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Abstract: An approximate Riemann solver for the Aw-Rascle traffic

flow model and the extension of Greenberg is constructed on the alge-

braic level. A discrete diffusion operator is added to the (oscillatory)

high-order finite difference/element discretization to enforce a vecto-

rial LED criterion. This yields a nonoscillatory but diffusive low-order

scheme. To increase the accuracy an antidiffusion operator is added.

The amount of antidiffusion is controlled using TVD flux limiters.

Practical algorithms are presented for the derivation of the low-order

scheme, construction of the antidiffusion operator, and the solution of

the arising nonlinear algebraic system. Another option considered in

this paper is based on a segregated treatment of the equations at hand.

It is shown that scalar upwinding/limiting techniques are inappropri-

ate, since even the low-order scheme produces oscillatory solutions to

the coupled AR model, although it is monotone for each single equa-

tion. Hence, the strongly coupled algorithm developed in this paper

yields superior results, as demonstrated by numerical examples.

1 Introduction

Various macroscopic traffic flow models have been proposed in the literature.

Usually such models consist of one or two partial differential equations. The
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quantities of interest are the density and velocity, which depend on space and

time.

The developement of macroscopic traffic flow models started with the work of

Lighthill, Whitham and Richards [28], [30]. They published a model of the form

∂tρ + ∂x(V(ρ)ρ) = 0, (1)

which is simply the continuity equation with a nonlinear car velocity V depen-

ding on the density ρ.

Another model is proposed by Payne [27] and Whitham [29]. It contains a veloc-

ity equation and reads

∂tρ + ∂x(uρ) = 0 (2)

∂tu + u∂xu +
c2

0
ρ

∂xρ =
V(ρ) − u

τ
(3)

with constants τ and c0.

Both models are unable to describe traffic flow precisely. The first one yields a

very strong coupling between the density and velocity and the second one ad-

mits waves traveling faster than the cars [32].

In 2000 Aw and Rascle proposed a model (AR model), which avoids the draw-

backs of the above mentioned models. It is given by

∂tρ + ∂x(uρ) = 0 (4)

∂t(u + p(ρ)) + u∂x(u + p(ρ)) = 0, (5)

where the ’pressure’ p satisfies the equation of state

p(ρ) = ργ, γ > 0. (6)
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To describe traffic flow more precisely Greenberg [17] added a relaxation term,

which corresponds to a ’velocity maximization’, to the velocity equation of the

AR model. He replaced the velocity equation by

∂t(u − v) + u∂x(u − v) = −u − v
δ

, (7)

where v = v(ρ) is a maximum velocity depending on the density such that

F(ρ) = ρv(ρ) is concave and δ is a constant.

In this paper we present an approximate Riemann solver with algebraic flux

correction of TVD type for the AR model and the extension of Greenberg. It is

common knowledge, that the discretization of hyperbolic equations or systems

of such equations induces numerical oscillations. The main task is to supress this

wiggles. It turns out, that the techniques for scalar equations produce wiggles,

if they are applied to the AR model [1]. Algebraic flux correction techniques for

scalar equations can be found in [3] or [1]. Due to the strong coupling of equa-

tions (4), (5) and (6) it is necessary to discretize the system above as a whole. This

can be done by means of a so called approximate Riemann solver as proposed by

Roe [6]. Approximate Riemann solvers for the Euler equations can be found in

[7] or [12]. In spite of their low accuracy, they produce nonoscillatory solutions

and can serve as a starting point for the design of characteristic TVD schemes [7].

In this paper we apply the methodology developed by Kuzmin and Möller [4] for

the Euler equations to the AR model.

After this introduction we give a short summary of analytic results. In the third

section we construct an approximate Riemann solver based on an accurate high-

order and a nonoscillatory low-order scheme combined in the framework of al-

gebraic flux correction.
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2 Analytical results

Before we start with the numerical methods, we summarize the results of Aw and

Rascle [2]. For smooth solutions the AR model can be written as

∂tρ + ∂x(uρ) = 0 (8)

∂tu + (u − ρ∂ρ p(ρ))∂xu = 0 (9)

using the chain rule. Substituting U = (ρ, u)T we get

∂tU +

(
u ρ

0 u − ρp′(ρ)

)
︸ ︷︷ ︸

=:A(U)

∂xU = 0 (10)

as a quasilinear form. The eigenvalues of the matrix A are

λ2 = u − ρp′(ρ) < u = λ1. (11)

Thus the system is strictly hyperbolic for ρ > 0 and the wave speeds are at most

equal to the velocity of the cars. We do not consider the case ρ = 0, because a

continuous model does not make sense for an empty road.

