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Abstract: An approximate Riemann solver for the Aw-Rascle traffic
flow model and the extension of Greenberg is constructed on the alge-
braic level. A discrete diffusion operator is added to the (oscillatory)
high-order finite difference/element discretization to enforce a vecto-
rial LED criterion. This yields a nonoscillatory but diffusive low-order
scheme. To increase the accuracy an antidiffusion operator is added.
The amount of antidiffusion is controlled using TVD flux limiters.
Practical algorithms are presented for the derivation of the low-order
scheme, construction of the antidiffusion operator, and the solution of
the arising nonlinear algebraic system. Another option considered in
this paper is based on a segregated treatment of the equations at hand.
It is shown that scalar upwinding/limiting techniques are inappropri-
ate, since even the low-order scheme produces oscillatory solutions to
the coupled AR model, although it is monotone for each single equa-
tion. Hence, the strongly coupled algorithm developed in this paper
yields superior results, as demonstrated by numerical examples.

1 Introduction

Various macroscopic traffic flow models have been proposed in the literature.
Usually such models consist of one or two partial differential equations. The



guantities of interest are the density and velocity, which depend on space and
time.

The developement of macroscopic traffic flow models started with the work of
Lighthill, Whitham and Richards [28], [30]. They published a model of the form

dp + 9x(V(p)p) =0, 1

which is simply the continuity equation with a nonlinear car velocity V depen-
ding on the density p.
Another model is proposed by Payne [27] and Whitham [29]. It contains a veloc-
ity equation and reads

oo +dx(up) = 0 )

2
c
OtU + UdyU + ;Oaxp = - (3)
with constants T and cg.

Both models are unable to describe traffic flow precisely. The first one yields a
very strong coupling between the density and velocity and the second one ad-
mits waves traveling faster than the cars [32].

In 2000 Aw and Rascle proposed a model (AR model), which avoids the draw-
backs of the above mentioned models. It is given by

dp +9x(up) = 0 (4)
ot(u+ p(p)) + udx(u+p(p)) = 0, (5)

where the 'pressure’ p satisfies the equation of state

p(e) =p", >0 (6)



To describe traffic flow more precisely Greenberg [17] added a relaxation term,
which corresponds to a 'velocity maximization’, to the velocity equation of the
AR model. He replaced the velocity equation by

u—v

dt(U—V) +udx(u—vVv) =— 5

()

where v. = v(p) is a maximum velocity depending on the density such that
F(p) = pv(p) is concave and ¢ is a constant.

In this paper we present an approximate Riemann solver with algebraic flux
correction of TVD type for the AR model and the extension of Greenberg. It is
common knowledge, that the discretization of hyperbolic equations or systems
of such equations induces numerical oscillations. The main task is to supress this
wiggles. It turns out, that the techniques for scalar equations produce wiggles,
if they are applied to the AR model [1]. Algebraic flux correction techniques for
scalar equations can be found in [3] or [1]. Due to the strong coupling of equa-
tions (4), (5) and (6) it is necessary to discretize the system above as a whole. This
can be done by means of a so called approximate Riemann solver as proposed by
Roe [6]. Approximate Riemann solvers for the Euler equations can be found in
[7] or [12]. In spite of their low accuracy, they produce nonoscillatory solutions
and can serve as a starting point for the design of characteristic TVD schemes [7].
In this paper we apply the methodology developed by Kuzmin and Moller [4] for
the Euler equations to the AR model.

After this introduction we give a short summary of analytic results. In the third
section we construct an approximate Riemann solver based on an accurate high-
order and a nonoscillatory low-order scheme combined in the framework of al-
gebraic flux correction.



2 Analytical results

Before we start with the numerical methods, we summarize the results of Aw and
Rascle [2]. For smooth solutions the AR model can be written as

dto +x(up) = 0 (8)
Jtu + (U — pdpp(p))oxu = 0 9)

using the chain rule. Substituting U = (p,u)" we get

u 0
o:U + oxU =0 (10)
(0 u—pp’(p)> "

- 7
\

=:A(U)

as a quasilinear form. The eigenvalues of the matrix A are
A2 =u—pp'(p) <u=A% (11)

Thus the system is strictly hyperbolic for p > 0 and the wave speeds are at most
equal to the velocity of the cars. We do not consider the case p = 0, because a
continuous model does not make sense for an empty road.

