, especially if a nonuniform distribution of Courant numbers
renders the stability constraints for explicit algorithms too restrictive.

3.1. Coupled System
The PDE system (7)—(12) can be written in the compact generic form

QU+ V- F(U) = S(U), (22)

where U is the vector of conservative variables, F is the flux tensor, and S
is the vector of source terms that introduce a two-way coupling and give
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rise to an additional nonlinearity in the model. In the case of small parti-
cles, the dominance and stiffness of S slow down convergence of implicit
schemes and aggravate stability restrictions in explicit computations. To
circumvent this problem, we take advantage of operator splitting.

3.1.1. Yanenko Splitting
A popular approach to solving (22) is the Yanenko splitting (cf. [15, 17])

ur — un .

TAF +V-F" =0, (23)
un+1 —u* il

— ST (24)

In the first step, the numerical solution is advanced in time without taking
the source terms into account. In the second step, the nodal values of the
resulting solution U* are corrected by adding the contribution of S"*1.
For an explicit solver, the Yanenko splitting is a good choice, although
it is only first-order accurate. However, the complete decoupling of the
source term has an adverse effect on the performance of implicit schemes
in steady-state computations. Due to the lagged application of S"*!, the
end-of-step solution U""! does not satisfy the equations of the first sub-
problem. Hence, the number of iterations does not decrease in the steady
state limit, and an important advantage of the implicit approach is lost.

3.1.2. Douglas-Rachford Splitting
To make sure that the splitting does not disturb solutions approaching
a steady state, we replace (23)-(24) by the Douglas-Rachford scheme [4]

u-—u" * __ qn
TV =s, (25)
un+1_u* n+1 n
— =5 s (26)

which is known to be very robust, at least in the context of alternating
direction implicit (ADI) iterative solvers for multidimensional problems.
Obviously, the implicit correction in the second step does not change a
converged stationary solution. Moreover, the Douglas-Rachford splitting
provides a closer link between the density and velocity of the particulate
phase. This is another reason why it is preferred to the Yanenko splitting.
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3.2. Finite Element Solvers

Let us begin with the transport step (25) in which the source terms are
treated explicitly and reside in the right-hand side. Without these terms,
the system of conservation laws for the gas phase (7)—(9) exhibits the same
structure as the compressible Euler equations. The equations of the partic-
ulate phase (10)—(12) describe the convective transport of mass, momen-
tum, and energy by the velocity field u,. Although the two systems are
coupled via the saturation constraint (13), they can be solved sequentially
using numerical methods for semi-discrete problems of the form (25).

3.2.1. Galerkin Discretization

Multiplying system (25) by a test function, integrating over the domain,
and using a set of piecewise-polynomial basis functions {¢;} to approxi-
mate U and F, one obtains the Galerkin finite element discretization

u;< B u]n n
L J oix | =g =

+y /Q @iV pyix- Ff = 0. 27)
j
Using integration by parts, the second term can be represented in the form

where n is the unit outward normal to the boundary d). This form is
amenable to implementation of weak boundary conditions (see below).

Invoking the homogeneity property of inviscid fluxes, we end up with
a nonlinear algebraic system for the vector of discrete nodal values

[MU* — AEK(U*)] U* = MU" + AtG™. (29)

Here M denotes the (lumped) mass matrix and K is the discrete transport
operator. The load vector G" combines the contribution of the discretized
source term S" and weakly imposed boundary conditions, if any.

3.2.2. Algebraic Flux Correction

The left-hand side matrix for the standard Galerkin discretization (29)
of a hyperbolic system is known to possess very unfavorable properties.
As a consequence, solutions are frequently corrupted by spurious oscilla-
tions, and iterative solvers may fail to converge. Within the framework of
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algebraic flux correction [10], such troubles are ruled out using an adap-
tive mechanism to control the ‘bad” part of the matrix K. To this end, a
nonoscillatory low-order counterpart of (29) is constructed by adding ar-
tificial viscosity. The difference between the residuals of the high- and
low-order schemes is decomposed into internodal fluxes that are tuned to
minimize the loss of accuracy. In this work, the admissible magnitude of
each flux is determined by a multidimensional limiter of TVD type [11].

Gas Phase Equations. Algebraic flux correction for the hyperbolic system of
gas phase equations is performed in terms of local characteristic variables,
as explained in [10, 11] in the context of the compressible Euler equations.

Particle Equations. Since there is no pressure in the particle equations, all
information is transported by a single wave traveling with velocity u,.
The discrete transport operator K is block-diagonal, and algebraic flux cor-
rection is carried out using scalar limited dissipation proportional to

dij = max{|kj|, |ki|} =dj, ~ Vj#i. (30)

This definition of the artificial diffusion coefficient d;; leads to a scalar ver-
sion of the Rusanov scheme which produces physically correct solutions.
Flux limiting is performed in terms of the conservative variables. In con-
trast to the gas phase equations, a transformation to characteristic vari-
ables is neither possible nor necessary. Despite the use of scalar dissipa-
tion, the nonlinear algebraic system is solved in a fully coupled manner.

