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Abstract

Some aspects of goal-oriented a posteriori error estimation are addressed in the con-
text of steady convection-diffusion equations. The difference between the exact and
approximate values of a linear target functional is expressed in terms of integrals
that depend on the solutions to the primal and dual problems. Gradient averaging
techniques are employed to separate the element residual and diffusive flux errors
without introducing jump terms. The dual solution is computed numerically and
interpolated using higher-order basis functions. A node-based approach to localiza-
tion of global errors in the quantities of interest is pursued. A possible violation of
Galerkin orthogonality is taken into account. Numerical experiments are performed
for centered and upwind-biased approximations of a 1D boundary value problem.
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1 Introduction

Numerical simulation of transport phenomena (convection and/or diffusion)
plays an increasingly important role in science and engineering. The accuracy
and reliability of computational methods depends on the choice of discretiza-
tion techniques and, to a large extent, on the quality of the underlying mesh.
Nowadays, adaptive mesh refinement techniques are widely used to reduce dis-
cretization errors in a computationally efficient way. Sometimes the location
of critical zones, such as boundary and interior layers, is known. However, in
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most cases, mesh adaptation is an iterative process which involves estimation
of numerical errors by means of certain a posteriori feedback mechanisms.

The derivation of a posteriori error estimates is aimed at obtaining computable
lower and/or upper bounds for certain quantities of interest. In the case of
convection-dominated transport problems, the global energy norm ceases to
be a good measure of the numerical error. One of the most promising current
trends in Computational Fluid Dynamics is goal-oriented adaptivity, whereby
the duality argument is employed to derive an estimate for the magnitude
of a given target/output functional [1,6,7,16,17,19]. The most prominent rep-
resentative of such error estimators is the Dual-Weighted-Residual (DWR)
method of Becker and Rannacher [3,4]. Remarkably, it is applicable not only
to self-adjoint elliptic PDEs but also to hyperbolic conservation laws [9,10].

In most cases, Galerkin orthogonality is involved in the derivation of goal-
oriented a posteriori estimates by the DWR method. For the numerical so-
lution to possess this property, the discretization must be performed by the
Galerkin finite element method, and the resulting algebraic equations must be
solved exactly. These requirements are rarely satisfied in practice due to nu-
merical integration, round-off errors, and slack tolerances for iterative solvers.
Last but not least, various stabilization terms or flux/slope limiters may be
responsible for a (local) loss of Galerkin orthogonality. As a result, an extra
term needs to be included in the error estimate for the DWR method. This
part is computable but its localization, i.e., distribution among individual el-
ements/nodes is a nontrivial task. Existing localization procedures [2] exploit
the nature of the underlying discretization and are not universally applicable.

In the present paper, we address goal-oriented error estimation for stationary
transport equations. The methodology to be presented is completely inde-
pendent of the numerical scheme used to compute the approximate solution.
The underlying localization procedure differs from that for the classical DWR
method in a number of respects. First, integration by parts is applied to an
averaged gradient so as to avoid the arising of jump terms at interelement
boundaries. In the context of pure diffusion problems, gradient averaging has
already been used in goal-oriented estimates [11,12,15] but the approach to be
presented is more general and based on different premises. Second, the error
in the quantity of interest is expressed in terms of nodal values [18], which
yields a nonoscillatory distribution of weighted residuals. Moreover, errors due
to the lack of Galerkin orthogonality are localized in a simple and natural way.
The conversion of nodal errors to element contributions is straightforward.

The derivation of the above error estimate is followed by a discussion of al-
gorithmic details and application to a one-dimensional convection-diffusion
problem. The availability of analytical solutions makes it possible to perform
a detailed analysis of accuracy and to identify the major sources of error.



2 Goal-oriented error estimation

Consider the Dirichlet problem that models steady convection and diffusion
of a conserved scalar quantity u(x) in a domain Q with boundary I

V:(vu—eVu)=f inQQ, 0

u=>b onl,

where v(x) is a known velocity field, ¢ > 0 is a constant diffusion coefficient,
f(x) is a volumetric source/sink, and b(x) is the prescribed boundary data.

