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Abstract. An algebraic approach to the design of multidimensional high-resolution
schemes is introduced and elucidated in the finite element context. A centered space
discretization of unstable convective terms is rendered local extremum diminishing by a
conservative elimination of negative off-diagonal coefficients from the discrete transport
operator. This modification leads to an upwind-biased low-order scheme which is nonoscil-
latory but overly diffusive. In order to reduce the incurred error, a limited amount of
compensating antidiffusion is added in regions where the solution is sufficiently smooth.
A node-oriented flux limiter of TVD type is designed so as to control the ratio of upstream
and downstream edge contibutions to each node. Nonlinear algebraic systems are solved
by an iterative defect correction scheme preconditioned by the low-order evolution operator
which enjoys the M-matrix property. The diffusive and antidiffusive terms are represented
as a sum of antisymmetric internodal fluxes which are constructed edge-by-edge and in-
serted into the global vectors. The new methodology is applied to the equations of the k−ε
turbulence model and relevant implementation aspects are addressed. Numerical results
are presented for the three-dimensional incompressible flow over a backward facing step.
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1 INTRODUCTION

The class of total variation diminishing (TVD) methods was introduced by Harten [6]
two decades ago and carried over to unstructured grid finite element methods in [10],[11].
A node-oriented flux limiter of TVD type was designed so as to render an oscillatory
high-order discretization local extremum diminishing (LED) via conservative matrix ma-
nipulations. This straightforward ‘postprocessing’ technique is applicable to discrete op-
erators of any origin regardless of the underlying mesh and of the time-stepping scheme.
Moreover, it is readily portable to multidimensions and can be integrated into existing
CFD codes as a modular extension to the matrix assembly routine. In the present paper,
we apply the FEM-TVD algorithm to incompressible flow problems and dwell on the
implementation of the k − ε turbulence model. Three-dimensional numerical examples
illustrate the performance of the proposed simulation tools. An extension of the algebraic
flux correction paradigm to the Euler equations of gas dynamics is presented in [11].

2 ALGEBRAIC CONSTRAINTS

First of all, let us introduce the algebraic constraints which should be imposed on the
discrete operators to prevent the formation of spurious undershoots and overshoots in the
vicinity of steep gradients. As a model problem, consider the continuity equation

∂u

∂t
+ ∇ · (vu) = 0 (1)

discretized in space by a numerical method which yields an ODE system of the form

dui

dt
=

∑

j 6=i

cij(uj − ui), ∀i. (2)

It was shown by Jameson [7] that if the coefficients cij are nonnegative, then the semi-
discrete scheme is local extremum diminishing (LED). Indeed, if a maximum is attained
at node i, then each term in the sum over j 6= i is less than or equal to zero and so is the
time derivative of the nodal value ui. So a maximum cannot increase, and in much the
same way one can show that a minimum cannot decrease. For three-point finite difference
methods, this requirement reduces to Harten’s TVD conditions. Therefore, LED schemes
are total variation diminishing in the 1D case. At the same time, Jameson’s criterion is
more general and turns out to be very handy in multidimensions, since the sign of matrix
entries is easy to verify for arbitrary discretizations on unstructured meshes.

After the time discretization, an additional constraint should be imposed to make sure
that quantities like densities, temperatures or concentrations remain nonnegative. In
general, a fully discrete scheme is positivity-preserving if it admits the representation

Aun+1 = Bun, (3)

where B = {bij} has no negative entries and A = {aij} is a so-called M-matrix defined as
a nonsingular discrete operator such that aij ≤ 0 for j 6= i and all the coefficients of its
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inverse are nonnegative. These properties imply that the positivity of the old solution un

carries over to un+1 = A−1Bun. As a useful byproduct, this algebraic criterion yields a
readily computable upper bound for admissible time steps. In particular, LED schemes of
the form (2) are unconditionally positivity-preserving for θ = 1 (backward Euler method)
and subject to the following CFL-like condition otherwise [9]

max
i

|cn
ii|∆t ≤ 1

1 − θ
, for 0 ≤ θ < 1. (4)

Note that this estimate is based solely on the magnitude of the diagonal coefficients cn
ii.

3 DESIGN OF HIGH-RESOLUTION SCHEMES

The basic idea for the derivation of an algebraic high-resolution scheme is rather simple.
It can be traced back to the concepts of flux-corrected transport introduced by Boris and
Book in the early 1970s [1]. Roughly speaking, the governing equation is discretized in
space by an arbitrary linear high-order method (e.g. central differences or Galerkin FEM)
and the resulting matrices are modified a posteriori so as to enforce the above algebraic
constraints at the (semi-)discrete level. The flow chart of required algebraic manipulations
is sketched in Fig. 1. The time step ∆t should be chosen so as to satisfy condition (4).