3.2.3. Boundary Conditions

Boundary conditions play an important role in the design of numeri-
cal methods for inviscid compressible flows. If insufficient care is taken
in the imposition and numerical implementation of boundary conditions,
this may inhibit or significantly degrade convergence of the nonlinear it-
eration. An explicit or semi-implicit boundary treatment may also restrain
the range of admissible time steps, rendering an otherwise implicit solu-
tion strategy inefficient [20]. Hence, a genuinely implicit implementation
is a prerequisite for the development of a robust and fast nonlinear solver.

Following Selmin and Formaggia [19], we prescribe boundary condi-
tions in a weak sense. That is, a boundary flux is defined using the input
data and/or the solution of a Riemann problem [20]. Fluxes evaluated at
the quadrature points are used to assemble the surface integral that arises
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in (28) after integration by parts. The associated volume integral remains
unchanged. At solid walls, we currently enforce the no-penetration condi-
tion by projecting the residual of the nonlinear algebraic system onto the
tangent at each outer iteration. This strategy provides an equal treatment
of both phases and does not produce spurious layers which are observed
otherwise.

Gas Phase Equations. The solution of the gas phase Euler equations is a su-
perposition of waves moving in different directions. Therefore, boundary
conditions are to be prescribed in terms of the Riemann invariants [7]

2 P
¢ 7 WZZ_/
v—1 o7

2c
W1 = 0On — W3 = Uy, W4 =0, + ﬁ (31)
Here c is the local speed of sound, while v, and v; are the normal and
tangential velocity, respectively. The associated characteristic speeds are

M=v,—¢c, MAM=v, A3=v, Ast=0v,+cC. (32)

The incoming and outgoing waves are treated differently. To evaluate the
flux at a given quadrature point, the vector of numerical boundary values
is transformed to the Riemann invariants (31). The ones associated with
nonnegative eigenvalues Ay are left unchanged, while the rest is overwrit-
ten by the physical boundary conditions [10]. The result is transformed
back to the conservative variables. Finally, the boundary flux is evaluated
using an approximate or exact Riemann solver, as applied to the original
and modified solution vectors. For details, the interested reader is referred
to [6, 9, 20]. It is worth mentioning that it is possible to prescribe the Rie-
mann invariants in such a way that the primitive variables are fixed [7].

Particle Equations. In the pressureless particulate phase, all flow variables
are transported by a single wave. Therefore, weakly imposed boundary
conditions can be implemented as in the case of scalar conservation laws,
and there is no need for variable transformations. At the inlets (n - u, < 0),
the fluxes are evaluated using the prescribed boundary values, while the
current values of the numerical solution are employed to compute the
fluxes at the outlets (n-u, > 0). On a solid wall, all convective fluxes
vanish due to the strongly enforced no-penetration condition n - u, = 0.



3.3. Source Term Update

The first step of the Douglas-Rachford scheme (25)-(26) is followed by
an implicit correction of the involved interphase transfer terms. In this
step, the drag force and heat exchange term are discretized in semi-impli-
cit fashion. First, the velocities are updated by solving the linear system

n+1 __ %
u up "

(appy)* et AL = Yplugt! —uj™h) — £, (33)
+1 *

* ug’ _ug — * (on+l _ _n4l £ 34

(agpg) TAF vp(uy u, ) +fp, (34)

where the superscript * refers to the solution of system (25) and

YD = ZCD—g(x lug —u

o ug — u (35)

Once the velocities have been updated, the changes in energy due to the
interphase drag and heat exchange are taken into account as follows:

EZH B E;; 1 1
(@pop)” 77— = YTy =Ty — gy, (36)
1 *
* E§+ B Eg _ * Tn+1 . TnJrl ~1 37
(agpg) —Ar 17Ty ¢ )+ (37)

The heat transfer coefficient v} and net source/sink 47 are given by

vE = o oy, gr = qr1 + u’;+1 . f%‘“ — uz -fh. (38)

Since mass transfer is neglected, there are no source terms in the continu-
ity equations. Therefore, the effective densities (xp)/*! := (ap); remain

unchanged.

4, Numerical Results

A preliminary verification of the above fractional-step algorithm was
performed in two dimensions. Simulation results for a time-dependent
compression corner problem and for a stationary particle-laden nozzle
flow are presented in this section. A good qualitative agreement with nu-
merical studies published in the literature [1, 8, 13, 14] is observed.
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4.1. Compression Corner

The first test problem to be used for preliminary verification purposes
is an unsteady two-phase counterpart of the compression corner bench-
mark. The proposed algorithm is readily applicable, although it was de-
signed primarily for steady-state computations. To achieve higher accu-
racy for nonstationary problems, second-order time integration / operator-|
splitting schemes and limiters based on the flux-corrected transport (FCT)
algorithm should be employed.