A variational form of problem (1) can be constructed by the weighted residual
method using integration by parts. Let H'(2) be the Sobolev space of square
integrable functions with first derivatives in L?(Q). Furthermore, let H}(Q)
denote a subspace of functions from H'(f2) vanishing on the boundary T'. The
problem statement becomes: Find v € H'(Q) such that = b on I' and

CL('LU,U) = (w> f)a Vw € H&(Q)> (2)

where the bilinear form a(-,-) and the L? scalar product (-,-) are defined by

a(w,u) = /wV - (vu) dx + /Vw (eVu)dx, Yw,u € H(Q), (3)

(w, f) :/wfdx, Vu, f € LA(9). (4)

Q

Let up, € H'(2) be a numerical solution of problem (2) satisfying the Dirichlet
boundary condition u, = bon I'. It is convenient to define uy, as a finite element
interpolant of nodal values computed by an arbitrary numerical scheme.

Numerical errors can be quantified using the residual of the weak form (2)
pw,up) = (w, f) —a(w,uy), Yw € Hy(Q). (5)

Note that the value of p(w, uy) depends on the choice of w. This weight should

carry information about the propagation of errors and goals of simulation.

In many cases, the quantities of interest vary linearly with the solution. For ex-
ample, if the solution behavior in a subdomain w C €2 is of particular interest,



then a possible definition of the linear target functional j(-) reads [11,12]

j(u) = / wdx,  Vue LA(w). (6)

w

In order to estimate the value of j(u) = j(up) + j(e) and/or the error j(e)
in the quantity of interest for the primal problem (2), consider the associated
dual or adjoint problem [3,4] which reads: Find 2z € H}(Q) such that

a(z,w) = j(w), Yw € H (). (7)

Hence, the error j(u — uy) and residual (5) are related by the formula

Jlu—up) =alz,u —up) = p(z,up). (8)

An arbitrary approximation z, € H}(Q) to the exact solution z of the dual
problem (7) can be used to decompose the so-defined error as follows

jlu —up) = p(z — 2n, un) + p(zn, up). 9)

The value of p(z — zp,up,) depends on the unknown solution z of the dual
problem, whereas the contribution of p(z,,u) is computable. If Galerkin or-
thogonality holds for the pair of approximations u;, and zj,, then p(zy, up) = 0.

The error representation (9) leads to a posteriori error estimates of the form

17w —un)| < ®(zn, un) + Y(zn, un), (10)

where ®(zp,, up) and V(zy, uy) represent the upper bounds for the magnitudes
of the residuals p(z — zp, up) and p(zp, up), respectively. Let ®; and U; be the
local bounds associated with nodes (vertices) of the mesh such that

Zh,Uh Zq)la \Il Zhauh Z\I] (11)

The corresponding element contributions 7, to (10) are supposed to satisfy

q)(szuh) + \I](Zh,Uh) — n Zhs Uh Z/r/k‘ (12)

The derivation of (10)—(12) is nontrivial since (i) the dual solution z is gener-
ally unknown and (ii) the decomposition of the global error into nodal/element
contributions is nonunique. In what follows, we elaborate on the approxima-
tion of z and present a practical approach to estimation of local errors.



3 Approximation of dual solutions

Since the exact dual solution z is usually unknown, it needs to be replaced by
a suitable approximation Z & z. By virtue of (9), the setting 2 := z, yields the
estimate j(u — up) = p(zn, up) which is useless if p(zp, up) = 0 due to Galerkin
orthogonality. If z;, belongs to the same finite-dimensional space as w, then 2
should reside in a different subspace of H*(2) and possess higher accuracy.