Moreover Aw and Rascle show that there is an invariant region

R = {(ρ, u)|0 ≤ u ≤ umax − p(ρ), ρ ≥ 0, 0 ≤ u ≤ umax}. (12)

Furthermore they prove the existence of solutions for arbitrary Riemann data in

R. From this follows that the solution is bounded from above and from below and

remains nonnegative. The continuity equation yields the conservation of cars and

there is a continuous dependence with respect to the data for positive densities.
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3 An approximate Riemann solver

Now we turn to the numerical methods. The method employed in this paper

is based on a nonoscillatory low-order scheme, which is derived from a suitable

high-order scheme on the algebraic level. The quality of the resulting high-re-

solution scheme depends on the quality of the underlying low-order scheme. In

particular it is necessary, that the low-order scheme is nonoscillatory.

The method proposed in this paper requires a diagonalization of the matrix A.

In the case of system (10) the transformation matrices depend on p′(ρ) and thus,

they are variable for γ �= 1. Therefore, special mean values in the sense of Roe [6]

are necessary for the approximation on every edge/element (see section 3.1). To

avoid such mean values, we transform the AR model to the primitive variables p

and u. Let us consider the pressure equation

∂tp + u∂x p + w∂xu = 0 (13)

with p = ργ and w := ρ∂ρ p = γp. For smooth solutions this equation can be

written as

∂ρp
(
∂tρ + ∂x(ρu)

)
= 0, (14)

so that the continuity equation is recovered. Combining (13) and (9) we obtain

the following system written in matrix form

∂t

(
p

u

)
+

(
u w

0 u − w

)
∂x

(
p

u

)
= 0, (15)

which yields a diagonalization in terms of

Λ = R−1AR. (16)
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The involved matrices are

R = R−1 =

(
1 1

0 −1

)
, A =

(
u w

0 u − w

)
and Λ =

(
u 0

0 u − w

)
. (17)

Hence, the transformation matrices are constant and the discrete counterparts are

the same. Note that system (15) is exactly the same as system (10) in the special

case γ = 1. Since the discretization process is essentially the same for γ �= 1, it is

sufficient to consider (15) with p(ρ) = ρ, which gives

∂t

(
ρ

u

)
+

(
u ρ

0 u − ρ

)
∂x

(
ρ

u

)
= 0 (18)

with eigenvalues

λ1 = u, λ2 = u − ρ (19)

and

A(U) =

(
u ρ

0 u − ρ

)
, Λ =

(
u 0

0 u − ρ

)
. (20)

It would be more convenient to deal with a system in conservation form like

∂tU + ∂xF = 0 (21)

with a flux function F, but this turns out to be impossible. Indeed, let us assume

the existence of a flux function F = (F1, F2)T with ∂xF(U) = A(U)∂xU. Then it

follows from ∂ρF2 = 0 that

F2(U) =
∫

0dρ + c(u) = c(u) (22)

with an integration constant c depending only on u by the definition of A(U). The

differentiation of F2 with respect to u

∂uF2(U) = ∂uc(u) = u − ρ (23)
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yields a contradiction. Thus we cannot derive a flux function from A(U).

3.1 High-order scheme

The hyperbolic system to be solved is given by

∂tU + A(U)∂xU = 0. (24)

We discretize this system using the nonconservative finite difference approxima-

tion

dUi

dt
= −1

2
(
Ai− 1

2

Ui −Ui−1

∆x
+ Ai+ 1

2

Ui+1 −Ui

∆x

)
(25)

=
1

2∆x

(
Ai− 1

2
(Ui−1 −Ui) − Ai+ 1

2
(Ui+1 −Ui)

)
(26)

