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Abstract

A new approach to the design of flux-corrected transport (FCT) algorithms for con-
tinuous (linear/multilinear) finite element approximations of convection-dominated
transport problems is pursued. The algebraic flux correction paradigm is revisited,
and a family of nonlinear high-resolution schemes based on Zalesak’s fully multidi-
mensional flux limiter is considered. In order to reduce the cost of flux correction,
the raw antidiffusive fluxes are linearized about an auxiliary solution computed by
a high- or low-order scheme. By virtue of this linearization, the costly computa-
tion of solution-dependent correction factors is to be performed just once per time
step, and there is no need for iterative defect correction if the governing equation
is linear. A predictor-corrector algorithm is proposed as an alternative to the hy-
bridization of high- and low-order fluxes. Three FEM-FCT schemes based on the
Runge-Kutta, Crank-Nicolson, and backward Euler time-stepping are introduced,
and a detailed comparative study is performed. Numerical results are presented for
the linear convection equation and for the Euler equations of gas dynamics.
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1 Introduction

Numerical solutions to convection-dominated flow problems are frequently
corrupted by spurious oscillations or excessive numerical diffusion. The first
scheme to produce satisfactory results even in the limit of pure convection was
the flux-corrected transport (FCT) algorithm of Boris and Book [4,5].
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The basic idea behind the classical FCT methodology is as follows:

(1) Advance the solution in time by a low-order scheme that incorporates
enough numerical diffusion to suppress undershoots and overshoots.

(2) Correct the solution using antidiffusive fluxes limited in such a way that
no new maxima or minima can form and existing extrema cannot grow.

Predictor-corrector algorithms of this kind can be classified as diffusion-anti-
diffusion (DAD) methods [8]. The job of the numerical diffusion built into
the low-order scheme is to enforce the positivity constraint and provide good
phase accuracy. The limited antidiffusive correction is intended to reduce the
amplitude errors in a local extremum diminishing manner.

A more general approach to the design of high-resolution schemes is based on
blending (hybridization) of high- and low-order flux approximations. As a rule
of thumb, the former is supposed to be used in regions of smoothness and the
latter in the neighborhood of steep fronts. The weighting factor for the hybrid
flux approximation is chosen so as to enforce physical or mathematical con-
straints related to some known properties of analytical solutions (positivity,
monotonicity, nonincreasing total variation). A fully multidimensional FCT
algorithm of this type was proposed by Zalesak [37] who constrained the posi-
tive and negative antidiffusive fluxes so as to control the net increment to the
solution value at each grid point. We refer to [38] for a detailed presentation
of the underlying design philosophy and further developments.

Following the advent of FCT in the 1970s, many other high-resolution schemes
have been developed and backed by mathematical theory. Harten’s total vari-

ation diminishing (TVD) methods [13] are also based on an algebraic hy-
bridization of high- and low-order fluxes. Schemes like MUSCL, PPM, and
ENO/WENO represent higher-order extensions of the Godunov method [11]
that involve polynomial reconstruction from cell averages and slope limiting
[3]. This geometric approach has become very popular in the context of finite
difference, finite volume, and discontinuous Galerkin (DG) methods. How-
ever, slope-limited polynomial reconstruction has no natural counterpart in
the realm of continuous (linear and multilinear) finite elements, whereas ‘al-
gebraic’ flux correction of FCT or TVD type is still feasible [21].

The development of high-resolution FEM on the basis of FCT dates back to the
explicit algorithms of Parrott and Christie [30] and Löhner et al. [25,26]. Sev-
eral implicit FEM-FCT schemes were published by the author and his cowork-
ers [17,19,20,29]. The rationale for the use of an implicit time discretization
stems from the fact that the CFL stability condition becomes prohibitively
restrictive in the case of strongly nonuniform velocity fields and/or locally
refined meshes. Woodward and Colella ([35], p. 119) conclude that “adaptive
grid schemes have a major drawback – they demand an implicit treatment of
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the flow equations.” This statement reflects a widespread prejudice that im-
plicit schemes are computationally expensive. As a matter of fact, the cost of
an implicit algorithm depends on the choice of iterative methods, parameter
settings, and stopping criteria. If the time step is very small, then a good ini-
tial guess is available and 1-2 inner iterations might suffice. Thus, the cost per

time step approaches that for a conditionally stable explicit algorithm. As the
time step increases, so does the number of iterations, and more sophisticated
linear algebra tools (smoothers, preconditioners) may need to be employed.

If the antidiffusive fluxes to be limited depend on the unknown solution then
a nonlinear algebraic system has to be solved at every time step. Within the
framework of an iterative defect correction scheme [20,21], the solution of
this system is updated step-by-step, and the flux limiter is invoked at every
outer iteration. Unfortunately, many flux/defect correction steps are usually
required to obtain a fully converged solution, especially if the Courant number
is large and the contribution of the consistent mass matrix cannot be neglected.
The use of a discrete Newton method [29] makes it possible to accelerate
convergence but the computational cost per time step is still rather high as
compared to that of a fully explicit algorithm. This is unacceptable because
the time step for FCT must be relatively small for accuracy reasons.

In order to reduce the cost of implicit flux correction, it is possible to compute
the (unconstrained) high-order solution and use it to linearize the raw an-
tidiffusive flux [19,25,29]. However, an implicit computation of the high-order
predictor is expensive (or even impossible) due to the unfavorable proper-
ties of the discrete transport operator. In the present paper, we linearize the
antidiffusive flux about the end-of-step solution computed by an explicit or im-
plicit low-order scheme. This approach proves more efficient and simplifies the
design of characteristic FCT schemes for nonlinear hyperbolic systems such as
the Euler equations of gas dynamics. Furthermore, we apply limited antidiffu-
sion to the low-order solution instead of modifying the algebraic system and
solving it again. That is, we go back to the roots of FCT and adopt a predictor-
corrector strategy of diffusion-antidiffusion type. Reportedly, such algorithms
possess better phase accuracy than those based on hybridization [8].

Benchmark problems from [24,33,35] will be used to evaluate the performance
of explicit and implicit FEM-FCT schemes with flux linearization about the
low-order predictor. In the explicit case, the use of a TVD Runge-Kutta time-
stepping method [12] insures positivity preservation, whereas no such proofs
are available for the classical FEM-FCT algorithm [25,26] based on a two-step
Taylor-Galerkin method. The numerical study to be presented demonstrates
that the linearized Crank-Nicolson and backward Euler FCT schemes are 2−30
times faster than their nonlinear counterparts. Moreover, the computational
cost per time step is comparable to that for Runge-Kutta FCT, although no
attempt was made to optimize the parameter settings for the iterative solver.
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2 Design criteria

As a model problem, we consider the continuity equation for a scalar quantity
u(x, t) convected by the velocity field v(x, t) in a domain Ω with boundary Γ

∂u

∂t
+ ∇ · (vu) = 0 in Ω. (1)

Since this equation is hyperbolic, boundary conditions are required only on
the inflow part Γ− ⊂ Γ, where the velocity vector v is pointing into Ω

u(x) = g(x), ∀x ∈ Γ−. (2)

The initial condition for the problem to be solved is given as a function of x

u(x, 0) = u0(x), ∀x ∈ Ω. (3)

In many cases, the exact solution is known to be positivity-preserving, i.e.,

u0(x) ≥ 0, ∀x ∈ Ω ⇒ u(x, t) ≥ 0, ∀x ∈ Ω, ∀t > 0. (4)

This property guarantees that densities, temperatures, concentrations, and
the like remain nonnegative. A good numerical scheme should also preserve
the sign of the initial data if this constraint is dictated by the physics.

2.1 Space discretization

After the discretization in space by a finite difference, finite volume or finite
element ‘method of lines’, the solution u(x, t) is approximated by a set of
time-dependent nodal values ui(t) that correspond to pointwise values, cell
averages or coefficients of polynomial basis functions, respectively. The vector
of unknowns satisfies a system of differential-algebraic equations

MC

du

dt
= Cu, (5)

where MC = {mij} is the so-called mass matrix and C = {cij} is the matrix of
coefficients that result from the discretization of the convective term ∇· (vu).
The coefficients of C depend on the computational mesh, on the velocity, and
on the numerical method. They may also depend on the unknown solution if
the governing equation and/or the numerical scheme is nonlinear.
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In the case of a finite element discretization, a diagonal mass matrix ML can
be constructed using the technique known as row-sum mass lumping

ML = diag{mi}, mi =
∑

j

mij , ∀i, (6)

where mij are the coefficients of the consistent mass matrix MC . The lumped-
mass version of (5) is a system of ordinary differential equations

mi

dui

dt
=
∑

j

cijuj. (7)

As a rule, the coefficient matrix C is sparse, so that only nearest neighbors
make a nonzero contribution to the right-hand side of each equation.