For simplicity, we assume that the nodal values of the approximate solutions wy,
and z;, are defined on the same mesh. Consider the finite element interpolants

Uup = Zuj%‘, Zh = Z 2, 2= Zziwi, (13)
j i

)

where the piecewise-polynomial basis functions ; and ; correspond, e.g., to
the P, /P, or Q1/Q2 approximation on a pair of embedded meshes with spacing
h and 2h, respectively. For details, we refer to Schmich and Vexler [18].

Alternatively, the space spanned by {;} may be enriched by adding quadratic
bubble functions [15]. In this case, some postprocessing of z, or solution of
local subproblems is required to determine the additional degrees of freedom.

4 Residuals and diffusive flux errors

Given Z = z, the first term in the right-hand side of (9) is approximated by

(5 — 2, up) :/(2 — ) (f = V- (V) dx
Q

- 5/V(2 — z) - Vuy, dx. (14)

In the classical DWR method, elementwise integration by parts is applied to
the second integral. Due to the discontinuity of the diffusive flux, this leads to
the arising of jump terms that need to be estimated separately [1,4]. Instead,
we opt to perform integration by parts globally using a continuous counterpart
g, € H(div,Q) of the consistent primal gradient Vu;, € L?(Q). Since the
boundary values of Z and z;, are the same, the Green formula yields

/(é—zh)V-ghdx+/V(£’—zh)-ghdx:O. (15)
Q Q



Therefore, the residual weighted by the dual error can be written as follows

(5 — 2y up) :/(2 ) (f = V- (Vup — egp)) dx
Q

+e / V(5 — 2) - (gh — V) dx. (16)

Due to the continuity of gy, there are no jump terms in this formula. Moreover,
the magnitude of f — V - (vuy, — egy,) yields a realistic estimate of the local
error, whereas the consistent residual f — V - (vu, — eVuy,) degenerates into
f—V-(vuy) for linear finite element approximations. A similar representation
of the diffusive term can be found in [11,12,15], where (i) both g, and V2 are
defined as averaged gradients, (ii) superconvergence is required, (iii) neither
convective terms nor Galerkin orthogonality errors are taken into account.

A wealth of gradient recovery techniques are available for postprocessing and

error estimation purposes [21,22]. For example, the averaged gradient g, can
be defined as the L? projection of Vu; onto a subspace Vj, of H(div, 2)

/Wh -8 dx = /Wh - Vuy, dX, Vwy, € V. (17)
Q Q

Let the approximate solution u; and gradient g; be interpolated using the
same set of piecewise-polynomial basis functions {¢;}. Then the algebraic
systems associated with the L? projection (17) can be written in the form

Mcg = q, (18)

where the mass matrix Mo = {m;;} and load vector q = {¢;} are defined by

mij = /302'%' dx, Qi = /%Vuh dx, Vi, j. (19)
o) Q

In the case of linear or multilinear finite elements, the lumped mass matrix

Q J

is a good approximation to M¢. For efficiency reasons, it is worthwhile to
consider g = M; 'q or solve system (18) by the following iterative algorithm

Mpg™) = q+ (Mg, — Mg)g™, m=0,....,M—1. (21)



For practical purposes, as few as M = 3 iterations are enough. The lumped-
mass version corresponds to g(® = 0 and M = 1. The resulting g = gV is
not as accurate as a smooth solution to (18) but devoid of undershoots and
overshoots in regions where u;, changes abruptly. The flux-corrected transport
(FCT) algorithm can be used to perform adaptive mass lumping so as to
achieve an accurate and nonoscillatory approximation of steep gradients [14].

5 Localization of global quantities

The representation of j(u—uy) in terms of computable integrals over €2 makes
it possible to verify the accuracy of the approximate solution u; but is of little
help in finding the regions in which the computational mesh is too coarse or
too fine. To obtain an error estimate of the form (10), it is necessary to localize
global errors, i.e., distribute them among individual nodes and/or elements.

In the literature, the Cauchy-Schwarz inequality is frequently employed to
derive element contributions 7 to the upper bound for p(Z — zp,up). This
practice is not to be recommended since it results in a strong overestimation
of the global error [9] and leads to an oscillatory distribution of local errors.
The latter deficiency is particularly pronounced in the 1D case if the ‘exact’
dual solution Z is constructed from zj, using higher-order interpolation [15].