=
1

2∆x

(
Ai− 1

2
Ui−1 + (Ai+ 1

2
− Ai− 1

2
)Ui − Ai+ 1

2
Ui+1

)
(27)

with suitable approximations Ai± 1
2
, where ∆x denotes the mesh size. To simplify

notation, we will sometimes use the index I of the edge/element, which contains

xi± 1
2
, instead of i ± 1

2 . The above discretization is equivalent to the nonconserva-

tive Galerkin discretization

∑
i

∫
Ω

ϕjϕidx
dUi

dt
= −∑

i

∫
Ω

A(Uh)ϕj∂x ϕiUi dx (28)

with

Uh = ∑
i

Ui ϕi and ∂xUh = ∑
i

Ui∂x ϕi (29)

using the group finite element formulation [23] (and mass lumping). We replace

the consistent mass matrix by its lumped counterpart, which is given element-

wise by

ML I =
∆x
2

diag{1, 1, 1, 1}. (30)
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The discrete transport operator can be written as

KI =
1
2


Ai+ 1

2
−Ai+ 1

2

Ai+ 1
2

−Ai+ 1
2


 (31)

for the element I = [xi, xi+1]. The size of the matrices KI and ML I is 4 × 4. This

yields the linear system

ML
dU
dt

= KU (32)

of size 2n × 2n for n grid points.

It is still to be specified, how to determine the averages Ai± 1
2
. Setting v = u − ρ

we discretize the scalar equations of the form

∂tρ + u∂xρ + ρ∂xu = 0 (33)

∂tu + v∂xu = 0 (34)

by the nonconservative finite difference method

dρi

dt
=

ui− 1
2
(ρi−1 − ρi) − ui+ 1

2
(ρi+1 − ρi)

2∆x

+
ρi− 1

2
(ui−1 − ui) − ρi+ 1

2
(ui+1 − ui)

2∆x
(35)

dui

dt
=

vi− 1
2
(ui−1 − ui) − vi+ 1

2
(ui+1 − ui)

2∆x
. (36)

One easily sees, that the first equation (35) is equivalent to

dρi

dt
=

ρi−1ui−1 − ρi+1ui+1

2∆x
, (37)

which is the conservative Galerkin approximation of the continuity equation.

Thus, the nonconservative finite difference discretization conserves mass, too.
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In the case of the second equation (36), we obtain conservation only in the special

case of the Burgers equation (v = u), i. e.

∂tu + u∂xu = 0. (38)

Substitution vi± 1
2

= ui± 1
2

yields

dui

dt
=

ui− 1
2
(ui−1 − ui) − ui+ 1

2
(ui+1 − ui)

2∆x
=

u2
i−1 − u2

i+1

4∆x
, (39)

which corresponds to the Galerkin discretization of the Burgers equation in con-

servative form

∂tu + ∂x
(1

2
u2) = 0. (40)

Now we can write the system of discretized equations in vectorial form

dUi

dt
=

1
2∆x


ui− 1

2
ρi− 1

2

0 ui− 1
2
− ρi− 1

2




︸ ︷︷ ︸
=A

i− 1
2

(
ρi−1 − ρi

ui−1 − ui

)

− 1
2∆x


ui+ 1

2
ρi+ 1

2

0 ui+ 1
2
− ρi+ 1

2




︸ ︷︷ ︸
A

i+ 1
2

(
ρi+1 − ρi

ui+1 − ui

)
. (41)

(42)

We define

Ai± 1
2

=


ui± 1

2
ρi± 1

2

0 ui± 1
2
− ρi± 1

2


 (43)

with

ρi± 1
2

=
ρi±1 + ρi

2
, ui± 1

2
=

ui±1 + ui

2
and vi = ui − ρi (44)
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and obtain equation (26). Thus, the high-order scheme, which was constructed

above, is a suitable approximation of the scalar equations by the finite differ-

ence/Galerkin finite element method, which proves to be conservative in the

case of the continuity equation and in the special case of the Burgers equation.

The discretization is second order accurate and of course oscillatory.

3.2 Low-order scheme

To avoid numerical oscillations, we need a low-order scheme. We will construct

such scheme on the algebraic level as explained in [4], [1]. An algebraic low-order

scheme for scalar equations can be found in [1] or [3].