In the course of discretization, the nonnegativity property (4) of the continuous
problem may be lost. A semi-discrete scheme is positivity-preserving if

ui(0) ≥ 0, ∀i ⇒ ui(t) ≥ 0, ∀i, ∀t > 0. (8)

A sufficient condition for discretization (7) to be positivity-preserving is

mi > 0, cij ≥ 0, ∀i, ∀j 6= i. (9)

Under this condition, the right-hand side of (7) is nonnegative if ui(t) = 0 and
uj(t) ≥ 0, ∀j 6= i. This implies that ui may only increase with time

ciiui = 0, cijuj ≥ 0, ∀j ⇒ dui

dt
≥ 0.

To avoid a common misunderstanding, we remark that the numerical solution
is not forced to be positive if ∃j 6= i such that uj(0) < 0. Positivity preservation
means that the numerical scheme cannot produce nonphysical negative values,
i.e., undershoots. Likewise, a nonpositive solution is required to preserve its
sign, so that no overshoots are generated. Source or sink terms, such as the
pressure gradient in the momentum equations, require special care because
they may reverse the sign of analytical and numerical solutions alike.

The right-hand side of equation (7) can be decomposed as follows
∑

j

cijuj =
∑

j 6=i

cij(uj − ui) + ui

∑

j

cij. (10)

This decomposition is a discrete counterpart of the vector identity

∇ · (vu) = v · ∇u + u∇ · v (11)
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as shown in the Appendix in the context of a finite element discretization.

If the coefficient matrix C has zero row sums then (7) can be written as

mi

dui

dt
=
∑

j 6=i

cij(uj − ui). (12)

A positivity-preserving scheme of this form proves local extremum diminishing

(LED). If a maximum is attained at point i then ui ≥ uj, ∀j 6= i, whence

cij(uj − ui) ≤ 0, ∀j 6= i ⇒ dui

dt
≤ 0.

Thus, a maximum cannot decrease and, similarly, a minimum cannot decrease

cij(uj − ui) ≥ 0, ∀j 6= i ⇒ dui

dt
≥ 0.

The LED criterion was introduced by Jameson [14] as a “convenient basis
for the construction of nonoscillatory schemes on both structured and un-
structured meshes.” Note that classical FCT algorithms [4,37] are based on
essentially the same design criterion (no new maxima or minima, no growth of
existing ones). In one space dimension, the LED property guarantees that the
total variation of the discrete solution is a nonincreasing function of time [14].
Thus, one-dimensional LED schemes are total variation diminishing (TVD).

If the row sums of C are nonzero, it is certainly incorrect to demand that
the discretization be LED, since the solution of the continuous problem may
develop physical maxima and minima due to compressibility effects. Thus,
only the ‘incompressible’ part (the sum over j 6= i) is required to be LED.
The remainder vanishes for ui = 0 and, thus, poses no hazard to positivity.

2.2 Time discretization

After the discretization in time, one obtains an algebraic system of the form

Aun+1 = Bun, (13)

where A = {aij} and B = {bij} are associated with the implicit and explicit
part, respectively. The superscript refers to the time level and u0

i = ui(0), ∀i.

In what follows, we assume that the underlying space discretization (7) is
positivity-preserving, i.e., the coefficients of ML and C satisfy conditions (9).
In order to guarantee that the fully discrete version (13) preserves positivity,
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an upper bound may need to be imposed on the time step ∆t = tn+1 − tn.
This bound can be derived using the concept of monotone matrices [34,36].

A regular matrix A is called monotone if A−1 ≥ 0 or, equivalently,

Au ≥ 0 ⇒ u ≥ 0. (14)

Here and below, all inequalities in which the subscripts are omitted are meant
to hold componentwise, unless mentioned otherwise.

Clearly, it is impractical to compute the inverse of A and check the sign of its
coefficients to prove that A is monotone. Instead, we will consider a special
class of monotone matrices that satisfy the following conditions

• all diagonal coefficients of A are positive

aii > 0, ∀i, (15)

• A has no positive off-diagonal entries

aij ≤ 0, ∀j 6= i, (16)

• A is strictly diagonally dominant

∑

j

aij ≥ 0, ∀i. (17)

These conditions are sufficient for A to be monotone ([31], p. 19). A monotone
matrix (A−1 ≥ 0) that satisfies (16) is called an M-matrix [34]. The M-matrix
property is widely used to prove discrete maximum principles (DMP) for finite
element discretizations of elliptic and parabolic problems [9,15].

By virtue of (14), a solution update of the form (13) is positivity-preserving
if the coefficients of A satisfy (15)–(17) and B has no negative entries, that is

bij ≥ 0, ∀i, ∀j. (18)

Example 1. Let us discretize (7) in time by the two-level θ−scheme

mi

un+1
i − un

i

∆t
= θ

∑

j

cn+1
ij un+1

j + (1 − θ)
∑

j

cn
iju

n
j , (19)

where 0 ≤ θ ≤ 1 is an implicitness parameter. This time discretization com-
bines the forward Euler method (θ = 0, first-order), Crank-Nicolson scheme
(θ = 1

2
, second-order), and backward Euler method (θ = 1, first-order).
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The system of equations (19) can be written in matrix form (13), where

A = ML − θ∆tCn+1, B = ML + (1 − θ)∆tCn. (20)

The off-diagonal coefficients of the matrices A and B are given by

aij = −θ∆tcn+1
ij , bij = (1 − θ)∆tcn

ij , ∀j 6= i (21)

and have the right sign (aij ≤ 0, bij ≥ 0) since we require that cij ≥ 0, ∀j 6= i.

Conditions (15) and (17) for the diagonal coefficient aii are satisfied if

aii = mi − θ∆tcn+1
ii > θ∆t

∑

j 6=i

cn+1
ij ≥ 0, ∀i. (22)

The diagonal coefficient bii is nonnegative under the CFL-like condition

bii = mi + (1 − θ)∆tcn
ii ≥ 0, ∀i. (23)

In summary, a discretization of the form (19) is positivity-preserving if it
satisfies (9) as well as restrictions (22)–(23) on the choice of θ and ∆t.

Example 2. Consider an explicit Runge-Kutta time-stepping method

MLu(l) =
l−1
∑

k=0

γkl

(

MLu(k) + θkl∆tC(k)u(k)
)

, (24)

u(0) = un, un+1 = u(L), l = 1, . . . , L, (25)

where the parameters γkl and θkl are required to satisfy the conditions [12]

0 ≤ γkl ≤ 1,
l−1
∑

k=0

γkl = 1, 0 ≤ θkl ≤ 1. (26)

These conditions imply that the right-hand side of (24) is a convex combination
of forward Euler predictors with ∆t replaced by θkl∆t, where θkl ∈ [0, 1]. It
follows that (24) is positivity-preserving under condition (23) with θ = 1.

Gottlieb and Shu [12] call the above family of time-stepping schemes TVD
Runge-Kutta methods because they preserve the TVD property of the un-
derlying space discretization in the 1D case. Other (non-TVD but linearly
stable) Runge-Kutta schemes can generate spurious oscillations even if the
space discretization is TVD. We refer to [12] for a numerical example.
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The optimal (in terms of the time step restriction and computational cost)
TVD Runge-Kutta method of second order is as follows [12]

MLu(1) = MLun + ∆tCnun, (27)

MLun+1 =
1

2
MLu(1) +

1

2

(

MLun + ∆tC(1)u(1)
)

. (28)

The final solution un+1 represents the average of the forward Euler predictor
u(1) and a backward Euler corrector evaluated using u(1) in place of un+1.