Moreover Aw and Rascle show that there is an invariant region
R:{(P,U)IOSUSUmaX—p(P)aPZO,OSUSUmax}- (12)

Furthermore they prove the existence of solutions for arbitrary Riemann data in
R. From this follows that the solution is bounded from above and from below and
remains nonnegative. The continuity equation yields the conservation of cars and
there is a continuous dependence with respect to the data for positive densities.



3 An approximate Riemann solver

Now we turn to the numerical methods. The method employed in this paper
is based on a nonoscillatory low-order scheme, which is derived from a suitable
high-order scheme on the algebraic level. The quality of the resulting high-re-
solution scheme depends on the quality of the underlying low-order scheme. In
particular it is necessary, that the low-order scheme is nonoscillatory.

The method proposed in this paper requires a diagonalization of the matrix A.
In the case of system (10) the transformation matrices depend on p’(p) and thus,
they are variable for v # 1. Therefore, special mean values in the sense of Roe [6]
are necessary for the approximation on every edge/element (see section 3.1). To
avoid such mean values, we transform the AR model to the primitive variables p
and u. Let us consider the pressure equation

Otp + Udxp +woxu =0 (13)

with p = p” and w := pdy,p = 7p. For smooth solutions this equation can be
written as

9P (90 + 9x(pu)) =0, (14)

so that the continuity equation is recovered. Combining (13) and (9) we obtain
the following system written in matrix form

JHR TG
u 0 u—w u

which yields a diagonalization in terms of

A =RIAR. (16)



The involved matrices are

11 0
R=R 1= A=Y ") and a= (" . an
0 -1 0 u—w 0 u—w

Hence, the transformation matrices are constant and the discrete counterparts are
the same. Note that system (15) is exactly the same as system (10) in the special
case v = 1. Since the discretization process is essentially the same for v # 1, it is
sufficient to consider (15) with p(p) = p, which gives

Ol )ol)e e
u 0 u—p u

M=u  A=u—p (19)

A(U)z(E uﬁp), A:(E ugp). (20)

It would be more convenient to deal with a system in conservation form like

with eigenvalues

and

otU +9xF =0 (21)

with a flux function F, but this turns out to be impossible. Indeed, let us assume
the existence of a flux function F = (F, R)T with 9xF(U) = A(U)axU. Then it
follows from d,F, = 0 that

R(U) = [ 0dp -+ c(u) = o(u) (22)

with an integration constant ¢ depending only on u by the definition of A(U). The
differentiation of F, with respect to u

duR(U) =aduc(u) =u—p (23)



yields a contradiction. Thus we cannot derive a flux function from A(U).

3.1 High-order scheme

The hyperbolic system to be solved is given by
U + A(U)oxU = 0. (24)

We discretize this system using the nonconservative finite difference approxima-

tion
dui _ 1 Ui — Ui, Ui — U
dt _§<Aif% A TR T Ax ) (25)
1
T 2Ax (Aimi(Uiss = Up) = A1 (Ui = Uh)) (26)
1

with suitable approximations Aii%, where Ax denotes the mesh size. To simplify
notation, we will sometimes use the index | of the edge/element, which contains
Xiz 1 instead of i + % The above discretization is equivalent to the nonconserva-
tive Galerkin discretization

dU;
ZI:/QQDquldXd—tI = —ZI:/Q A(Uh)qojaxq)iuidx (28)

with
U, = ZUi(pi and oxUy = ZUiax(pi (29)
i i

using the group finite element formulation [23] (and mass lumping). We replace
the consistent mass matrix by its lumped counterpart, which is given element-
wise by

M = %diag{l, 1,1,1}. (30)



The discrete transport operator can be written as

K =t Aig ~Ains (31)
2 Ai+% _Ai+%
for the element | = [xj, Xj,1]. The size of the matrices K; and M, is 4 x 4. This
yields the linear system
du
M — = KU 32
L (32)

of size 2n x 2n for n grid points.