3.2.1 The LED property

A numerical scheme, which enjoys the LED property (local extremum diminish-

ing) is nonoscillatory. This means in the scalar case, that the off-diagonal coeffi-

cients of the discrete transport operator are not negative. But in the case of our

hyperbolic system, the entries of the transport operator are matrices. To enforce

the LED property for systems, we need the following theorem [4]:

Theorem 3.1 Consider the equation

dUi

dt
=

1
mi

∑
j �=i

Lij(Uj −Ui)

with 2 × 2 matrices Lij. They are assumed to be positive semi-definite.

Then the scheme enjoys the LED property.

Thus, the LED property is fulfilled, if the off-diagonal blocks of the discrete trans-

port operator contain no negative eigenvalues. We can enforce this constraint by

eliminating negative eigenvalues of off-diagonal matrix blocks.
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3.2.2 Artificial viscosity

The AR model is strictly hyperbolic. Hence, the matrix A(U) is diagonalizable

and the averages Ai± 1
2

are diagonalizable by construction, too. We diagonalize

the matrices using the factorization

Λi± 1
2

= R−1
i± 1

2
Ai± 1

2
Ri± 1

2
. (45)

Since R and R−1 are constant, the approximations on the discrete level are the

same. Regarding (43) we choose

Λi± 1
2

=


ui± 1

2
0

0 ui± 1
2
− ρi± 1

2


 . (46)

Like in the scalar case, we will enforce the LED property by adding a discrete

diffusion operator [3], [1]. Discrete diffusion operators are symmetric matrices

with vanishing column and row sums, which guarantees conservation. On the

edge/element I we define

|ΛI | =

(
|uI | 0

0 |uI − ρI |

)
(47)

and take

|AI | = RI |ΛI |R−1
I (48)

as the off-diagonal diffusion coefficients. To fulfill the vanishing column and row

sum property, we define the local diffusion matrix as

DI =
1
2

(
−|AI | |AI |
|AI | −|AI |

)
. (49)
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This yields a local low-order operator of the form

LI =
1
2

AI +
1
2
|AI | =

1
2

RIΛR−1
I +

1
2

RI |ΛI |R−1
I =

1
2

RI(ΛI + |ΛI |)R−1
I . (50)

Its global counterpart can be assembled edge by edge. It is important, that the

added diffusion vanishes as the mesh is refined (in our case the diffusion is pro-

portional to the mesh size). This rules out nonphysical solutions and yields a

consistent scheme. But on the other hand, the low-order scheme is only first or-

der accurate.

3.3 Algebraic flux correction of TVD type

After the addition of artificial diffusion, we wish to increase the accuracy of the

low-order scheme. This can be done by adding antidiffusion. In order to make

sure that the solution remains nonoscillatory, we introduce a flux limiter function

Φ to control the amount of antidiffusion. Flux limiters of TVD type satisfying

0 ≤ Φ ≤ 2 can be found, e. g., in [25] or [13]. Usually the tools of algebraic flux

correction are designed for scalar problems and the limiter functions are only

applicable to scalar equations. Thus, it is necessary to decouple the equations for

the algebraic flux correction.

3.3.1 Characteristic variables

Using a diagonalization of the Jacobi matrix, linear hyperbolic systems with con-

stant coefficients can be transformed into a set of decoupled transport equations,

which can be discretized and solved separately (see e. g. [14]). For arbitrary non-

linear systems this is not possible, because the transformation matrices depend on

the desired quantities. In this case only a local approximate decoupling by suit-

able mean values (for the Euler equations see [6]) is possible. To avoid problems

with the definition of such mean values, we use primitive variables, which yield
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constant transformation matrices (see (17)). This enables us to apply the same

transformation as in the case of constant coefficients. Moreover, the characteristic

speeds given by the eigenvalues of our system are variable, so the factorization of

A is to be performed locally, edge by edge. Hence, we will transform only locally

[4].

We define the characteristic variables by

W := R−1U. (51)

This transformation will be used only to decouple the equations of the AR model

and to perform algebraic flux correction. The nonlinear system will be solved in

primitive variables (p, u) for the special case p(ρ) = ρ.