1. Linear high-order scheme (e.g. Galerkin FEM)

MC
du

dt
= Ku such that ∃ j 6= i : kij < 0

2. Linear low-order scheme L = K + D

ML
du

dt
= Lu such that lij ≥ 0, ∀j 6= i

3. Nonlinear high-resolution scheme K∗ = L + F

ML
du

dt
= K∗u such that ∃ j 6= i : k∗

ij < 0

Equivalent representation L∗u = K∗u is LED

ML
du

dt
= L∗u such that l∗ij ≥ 0, ∀j 6= i

Figure 1: Roadmap of matrix manipulations.

3



Dmitri Kuzmin and Stefan Turek

First, the consistent mass matrix MC is replaced by its lumped counterpart ML and
the high-order operator K is transformed into a nonoscillatory low-order one by adding
a discrete diffusion operator D designed so as to get rid of all negative off-diagonal coef-
ficients. In accordance with the well-known Godunov theorem, this manipulation results
in a global loss of accuracy. In order to prevent excessive smearing in smooth regions, it
is necessary to remove as much artificial diffusion as possible without generating wiggles.
To this end, a limited amount of compensating antidiffusion F is added in the next step.
Even though the final transport operator K∗ does have negative off-diagonal coefficients,
they are harmless as long as there exists an equivalent LED representation of the mod-
ified scheme. For a given solution vector u, there should exist a matrix L∗ such that all
off-diagonal entries l∗ij are nonnegative and L∗u = K∗u. Following these guidelines, let us
derive the operators D and F for a multidimensional FEM-TVD algorithm.

4 DISCRETE UPWINDING

Let us perform mass lumping in the left-hand side of the Galerkin scheme and represent
the semi-discretized equation for the nodal value ui as follows

mi
dui

dt
=

∑

j 6=i

kij(uj − ui) + δiui, δi =
∑

j

kij. (5)

The elimination of negative off-diagonal coefficients does not affect the term δiui which
vanishes for divergence-free velocity fields and is responsible for a physical growth of
local extrema otherwise [11]. The artificial diffusion operator D is designed to be a
symmetric matrix with zero row and column sums. Therefore, the diffusive term Du can
be decomposed into a sum of antisymmetric numerical fluxes between neighboring nodes

(Du)i =
∑

j 6=i

fd
ij, where fd

ij = dij(uj − ui), fd
ji = −fd

ij. (6)

In practice, we start with the high-order operator L := K and examine each pair of
nonzero off-diagonal coefficients kij and kji which corresponds to an edge

−→
ij of the sparsity

graph. The ‘optimal’ artificial diffusion coefficient dij is given by [8],[9]

dij = max{0,−kij,−kji}. (7)

If the smaller off-diagonal coefficient, say kij, is negative, then lij = kij + dij is equal to
zero and three other entries are modified so as to restore the row/column sums

lii := lii − dij, lij := lij + dij,
lji := lji + dij, ljj := ljj − dij.

(8)

The edge is oriented so that lji ≥ lij = max{0, kij}. This convention implies that node i
is located ‘upwind’, which enables us to derive an upwind-biased scheme of TVD type.
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5 ALGEBRAIC FLUX CORRECTION OF TVD TYPE

The elimination of negative off-diagonal matrix entries corresponds to the upwind dif-
ference approximation in the 1D case [9],[11]. This is why it is called ‘discrete upwinding’.
By construction, the resulting scheme is the least diffusive linear LED counterpart of the
original Galerkin discretization. Nevertheless, its accuracy leaves a lot to be desired and
should be enhanced by adding a nonlinear antidiffusive correction to the low-order op-
erator. The task of the flux limiter is to make sure that the final transport operator
K∗ = L + F = K + D + F admits an equivalent LED representation (see Fig. 1).

In practice, the antidiffusive term Fu is assembled edge-by-edge as follows

(Fu)i =
∑

j 6=i

fa
ij such that fa

ji = −fa
ij, (9)

where the limited antidiffusive flux fa
ij from node j into its upwind (in the sense of our

orientation convention) neighbor i depends on the diffusion coefficient dij for discrete
upwinding and on the entry lji = max{kji, kji − kij} of the low-order transport operator

fa
ij := min{Φ(ri)dij, lji}(ui − uj). (10)

Here Φ is a standard TVD limiter (e.g. minmod, Van Leer, MC, superbee) applied to a
suitable smoothness indicator ri (to be specified below). At the same time, the antidiffu-
sive flux into node j is defined as fa

ji := −fa
ij so that mass conservation is guaranteed.