Building on the methodology developed by Schmich and Vexler [18], we refrain
from using the Cauchy-Schwarz inequality and begin with decomposition of
the target functional j(u — wy) into nodal contributions. A straightforward
definition of the local error indicators ®; and U, for estimate (10) is

where the weighted residuals are evaluated by formulae (16) and (5), respec-
tively. If the residual is orthogonal to the test function ¢;, then ¥; = 0. A
nonvanishing value of ¥; implies that Galerkin orthogonality does not hold.

Using the fact that Lagrange basis functions sum to unity (3, ¢; = 1), the
share of node i in the upper bound for (16) can be redefined as follows

@i= [ iz = 2)(f = V- (vur, — eg))] dx

e [ilV(E =) (g0 — Vun)| dx (23)
Q



The result depends not only on z; but also on the values of z, at neighboring
nodes. Furthermore, no assumptions are made regarding the structure of Z.

By definitions (5) and (22), the Galerkin orthogonality error is measured by

U, — / aloi(f — V- (vu)) — Vi - (eVup)] dx] . (24)

Q

To define the element contributions 7, consider the continuous error function

O+

= o (25)

{(x) = Zfi%’(x), &i

Note that the denominator of §; equals the diagonal entry m; of the lumped
mass matrix My given by (20). By definition, the global error (12) equals

O(zn, up) + U(zn, up) = / £(x) dx = 7z, un) (26)
Q

and admits the following decomposition into individual element contributions

N(zh,un) =D Mk e = /f(x) dx. (27)
! g

In a practical implementation, the midpoint rule is employed to calculate ny.

The sharpness of an a posteriori error estimate is frequently measured in terms
of the effectivity index I.g defined as the ratio of estimated and true error

_ n(2h, un)
0 Tl )

However, this definition may turn out to be misleading when the denominator
is small or zero and the evaluation of integrals is subject to rounding errors.
In our experience, it is worthwhile to consider the relative effectivity index

n(zn, un) — |j(u — up)| (29)

[rel = ;
j(w)

which provides another criterion for evaluating the quality of an error estimate.



6 Numerical experiments

A simple test problem that illustrates the utility of the above goal-oriented
error estimates is the one-dimensional convection-diffusion equation

du d%u
Pe — — — = in Q=(0,1).
S P 0 in (0,1) (30)
The Peclet number Pe = £ is assumed to be constant and positive. The

problem statement is completed by the Dirichlet boundary conditions

w(0) =0, wu(l)=1. (31)

It is easy to verify that the exact solution u and its gradient u’ are given by

ePom -1 Pe ePom

. /
u(x) = e 1 u' () e 1"

(32)

Following Cnossen et al. [5], we define the quantity of interest as follows

ju—w) = | (ulx) — un(a)) do = % - Q/ wn(@)de.  (33)

Q

If the numerical solution w;, is bounded by its endpoint values 0 and 1, as
required by the discrete maximum principle (DMP) for elliptic problems, then
negative values of j(u — wy,) imply that wuy, is overly diffusive. Thus, the above
target functional makes it possible to assess the amount of numerical diffusion.

The associated dual problem (7) is endowed with the homogeneous Dirichlet
boundary conditions and can also be solved analytically. The result is [5]

ePe(=2) 4 p(ePe _ 1) _ cPe
Pe (1 — ePe) ’
—PeePel—2) 4 gPe _ 1
Pe (1 — ePe)

z(x) =

#(z) = (34)

At large values of the Peclet number Pe, the primal and the dual problems are
both singularly perturbed, which manifests itself in the formation of boundary
layers in the neighborhood of the endpoints x = 1 and x = 0, respectively.