3.3.2 Algebraic flux decomposition

We consider on the edge I the local decoupled (scalar) equations

∂tWk + λk∂xWk = 0. (52)

The fluxes defined in [3] are vectors with two entries. On the edge I = [xi, xj] we

can write the diffusive flux as

Dij(Uj − Ui) =
1
2
|AI |(Uj −Ui) =

1
2

RI |ΛI |R−1
I (Uj − Ui) =

1
2

RI |ΛI |(Wj −Wi)

due to the zero row sum property of the diffusion operator. To determine the

nodal correction factors we need the sums of positive and negative fluxes and the

edge orientation [3]. They can be assembled from individual edge contributions,

because the equations are decoupled on the edge I. For equation (52) the local
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transport operator is given by

Kk
I =

1
2

(
λk

I −λk
I

λk
I −λk

I

)
(53)

with mean values of the eigenvalues

λ1
I =

ui + uj

2
and λ2

I =
ui + uj

2
− ρi + ρj

2
. (54)

This yields the edge orientation for equation k. On the edge I, we have an upwind

node i and a downwind node j=i+1, if λk
I ≥ 0. Otherwise we obtain the opposite.

Now we determine the sums of positive and negative fluxes for the upwind node

i and the downwind node j. The contribution of the edge I is given by [3]

Pi
k±|I = −1

2
|λI |k min

max
{0, Wk

j − Wk
i } (55)

Qj
k±

|I =
1
2
|λI |k max

min
{0, Wk

i −Wk
j }. (56)

Let us consider the edge I = [xi, xi+1] with upwind node i (λk
I ≥ 0). This yields

Pi
k±|I = −1

2
λk

I
min
max

{0, Wk
i+1 − Wk

i } (57)

Qi+1
k±

|I =
1
2

λk
I
max
min

{0, Wk
i −Wk

i+1}. (58)

On the other hand we obtain

Pi+1
k±

|I =
1
2

λk
I
min
max

{0, Wk
i − Wk

i+1} (59)

Qi
k±|I = −1

2
λk

I
max
min

{0, Wk
i+1 − Wk

i }, (60)

if i + 1 is the upwind node (λk
I < 0).
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In an edge-based code, we can implement this as follows:

At first we define the local fluxes in characteristic variables by

f I = −1
2

(
λ1

I 0

0 λ2
I

)
R−1

I (Ui+1 −Ui) = −1
2

(
λ1

I 0

0 λ2
I

)
(Wi+1 −Wi). (61)

Then we denote the upwind node by up and the downwind node by dw and

update the vectors P± and Q± in a loop over all edges:

• If f I
k > 0: Set

P+
up

k := P+
up

k + f I
k and Q+

dw
k := Q+

dw
k + f I

k. (62)

• If f I
k < 0: Set

P−
up

k := P−
up

k + f I
k and Q−

dw
k := Q−

dw
k + f I

k. (63)

It is convenient to handle the four vectors P± and Q± as 2 × n matrices, where

the first row contains the nodal values for the first equation and the second one

the nodal values for the second equation.

3.3.3 Determination of the antidiffusive correction factors

After the flux decomposition in the first loop over all edges, we can evaluate

the limiter function and calculate the nodal correction factors in characteristic

variables. Then we have to transform back to primitive variables

U = RW, (64)
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because we solve the algebraic system in primitive variables. For equation k let

us define the nodal correction factors

R±
i

k = Φ
(Q±

i
k

P±
i

k

)
(65)

and use them to compute the antidiffusive flux into the upwind node i [3]

Fa
ij

k =


R+

i
kdij

k(Wi
k −Wj

k) falls Wi
k ≥ Wj

k

R−
i

kdij
k(Wi

k −Wj
k) falls Wi

k < Wj
k

. (66)

The corresponding flux into the downwind node j is defined as

Fa
ji

k = −Fa
ij

k, (67)

so that flux correction corresponds to adding a discrete (anti-)diffusion operator

with off-diagonal entries −R±
i dij. It is important to evaluate the limiter function

only in the upwind node.

Recall that the transformation to the characteristic variables yields the local flux

vector (61) on the edge I = [xi, xi+1]. Again we assume the upwind node i (i.e.

λk
I ≥ 0) and obtain the antidiffuive correction from (66) and (67):

1.) If Wi
k − Wi+1

k > 0 (i. e. f I
k > 0) ,

Fa
i,i+1

k = 0.5R+
i

k
λI

k(Wi
k − Wi+1

k)

Fa
i+1,i

k = 0.5R+
i

k
λI

k(Wi+1
k − Wi

k).