Let us derive a sufficient condition for the modified scheme to be local extremum
diminishing. If Φ(ri) = 0 or dij = 0, the antidiffusive flux fa

ij vanishes and does not pose
any hazard. Therefore, we restrict ourselves to the nontrivial case fa

ij 6= 0 which implies
that both Φ(ri) and dij are strictly positive. The symmetry property of TVD limiters [7]
makes it possible to represent the antidiffusive flux in the form

fa
ij = Φ(ri)aij(ui − uj) = Φ(1/ri)aij∆uij, (11)

where the antidiffusion coefficient aij and the upwind difference ∆uij are defined as follows

aij := min{dij, lji/Φ(ri)}, ∆uij := ri(ui − uj). (12)

The assumption dij > 0 implies that kij < 0 and lij = 0 for the edge
−→
ij which links an

upwind node i and a downwind node j. Therefore, the edge contributions to the two
components of the modified convective term K∗u can be written as

k∗
ij(uj − ui) = fa

ij, k∗
ji(ui − uj) = lji(ui − uj) − fa

ij. (13)

The increment to node j is obviously of diffusive nature and satisfies the LED criterion,
since the coefficient k∗

ji = lji − Φ(ri)aij is nonnegative by construction (see the definition
of aij). Furthermore, it follows from relation (11) that the negative off-diagonal entry
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k∗
ij = −Φ(ri)aij of the nonlinear operator K∗ is acceptable provided that the auxiliary

quantity ∆uij admits the following representation

∆uij =
∑

k 6=i

σik(uk − ui), where σik ≥ 0, ∀k 6= i. (14)

In other words, the limited antidiffusive flux fa
ij from node j into node i should be inter-

preted as a sum of diffusive fluxes contributed by other neighbors.

5.1 NODE-ORIENTED FLUX LIMITER

Let us introduce a fully multidimensional limiting strategy which is akin to that pro-
posed by Zalesak [20] in the framework of flux-corrected transport (FCT) methods. The
incompressible part of the original convective term Ku can be decomposed into a sum of
edge contributions with negative coefficients and a sum of those with positive coefficients

Pi =
∑

j 6=i

min{0, kij}(uj − ui), Qi =
∑

j 6=i

max{0, kij}(uj − ui) (15)

which are due to mass transfer from the downstream and upstream directions, respectively.
The sum Pi is composed from the raw antidiffusive fluxes which offset the error incurred
by elimination of negative matrix entries in the course of discrete upwinding. They are
responsible for the formation of spurious wiggles and must be securely limited. At the
same time, the constituents of the sum Qi are harmless since they resemble diffusive fluxes
and do satisfy the LED criterion. Thus, it is natural to require that the net antidiffusive
flux into node i be a limited average of the original increments Pi and Qi. Furthermore,
it is worthwhile to distinguish between the positive and negative edge contributions

Pi = P+
i + P−

i , P±
i =

∑

j 6=i

min{0, kij} min
max

{0, uj − ui}, (16)

Qi = Q+
i + Q−

i , Q±
i =

∑

j 6=i

max{0, kij} max
min

{0, uj − ui} (17)

and limit the positive and negative antidiffusive fluxes separately. To this end, we pick a
standard TVD limiter Φ and compute the nodal correction factors

R±
i = Φ(Q±

i /P±
i ) (18)

which determine the percentage of P±
i that can be retained without violating the LED

constraint for row i of the modified transport operator K∗.
For each edge

−→
ij of the sparsity graph, the antidiffusive flux fa

ij from its downwind
node j into the upwind node i is constructed as follows [10]

fa
ij :=

{

min{R+
i dij, lji}(ui − uj) if ui ≥ uj,

min{R−
i dij, lji}(ui − uj) if ui < uj,

fa
ji := −fa

ij. (19)
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Importantly, the same correction factor R±
i is applied to all positive/negative antidiffusive

fluxes which represent the interactions of node i with its neighbors located downstream.
The node-oriented limiting strategy makes it possible to control the combined effect

of antidiffusive fluxes acting in concert and prove the LED property. The equivalence of
(10) and (19) reveals that the smoothness indicator ri is implicitly defined by

ri =

{

Q+
i /P+

i if ui ≥ uj,

Q−
i /P−

i if ui < uj.
(20)

It is easy to verify that ∆uij = ri(ui − uj) satisfies condition (14) since all coefficients in
the sum of upwind contributions Q±

i are nonnegative and

∆uij = σijQ
±
i , where σij =

max
min

{0, ui − uj}/P±
i ≥ 0. (21)

Remarkably, the new limiter extracts all information from the original matrix K and does
not need the coordinates of nodes or other geometric details. For the one-dimensional
convection equation with a constant velocity, a classical TVD scheme is recovered [10].