It is still to be specified, how to determine the averages Aii%. Settingv =u—p
we discretize the scalar equations of the form

otp + Udxp +pdxu = 0 (33)
Jiu+voyu = 0 (34)

by the nonconservative finite difference method

doi  Ui1(Pica—pi) = Uii(piva —pi)
dt 2AX
Pi—1(Uicy = Ui) — o5 1 (Uis — Ui)

+ AR (35)
dup Vieg (Uicg = Ui) = Vi1 (Uigg — Ui). (36)
dt 2AX

One easily sees, that the first equation (35) is equivalent to
doi _ pi—1Ui—1 — Pi4aUit1 37)

dt 2AX ’

which is the conservative Galerkin approximation of the continuity equation.
Thus, the nonconservative finite difference discretization conserves mass, too.



In the case of the second equation (36), we obtain conservation only in the special
case of the Burgers equation (v = u), i. e.

diU + udxu = 0.

(38)
Substitution Viel = Upsg yields
du; ”F%(Uu—l —Uj) — Ui+%(ui+1 — Uj) _ uz , —uZ (39)
dt 2AX 4Ax

which corresponds to the Galerkin discretization of the Burgers equation in con-
servative form

i+ (50%) =0

(40)
Now we can write the system of discretized equations in vectorial form
du; ERE Pi—1 Pi—1 — Pi
dt 2AX 0 ui_% — pi—% Ui_1 — U;
—A
2
1 Uiy Pit} (Pi+1 - Pi) | 41)
28x \ 0 Uirs = Piyps ) Uitz — Ui
i+3
(42)
We define
u.
A= i+3 Pi+} (43)
’ 0 Uil — sl
with
oy = PELERL G = TS and v = ui—p (44)



and obtain equation (26). Thus, the high-order scheme, which was constructed
above, is a suitable approximation of the scalar equations by the finite differ-
ence/Galerkin finite element method, which proves to be conservative in the
case of the continuity equation and in the special case of the Burgers equation.
The discretization is second order accurate and of course oscillatory.

3.2 Low-order scheme

To avoid numerical oscillations, we need a low-order scheme. We will construct
such scheme on the algebraic level as explained in [4], [1]. An algebraic low-order
scheme for scalar equations can be found in [1] or [3].

3.2.1 The LED property

A numerical scheme, which enjoys the LED property (local extremum diminish-
ing) is nonoscillatory. This means in the scalar case, that the off-diagonal coeffi-
cients of the discrete transport operator are not negative. But in the case of our
hyperbolic system, the entries of the transport operator are matrices. To enforce
the LED property for systems, we need the following theorem [4]:

Theorem 3.1 Consider the equation
dU; 1
@m0
JF£i

with 2 x 2 matrices Ljj. They are assumed to be positive semi-definite.

Then the scheme enjoys the LED property.

Thus, the LED property is fulfilled, if the off-diagonal blocks of the discrete trans-
port operator contain no negative eigenvalues. We can enforce this constraint by
eliminating negative eigenvalues of off-diagonal matrix blocks.

10



3.2.2 Artificial viscosity

The AR model is strictly hyperbolic. Hence, the matrix A(U) is diagonalizable
and the averages Aii% are diagonalizable by construction, too. We diagonalize
the matrices using the factorization

—R LA IR

i+1 i+ iEg ks

(45)

Since R and R~! are constant, the approximations on the discrete level are the
same. Regarding (43) we choose

Uit s 0
Ay ’

(46)

Nl
o

U.,.1— 0.1
it5 pliz

Like in the scalar case, we will enforce the LED property by adding a discrete
diffusion operator [3], [1]. Discrete diffusion operators are symmetric matrices
with vanishing column and row sums, which guarantees conservation. On the

u| 0
Ay = 47
Al ( 0 |U|—P|’> “n

|A| = R|A|R,? (48)

edge/element | we define

and take

as the off-diagonal diffusion coefficients. To fulfill the vanishing column and row
sum property, we define the local diffusion matrix as

1(=[A]  |A
= Z ) 49
2 ( Al —|A||> “9)

11



This yields a local low-order operator of the form

1 1
Ly = A +Z|A] =
=3 |—|-2! 1

1 41 _ 1 _

SRIAR, 1y SRiIAIR, 1= SRI(A+ AR, 1 (50)
Its global counterpart can be assembled edge by edge. It is important, that the
added diffusion vanishes as the mesh is refined (in our case the diffusion is pro-
portional to the mesh size). This rules out nonphysical solutions and yields a
consistent scheme. But on the other hand, the low-order scheme is only first or-

der accurate.