3 Algebraic flux correction

Conditions (15)–(18) and (22)–(23) may serve as algebraic constraints to be
imposed on the coefficients of the numerical scheme. These inequalities are
easy to check for arbitrary discretizations in space and time. In many cases,
some matrix entries have wrong sign, violating the design criteria presented in
the previous section. Since a one-dimensional LED scheme is TVD, it belongs
to the class of monotonicity-preserving methods [23] which can be at most first-
order accurate if the coefficients cij do not depend on the unknown solution.
This statement is known as the Godunov theorem [11]. Modern high-resolution
schemes based on flux hybridization of diffusion-antidiffusion (DAD) circum-
vent this order barrier using flux/slope limiters to fit coefficients to the local
solution behavior. A general framework for the design of constrained high-
order approximations was presented in [18,21]. It includes a family of implicit
FEM-FCT algorithms and can be classified as algebraic flux correction.

In this section, we explain how to enforce the positivity constraint and achieve
high resolution using an algebraic flux correction scheme. A linear or multi-
linear finite element discretization of equation (1) can be written as

MC

du

dt
= Ku, (29)

where MC = {mij} is the consistent mass matrix and K = {kij} the discrete
transport operator. The underlying variational formulation and a practical
approach to the computation of mij and kij are presented in the Appendix.

Discretization (29) is neither LED nor positivity-preserving since ∃mij 6= 0,
j 6= i and ∃kij < 0, j 6= i. In order to fix this semi-discrete scheme, let us

• approximate the consistent mass matrix MC by its lumped counterpart ML,

• eliminate all negative off-diagonal coefficients of K by adding an artificial
diffusion operator D = {dij} to be designed so that kij + dij ≥ 0, ∀j 6= i.
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In addition, we require that D be a symmetric matrix with zero row and
column sums. These properties provide consistency and mass conservation.

For every pair of nonzero off-diagonal entries kij and kji, the corresponding
coefficients of the artificial diffusion operator D are given by [17,19]

dij = max{−kij , 0,−kji} = dji, ∀j 6= i. (30)

The diagonal coefficients of D are defined so as to obtain zero row sums

dii := −
∑

j 6=i

dij. (31)

Symmetry follows from (30) and implies that the column sums of D are zero.

In practice, there is no need to assemble the global matrix D. Instead, artificial
diffusion can be built into the discrete transport operator K by setting

kii := kii − dij, kij := kij + dij,

kji := kji + dij, kjj := kjj − dij.
(32)

In one dimension, this manipulation transforms a linear finite element / central
difference approximation into the first-order upwind difference [19].

Replacing MC by ML and K by L, one obtains a low-order scheme of the form

ML

du

dt
= Lu (33)

which is positivity-preserving but overly diffusive due to its linearity. Hence,
a nonlinear antidiffusive correction is required to achieve higher accuracy.

Since both D and MC −ML are symmetric matrices with zero row and column
sums, the difference between the residuals of systems (29) and (33)

f = (ML − MC)
du

dt
− Du (34)

can be decomposed into skew-symmetric internodal fluxes as explained below.

By virtue of (31), each component of the diffusive term Du can be written as

[Du]i =
∑

j

dijuj =
∑

j 6=i

dij(uj − ui). (35)
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The error due to mass lumping (6) can be decomposed in a similar way

[MCu − MLu]i =
∑

j

mijuj − miui =
∑

j 6=i

mij(uj − ui). (36)

Due to (35)–(36) and symmetry, the error (34) admits the decomposition

fi =
∑

j 6=i

fij , fji = −fij , (37)

where fij stands for the raw antidiffusive flux from node j into node i

fij =

[

mij

d

dt
+ dij

]

(ui − uj). (38)

Since the companion flux fji is the negative of fij, what is subtracted from
one node is added to another. Every pair of fluxes can be associated with an
edge of the sparsity graph, i.e., with a pair of nonzero off-diagonal coefficients.

In the process of flux correction, every antidiffusive flux fij is multiplied by
a solution-dependent correction factor αij ∈ [0, 1] and inserted into the right-
hand side of (33). The flux-corrected semi-discrete scheme reads

ML

du

dt
= Lu + f̄ , f̄i =

∑

j 6=i

αijfij. (39)

The fluxes fij and fji = −fij must be limited using the same correction factor
αij = αji to maintain skew-symmetry and, hence, discrete conservation.

By construction, the high-order discretization (29) is recovered for αij = 1
and its low-order counterpart (33) for αij = 0. The former setting is usually
acceptable in regions of smoothness. However, some artificial diffusion may
need to be retained (0 ≤ αij < 1) in the neighborhood of steep gradients,
where spurious undershoots and overshoots are likely to occur. The job of the
flux limiter is to find a set of solution-dependent correction factors (as close to
1 as possible) such that the fully discrete scheme is positivity-preserving, at
least for sufficiently small time steps. This scheme has the potential of being
higher than first-order accurate since it is nonlinear in the choice of αij .

4 Nonlinear FEM-FCT schemes

A family of implicit FEM-FCT algorithms was developed in [17,19,20] using
the above approach to flux correction. The time discretization of (39) was
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performed by the θ−scheme which yields an algebraic system of the form

[ML − θ∆tLn+1]un+1 = [ML + (1 − θ)∆tLn]un + ∆tf̄(un+1, un). (40)

The fully discrete form of the raw antidiffusive flux (38) is as follows

fij = [mij(u
n+1
i − un+1

j ) − mij(u
n
i − un

j )]/∆t

+ θdn+1
ij (un+1

i − un+1
j ) + (1 − θ)dn

ij(u
n
i − un

j ). (41)

Interestingly enough, the contribution of the consistent mass matrix consists of
a truly antidiffusive implicit part and a diffusive explicit part. Mass diffusion of
the form (MC−ML)un has been used to construct the nonoscillatory low-order
scheme within the framework of explicit FEM-FCT algorithms [25].

Note that the antidiffusive term f̄(un+1, un) depends on the unknown solution
un+1, even for θ = 0. Therefore, algebraic system (40) is nonlinear and must
be solved iteratively. Consider a sequence of approximations {u(m)} to the
flux-corrected end-of-step solution un+1. The current iterate u(m) can be used
to update f̄ and the matrix in the left-hand side of the linear system

A(m)u(m+1) = Bnun + ∆tf̄(u(m), un), m = 0, 1, . . . (42)

where A(m) and Bn are associated with the low-order part of (40)

A(m) = ML − θ∆tL(m), Bn = ML + (1 − θ)∆tLn. (43)

By construction, the coefficients of these matrices satisfy positivity constraints
(15)–(18) if the time step ∆t is small enough for (22)–(23) to hold.

The iteration process continues until the residuals and/or relative changes
become small enough. A natural initial guess is u(0) = un but this implies
f

(0)
ij = dn

ij(u
n
i −un

j ). In our experience, the fixed-point iteration (42) converges
faster if the fluxes fij are initialized using linear extrapolation

f
(0)
ij = [mij(u

n
i − un

j ) − mij(u
n−1
i − un−1

j )]/∆t + dn
ij(u

n
i − un

j ). (44)

Every solution update of the form (42) can be split into three steps

(1) Compute an explicit low-order approximation ũ to un+1−θ by solving

MLũ = [ML + (1 − θ)∆tLn]un. (45)
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(2) Apply limited antidiffusive fluxes to the intermediate solution ũ

MLū = MLũ + ∆tf̄(u(m), un). (46)

(3) Solve the linear system for the new approximation to un+1

[

ML − θ∆tL(m)
]

u(m+1) = MLū. (47)

It is worth mentioning that the auxiliary solution ũ needs to be computed just
once per time step. For θ < 1, the computation of ũ is positivity-preserving
under the CFL-like condition (23). No time step restrictions apply to the fully
implicit backward Euler version (θ = 1) because ũ = un in this case.

Flux limiting in the second step is performed using Zalesak’s FCT algorithm
to be presented in the next section. It is designed to insure that ū ≥ 0 for
ũ ≥ 0. The last step (47) preserves positivity under condition (22) that insures
the diagonal dominance of the left-hand side matrix. In summary,

un ≥ 0 ⇒ ũ ≥ 0 ⇒ ū ≥ 0 ⇒ u(m+1) ≥ 0 (48)

provided that the time step ∆t satisfies (22) and (23) for a given θ ∈ (0, 1].

Remark. The above FEM-FCT algorithm may be used in conjunction with
the Crank-Nicolson or backward Euler time-stepping. The forward Euler ver-
sion (θ = 0) is not to be recommended because the instability of the high-order
scheme triggers aggressive flux limiting that may result in a significant distor-
tion of solution profiles. For this reason, a TVD Runge-Kutta scheme, such as
(27)–(28), should be employed if a fully explicit solution strategy is preferred.