6 ITERATIVE DEFECT CORRECTION

After an implicit time discretization, one obtains a nonlinear algebraic system

ML
un+1 − un

∆t
= θK∗(un+1)un+1 + (1 − θ)K∗(un)un, 0 < θ ≤ 1

which can be solved iteratively by the fixed-point defect correction scheme [10]

u(m+1) = u(m) + A−1r(m), m = 0, 1, 2, . . . (22)

where r(m) denotes the residual for the m-th cycle and A is a suitably chosen ‘precondi-
tioner’ which should be easy to ‘invert’ by solving the linear subproblem

A∆u(m+1) = r(m), m = 0, 1, 2, . . . (23)

and applying the resulting solution increment ∆u(m+1) to the last iterate

u(m+1) = u(m) + ∆u(m+1), u(0) = un. (24)

The low-order evolution operator A = ML − θ∆tL constructed by resorting to discrete
upwinding (L = K + D) constitutes an excellent preconditioner for it was designed to be
an M-matrix. The defect vector and the constant right-hand side are given by

r(m) = bn − [A − θ∆tF (u(m))]u(m), bn = MLun + (1 − θ)∆t[L + F (un)]un. (25)

Both expressions consist of a low-order contribution augmented by the sum of limited
antidiffusive fluxes which are evaluated edge-by-edge and inserted into the global vectors.
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7 FEM-TVD FOR THE k − ε MODEL

High-resolution schemes like FEM-TVD play an increasingly important role in the
numerical simulation of turbulent flows. The flow structures that cannot be resolved on the
computational mesh activate the flux limiter which curtails the raw antidiffusion so as to
filter out the small-scale fluctuations. Interestingly enough, the residual artificial viscosity
provides an excellent subgrid scale model for the Monotonically Integrated Large Eddy
Simulation (MILES) [2]. RANS turbulence models constitute a cost-effective alternative
to this approach and also call for the use of a positivity-preserving discretization.

In particular, the evolution of the turbulent kinetic energy k and of its dissipation rate
ε is governed by two convection-dominated transport equations

∂k

∂t
+ ∇ ·

(

ku − νT

σk

∇k
)

= Pk − ε, (26)

∂ε

∂t
+ ∇ ·

(

εu − νT

σε

∇ε
)

=
ε

k
(C1Pk − C2ε), (27)

where u denotes the averaged velocity, νT = Cµk
2/ε is the turbulent eddy viscosity and

Pk = νT

2
|∇u + ∇uT |2 is the production term. For the standard k − ε model, we have

Cµ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3.

Note that the transport equations for k and ε are strongly coupled and nonlinear so
that their numerical solution is anything but trivial. Implementation details and employed
‘tricks’ are rarely reported in the literature, so that a novice to this area of CFD research
often needs to reinvent the wheel. Thus, we deem it appropriate to discuss the implemen-
tation of a FEM-TVD algorithm for the k − ε model in some detail. The concomitant
incompressible Navier-Stokes equations are solved by a discrete projection method from
the family of Multilevel Pressure Schur Complement (MPSC) schemes [19] implemented
in the open-source software package FEATFLOW (see http://www.featflow.de).

7.1 Positivity-preserving linearization

The block-iterative algorithm proposed in [12] consists of nested loops so that the
coupled PDE system is replaced by a sequence of linear subproblems. The coefficients are
‘frozen’ during each outer iteration and updated as new solution values become available.
The quasi-linear transport equations can be solved by an implicit FEM-TVD scheme but
the linearization procedure must be tailored to the need to preserve the positivity of k
and ε in a numerical simulation. Due to the presence of sink terms in the right-hand
side of both equations, the positivity constraint may be violated even if a high-resolution
scheme is employed for the discretization of convective terms. It can be proved that the
exact solution to the k − ε model remains nonnegative for positive initial data [16],[17]
and it is essential to guarantee that the numerical scheme will also possess this property.
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Let us consider the following representation of the equations at hand [14]