3.3 Algebraic flux correction of TVD type

After the addition of artificial diffusion, we wish to increase the accuracy of the
low-order scheme. This can be done by adding antidiffusion. In order to make
sure that the solution remains nonoscillatory, we introduce a flux limiter function
@ to control the amount of antidiffusion. Flux limiters of TVD type satisfying
0 < & < 2can be found, e. g., in [25] or [13]. Usually the tools of algebraic flux
correction are designed for scalar problems and the limiter functions are only
applicable to scalar equations. Thus, it is necessary to decouple the equations for
the algebraic flux correction.

3.3.1 Characteristic variables

Using a diagonalization of the Jacobi matrix, linear hyperbolic systems with con-
stant coefficients can be transformed into a set of decoupled transport equations,
which can be discretized and solved separately (see e. g. [14]). For arbitrary non-
linear systems this is not possible, because the transformation matrices depend on
the desired quantities. In this case only a local approximate decoupling by suit-
able mean values (for the Euler equations see [6]) is possible. To avoid problems
with the definition of such mean values, we use primitive variables, which yield

12



constant transformation matrices (see (17)). This enables us to apply the same
transformation as in the case of constant coefficients. Moreover, the characteristic
speeds given by the eigenvalues of our system are variable, so the factorization of
A is to be performed locally, edge by edge. Hence, we will transform only locally

[4].
We define the characteristic variables by
W = R!U. (51)

This transformation will be used only to decouple the equations of the AR model
and to perform algebraic flux correction. The nonlinear system will be solved in
primitive variables (p, u) for the special case p(p) = p.

3.3.2 Algebraic flux decomposition

We consider on the edge | the local decoupled (scalar) equations
WK + Akg, Wk = 0. (52)

The fluxes defined in [3] are vectors with two entries. On the edge | = [x;, Xj] we
can write the diffusive flux as

1 1 _ 1
Dij(U; — U;) = E‘AI‘(Uj —Uj) = §R|\A|]R| 1(Uj —Uj) = §R|]A|\(Wj —W;)

due to the zero row sum property of the diffusion operator. To determine the
nodal correction factors we need the sums of positive and negative fluxes and the
edge orientation [3]. They can be assembled from individual edge contributions,
because the equations are decoupled on the edge I. For equation (52) the local

13



transport operator is given by

1Ak =A%
Kk=>("0 ) 53
=08 >

with mean values of the eigenvalues

Uj + U;j and /\gzui‘|‘uj_Pi‘|’Pj.

1 _
A= 2 | 2 2

(54)

This yields the edge orientation for equation k. On the edge I, we have an upwind
node i and a downwind node j=i+1, if /\',‘ > 0. Otherwise we obtain the opposite.

Now we determine the sums of positive and negative fluxes for the upwind node
i and the downwind node j. The contribution of the edge I is given by [3]

+ 1
“ h = T 5 M'

Kt _Ml‘kmax

Qj =

min
P ’k

{o W — W} (55)
{0, W — Wk}, (56)

Let us consider the edge | = [x;, Xi; 1] with upwind node i (A¥ > 0). This yields

+ min
Pi¥ = _QAkma {0,Wf,, — W} (57)
+ max
Qi1 = 57\'? min {0, Wi — Wi, 3. (58)
On the other hand we obtain
+ 1., min
P, = T k {0 Wi — Wi, (59)
+ max
Qik \l = 2Ak min {O W|+1 ik}v (60)

if i + 1 is the upwind node (A < 0).

14



In an edge-based code, we can implement this as follows:
At first we define the local fluxes in characteristic variables by

1 (At 0 1 (A 0
fi = ~5 <0| Af) Ry 1 (Uis1 — Uj) = 5 <0| /\%> (Wiy1 —Wy). (61)

Then we denote the upwind node by up and the downwind node by dw and
update the vectors P* and Q% in a loop over all edges:

o If f|¥ > 0: Set

P =P+ fiK and  QfNi=Qf K+ Rk (62)
o If f.k < 0: Set

Pop' = P + HX and Qg = Qg+ fik. (63)

It is convenient to handle the four vectors P* and Q* as 2 x n matrices, where
the first row contains the nodal values for the first equation and the second one
the nodal values for the second equation.