5 Multidimensional Zalesak limiter

Flux correction may be required even if there is no threat to positivity. It
might happen that fij has the same sign as ũj− ũi. Such fluxes flatten solution
profiles instead of steepening them. As a consequence, numerical ripples may
develop within the bounds imposed on the flux-corrected solution [6].

In the original paper by Boris and Book [4] and some other FCT algorithms
[27], the sign of a ‘defective’ antidiffusive flux is reversed, and its amplitude is
limited in the usual way. This trick results in a sharp resolution of disconti-
nuities but may distort a smooth profile, which is clearly undesirable. A safer
remedy is to cancel fij if it is directed down the gradient of ũ. That is, set

fij := 0, if fij(ũj − ũi) > 0. (49)
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This optional adjustment is called ‘prelimiting’ because it must be performed
prior to the computation of the correction factors αij and flux limiting [6,37].

In the case of a finite element discretization, the contribution of the consistent
mass matrix insures better phase accuracy but it may reverse the sign of fij ,
as defined in (41), or significantly increase its magnitude. For particularly
sensitive problems, the following minmod prelimiting strategy is in order

fij := minmod{fij, dij(ũi − ũj)}. (50)

The minmod function returns zero if the two arguments have different signs.
Otherwise, the argument with the smaller magnitude is returned. The default
value of the nonnegative coefficient dij is given by equation (30).

In the context of multidimensional FCT algorithms [37], the formula for the
correction factors αij should insure that antidiffusive fluxes acting in concert

shall not cause the solution value ūi to exceed some maximum value ũmax
i or fall

below some minimum value ũmin
i . Assuming the worst-case scenario, positive

and negative fluxes should be limited separately, as proposed by Zalesak [37]

(1) Compute the sums of positive/negative antidiffusive fluxes into node i

P+
i =

∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}. (51)

(2) Compute the distance to a local extremum of the auxiliary solution

Q+
i = max{0, max

j 6=i
(ũj − ũi)}, Q−

i = min{0, min
j 6=i

(ũj − ũi)}. (52)

(3) Compute the nodal correction factors for the net increment to node i

R+
i = min

{

1,
miQ

+
i

∆tP+
i

}

, R−
i = min

{

1,
miQ

−
i

∆tP−
i

}

. (53)

(4) Limit the raw antidiffusive fluxes fij and fji in a symmetric fashion

αij =











min{R+
i , R−

j }, if fij > 0,

min{R−
i , R+

j }, otherwise.
(54)

This limiting strategy guarantees that (46) is positivity-preserving since

ũmin
i = ũi + Q−

i ≤ ūi ≤ ũi + Q+
i = ũmax

i . (55)

Note that the nodal correction factors R±
i as defined in (53) are inversely

proportional to ∆t. Hence, a larger portion of fij is retained as the time step
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is refined. This is the reason for the success of FCT in transient computations.
On the other hand, the use of large time steps results in a loss of accuracy,
and severe convergence problems are observed in the steady state limit.

A well-known problem associated with flux limiting of FCT type is clipping

[5,37]. In accordance with the FCT design philosophy, the growth of local
extrema is suppressed by setting αij = 0 whenever Q±

i = 0. As a consequence,
peaks lose a little bit of amplitude at each time step. TVD methods [13] also
reduce to a monotone low-order scheme at local extrema but some geometric
high-resolution schemes, such as ENO/WENO, are free of this drawback [3].

6 Linearization of antidiffusive fluxes

A major drawback of the nonlinear FEM-FCT algorithm is the need to re-
compute the raw antidiffusive fluxes (41) and the correction factors (54) after
every solution update. Defect correction of the form (42) keeps intermediate
solutions positivity-preserving and insures fast convergence of inner iterations
due to the M-matrix property of the low-order operator A(m). Unfortunately,
the lagged treatment of limited antidiffusion results in slow convergence of
outer iterations. At large time steps, as many as 50 sweeps may be required
to obtain a fully converged solution (see the numerical examples below). The
lumped-mass version, which corresponds to (41) with mij = 0, converges faster
but is not to be recommended for strongly time-dependent problems [29]. The
convergence of outer iterations can be accelerated using a discrete Newton
method [29] to solve (40). However, the costly assembly of the (approximate)
Jacobian operator is unlikely to pay off for transient computations that call
for the use of small time steps and, in many cases, explicit algorithms.

The cost of an implicit FEM-FCT algorithm can be significantly reduced using
a suitable linearization technique. For instance, it is possible to approximate
un+1 in formula (41) by the solution uH of the high-order system

[MC − θ∆tKn+1]uH = [MC + (1 − θ)∆tKn]un. (56)

In this case, the right-hand side of (47) needs to be assembled just once per
time step. If the continuous problem is linear, then the left-hand side matrix
does not change either, and just one iteration of the form (47) is required to
obtain the end-of-step solution un+1. Thus, the computational effort reduces
to one call of Zalesak’s limiter and two linear systems per time step [19,29]. If
the governing equation is nonlinear, so are the two systems to be solved.

In practice, it is usually much more expensive to solve (56) than (47). The main
reason is the lack of the M-matrix property which has an adverse effect on the
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convergence of linear solvers. As the time step increases, inner iterations may
fail to converge, even if advanced linear algebra tools are employed. A robust
alternative to the brute-force approach is to compute the high-order predictor
uH using fixed-point iteration (42) with αij ≡ 1. However, this strategy is
inefficient since the flux-limited version of (42) tends to converge faster [29].

Another possibility is to linearize fij about the solution of the low-order system

[ML − θ∆tLn+1]uL = [ML + (1 − θ)∆tLn]un. (57)

Unlike (57), this system can be solved efficiently but the flux-corrected solution
un+1 computed by (45)–(47) turns out too diffusive (see [32], Section 5.2).

A third approach to the design of linearized FEM-FCT schemes is to compute
a “transported and diffused” end-of-step solution uL and correct it explicitly,
as in the case of classical diffusion-antidiffusion (DAD) methods [4,8]

MLun+1 = MLuL + ∆tf̄(uL, un). (58)

The provisional solution uL can be calculated using (57) or any other time
discretization of (33), e.g., the explicit TVD Runge-Kutta method (27)–(28).

The raw antidiffusive fluxes for the flux correction step (58) are defined as

fij = mij(u̇
L
i − u̇L

j ) + dn+1
ij (uL

i − uL
j ), (59)

where u̇L denotes a finite difference approximation of the time derivative. This
quantity can be computed, e.g., using the leapfrog method as applied to (29)

u̇L = M−1
C [Kn+1uL]. (60)

Since the inverse of MC is full, we compute successive approximations to u̇L

using Richardson’s iteration preconditioned by the lumped mass matrix [7]

u̇(m+1) = u̇(m) + M−1
L [Kn+1uL − MC u̇(m)], m = 0, 1, . . . (61)

starting with u̇(0) = 0 or u̇(0) = (uL−un)/∆t. Convergence is usually very fast
(1-5 iterations) since the consistent mass matrix MC is well-conditioned.

In fact, it is not necessary to solve (60) very accurately. Even the lumped-mass
version u̇L = M−1

L [Kn+1uL] or the corresponding low-order approximation

u̇L = M−1
L [Ln+1uL] (62)
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can be used to predict the antidiffusive flux fij. A numerical study of linearized
FEM-FCT algorithms based on (60) and (62) will be presented in Section 7.

The new linearization strategy offers a number of significant advantages. First,
the low-order predictor uL can be calculated by an arbitrary (explicit or im-
plicit) time-stepping method. In the case of an implicit algorithm, iterative
solvers are fast due to the M-matrix property of the low-order operator. Sec-
ond, the leapfrog time discretization of the antidiffusive flux is second-order
accurate with respect to the time level tn+1 on which uL and fij are defined.
Third, instead of three different solutions (un, un+1, and ũ) only the smooth
predictor uL is involved in the computation of fij and αij for (58). No prelimit-
ing is required for the lumped-mass version (u̇L = 0) since fL

ij = dn+1
ij (uL

i −uL
j )

is truly antidiffusive. For u̇L 6= 0, this flux provides the upper bound for min-
mod prelimiting (50). Last but not least, all components of (59) admit dimen-
sional splitting, which makes it possible to design a characteristic FEM-FCT
algorithm for multidimensional hyperbolic systems as explained below.