∂k

∂t
+ ∇ · (ku − dk∇k) + γk = Pk, (28)

∂ε

∂t
+ ∇ · (εu − dε∇ε) + C2γε = C1Pk, (29)

where the parameter γ = ε
k

is proportional to the specific dissipation rate (γ = Cµω).
The turbulent dispersion coefficients are given by dk = νT

σk

and dε = νT

σε
. By definition,

the source terms in the right-hand side are nonnegative. Furthermore, the parameters
νT and γ must also be nonnegative for the solution of the convection-reaction-diffusion
equations to be well-behaved [3]. In our numerical algorithm, their values are taken from
the previous iteration and their positivity is secured as explained below. This linearization
technique was proposed by Lew et al. [14] who noticed that the positivity of the lagged
coefficients is even more important than that of the transported quantities and can be
readily enforced without violating the discrete conservation principle.

Applying an implicit FEM-TVD scheme to the above equations, we obtain two non-
linear algebraic systems which can be written in the generic form

A(u(l+1))u(l+1) = B(u(l))u(l) + q(k), l = 0, 1, 2, . . . (30)

Here k is the index of the outermost loop in which the velocity u and the source term Pk

are updated. The index l refers to the outer iteration for the k− ε model, while the index
m is reserved for inner flux/defect correction loops of the form (22).

The structure of the involved matrices A and B is as follows:

A(u) = ML − θ∆t(K∗(u) + T ), (31)

B(u) = ML + (1 − θ)∆t(K∗(u) + T ), (32)

where K∗(u) is the LED transport operator incorporating nonlinear antidiffusion and
T denotes the standard reaction-diffusion operator which is a symmetric positive-definite
matrix with nonnegative off-diagonal entries. It is obvious that the discretized production
terms q(k) are also nonnegative. Thus, the positivity of u(l) is inherited by the new iterate
u(l+1) = A−1(Bu(l) + q(k)) provided that θ = 1 (backward Euler method) or the time
step is sufficiently small (satisfies the CFL-like condition for θ < 1). Another important
prerequisite is the convergence of nonlinear iterations for the system at hand.

7.2 Positivity of coefficients

The predicted values k(l+1) and ε(l+1) are used to recompute the parameter γ(l+1) for
the next outer iteration (if any). The turbulent eddy viscosity ν

(k)
T is updated in the

outermost loop. In the turbulent flow regime νT ≫ ν and the laminar viscosity ν can be
neglected. Hence, we set νeff = νT , where the eddy viscosity νT is bounded from below by

9



Dmitri Kuzmin and Stefan Turek

ν and from above by the maximum admissible mixing length lmax (e.g. the width of the
computational domain). Specifically, we define the limited mixing length l∗ as

l∗ =







α
ε

if ε > α
lmax

lmax otherwise
, where α = Cµk

3/2 (33)

and use it to update the turbulent eddy viscosity νT in the outermost loop:

νT = max{ν, l∗
√

k} (34)

as well as the parameter γ in each outer iteration for the k − ε model:

γ = Cµ
k

ν∗
, where ν∗ = max{ν, l∗

√
k}. (35)

A remark is in order that the positivity proof is only valid for the converged solution
to (30) while intermediate values of the approximate solution may be negative. Since
it is impractical to perform many defect correction steps in each outer iteration, it is
worthwhile to substitute k∗ = max{0, k} for k in formulae (33)–(35) so as to to prevent
taking the square root of a negative number. Upon convergence, this safeguard will not
make any difference, since k will be nonnegative from the outset. The above representation
of νT and γ makes it possible to preclude division by zero and obtain bounded coefficients
without making any ad hoc assumptions and affecting the actual values of k and ε.

7.3 Initial conditions

Another important issue which is seldom addressed in the CFD literature is the initial-
ization of data for the k − ε model. As a rule, it is rather difficult to devise a reasonable
initial guess for a steady-state simulation or proper initial conditions for a dynamic one.
The laminar Navier-Stokes equations remain valid until the flow gains enough momentum
for the turbulent effects to become pronounced. Therefore, the k − ε model should be
activated at a certain time t∗ > 0 after the startup. During the ‘laminar’ initial phase
(t ≤ t∗), a constant effective viscosity ν0 is prescribed. The values to be assigned to k
and ε at t = t∗ are uniquely defined by the choice of ν0 and of the default mixing length
l0 ∈ [lmin, lmax] where lmin corresponds to the size of the smallest admissible eddies:

k0 =
(

ν0

l0

)2

, ε0 = Cµ
k

3/2
0

l0
at t ≤ t∗. (36)