The computational domain consists of a rectangular driver section and
a trapezoidal driven section in which the slope of the lower wall corre-
sponds to the angle 8 = 27°. The relevant parameter values and initial
data are listed in Tables 1-3. In the driver section, a homogeneous mixture
of air with a very small amount of particles is flowing parallel to the walls
of the channel. Here, the solution is initialized by the freestream condi-
tions and remains unchanged during the entire simulation. In the driven
section, the initial velocity is zero, the density and temperature of gas are
lower, and the mass fraction of particles is as high as 0.5. Initially, the gas
and particles are in thermal equilibrium (T, = T). The solution of the
so-defined Riemann problem is a M = 2.03 shock.

1.65-107° Pas kg
H . | Pg 0.39 ponc
Cop L K lug| | 334122
Cog 718 2K Te | 299.2K
c 1010 L y . .
pg kg K Table 2: Initial data (driver section).
Pr 0.75
.10-° k
d 2-107°m pg | 0.15 m_83
7 L4 lug| | 0.0
Op 4000 -5 Ty | 177.55K
Table 1: Input constants. Table 3: Initial data (driven section).

The simulation is performed with 163, 840 bilinear elements using the
time step At = 107 s until the final time T = 8- 10~*s. The diagram in
Fig.1a is a snapshot of the effective gas density. For comparison purposes,
the density distribution for the pure gas flow at the same conditions is
presented in Fig.1b. It can be seen that the work of the drag force and heat
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exchange result in a significant reduction of the shock speed in the case
of the particle-laden flow. This phenomenon was also observed in [8, 14].
The effective density and temperature of particles are depicted in Fig.1c
and Fig.1d, respectively.

4.2. JPL Nozzle Flow

The second example is concerned with a steady particle-laden gas flow
in a Jet Propulsion Laboratory (JPL) nozzle. The geometry of the domain is
described, e.g., in [13]. The left part is a chamber with a homogeneous mix-
ture of gas and particles at equilibrium conditions. The gas in the chamber
is at high pressure, and the flow accelerates in the middle of the nozzle.
Due to the drag force, the particles exhibit the same qualitative behavior.

Although the solution is smooth, the presence of curved boundaries
and a subsonic inlet require a careful implementation of boundary con-
ditions. Moreover, the coexistence of low Mach number zones with local
supersonic regions implies that the numerical algorithm must be able to
handle both strongly and weakly compressible flows efficiently. The wide
range of Mach numbers causes a high stiffness, which calls for the use of
implicit schemes and makes the problem at hand very challenging.

In our numerical experiment, we use the parameter values listed in
Table 1. An additional computation with d = 20 - 10~%m is performed for
comparison purposes. At the inlet, the volume fraction of particles equals
ap = 1074, and first three Riemann invariants for the gas phase are

Wy = —2546.1554, W, =79533.0583, W3 = 0.0. (39)

Since the fourth wave is leaving the domain, W; is computed numerically.

Steady-state solutions are computed using 283, 648 linear elements. Thel}
results in Fig. 2a and Fig. 2b depict the effective particle density for d =
2-10"%m and d = 20 - 10~%m, respectively. In the diverging part of the JPL
nozzle, particle-free boundary layers arise in the vicinity of the walls. The
thickness of these layers increases with the particle diameter and, hence,
with the decreasing magnitude of the drag force. The same behavior was
observed in [1] and [13]. The stationary gas density and Mach number
distribution are presented in Fig. 2c and Fig. 2d, respectively.

5. Conclusions and Outlook

The two-fluid model of compressible particle-laden gas flows was dis-
cretized using an implicit high-resolution finite element scheme. A mul-

12



(a)

/ "
(©) I (d)

Figure 1: Compression corner, solutions at T = 8 - 10~%s.
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Figure 2: JPL nozzle, steady-state solutions.



tidimensional flux limiter of TVD type was implemented to enforce posi-
tivity constraints at the discrete level. The interphase transfer terms were
included making use of the Douglas-Rachford splitting. A fully implicit
treatment of weak boundary conditions was adopted to maintain robust-
ness and secure convergence of nonlinear iterations. The performance of
the proposed fractional-step algorithm was illustrated by numerical re-
sults.

Further research will focus on the implementation of a linearized semi-
implicit Newton-like time-stepping scheme [3, 2, 6] as an efficient alterna-
tive to solving nonlinear algebraic systems at each (pseudo-)time step. The
Douglas-Rachford splitting is unconditionally stable but the time steps
must be relatively small to achieve convergence in steady state compu-
tations. Therefore, the use of operator splitting will be restricted to time-
dependent flow problems in the future. The strongly coupled semi-implicit]]
algorithm to be presented in a forthcoming paper is to be recommended
for stationary problems because it is stable and convergent for arbitrar-
ily large CFL numbers. A further acceleration of convergence rates can
be obtained with nonlinear multigrid techniques. Unsteady flows will be
simulated using time-stepping / operator-splitting schemes of second or-
der and algebraic flux correction of FCT type. The developed methods
and software provide a useful tool for investigation of thermal spraying
processes and other two-phase flow problems.
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