3.3.3 Determination of the antidiffusive correction factors

After the flux decomposition in the first loop over all edges, we can evaluate
the limiter function and calculate the nodal correction factors in characteristic
variables. Then we have to transform back to primitive variables

U = RW, (64)

15



because we solve the algebraic system in primitive variables. For equation k let
us define the nodal correction factors

Q"

k
RE = o(Z
1 ik
I:)i

) (65)

and use them to compute the antidiffusive flux into the upwind node i [3]

k
Ri+ dijk(Wik —ij) falls Wik > ij

FiaJ}k - Ky ko k k k k' (%0)
Ri_ dij (Wi —Wj ) falls W;" < Wj
The corresponding flux into the downwind node j is defined as

so that flux correction corresponds to adding a discrete (anti-)diffusion operator
with off-diagonal entries —Riidij. It is important to evaluate the limiter function
only in the upwind node.

Recall that the transformation to the characteristic variables yields the local flux
vector (61) on the edge | = [x;, Xj+1]. Again we assume the upwind node i (i.e.
A‘f > 0) and obtain the antidiffuive correction from (66) and (67):

1) FWK — W 1X>0 (i.e. £, >0),

k

Fi?iJrlk = 05R AR WK — w19
k

FA i = 0BRFAK Wik —wik).

2) FWik—w ;X <0 (i.e. £, <0),

k _k

Fii1® = O05R, AWk — Wi 19
k _k

F.i¢ = 05R, AR (Wi K —wib).,

16



If i+1 is the upwind node (i.e. A¥ < 0), we get

1) if Wi *—wik >0 (i. e. £, > 0),

k

Fa = —05R{ AM Wik — Wiy
k k

FAiC = —O05R AM (Wi —wik).

2) if WK —wik <0 (i. e. £,X < 0),

_k
Rt = —05R;, Af(Wik — Wi (¥

_ k
Fiini® = —05R;; AM(Wipt* —Wik).

This can be written equivalently as

R Wk —wk ), f¥>0

k k up (AN k k

Fiit1 = 05[] { ) k(WI" Wl'j » k<o and Ry =R
up WV = Wikq)y T <

In the practical implementation we perform the above mentioned transformation
to characteristic variables

AW, = R H(Uj — Uiy) (68)

and determine the local flux vector

AL 0
f| = (0' /\2> AW,. (69)

In the next step we update this local quantity:

o If f;¥ > 0: Set
fiK = RE AWk, (70)
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o If f;¥ < 0: Set
fiK = Ry AWk, (71)

Now that the antidiffusive flux is limited, it is necessary to transform back to
primitive variables. Therefore, we update f; once again:

1
fi = §R|‘A|’f| (72)

This is the limited antidiffusive flux for the edge I. We have to add it to the global
vector, which contains the antidiffusive correction

We denote the resulting transport operator by K* = K+ D + F2 = L + F2. This
definition is only for theoretical reasons. In a practical implementation, we only
need the matrices L and M, as described above. A solution computed by this
algorithm is displayed in figure 1.

3.3.4 Time integration

After the space discretization described so far, we obtain a system of ordinary

differential equations:
du
M| —— = K*U. 74
L (74)
This system can be discretized in time by standard techniques for ordinary differ-
ential equations. We do not discuss time-stepping in detail and choose the well

known 6-family (0 < 6 < 1) of time-stepping methods (see e.g. [8])

Un+1 —yn

= 09U + (1 —60)9U" + O((0.5 — 0)At, At), (75)

where At denotes the length of the time step. The time step is assumed to be
sufficiently small to guarantee stability and positivity preservation. Some special

18



cases are the explicit Euler scheme (6 = 0), the implicit Euler scheme (6§ = 1) and
the Crank-Nicolson method (0 = 0.5), which is the only method of second order.
To avoid step size restrictions, we can use the implicit Euler scheme, because it
turns out to be unconditionally stable and positivity preserving, see [1] for details.
Time discretization by a 6-scheme yields

Un+l —yn

X OK* (UL UL ¢ (1 — g)K*(UMU". (76)

The last open question is the solution of this nonlinear system.