2.) If Wi
k − Wi+1

k < 0 (i. e. f I
k < 0) ,

Fa
i,i+1

k = 0.5R−
i

k
λI

k(Wi
k − Wi+1

k)

Fa
i+1,i

k = 0.5R−
i

k
λI

k(Wi+1
k − Wi

k).
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If i+1 is the upwind node (i.e. λk
I < 0), we get

1.) if Wi+1
k − Wi

k > 0 (i. e. f I
k > 0),

Fa
i,i+1

k = −0.5R+
i+1

k
λI

k(Wi
k −Wi+1

k)

Fa
i+1,i

k = −0.5R+
i+1

k
λI

k(Wi+1
k −Wi

k).

2.) if Wi+1
k − Wi

k < 0 (i. e. f I
k < 0),

Fi,i+1
k = −0.5R−

i+1
k
λI

k(Wi
k −Wi+1

k)

Fi+1,i
k = −0.5R−

i+1
k
λI

k(Wi+1
k −Wi

k).

This can be written equivalently as

Fa
i,i+1

k = 0.5|λk
I |

R+

up
k(Wk

i −Wk
i+1), f I

k > 0

R−
up

k(Wk
i −Wk

i+1), f I
k < 0

and Fa
i+1,i

k = −Fa
i,i+1

k.

In the practical implementation we perform the above mentioned transformation

to characteristic variables

∆WI = R−1
I (Ui −Ui+1) (68)

and determine the local flux vector

f I =

(
λ1

I 0

0 λ2
I

)
∆WI . (69)

In the next step we update this local quantity:

• If f I
k > 0: Set

f I
k := R+

up
k∆WI

k. (70)
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• If f I
k ≤ 0: Set

f I
k := R−

up
k∆WI

k. (71)

Now that the antidiffusive flux is limited, it is necessary to transform back to

primitive variables. Therefore, we update fI once again:

f I :=
1
2

RI |ΛI | f I . (72)

This is the limited antidiffusive flux for the edge I. We have to add it to the global

vector, which contains the antidiffusive correction

Fa
i := Fa

i + f I and Fa
i+1 := Fa

i+1 − f I . (73)

We denote the resulting transport operator by K∗ = K + D + Fa = L + Fa. This

definition is only for theoretical reasons. In a practical implementation, we only

need the matrices L and ML, as described above. A solution computed by this

algorithm is displayed in figure 1.

3.3.4 Time integration

After the space discretization described so far, we obtain a system of ordinary

differential equations:

ML
dU
dt

= K∗U. (74)

This system can be discretized in time by standard techniques for ordinary differ-

ential equations. We do not discuss time-stepping in detail and choose the well

known θ-family (0 ≤ θ ≤ 1) of time-stepping methods (see e.g. [8])

Un+1 − Un

∆t
= θ∂tUn+1 + (1 − θ)∂tUn + O

(
(0.5 − θ)∆t, ∆t

)
, (75)

where ∆t denotes the length of the time step. The time step is assumed to be

sufficiently small to guarantee stability and positivity preservation. Some special
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cases are the explicit Euler scheme (θ = 0), the implicit Euler scheme (θ = 1) and

the Crank-Nicolson method (θ = 0.5), which is the only method of second order.

To avoid step size restrictions, we can use the implicit Euler scheme, because it

turns out to be unconditionally stable and positivity preserving, see [1] for details.

Time discretization by a θ-scheme yields

Un+1 − Un

∆t
= θK∗(Un+1)Un+1 + (1 − θ)K∗(Un)Un. (76)

The last open question is the solution of this nonlinear system.

3.3.5 Iterative defect correction

The high and low-order schemes are linear and they produce linear systems.

However, the antidiffusive correction depends on the solution. This makes the

system nonlinear and harder to solve, but it is not a drawback, because Godunov

[11] showed, that a linear monotonicity preserving scheme is at most first order

accurate. So we have to use a nonlinear method to increase the accuracy of the

low-order scheme. We solve the nonlinear system, which is given by equation

(76), by the fixed-point defect correction scheme. In what follows n denotes the

time step and m is the index of the outer iteration. We avoid the assembly of the

operator K∗ and take K∗ = L + Fa, where Fa contains the antidiffusive correction.