This strategy was adopted as the effective viscosity ν0 and the mixing length l0 are easier
to estimate (at least for a CFD practitioner) than k0 and ε0. In any case, long-term
simulation results are typically not very sensitive to the choice of initial data.
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7.4 Boundary conditions

At the inlet Γin, we prescribe all velocity components and the values of k and ε:

u = g, k = cbc|u|2, ε = Cµ
k3/2

l0
on Γin, (37)

where cbc ∈ [0.001, 0.01] is an empirical constant [3] and |u| =
√

u · u is the Euclidean
norm of the velocity. At the outlet Γout, the normal gradients of all scalar variables are
required to vanish, and the ‘do-nothing’ [19] boundary conditions are prescribed:

n · S(u) = 0, n · ∇k = 0, n · ∇ε = 0 on Γout. (38)

Here S(u) = −
(

p + 2
3
k
)

I + (ν + νT )[∇u + (∇u)T ] denotes the effective stress tensor.
The numerical treatment of inflow and outflow boundary conditions does not present any
difficulty. In the finite element framework, relations (38) imply that the surface integrals
resulting from integration by parts vanish and do not need to be assembled.

At an impervious solid wall Γw, the normal component of the velocity must vanish,
whereas tangential slip is permitted in turbulent flow simulations. The implementation
of the no-penetration (free slip) boundary condition

n · u = 0 on Γw (39)

is nontrivial if the boundary of the computational domain is not aligned with the axes
of the Cartesian coordinate system. In this case, condition (39) is imposed on a linear
combination of several velocity components whereas their boundary values are unknown.
Therefore, standard implementation techniques for Dirichlet boundary conditions based
on a modification of the corresponding matrix rows [19] cannot be used.

In order to set the normal velocity component equal to zero, we nullify the off-diagonal
entries of the preconditioner A(u(m)) = {a(m)

ij } in the defect correction loop (22). This
enables us to compute the boundary values of the vector u explicitly before solving a
sequence of linear systems for the velocity components:

a
(m)
ij := 0, ∀j 6= i, u∗

i := u
(m)
i + r

(m)
i /a

(m)
ii for xi ∈ Γw. (40)

In the next step, we project the predicted values u∗
i onto the tangent vector/plane and

constrain the corresponding entry of the defect vector r
(m)
i to be zero

u
(m)
i := u∗

i − (ni · u∗
i )ni, r

(m)
i := 0 for xi ∈ Γw. (41)

After this manipulation, the corrected values u
(m)
i act as Dirichlet boundary conditions

for the solution u
(m+1)
i at the end of the defect correction step. As an alternative to the

implementation technique of predictor-corrector type, the projection can be applied to
the residual vector rather than to the nodal values of the velocity:

a
(m)
ij := 0, ∀j 6= i, r

(m)
i := r

(m)
i − (ni · r(m)

i )ni for xi ∈ Γw. (42)
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For Cartesian geometries, the algebraic manipulations to be performed affect just the
normal velocity component. Note that virtually no extra programming effort is required,
which is a significant advantage as compared to another feasible approach based on local
coordinate transformations during the finite element matrix assembly [4].

7.5 Wall functions

To complete the problem statement, we still need to prescribe the tangential stress
as well as the boundary values of k and ε on Γw. Note that the equations of the k − ε
model are invalid in the vicinity of the wall where the Reynolds number is rather low and
viscous effects are dominant. In order to avoid the need for resolution of strong velocity
gradients, wall functions can be derived using the boundary layer theory and applied at
an internal boundary Γδ located at a distance δ from the solid wall Γw [15],[16],[17].

In essence, a boundary layer of width δ is removed from the actual computational
domain Ω and the equations are solved in the reduced domain Ωδ subject to the following
empirical boundary conditions:

n · D(u) · t = −u2
τ

u

|u| , k =
u2

τ
√

Cµ

, ε =
u3

τ

κδ
on Γδ. (43)

Here D(u) = (ν +νT )[∇u+(∇u)T ] is the viscous part of the stress tensor, the unit vector
t refers to the tangential direction, κ = 0.41 is the von Kármán constant and uτ is the
friction velocity which is assumed to satisfy the nonlinear equation

g(uτ ) = |u| − uτ

(

1

κ
log y+ + 5.5

)

= 0 (44)

in the logarithmic layer, where the local Reynolds number y+ = uτ δ
ν

is in the range
20 ≤ y+ ≤ 100, and be a linear function of y+ in the viscous sublayer, where y+ < 20.
Note that u is the tangential velocity as long as condition (39) is imposed on Γδ.