7 Flux limiting for hyperbolic systems

So far we have discussed algebraic flux correction of FCT type in the context
of a scalar transport equation. In this section, we outline an extension to
(nonlinear) hyperbolic systems that can be written in the generic form

∂u

∂t
+ ∇ · F = 0, (63)

where u is the vector of state variables and F is the matrix of flux functions.

A system of particular importance is the Euler equations of gas dynamics

∂

∂t















ρ

ρv

ρE















+ ∇ ·















ρv

ρv ⊗ v + pI
(ρE + p)v















= 0. (64)

In the case of an ideal polytropic gas, the pressure p is related to the density
ρ, velocity v, and total energy E by the equation of state

p = (γ − 1)ρ

(

E − |v|2
2

)

(65)

in which γ is the constant ratio of specific heats. The default is γ = 1.4 (air).
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The group finite element approximation [10] of (63) can be represented in
terms of discretized derivatives cd

ij with respect to xd (see Appendix)

∑

j

mij

duj

dt
=
∑

d

∑

j 6=i

cd
ij(F

d
j − Fd

i ), (66)

where Fd
i is the flux in coordinate direction xd. In the case of the Euler equa-

tions, ui = [ρi, (ρv)i, (ρE)i], and there exists a matrix A
d
ij such that [23]

cd
ij(F

d
j − Fd

i ) = A
d
ij(uj − ui). (67)

This matrix represents an averaged Jacobian operator and is diagonalizable

A
d
ij = R

d
ijΛ

d
ij [R

d
ij ]

−1, (68)

where Λ
d
ij = diag{λd

k} is the matrix of eigenvalues and Rij is the matrix of
right eigenvectors. A generalization of (30) suggests that artificial viscosity be
designed so as to cancel the contribution of negative eigenvalues [20,22]

D
d
ij = R

d
ij |Λd

ij|[Rd]−1. (69)

A cheaper alternative and a usable preconditioner is scalar dissipation

D
d
ij = max

k
|λd

k|I, (70)

where I is the identity matrix of the same size as A
d
ij. In this case, the diffusion

coefficient is the same for all variables. The resulting low-order scheme

mi

dui

dt
=
∑

d

∑

j 6=i

[Ad
ij + D

d
ij](uj − ui) (71)

is more diffusive than that based on (69) but this is acceptable (or even desir-
able [38]) because excessive artificial diffusion needs to be removed anyway.

Unfortunately, the nonlinearity of the Euler equations makes it impossible to
prove that (71) is local extremum diminishing and/or positivity-preserving.
However, in most cases it is sufficiently dissipative to suppress nonphysical
oscillations in the neighborhood of shocks and contact discontinuities.

At the semi-discrete level, the raw antidiffusive flux is defined as follows

fij =

[

mijI
d

dt
+
∑

d

D
d
ij

]

(ui − uj). (72)
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Flux limiting for systems of equations is a nontrivial task. It can be per-
formed in terms of conservative, primitive or characteristic variables. The use
of conservative or primitive variables requires a suitable synchronization of
correction factors [25]. In other words, the same coefficient αij should be ap-
plied to all components of fij . A general algorithm for ‘limiting any set of
quantities’ can be found in [27]. Zalesak [38] was the first to design a ‘fail-safe’
characteristic FCT limiter. In the rest of this section, we extend his ideas to
explicit and implicit FEM-FCT algorithms with flux linearization.

As before, the first step is to compute a low-order predictor uL from a fully
discrete version of (71). In the case of implicit time-stepping, the nonlinear
algebraic system can be solved, e.g., by the defect correction scheme described
in [20,22]. The next step is to evaluate the raw antidiffusive fluxes

f
d
ij = mij(u̇

d
i − u̇d

j ) + D
d
ij(u

L
i − uL

j ), (73)

where u̇d
i approximates the time rate of change due to fluxes in direction xd.

This quantity can be calculated, e.g., by the low-order scheme as in (62)

u̇d
i =

1

mi

∑

j 6=i

[Ad
ij + D

d
ij ](u

L
j − uL

i ). (74)

For each space direction xd, factorization (68) can be used to define a set of
local characteristic variables for flux correction [22,38]. Every sweep of the
characteristic FCT limiter consists of the following algorithmic steps, where
all operations on boldface quantities are performed componentwise

(1) Reset auxiliary arrays for Zalesak’s limiter: P±
i ≡ 0, Q±

i ≡ 0, R±
i ≡ 0.

(2) In a loop over edges {i, j}, transform the solution differences and the raw
antidiffusive fluxes to the characteristic variables for direction xd

∆wd
ij = [Rd

ij]
−1(uL

j − uL
i ), gd

ij = [Rd
ij ]

−1
f
d
ij . (75)

(3) Perform the optional prelimiting of the transformed fluxes and update

P±
i := P±

i + max
min

{0, gd
ij}, P±

j := P±
j + max

min
{0,−gd

ij}. (76)

Q±
i := max

min

{

Q±
i , ∆wd

ij

}

, Q±
j := max

min

{

Q±
j ,−∆wd

ij

}

. (77)

(4) Compute the nodal correction factors for positive and negative increments

R+
i := min

{

1,
miQ

+
i

∆tP+
i

}

, R−
i := min

{

1,
miQ

−
i

∆tP−
i

}

. (78)
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(5) Limit the antidiffusive fluxes and transform to the conservative variables

f̄d
ij = R

d
ijḡ

d
ij , ḡd

ij =











min{R+
i ,R−

j }gd
ij, if gd

ij > 0,

min{R+
j ,R−

i }gd
ij, otherwise.

(79)

(6) Check the result and set f̄d
ij := 0 if nonphysical behavior is detected [38].

(7) Apply the sum of limited antidiffusive fluxes to the low-order predictor

uL
i := uL

i +
1

mi

∑

j 6=i

f̄d
ij . (80)

Further information regarding the implementation of characteristic flux lim-
iters and boundary conditions for the Euler equations can be found in [20,22].

8 Numerical examples

A properly designed numerical algorithm should be capable of resolving both
smooth and discontinuous profiles without excessive smoothing or steepening.
To assess the accuracy and efficiency of our FEM-FCT schemes, we apply
them to several benchmark problems [24,33,35] that we feel are representative
and challenging enough to predict how the algorithms under investigation
would behave in real-life applications. Analytical and/or numerical solutions
are available for each test, which makes it possible to compare the results to
those produced by FCT and other high-resolution schemes [21,24,35,38].

In the comparative study that follows, we consider FEM-FCT algorithms
based on the TVD Runge-Kutta, Crank-Nicolson, and backward Euler time-
stepping. These algorithms will be denoted by RK-FCT-L, CN-FCT-L, and
BE-FCT-L, respectively. The last digit refers to the type of linearization. The
nonlinear version, as presented in Section 4, and its linearization about the
solution uH of (56) correspond to L=1 and L=2, respectively. Both of these
algorithms are based on the θ−scheme, so RK-FCT-1 and RK-FCT-2 are not
available. The new approach (59) to flux linearization is denoted by L=3 if
u̇L is computed from (60) and by L=4 if (62) is employed. In the former case,
the mass matrix MC is ‘inverted’ using 5 iterations of the form (61). However,
almost the same accuracy can be achieved by the three-pass algorithm [7].

By default, systems (47), (56) and (57) are solved by the Gauss-Seidel method.
BiCGSTAB with ILU preconditioning and Cuthill-McKee renumbering is in-
voked to speed up convergence at large time steps. All computations are per-
formed on a laptop computer using the Intel Fortran Compiler for Linux.
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To quantify the difference between the (analytical or numerical) reference
solution u and its approximation uh, we introduce the discrete error norms

E1 =
∑

i

mi|u(xi, yi) − ui| ≈
∫

Ω

|u − uh| dx = ||u − uh||1, (81)

E2 =
√

∑

i

mi|u(xi, yi) − ui|2 ≈
√

√

√

√

∫

Ω

|u − uh|2 dx = ||u − uh||2, (82)

where mi are the diagonal coefficients of the lumped mass matrix ML. The
goal of the numerical study to be presented was to investigate how the above
errors and the CPU times for explicit and implicit FEM-FCT schemes depend
on the mesh size h, time step ∆t, and linearization technique (if any).