This yields

(ML − ∆tθLn+1)Un+1 = ∆tθFan+1 + (1 − θ)∆tLnUn

+(1 − θ)∆tFan + MLUn (77)

as an equivalent representation of equation (76). The part, which does not depend

on the next time level n+1 is

Bn = (1 − θ)∆tLnUn + (1 − θ)∆tFan + MLUn. (78)
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We initialize the fixed-point iteration by

Un+1
0 := Un, Ln+1

0 = Ln (79)

and use the preconditioner

An+1
m = ML − ∆tθLn+1

m . (80)

This matrix enjoys the M-matrix property and under a suitable step size restric-

tion positivity and stability are preserved [1], [5] . Note that the method is uncon-

ditionally stable and positivity preserving for the implicit Euler scheme.

In the next step we solve the defect equation

An+1
m ∆Un+1

m+1 = Rn+1
m+1, with ∆Un+1

m+1 = Un+1
m+1 − Un+1

m (81)

for the residual

Rn+1
m+1 = Bn − An+1

m Un+1
m + θ∆tFan+1. (82)

The updated solution is

Un+1
m+1 = Un+1

m + ∆Un+1
m+1. (83)

Figure 1 shows the exact solution, resulting from initial values

U− = (6, 5)T, U+(1, 2)T (84)

and the pressure p(rho) = ρ, of the AR model vs. the numerical ones produced

by the high-order and low-order scheme as well as using algebraic flux correction

based on the superbee limiter. The time discretization (see section 3.3.4) is per-

formed by the implicit Euler method with step size 0.001 and the mesh size is 0.01.

The low-order scheme and the superbee limiter are obviously immune to wiggles.

As expected, the wiggles only occur in the solution of the high-order scheme. Fur-
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thermore the solution computed by the superbee limiter is less smeared then the

low-order solution.
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Figure 1: Comparison of numerical solutions to the AR model for the time T=1

4 Coupled vs. decoupled discretization

Another option for the numerical treatment of the AR model is to discretize the

equations separately. This yields two coupled algebraic systems of equations

and requires an outer iteration loop. This method is described in [1]. The main

drawback of the technique are spurious wiggles produced even by the low-order

scheme, although the scalar method applied to a single equation is completely
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nonoscillatory. This renders the method useless for the system, because the alge-

braic flux correction is of antidiffusive character and increases the wiggles. They

arise from slightly different speeds of error propagation in every equation. There-

fore, the accuracy of the solution displayed in figure 2 (a) is corrupted by spurious

wiggles. Figure 2 shows solutions of the AR model for initial data

U− = (50, 200)T and U+ = (1, 10)T (85)

and the pressure function p(ρ) = ρ, which yields the intermediate state

U0 = (240, 10)T. (86)

Hence, the solution produced by the decoupled solver yields a wrong prediction

of U0 (see figure 2 (a)). At the same time, the fully coupled approximate Riemann

solver is nonoscillatory for the low-order scheme (b) and TVD limiters and yields

the right intermediate state. Diagram (c) shows the solution computed by the

superbee limiter.

5 The Greenberg model

In most traffic flow situations the drivers try to accelerate until they have reach a

’maximum velocity’, which is given by v (see below) in our case. This behaviour

is described by a source term. The new model (ARG model) reads [17]

∂tρ + ∂x(uρ) = 0 (87)

∂t(u − v) + u∂x(u − v) = −u − v
δ

, (88)

where v = v(ρ) is a maximum velocity depending on the density such that

F(ρ) = ρv(ρ) is concave and δ is a constant. The discontinuity structure is al-

most the same as in the case of the AR model and there is an invariant region, too
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Figure 2: Numerical solutions of the AR model for T = 0.04

[17]. The velocity satisfies

0 ≤ u ≤ v(ρ), (89)

if 0 ≤ u0 ≤ v(ρ0) holds. For smooth solutions this system can be written as

∂t

(
ρ

u

)
+

(
u ρ

0 u + v′(ρ)ρ

)
∂x

(
ρ

u

)
= −1

δ

(
0

u − v(ρ)

)
(90)

similar to the AR model.
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5.1 Treatment of the source term