Equation (44) can be solved iteratively, e.g., by Newton’s method [15]:

ul+1
τ = ul

τ −
g(ul

τ )

g′(ul
τ )

= ul
τ +

|u| − uτf(ul
τ )

1/κ + f(ul
τ )

, l = 0, 1, 2, . . . (45)

where the auxiliary function f is given by

f(uτ ) =
1

κ
log y+

∗ + 5.5, y+
∗ = max

{

20,
uτδ

ν

}

.

The friction velocity is initialized by u0
τ =

√

ν|u|
δ

and no iterations are performed if it

turns out that y+ = u0
τ δ
ν

< 20. In other words, uτ = u0
τ in the viscous sublayer. Moreover,

we use y+
∗ = max{20, y+} in the Newton iteration to guarantee that the approximate

solution belongs to the logarithmic layer and remains bounded for y+ → 0.
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The friction velocity uτ is plugged into (43) to compute the tangential stress, which
yields a natural boundary condition for the velocity. Integration by parts in the weak
form of the incompressible Navier-Stokes equations gives rise to a surface integral over
the internal boundary Γδ which contains the prescribed traction:

∫

Γδ

[n · D(u) · t] · v ds = −
∫

Γδ

u2
τ

u

|u| · v ds. (46)

The free slip condition (39) overrides the normal stress and Dirichlet boundary conditions
for k and ε are imposed in the strong sense. For further details regarding the implemen-
tation of wall laws the reader is referred to [15],[16],[17].

7.6 Underrelaxation for outer iterations

Due to the intricate coupling of the governing equations, it is sometimes worthwhile
to use a suitable underrelaxation technique in order to prevent the growth of numerical
instabilities and secure the convergence of outer iterations. This task can be accomplished
by limiting the computed solution increments before applying them to the last iterate:

u(m+1) := u(m) + ω(m)(u(m+1) − u(m)) where 0 ≤ ω(m) ≤ 1. (47)

The damping factor ω(m) may be chosen adaptively so as to accelerate convergence and
minimize the error in a certain norm [19]. However, fixed values (for example, ω = 0.8)
usually suffice for practical purposes. The sort of underrelaxation can be used in all loops
(indexed by k, l and m) and applied to selected dependent variables like k, ε or νT .

Furthermore, the m-loops lend themselves to the use of an impicit underrelaxation
strategy which increases the diagonal dominance of the preconditioner [5],[18]:

a
(m)
ii := a

(m)
ii /α(m), where 0 ≤ α(m) ≤ 1. (48)

The scaling of the diagonal entries does not affect the converged solution and proves
more robust than explicit underrelaxation (47). In fact, no underrelaxation whatsoever is
needed for moderate time steps which are typically used in dynamic simulations.

7.7 Linear solvers and time step

Finally, let us briefly discuss the choice of the linear solver and of the time discretization.
In many cases, explicit schemes are rather inefficient due to severe stability limitations
which require taking impractically small time steps. For this reason, we restrict ourselves
to the implicit Crank-Nicolson and backward Euler methods which are unconditionally
stable and permit large time steps at the expense of solving nonsymmetric linear systems.
In our experience, BiCGSTAB and geometric multigrid constitute excellent solvers as long
as the parameters are properly tuned and the underlying smoothers/preconditioners are
consistent with the size of the time step. If ∆t is rather small, standard components like
Jacobi, Gauß-Seidel and SOR schemes will suffice. For large time steps, the condition
number of the matrix deteriorates and convergence may fail. This can be rectified by
resorting to an ILU factorization in conjunction with appropriate renumbering.
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8 NUMERICAL EXAMPLES

Solid body rotation. To illustrate the performance of the FEM-TVD algorithm, let us
start with a 2D benchmark problem which was proposed by LeVeque [13] to assess the
ability of the discretization scheme to cope with steep gradients and reproduce smooth
profiles with high precision. To this end, a slotted cylinder, a cone and a hump are exposed
to the incompressible velocity field v = (0.5− y, x− 0.5) and undergo a counterclockwise
rotation about the center of the square domain Ω = (0, 1) × (0, 1). Initially, each solid
body lies within a circle of radius r0 = 0.15 centered at a point with Cartesian coordinates
(x0, y0). In the rest of the domain, the numerical solution is initialized by zero.