8.1 Solid body rotation

A standard test problem for high-resolution schemes as applied to the lin-
ear convection equation (1) in 2D is solid body rotation [24,37]. Consider the
computational domain Ω = (0, 1)× (0, 1) and the incompressible velocity field

v(x, y) = (0.5 − y, x− 0.5) (83)

which corresponds to a counterclockwise rotation about the center (0.5, 0.5)
of Ω. After each full revolution (t = 2πk), the exact solution of (1) coincides
with the initial data as defined in [23] and depicted in Fig. 1. The challenge
of this test is to preserve the shape of the rotating bodies as far as possible.

At t = 0, each solid body lies within a circle of radius r0 = 0.15 centered
at a point with Cartesian coordinates (x0, y0). In the rest of the domain,
the solution is initialized by zero, and the homogeneous Dirichlet boundary
condition g = 0 is prescribed at the inlets in accordance with (2).

The initial shapes of the three bodies can be expressed in terms of a normalized
distance to the corresponding reference point (x0, y0) in Ω

r(x, y) =
1

r0

√

(x − x0)2 + (y − y0)2.
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Fig. 1. Initial data / exact solution at the final time.

The formula that describes the shape of the slotted cylinder in the circle
r(x, y) ≤ 1 associated with (x0, y0) = (0.5, 0.75) is as follows

u(x, y, 0) =











1 if |x − x0| ≥ 0.025 ∨ y ≥ 0.85,

0 otherwise.

The cone is centered at (x0, y0) = (0.5, 0.25) and its geometry is given by

u(x, y, 0) = 1 − r(x, y).

The initial location and shape of the smooth hump are: (x0, y0) = (0.25, 0.5),

u(x, y, 0) = 0.25[1 + cos(π min {r(x, y), 1})].

The numerical results produced by the four Crank-Nicolson FEM-FCT schemes
after one full revolution (t = 2π) are presented in Fig. 2. The pictures display
the shapes of the numerical solutions computed on a uniform quadrilateral
mesh using 128× 128 bilinear elements and the time step ∆t = 10−3. Prelim-
iting of the form (49) was invoked in CN-FCT-1 through CN-FCT-3, whereas
CN-FCT-4 was found to produce ripple-free solutions without prelimiting.

The diagrams in Fig. 3 depict the convergence history for (81) and the total
CPU time as a function of the mesh size h. It can be seen that the linearized
schemes CN-FCT-2 and CN-FCT-3 are almost as accurate as CN-FCT-1. The
norms of the error for CN-FCT-4 are larger on all meshes but decrease at a
faster rate. Due to the presence of a discontinuous profile, none of the four
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(a) CN-FCT-1 (b) CN-FCT-2

(c) CN-FCT-3 (d) CN-FCT-4

Fig. 2. Solid body rotation, CN-FCT schemes, Q1 elements, ∆t = 10−3, t = 2π.
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Fig. 3. Solid body rotation, convergence history and CPU times for CN-FCT.

schemes exhibits the theoretically possible second order of convergence. This
slowdown is due to flux limiting and (mostly) due to the fact that a priori

error estimates for the underlying high-order discretization are only valid for
smooth solutions. A comparison of the CPU times illustrates the gain of ef-
ficiency offered by the new algorithms CN-FCT-3 and CN-FCT-4. The cost
of CN-FCT-2 is significantly higher and even exceeds that for CN-FCT-1 on
the coarsest mesh due to the slow convergence of the linear solver for the ill-

23



conditioned high-order system (56). In the case of CN-FCT-1, flux/defect cor-
rection of the form (42) was performed as long as required to make the residual
of (40) scaled by the norm of the right-hand side smaller than ǫ = 10−5.

The results in Tables 1–3 illustrate the performance of different time-stepping
methods and linearization techniques. The errors and CPU times are measured
for the numerical solutions computed on the finest mesh (h = 1/128). The
entry in the last column is the average number of outer iterations (42) required
to reach the above tolerance for CN-FCT-1. In the case of linearized FCT
schemes, there is no need for iterative defect correction, so NIT=1. For time
steps as small as ∆t = 10−3, the second-order accurate RK-FCT and CN-FCT
schemes produce essentially the same results, whereas the errors for the first-
order accurate BE-FCT version are approximately twice as large (see Table 1).
It can be seen that the new approach to flux linearization reduces the difference
between the cost (per time step) of explicit and implicit FEM-FCT algorithms.
A further gain of efficiency can be achieved using preconditioned Richardson’s
iteration of the form (61) to update the solution in a fully explicit way.

Table 2 demonstrates that the errors for BE-FCT become disproportionately
large as compared to those for RK-FCT and CN-FCT as we increase ∆t by a
factor of 10. Since the backward Euler method is equivalent to the first-order
backward difference approximation of the time derivative, it turns out overly
diffusive at large time steps. The main advantage of BE-FCT is its uncondi-
tional stability and positivity preservation for arbitrary time steps. The poor
accuracy of the results in Table 3 indicates that no time-accurate solutions can
be obtained with time steps that violate the CFL stability condition in the
whole domain. However, if the Courant number ν = |v|∆t

h
exceeds unity only

in small subdomains, where the velocity is unusually large and/or adaptive
mesh refinement is performed, then a local loss of accuracy is acceptable if the
use of large time steps would make the computation much more efficient.

Table 1
Solid body rotation: results for h = 1/128, ∆t = 10−3, t = 2π.

E1 E2 CPU NIT

RK-FCT-3 1.1754e-2 5.9882e-2 127 1.0

RK-FCT-4 2.1913e-2 8.3066e-2 84 1.0

CN-FCT-1 1.0622e-2 5.6411e-2 343 3.5

CN-FCT-2 1.0980e-2 5.7370e-2 263 1.0

CN-FCT-3 1.1729e-2 5.9818e-2 156 1.0

CN-FCT-4 2.1902e-2 8.3045e-2 116 1.0

BE-FCT-1 1.9818e-2 7.5392e-2 280 2.5

BE-FCT-2 2.0069e-2 7.5862e-2 255 1.0

BE-FCT-3 2.1131e-2 7.9686e-2 155 1.0

BE-FCT-4 2.7443e-2 9.2886e-2 110 1.0
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Table 2
Solid body rotation: results for h = 1/128, ∆t = 10−2, t = 2π.

E1 E2 CPU NIT

RK-FCT-3 1.8289e-2 7.5075e-2 13 1.0

RK-FCT-4 2.4417e-2 8.8419e-2 8 1.0

CN-FCT-1 1.2867e-2 6.2870e-2 173 19.7

CN-FCT-2 1.3552e-2 6.5033e-2 27 1.0

CN-FCT-3 1.7018e-2 7.3535e-2 17 1.0

CN-FCT-4 2.3676e-2 8.7242e-2 13 1.0

BE-FCT-1 5.5943e-2 1.3651e-1 155 15.9

BE-FCT-2 5.6119e-2 1.3675e-1 36 1.0

BE-FCT-3 5.7247e-2 1.3966e-1 17 1.0

BE-FCT-4 5.8198e-2 1.4102e-1 13 1.0

Table 3
Solid body rotation: results for h = 1/128, ∆t = 10−1, t = 2π.

E1 E2 CPU NIT

CN-FCT-1 7.3711e-2 1.6587e-1 54 35.0

BE-FCT-1 1.0519e-1 2.0244e-1 92 51.3

BE-FCT-3 1.0504e-1 2.0250e-1 4 1.0

BE-FCT-4 1.0506e-1 2.0251e-1 3 1.0

No results for RK-FCT and linearized CN-FCT are presented in Table 3 since
these schemes turn out to be unstable for the time step ∆t = 10−1 that exceeds
the upper bound imposed by the CFL-like condition (23). CN-FCT-1 remains
stable and more accurate than BE-FCT but the solution is not guaranteed
to be positivity-preserving. The results for BE-FCT-2 are missing due to the
failure of the BiCGSTAB solver as applied to the high-order system (56). At
large time steps, the cost of a nonlinear FEM-FCT algorithm becomes very
high due to slow convergence of inner and outer iterations. In the case of BE-
FCT-1, more than 50 flux/defection steps are required to advance the solution
from one time level to the next in Table 3. Flux linearization makes it possible
to obtain the same results 30 times faster using BE-FCT-3 or BE-FCT-4.

8.2 Swirling flow

In the next test, we consider the same equation, the same domain, and the
same initial data as before but the velocity field is given by the formula [24]

v(x, y, t) = (sin2(πx) sin(2πy)g(t),− sin2(πy) sin(2πx)g(t)), (84)
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where g(t) = cos(πt/T ) on the time interval 0 ≤ t ≤ T . This time-dependent
velocity field describes a swirling deformation flow that provides a more severe
test than solid body rotation with a constant angular velocity.