In contrast to convective terms, source terms are rather harmless and easy to

implement. Using the group finite element formulation of Fletcher [23] the source

term of the velocity equation is discretized by

Qj = −1
δ ∑

i
(ui − vi)

∫
Ω

ϕjϕi dx. (91)

We replace the consistent mass matrix by the lumped one and obtain

Q = −1
δ

∆x(u − v), (92)

where u and v are the vectors of nodal values. At the boundary, the diagonal

entries of ML are given by 0.5∆x, so that it is necessary to multiply Q by 0.5. As

mentioned above we initialize R and B as 2 × n matrices. Therefore, we imple-

ment the source term by updating the residual Rn+1
m+1 and Bn, which yields

Rn+1
m+1 := Rn+1

m+1 +
(
0,−1

δ
∆x∆tθ(un+1

m − vn+1
m )

)T (93)

and

Bn := Bn +
(
0,−1

δ
∆x∆t(1 − θ)(un − vn)

)T, (94)

and multiply by 0.5 at the boundary.

Note that the source term can be assembled edge by edge, which corresponds

to

Qj|I = −1
δ
(uj − vj)

∆x
2

(95)

on the edge I = [xj, xj+1].
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5.2 Numerical examples

In this section we consider two different numerical examples. For both examples

we choose v(ρ) = 1 − ρ and δ = 1. The initial data are given by

ρ0 =
(

ρ−
ρ+

)
=
(

0.4
0.7

)
and u0 =

(
u−
u+

)
=
(

0.6
0.1

)
(96)

for the first one and

ρ0 =
(

ρ−
ρ+

)
=
(

0.8
0.2

)
and u0 =

(
u−
u+

)
=
(

0.1
0.2

)
(97)

for the second example. Note that the initial data satisfies 0 ≤ u0 ≤ v(ρ0) in both

cases. Figure 3 displays a comparison of the solutions of the AR and the ARG

model for both examples. They are computed using the implicit Euler method

for time integration, a mesh size of 0.002 and time steps of the length 0.0001. The

fluxes are limited by the superbee limiter.

The first example involves a backwards moving shock wave and a forward mov-

ing contact discontinuity (for both models). The shock wave arises from breaking,

which increases the density and decreases the velocity behind the breaking cars.

After the shock the behavior of the solutions of the two models differs very much.

In the solution of the AR model the cars maintain their velocity, while the ARG

solution predicts acceleration corresponding to the low density. This is clearly

observed in traffic flow situations and an advantage of the ARG model.

The second example shows a contact discontinuity followed by a rarefaction

wave, which comes from fast driving cars in front of slower ones and corresponds

to accelerating. Again the velocity of the AR solution remains constant after the

first wave. In contrast, the ARG solution exhibits acceleration after the rarefac-

tion wave, because of the decreasing density as expected in traffic flow. For both

examples the phenomenon of ’velocity maximization’ is displayed in figure 4. We
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Figure 3: Comparison of numerical solutions to the AR and ARG model

observe, that ’velocity maximization’ is only predicted by the ARG model, while

the AR model produces solutions, which are constant out of waves. Hence, the

ARG model yields a better describtion of traffic flow than the AR model.
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Figure 4: Car velocity vs. maximum velocity
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6 Conclusions

A nonoscillatory discretization scheme for the Aw and Rascle model and the ex-

tension of Greenberg is proposed. It is based on a so called approximate Riemann

solver. This class of schemes was developed by Roe [6] for the Euler equations of

gas dynamics. Roe used special mean values for the flux approximation on every

edge. We can aviod this, by solving the pressure equation instead of the continu-

ity equation. Then the transformation matrices are constant and it suffices to take

the arithmetic averages instead of the Roe mean values.

We tailor the scheme, proposed by Kuzmin and Möller [4] for the Euler equations,

to the AR model. The underlying flux correction technique employs node-based

limiters of TVD type as described in [3] and generalized to hyperbolic systems

in [4]. As another option we can apply the scalar limiting techniques to the indi-

vidual equations and couple the discretized equations by an outer iteration loop.

However, even the resulting low-order scheme turns out to be oscillatory, which

makes it useless. The AR model considered in this paper is designed for a sin-

gle road without entrances, exits and traffic signals. Its generalization to road

networks is feasible and will be addressed in future work.
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