The shapes of the three bodies can be expressed in terms of the normalized distance
function for the respective reference point (x0, y0)

r(x, y) =
1

r0

√

(x − x0)2 + (y − y0)2.

The center of the slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its geometry in
the circular region r(x, y) ≤ 1 is given by

u(x, y, 0) =

{

1 if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,

0 otherwise.

The corresponding analytical expression for the conical body reads

u(x, y, 0) = 1 − r(x, y), (x0, y0) = (0.5, 0.25),

whereas the shape and location of the hump at t = 0 are as follows

u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})], (x0, y0) = (0.25, 0.5).

After one full revolution (t = 2π) the exact solution to the pure convection equation
(1) coincides with the initial data. The numerical solution produced by the FEM-TVD
scheme is displayed in Fig. 2. It was computed on a uniform mesh of 128 × 128 bilinear
elements using the second-order accurate Crank-Nicolson time-stepping with ∆t = 10−3.
There are no nonphysical oscillations and the resolution of the three bodies is remarkably
crisp. Even the narrow bridge of the cylinder is largely preserved although some erosion
of the ridges is observed. The irrecoverable numerical diffusion due to mass lumping is
alleviated to some extent by the strongly antidiffusive superbee limiter. At the same
time, the excessive antidiffusion entails an artificial steepening of the gradients as well as
a gradual flattening of the two peaks. Other TVD limiters are more diffusive so that the
lumping error is aggravated and a pronounced smearing of the solution profiles ensues.
Many additional examples for scalar convection problems as well as for the compressible
Euler equations on both triangular and quadrilateral meshes can be found in [10],[11].
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Figure 2: Solid body rotation: FEM-TVD solution at t = 2π.

Backward facing step. Let us proceed to a three-dimensional test problem which deals
with a turbulent flow over a backward facing step at Re = 44, 000, see [15] for details. Our
objective is to validate the implementation of the k−ε model as described above. In order
to satisfy the LBB stability condition, the incompressible Navier-Stokes equations are
discretized in space using the nonconforming Q̃1/Q0 finite element pair (discontinuous

rotated trilinear approximation of the velocity and a piecewise-constant pressure) [19].
Standard Q1 elements are employed for the turbulent kinetic energy and its dissipation
rate. All convective terms are handled by the fully implicit FEM-TVD method based on
the MC limiter. The velocity-pressure coupling is enforced in the framework of a global
MPSC formulation which can be interpreted as a discrete projection method [19].

The stationary distribution of k and ε in the middle cross-section (z = 0.5) of the 3D
domain is displayed in Fig. 3. The variation of the friction coefficient

cf =
2τw

ρ∞u2
∞

=
2u2

τ

u2
∞

=
2k

u2
∞

√

Cµ

along the bottom wall is presented in Fig. 4 (left). The main recirculation length L ≈ 6.8
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Distribution of k in the cutplane z = 0.5

Distribution of ε in the cutplane z = 0.5

Figure 3: Backward facing step: stationary FEM-TVD solution, Re = 44, 000.
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Figure 4: Distribution of cf (left) and ux (right) along the bottom wall.

Figure 5: Hexahedral computational mesh for the 3D simulation.
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is in a good agreement with the numerical results reported in the literature [15]. More-
over, the horizontal velocity component (see Fig. 4, right) assumes positive values at the
bottom of the step, which means that the weak secondary vortex is captured as well. The
parameter settings for this three-dimensional simulation were as follows

δ = 0.05, cbc = 0.0025, ν0 = 10−3, l0 = 0.02, lmax = 1.0.

Standard wall functions were used on the boundary except for the inlet and outlet. The
computational mesh shown in Fig. 5 consisted of 57,344 hexahedra, which corresponds to
178,560 degrees of freedom for each velocity component and 64,073 nodes for k and ε.

9 CONCLUSIONS

A fully multidimensional flux limiter of TVD type was designed so as to render the
underlying Galerkin discretization local extremum diminishing and positivity-preserving.
This novel approach to the design of high-resolution schemes is very flexible and appli-
cable to a whole range of discretizations (both explicit and implicit time-stepping, finite
elements/differences/volumes, triangular and quadrilateral unstructured meshes). In this
paper, it was applied to incompressible flow problems in the high Reynolds number regime.
The implementation of the k − ε turbulence model was discussed. Promising simulation
results were presented for a three-dimensional benchmark problem. The extension of the
proposed algorithm to turbulent bubbly flows in gas-liquid reactors is described in [12].
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