Since v = (0, 0) on the boundaries of the unit square, no boundary conditions
need to be prescribed in the case of pure convection. The function g(t) is
designed so that the flow slows down and eventually reverses its direction
in such a way that the initial profile is recovered at time t = T . Thus, the
analytical solution at t = T is available and reproduces the configuration
depicted in Fig. 1 although the flow field has a fairly complicated structure.

The numerical solutions in Fig. 4–5 were computed by the four CN-FCT
schemes using linear finite elements and ∆t = 10−3. The underlying trian-
gular mesh has the same vertices and twice as many cells as its quadrilateral
counterpart with h = 1/128. The snapshots presented in Fig. 4 correspond to
the time of maximum deformation t = T/2 and those in Fig. 5 to the final
time T = 1.5. Although the solution undergoes significant deformations in the
course of simulation, the shape of the initial data is recovered fairly well. As in
the case of solid body rotation, erosion of the slotted cylinder is stronger for
CN-FCT-4 than for the other three schemes. On the other hand, the artificial

(a) CN-FCT-1 (b) CN-FCT-2

(c) CN-FCT-3 (d) CN-FCT-4

Fig. 4. Swirling deformation, CN-FCT schemes, P1 elements, ∆t = 10−3, t = 0.75.
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(a) CN-FCT-1 (b) CN-FCT-2

(c) CN-FCT-3 (d) CN-FCT-4

Fig. 5. Swirling deformation, CN-FCT schemes, P1 elements, ∆t = 10−3, t = 1.5.

steepening of smooth profiles is alleviated since the linearized antidiffusive flux
is smooth and does not need to be prelimited, at least in this particular test.

The error norms and CPU times for all FEM-FCT algorithms as applied to
swirling flow are presented in Tables 4–6. Since the velocity field is time-
dependent, the coefficients kij and dij need to be updated after each time
step. An efficient approach to matrix update for time-dependent problems is
described in the Appendix. Since matrix assembly claims a larger share of the
CPU time, the difference between the cost of explicit and implicit schemes is
smaller than in the case of a stationary velocity field. In Table 4, the differ-
ences between the CPU times for RK-FCT-4, CN-FCT-4, and BE-FCT-4 are
marginal since the convergence of the Gauss-Seidel solver is very fast.

At intermediate and large time steps, the convergence of implicit solvers slows
down but this is the price to be paid for robustness. Tables 5–6 summarize
the results for ∆t = 10−2 and ∆t = 10−3. Both explicit RK-FCT algorithms
turned out unstable, and the linear solver for BE-FCT-2 failed in the latter
test. Again, the new approach to flux linearization proved very efficient as
compared to the nonlinear version and the one based on a high-order predictor.
The associated loss of accuracy is acceptable, especially in the case of BE-FCT.
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Table 4
Swirling deformation: results for h = 1/128, ∆t = 10−3, t = 1.5.

E1 E2 CPU NIT

RK-FCT-3 1.4440e-2 6.6023e-2 45 1.0

RK-FCT-4 2.4558e-2 8.9130e-2 36 1.0

CN-FCT-1 1.2043e-2 5.8858e-2 122 5.6

CN-FCT-2 1.3049e-2 6.1370e-2 60 1.0

CN-FCT-3 1.4300e-2 6.5626e-2 50 1.0

CN-FCT-4 2.4493e-2 8.8983e-2 42 1.0

BE-FCT-1 2.4606e-2 8.4485e-2 112 4.8

BE-FCT-2 2.5185e-2 8.5713e-2 60 1.0

BE-FCT-3 2.5334e-2 8.5644e-2 49 1.0

BE-FCT-4 3.1814e-2 1.0039e-1 41 1.0

Table 5
Swirling deformation: results for h = 1/128, ∆t = 10−2, t = 1.5.

E1 E2 CPU NIT

CN-FCT-1 2.2380e-2 8.1277e-2 38 17.9

CN-FCT-2 2.3670e-2 8.4051e-2 10 1.0

CN-FCT-3 2.4119e-2 8.6538e-2 6 1.0

CN-FCT-4 2.8809e-2 9.6268e-2 5 1.0

BE-FCT-1 6.4479e-2 1.4867e-1 53 21.1

BE-FCT-2 6.4621e-2 1.4885e-1 11 1.0

BE-FCT-3 6.3877e-2 1.4760e-1 6 1.0

BE-FCT-4 6.4827e-2 1.4907e-1 5 1.0

Table 6
Swirling deformation: results for h = 1/128, ∆t = 10−1, t = 1.5.

E1 E2 CPU NIT

CN-FCT-1 6.3013e-2 1.3422e-1 12 24.1

CN-FCT-3 6.4958e-2 1.3829e-1 1 1.0

CN-FCT-4 6.3189e-2 1.3556e-1 1 1.0

BE-FCT-1 1.1173e-1 2.0886e-1 11 17.7

BE-FCT-3 1.1155e-1 2.0870e-1 1 1.0

BE-FCT-4 1.1155e-1 2.0870e-1 1 1.0

8.3 Shock tube problem

Sod’s shock tube problem [33] has become a standard benchmark for high-
resolution schemes, as applied to the one-dimensional Euler equations. The
physical process to be simulated is the flow of gas in a tube initially separated
by a membrane into two sections. Reflective boundary conditions are pre-
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scribed at the endpoints of Ω = (0, 1). The initial condition for the nonlinear
Riemann problem to be solved is given in terms of the primitive variables
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where the subscripts refer to the subdomains ΩL = (0, 0.5) and ΩR = (0.5.1).

The solid lines in Fig. 6 correspond to a snapshot of the analytical solution at
t = 0.231. This solution can be constructed, for example, using the technique
described by Anderson [1]. It features a shock wave, a contact discontinuity,
and a rarefaction wave. The presented numerical solutions are computed us-
ing CN-FCT-1 with 100 linear finite elements ∆t = 10−3. The dotted lines
correspond to the low-order approximation based on (71) and (69) or (70). It
can be seen that scalar dissipation (SD, left diagram) produces a more diffu-
sive solution than tensor dissipation (TD, right diagram) but the differences
between their flux-limited counterparts (bullet-marked solid lines) are not so
pronounced. The error norms for all solutions are presented in Table 7.

Flux correction was performed in terms of local characteristic variables by
the algorithm outlined in Section 7. In this particular test, the prelimiting
of raw antidiffusive fluxes turned out to be unnecessary and was deactivated.
The nonlinear algebraic system associated with the Crank-Nicolson time dis-
cretization of (71) was solved using the defect correction method with a di-
agonal preconditioner. At time steps as small as ∆t = 10−3, one iteration per
time step was found to be sufficient. Thus, implicit schemes have the potential
of being as efficient as explicit ones even if the problem is nonlinear and the
use of extremely small time steps is dictated by accuracy considerations.

(a) scalar dissipation
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(b) tensor dissipation
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Fig. 6. Shock tube: exact solution (solid line), low-order solution (dotted line), and
CN-FCT solution (bullet-marked line) for h = 10−2, ∆t = 10−3, t = 0.231.
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Table 7
Shock tube problem: results for h = 10−2, ∆t = 10−3, t = 0.231.

ρ v p

E1 E2 E1 E2 E1 E2

SD-low 2.8971e-2 1.4362e-3 5.6592e-2 1.2112e-2 2.6554e-2 1.6126e-3

SD-lim 7.5274e-3 2.4005e-4 1.4516e-2 3.8550e-3 6.2166e-3 2.0844e-4

TD-low 2.2876e-2 9.8709e-4 4.6541e-2 1.1114e-2 2.1127e-2 1.1497e-3

TD-lim 7.0087e-3 2.1452e-4 1.4242e-2 3.8345e-3 6.3035e-3 2.1531e-4

8.4 Blast wave problem

The blast wave problem of Woodward and Colella [35] is a far more challenging
test. The flow of a gamma-law gas, with γ = 1.4, takes place between reflecting
walls, and the initial condition consists of the three constant states
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associated with ΩL = (0, 0.1), ΩM = (0.1, 0.9), and ΩR = (0.9, 1), respectively.