3.3.5 Iterative defect correction

The high and low-order schemes are linear and they produce linear systems.
However, the antidiffusive correction depends on the solution. This makes the
system nonlinear and harder to solve, but it is not a drawback, because Godunov
[11] showed, that a linear monotonicity preserving scheme is at most first order
accurate. So we have to use a nonlinear method to increase the accuracy of the
low-order scheme. We solve the nonlinear system, which is given by equation
(76), by the fixed-point defect correction scheme. In what follows n denotes the
time step and m is the index of the outer iteration. We avoid the assembly of the
operator K* and take K* = L + F?, where F? contains the antidiffusive correction.
This yields

(ML — AL UL = AR 4 (1 — 9)AtL"U"
+(1— 0)AtF2" + M U" (77)

as an equivalent representation of equation (76). The part, which does not depend
on the next time level n+1is

B" = (1—0)AtL"U" + (1 — 0)AtF2" + M U", (78)
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We initialize the fixed-point iteration by
ugtt:=u",  gtt=1" (79)
and use the preconditioner
ANl — M — AtOLRFL (80)

This matrix enjoys the M-matrix property and under a suitable step size restric-
tion positivity and stability are preserved [1], [5] . Note that the method is uncon-
ditionally stable and positivity preserving for the implicit Euler scheme.

In the next step we solve the defect equation

ARTTAURTL =RMEL O with  AURET =URt] — URT (81)

for the residual

RIEL = B" — ARFLURTL + oAtFa" (82)

The updated solution is

Unti = Uptt+Aupts. (83)

Figure 1 shows the exact solution, resulting from initial values
U.=(65"T, U, 127 (84)

and the pressure p(rho) = p, of the AR model vs. the numerical ones produced
by the high-order and low-order scheme as well as using algebraic flux correction
based on the superbee limiter. The time discretization (see section 3.3.4) is per-
formed by the implicit Euler method with step size 0.001 and the mesh size is 0.01.
The low-order scheme and the superbee limiter are obviously immune to wiggles.
As expected, the wiggles only occur in the solution of the high-order scheme. Fur-

20



thermore the solution computed by the superbee limiter is less smeared then the

low-order solution.

10

al \

5| :

-0.4 -0.2 (o] 0.2 0.4 -0.4 -0.2 (o] 0.2 0.4
High—order scheme Low-order scheme

[
-

-0.4 -0.2 (o] 0.2 0.4
Superbee limiter

Figure 1. Comparison of numerical solutions to the AR model for the time T=1

4 Coupled vs. decoupled discretization

Another option for the numerical treatment of the AR model is to discretize the
equations separately. This yields two coupled algebraic systems of equations
and requires an outer iteration loop. This method is described in [1]. The main
drawback of the technique are spurious wiggles produced even by the low-order
scheme, although the scalar method applied to a single equation is completely
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nonoscillatory. This renders the method useless for the system, because the alge-
braic flux correction is of antidiffusive character and increases the wiggles. They
arise from slightly different speeds of error propagation in every equation. There-
fore, the accuracy of the solution displayed in figure 2 (a) is corrupted by spurious
wiggles. Figure 2 shows solutions of the AR model for initial data

U_ = (50,2007 and U, =(1,10)7 (85)
and the pressure function p(p) = p, which yields the intermediate state
Uo = (240,10)". (86)

Hence, the solution produced by the decoupled solver yields a wrong prediction
of Up (see figure 2 (a)). At the same time, the fully coupled approximate Riemann
solver is nonoscillatory for the low-order scheme (b) and TVD limiters and yields
the right intermediate state. Diagram (c) shows the solution computed by the
superbee limiter.