In the below numerical study, the nodal values of the approximate solutions wuy,
and z;, are computed on a uniform mesh with spacing h = 0.1 and interpolated



using ten linear finite elements. The dual solution z is approximated by the
quadratic interpolant Z of the N = 1/h 4 1 nodal values {z;}. The use of
quadratic bubble functions was found to produce comparable results for this
particular test problem. The computation of the averaged gradient ¢ ~ v’ is
performed using the lumped-mass L? projection with linear elements. This
approach is equivalent to approximating u’(x;) by the central difference

Ui — U1

gi—T, Zzl,...,N—l (35)

at internal points and by a first-order forward/backward difference otherwise

U — U _ UN —UN-1

go= "5 g = (36)

To obtain second-order accuracy, we employ the one-sided approximations

3UO—4U1+U2 . uN_2—4uN_1+3uN
on 0 INT 2h

do = — (37)

A typical discretization of equation (30) can be written in the generic form

(1 + ai1y2) (i — wim1) + (1 — @igry0) (Wig1 — i)
2h

-0, i=1,....N—1, (38)

Pe

Uim1 — 2U; + Ui

h2

where the diffusive term is approximated by a second-order central difference.

The approximation of the convective term represents a linear or nonlinear com-
bination of forward (a;+1/2 = —1) and backward (c;+1/2 = 1) differences. Due
to the assumption that Pe > 0, the latter setting corresponds to the classical
upwind difference scheme (UDS) which satisfies the DMP unconditionally but
is only first-order accurate. The average of forward and backward differences
(ctix1/2 = 0) corresponds to the central difference scheme (CDS) of second
order. The same approximation is obtained with linear finite elements. Hence,
numerical solutions exhibit Galerkin orthogonality but a violation of the dis-
crete maximum principle and formation of spurious oscillations are possible.
The CDS scheme is guaranteed to be nonoscillatory only if h satisfies

Peh < 2.

The third discretization to be considered is a nonlinear total variation dimin-
ishing (TVD) scheme [8,13,20]. The corresponding correction factors a1/

10



depend on the slope ratio r; which serves as the smoothness indicator

pp= L N -1 (39)
U; — Uj—1

For example, the use of the monotonized centered (MC) limiter function yields

I+
Qip1/2 = 1 — max {0, min {2, %, 2ri}} (40)

and the resulting TVD scheme (38) can be shown to possess the DMP property.

The results for Pe = 10 and Pe = 100 are shown in Figures 1-3, where the
smooth curves represent the continuous functions u, z, and g. The correspond-
ing numerical solutions are depicted as circles connected by straight lines, while
the distribution of 7 is displayed as a bar plot. The sums of node/element
contributions and the relative effectivity index I, for each scheme are listed
in Tables 1-3. The discrepancy between the true and estimated errors is re-
markably small as compared to the magnitude of the target functional.

The distribution of weighted element contributions reflects the qualitative be-
havior of local errors and indicates that stronger mesh refinement is required
in the vicinity of boundary layers as the Peclet number increases. The Galerkin
orthogonality error W(z, uy) is negligible for the finite element discretization
(CDS) but becomes dominant in the case of UDS and TVD solutions at large
Peclet numbers. The error estimates for Pe = 100 are particularly sharp since
®(zp,, up) is negligible, while W(zy, uy) is computable. These results indicate
that the setting Z = z, is to be recommended for TVD-like schemes that
violate Galerkin orthogonality only in regions of insufficient mesh resolution.

7 Conclusions

A posteriori error control for numerical approximations to convection-diffusion
equations was addressed. The interplay between various kinds of errors that
affect the quantities of interest was discussed. Goal-oriented error estimation
based on the duality argument was shown to provide a proper control of nu-
merical errors. A possible violation of Galerkin orthogonality was taken into
account using a node-based approach to localization of errors. A 1D numerical
study was included to illustrate the implications of upwinding and flux limiting
in non-Galerkin approximations to convection-dominated transport problems.
It turns out that the associated Galerkin orthogonality error provides a useful
criterion for mesh adaptation purposes. Two-dimensional results for steady
hyperbolic and elliptic problems will be presented in a forthcoming paper.
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