Darstellungen von $\mathrm{SU}(2),\,\mathrm{SO}(3),\,\mathrm{U}(2)$ und $\mathrm{O}(3)$

gehalten im Seminar zur Darstellungstheorie kompakter Lie-Gruppen im SS 2010 bei Herrn Prof. Dr. Schwachhöfer an der TU Dortmund

25.5.2010

Artem Averin

Inhaltsverzeichnis

1	Charaktere	3
2	irreduzible Darstellungen von $SU(2)$, $SO(3)$, $U(2)$ und $O(3)$	4
3	Harmonische Polynome	10

1 Charaktere

Alle Zitate beziehen sich auf das Werk "Theodor Bröcker, Tammo tom Dieck: Representations of Compact Lie Groups, Springer."

1.1 Definition Sei V eine Darstellung einer kompakten Lie-Gruppe G. Die Abbildung

$$\chi_V \colon G \to \mathbb{C}, \ g \mapsto \operatorname{Tr}(l_g)$$

heißt Charakter von V. Hierbei bezeichnet $\operatorname{Tr}(l_g)$ die Spur der Linkstranslation $l_g \colon V \to V$.

- **1.2 Satz** Sei V eine Darstellung der kompakten Lie-Gruppe G und χ_V ein Charakter von V. Dann gilt:
- (i) χ_V ist eine C^{∞} -Funktion
- (ii) $\chi_V(ghg^{-1}) = \chi_V(h)$ für alle $g, h \in G$
- (iii) Sind V und W irreduzible Darstellungen von G, so gilt

$$\langle \chi_W, \chi_V \rangle = \int_G \chi_W \overline{\chi_V} dg = \begin{cases} 1 & , V \cong W \\ 0 & , sonst \end{cases}$$
 (1.1)

- (iv) $\int_G \chi_V(g) dg = \dim \{ v \in V \mid gv = v \ \forall \ g \in G \}$
- (v) Zwei Darstellungen V und W von G sind genau dann isomorph, wenn $\chi_V = \chi_W$.
- (vi) Für zwei Darstellungen V und W von G gilt $\chi_{V \oplus W} = \chi_V + \chi_W$ und $\chi_{V \otimes W} = \chi_V \chi_W$.

Beweis: s. II. 4.

1.3 Bemerkung Satz 1.2 (ii) zeigt, dass der Charakter auf den Konjugationsklassen von G konstant ist. Allgemein bezeichnet man für eine Gruppe G eine solche Funktion $f: G \to \mathbb{C}$, die auf den Konjugationsklassen von G konstant ist, als Klassenfunktion. Charaktere von Darstellungen sind also stets Klassenfunktionen.

2 irreduzible Darstellungen von SU(2), SO(3), U(2) und O(3)

Ziel dieses Kapitels ist es, die irreduziblen Darstellungen der in der Überschrift angegebenen kompakten Lie-Gruppen zu beschreiben.

2.1 Darstellungen von SU(2) Für $n \in \mathbb{N}_0$ sei

$$V_n := \{ \sum_{k=0}^n a_k z_1^k z_2^{n-k} \mid a_k \in \mathbb{C} \}$$

der \mathbb{C} -Vektorraum (mit den kanonischen Verknüpfungen) aller homogenen Polynome vom Grad n in den beiden komplexen Variablen z_1 und z_2 . Durch die Operation

$$SU(2) \times V_n \to V_n, (A, P) \mapsto AP(z_1, z_2) := P((z_1, z_2)A)$$

wird eine Darstellung von SU(2) definiert. Es stellt sich nun die Frage, ob die SU(2)-Darstellungen V_n irreduzibel und ob dies sogar alle irreduziblen Darstellungen von SU(2) (bis auf Isomorphie) sind? Dies soll im folgenden tatsächlich gezeigt werden.

2.2 Satz Die SU(2)-Darstellungen V_n sind für alle $n \in \mathbb{N}_0$ irreduzibel.

Beweis: Zunächst wird folgende Zwischenbehauptung gezeigt: Ist $A: V_n \to V_n$ ein SU(2)-äquivarianter Endomorphismus, so gilt $A = \lambda \mathrm{id}_{V_n}$ für ein $\lambda \in \mathbb{C}$. Zum Beweis sei $A: V_n \to V_n$ linear und äquivariant und $a \in \mathbb{C}$, so dass |a| = 1 und a^{2k-n} für $0 \le k \le n$ verschieden sind. Weiterhin sei

$$g_a := \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in SU(2).$$

Aus der Definition von V_n ist ersichtlich, dass $P_k := z_1^k z_2^{n-k}$ für $0 \le k \le n$ eine Basis von V_n ist. Es gilt $g_a P_k = P_k((z_1, z_2) \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}) = P_k(az_1, a^{-1}z_2) = a^{2k-n}P_k$ für alle $0 \le k \le n$. Also ist P_k ein Eigenvektor der Linkstranslation l_{g_a} zum Eigenwert a^{2k-n} . Nach Wahl von a sind die n+1 Eigenwerte a^{2k-n} für $0 \le k \le n$ alle verschieden und wegen dim $V_n = n+1$ folgt, dass der Eigenraum zum Eigenwert a^{2k-n} eindimensional und somit von P_k für jedes $0 \le k \le n$ aufgespannt wird. Wegen $g_a A P_k = A g_a P_k = a^{2k-n} A P_k$ ist auch $A P_k$ Eigenvektor zum Eigenwert a^{2k-n} , so dass