5 The Greenberg model

In most traffic flow situations the drivers try to accelerate until they have reach a
'maximum velocity’, which is given by v (see below) in our case. This behaviour
is described by a source term. The new model (ARG model) reads [17]

oo + dx(up) = 0 (87)
Ot(U — V) + udy(u—v) = _ugv’ (88)

where v. = v(p) is a maximum velocity depending on the density such that
F(o) = pv(p) is concave and ¢ is a constant. The discontinuity structure is al-
most the same as in the case of the AR model and there is an invariant region, too
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Figure 2: Numerical solutions of the AR model for T = 0.04
[17]. The velocity satisfies

0 <u<v(p), (89)

if 0 < up < v(pp) holds. For smooth solutions this system can be written as

% (ﬁ) i (g u —{—\f’(p)p) o <ﬁ> - _% (u _?/(p)) (90)

similar to the AR model.
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5.1 Treatment of the source term

In contrast to convective terms, source terms are rather harmless and easy to
implement. Using the group finite element formulation of Fletcher [23] the source
term of the velocity equation is discretized by

1
Qj= -5 (ui— Vi)/ @j@i dx. (91)
5~ O
We replace the consistent mass matrix by the lumped one and obtain
1
Q= —gAx(u — V), (92)

where u and v are the vectors of nodal values. At the boundary, the diagonal
entries of M| are given by 0.5Ax, so that it is necessary to multiply Q by 0.5. As
mentioned above we initialize R and B as 2 x n matrices. Therefore, we imple-
ment the source term by updating the residual R"*1 and B", which yields

m-+1
RV = R 4 (0, —%Axm@(uﬂfl —vi)' (93)
and 1
B" 1= B" + (0, — 5 AXAL(1 — 0)(u" - v T (94)

and multiply by 0.5 at the boundary.

Note that the source term can be assembled edge by edge, which corresponds

to . \
Qjj, = _S(Uj_vj)% (95)

on the edge | = [Xj, Xj+1].
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5.2 Numerical examples

In this section we consider two different numerical examples. For both examples
we choose v(p) =1 — p and 6 = 1. The initial data are given by

oo — (P;) _ (8‘7‘) and ug = (3;) = (8?) (96)
p

for the first one and

[ 0.8 u_ 0.1
o= (0= loa) o =) =(a) @
for the second example. Note that the initial data satisfies 0 < uy < v(pp) in both
cases. Figure 3 displays a comparison of the solutions of the AR and the ARG
model for both examples. They are computed using the implicit Euler method

for time integration, a mesh size of 0.002 and time steps of the length 0.0001. The
fluxes are limited by the superbee limiter.

The first example involves a backwards moving shock wave and a forward mov-
ing contact discontinuity (for both models). The shock wave arises from breaking,
which increases the density and decreases the velocity behind the breaking cars.
After the shock the behavior of the solutions of the two models differs very much.
In the solution of the AR model the cars maintain their velocity, while the ARG
solution predicts acceleration corresponding to the low density. This is clearly
observed in traffic flow situations and an advantage of the ARG model.

The second example shows a contact discontinuity followed by a rarefaction
wave, which comes from fast driving cars in front of slower ones and corresponds
to accelerating. Again the velocity of the AR solution remains constant after the
first wave. In contrast, the ARG solution exhibits acceleration after the rarefac-
tion wave, because of the decreasing density as expected in traffic flow. For both
examples the phenomenon of "velocity maximization’ is displayed in figure 4. We
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Figure 3: Comparison of numerical solutions to the AR and ARG model

observe, that ’velocity maximization’ is only predicted by the ARG model, while
the AR model produces solutions, which are constant out of waves. Hence, the
ARG model yields a better describtion of traffic flow than the AR model.
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Figure 4. Car velocity vs. maximum velocity
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6 Conclusions

A nonoscillatory discretization scheme for the Aw and Rascle model and the ex-
tension of Greenberg is proposed. It is based on a so called approximate Riemann
solver. This class of schemes was developed by Roe [6] for the Euler equations of
gas dynamics. Roe used special mean values for the flux approximation on every
edge. We can aviod this, by solving the pressure equation instead of the continu-
ity equation. Then the transformation matrices are constant and it suffices to take
the arithmetic averages instead of the Roe mean values.

We tailor the scheme, proposed by Kuzmin and Médller [4] for the Euler equations,
to the AR model. The underlying flux correction technique employs node-based
limiters of TVD type as described in [3] and generalized to hyperbolic systems
in [4]. As another option we can apply the scalar limiting techniques to the indi-
vidual equations and couple the discretized equations by an outer iteration loop.
However, even the resulting low-order scheme turns out to be oscillatory, which
makes it useless. The AR model considered in this paper is designed for a sin-
gle road without entrances, exits and traffic signals. Its generalization to road
networks is feasible and will be addressed in future work.
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