The above initial conditions give rise to two strong blast waves which eventu-
ally collide. The flow evolution involves complex interactions of shocks, rarefac-
tions, and contact discontinuities in a small region of space. These interactions
are particularly difficult to capture using FCT because of its tendency to clip
peaks and distort steep fronts. The latter shortcoming is called terracing [5]. It
can be alleviated by means of prelimiting and/or by increasing the phase accu-
racy of the high-order scheme [38]. In the FEM-FCT context, this means that
the contribution of the consistent mass matrix should be included (u̇L 6= 0).

Figure 7 displays the density distribution at the final time t = 0.038. The
solid line is the reference solution computed by the characteristic CN-FCT-1
algorithm with minmod prelimiting (50) using h = 10−4 and ∆t = 10−7. The
grid convergence history for CN-FCT-1 is presented in Table 8. A closer look at
the numerical solutions in Fig. 7a and Fig. 7c illustrates the detrimental effect
of mass lumping. We invite the reader to compare the results in Fig. 7a–b to
those produced by the classical ETBFCT scheme in the paper by Woodward
and Colella [35]. The numerical study performed by Zalesak [38] indicates that
the accuracy of a characteristic FCT algorithm, as applied to the blast wave
problem, increases with the resolving power of the high-order scheme.
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(d) lumped mass, 1200 cells
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Fig. 7. Blast wave problem: density distribution at t = 0.038. Reference solution
(solid line) and CN-FCT solutions on coarser grids (bullet markers).

Table 8
Blast wave problem: results for ∆t = 10−6, t = 0.038.

ρ v p

h E1 E2 E1 E2 E1 E2

1/200 1.8532e-1 2.1680e-1 4.0423e-1 1.6745e00 4.7604e00 1.7208e+2

1/400 1.1177e-1 9.9591e-2 2.3738e-1 9.8402e-1 2.8402e00 9.1402e+1

1/800 6.2420e-2 3.9024e-2 1.2592e-1 4.5909e-1 1.6313e00 4.4893e+1

1/1600 3.4197e-2 1.6692e-2 6.1241e-2 1.9446e-2 8.9095e-1 2.4748e+1

8.5 Double Mach reflection

Another challenging test problem was devised by Woodward and Colella [35]
for the two-dimensional Euler equations. The flow pattern involves a Mach 10
shock in air (γ = 1.4) which initially makes a 60◦ angle with a reflecting wall.
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The computational domain for the double Mach reflection problem is the
rectangle Ω = (0, 4)× (0, 1). The following pre-shock and post-shock values of
the flow variables are used to define the initial and boundary conditions [2]
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Initially, the post-shock values (subscript L) are prescribed in the subdomain
ΩL = {(x, y) | x < 1/6 + y/

√
3} and the pre-shock values (subscript R) in

ΩR = Ω\ΩL. The reflecting wall corresponds to 1/6 ≤ x ≤ 4 and y = 0. No
boundary conditions are required along the line x = 4. On the rest of the
boundary, the post-shock conditions are assigned for x < 1/6 + (1 + 20t)/

√
3

and the pre-shock conditions elsewhere [2]. The so-defined values along the
top boundary describe the exact motion of the initial Mach 10 shock.

The reflecting boundary conditions were implemented by invoking a Riemann
solver as applied to the set of boundary values and the corresponding ghost
state in which the sign of the normal velocity component is reversed [16]. This
implementation technique insures that no flow penetrates a solid wall.

The numerical solutions in Fig. 8 depict the density distribution in the rect-
angle (0, 3)× (0, 1) at t = 0.02. They were computed using a bilinear finite el-
ement approximation and Crank-Nicolson time-stepping. As before, the char-
acteristic FEM-FCT algorithm was equipped with minmod prelimiting. The
antidiffusive correction of the low-order solution yields a significant gain of
accuracy without generating ‘staircase structures’ and other peculiar features
that were observed by Woodward and Colella [35] in the solutions produced by
ETBFCT. Similar results were obtained by Zalesak [38] using characteristic
FCT with independent or sequential limiting of the x− and y−directed fluxes.

9 Conclusions

In the present paper, we addressed the design of implicit and implicit FEM-
FCT schemes for transient flow phenomena dominated by convective trans-
port. The main highlights were a new approach to linearization of raw antidif-
fusive fluxes and its extension to finite element discretizations of the compress-
ible Euler equations. The predictor-corrector strategy of diffusion-antidiffusion
type eliminates the need for iterative flux correction and can be combined with
an arbitrary time stepping method that preserves the positivity of the under-
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(a) FEM-FCT scheme, 16,384 Q1 elements

(b) FEM-FCT scheme, 65,536 Q1 elements

(c) low-order scheme, 16,384 Q1 elements

(d) low-order scheme, 65,536 Q1 elements

Fig. 8. Double Mach reflection: density distribution at t = 0.02.
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lying space discretization, at least for sufficiently small time steps. The new
FEM-FCT schemes based on the Runge-Kutta, Crank-Nicolson, and backward
Euler time-stepping prove more robust and/or efficient than their predecessors
proposed in [19–21]. Since flux correction needs to be performed just once per
time step, an implicit approach is likely to pay off, for example, in the case of
strongly varying velocity fields and locally refined unstructured meshes.

As always, the optimal choice of the time-stepping method, of the iterative
solver, and of the limiting strategy is highly problem-dependent. Algebraic
flux correction of FCT type is to be recommended for strongly time-dependent
problems, whereas multidimensional flux limiters of TVD type are available
for steady-state computations [21]. Further research is required to circumvent
the first-order accuracy of the unconditionally positivity-preserving backward
Euler method and CFL-like conditions that apply to second-order time dis-
cretizations. This can be accomplished, e.g., by using a local θ-scheme [32] or
by blending a backward Euler predictor with a Crank-Nicolson corrector.
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[26] R. Löhner, K. Morgan, M. Vahdati, J. P. Boris, D. L. Book, FEM-FCT:
combining unstructured grids with high resolution, Commun. Appl. Numer.
Methods 4 (1988) 717–729.
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A Finite element discretization

The weak form of the continuity equation (1) is derived by integrating the
weighted residual over the domain Ω and setting the result equal to zero

∫

Ω

w

[

∂u

∂t
+ ∇ · (vu)

]

dx = 0, ∀w. (1)

The finite element approach to discretization of this variational problem is
based on the following representation of the approximate solution

u ≈
∑

j

ujϕj, (2)

where ϕj denotes a piecewise-polynomial basis function with compact support.

It is convenient to approximate the flux function f(u) = vu in the same way

f(u) ≈
∑

j

fj ϕj. (3)

This approach to approximation of (possibly nonlinear) flux functions was
proposed by Fletcher [10] who called it the group finite element formulation.

Substitution of (2)–(3) into (1) with w = ϕi yields a system of equations

∑

j





∫

Ω

ϕiϕj dx





duj

dt
+
∑

j





∫

Ω

ϕivj · ∇ϕj dx



uj = 0 (4)

which can be written in matrix form as follows

MC

du

dt
= Ku. (5)

The coefficients of the matrices MC = {mij} and K = {kij} are given by

mij =
∫

Ω

ϕiϕj dx, kij = −vj · cij, (6)

where the coefficients cij correspond to the discretized space derivatives

cij =
∫

Ω

ϕi∇ϕj dx. (7)
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If the mesh is fixed, then mij and cij need to be evaluated just once during the
initialization step. The coefficients kij depend on the velocity field which may
be time-dependent. In this case, the matrix K can be updated in an efficient
way using the above definition of kij instead of costly numerical integration.

The coefficients cij can also be used to approximate derived quantities, e.g.,

[∇ · v]i ≈
1

mi

∑

j

vj · cij = − 1

mi

∑

j

kij, (8)

where mi =
∑

j mij is a diagonal entry of the lumped mass matrix. This
approximation technique corresponds to a lumped-mass L2-projection [28].

Since the row sums of K are related to the discrete divergence of the velocity
field, it is instructive to consider the following decomposition of Ku

∑

j

kijuj =
∑

j 6=i

kij(uj − ui) + ui

∑

j

kij . (9)

Due to (8), the approximations associated with each term are as follows

∑

j

kijuj ≈ −mi[∇ · (vu)]i, (10)

∑

j 6=i

kij(uj − ui) ≈ −mi[v · ∇u]i, (11)

ui

∑

j

kij ≈ −miui[∇ · v]i. (12)

If the matrix K has zero row sums, then the ‘compressible’ part (12) vanishes
and Ku = K(u + c) for any additive constant c. Artificial diffusion does not
affect this property since discrete diffusion operators have zero row sums.
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