$$AP_k = c_k P_k \tag{2.1}$$

für gewisse $c_k \in \mathbb{C}$ und alle $0 \leq k \leq n$ gelten muss. Für $t \in \mathbb{R}$ sei

$$r_t := \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \in SU(2).$$

Unter Verwendung von (2.1) folgt:

$$Ar_t P_n = AP_n((z_1, z_2) \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix})$$

$$= A(\cos(t)z_1 + \sin(t)z_2)^n$$

$$= A\sum_{k=0}^n \binom{n}{k} \cos^k(t) \sin^{n-k}(t) z_1^k z_2^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} \cos^k(t) \sin^{n-k}(t) AP_k$$

$$= \sum_{k=0}^n \binom{n}{k} \cos^k(t) \sin^{n-k}(t) c_k P_k$$

Wegen der SU(2)-Äquivarianz von A muss dies dasselbe sein wie:

$$r_t A P_n = r_t c_n P_n = \sum_{k=0}^n \binom{n}{k} \cos^k(t) \sin^{n-k}(t) c_n P_k$$

Koeffizientenvergleich liefert $c_k = c_n$ für alle $0 \le k \le n$ und aus (2.1) dann $A = c_n \mathrm{id}_{V_n}$. Damit ist die Zwischenbehauptung bewiesen. Zum Beweis der Irreduzibilität sei U ein $\mathrm{SU}(2)$ -invarianter Untervektorraum von V_n . Nach Einführung eines $\mathrm{SU}(2)$ -invarianten Skalarprodukts auf V_n , welches wegen der Kompaktheit von $\mathrm{SU}(2)$ existiert, sei $A\colon V_n\to V_n$ die orthogonale Projektion auf U. Bekanntlich ist A linear. Es wird gezeigt, dass A auch $\mathrm{SU}(2)$ -äquivariant ist. Es sei dazu $g\in\mathrm{SU}(2)$ und $v\in V_n$. v besitzt eine eindeutige Zerlegung v=u+w mit $u\in U$ und $w\in U^\perp$. Dann gilt Agv=Agu+Agw und weil U und somit auch U^\perp $\mathrm{SU}(2)$ -invariant sind, gilt $gu\in U$ und $gw\in U^\perp$ und daher Agu=gu und Agw=0, insgesamt also Agv=gu. Andererseits gilt gAv=gA(u+w)=gu, woraus Agv=gAv und somit die $\mathrm{SU}(2)$ -Äquivarianz folgt. Nach der Zwischenbehauptung gibt es dann ein $\lambda\in\mathbb{C}$, so dass $A=\lambda\mathrm{id}_{V_n}$. Weil A die orthogonale Projektion auf U ist, ist entweder $\lambda=0$ und $U=\{0\}$ oder $\lambda=1$ und $U=V_n$. Dies zeigt die Irreduzibilität.

2.3 Man rechnet leicht nach, dass die Diagonalmatrizen aus SU(2) die Gestalt

$$e(t) := \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix} \in SU(2)$$

für ein $t \in \mathbb{R}$ besitzen. Weiterhin ist aus der linearen Algebra bekannt, dass jede Matrix aus SU(2) konjugiert zu einer Diagonalmatrix und somit zu einem e(t) für geeignetes

 $t \in \mathbb{R}$ ist. Nachrechnen bestätigt weiterhin, dass e(t) und e(s) genau dann konjugiert sind, wenn $s \equiv \pm t \mod 2\pi$. Die Überlegungen zeigen, dass für eine Klassenfunktion $f \colon \mathrm{SU}(2) \to \mathbb{C}$ die Abbildung

$$f \circ e \colon \mathbb{R} \to \mathbb{C}, \ t \mapsto f(e(t))$$

gerade und 2π -periodisch sein muss und umgekehrt, dass eine 2π -periodische und gerade Funktion $\mathbb{R} \to \mathbb{C}$ eine Klassenfunktion von SU(2) wohldefiniert. Im folgenden wird daher der \mathbb{C} -Vektorraum M der stetigen Klassenfunktionen von SU(2) mit dem der stetigen 2π -periodischen und geraden Funktionen $\mathbb{R} \to \mathbb{C}$ identifiziert.

Die Charakter χ_{V_n} der Darstellungen V_n liegen gemäß Satz 1.2 in M. Für sie gilt $\chi_{V_n}(e(t)) = \text{Tr}(l_{e(t)})$. Zum Berechnen der Spur werde die bekannte Basis P_k $(0 \le k \le n)$ von V_n betrachtet. Dann ist $l_{e(t)}P_k = P_k((z_1, z_2) \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix}) = (e^{it}z_1)^k(e^{-it}z_2)^{n-k} = e^{i(2k-n)t}P_k$ und somit

$$\chi_{V_n}(e(t)) = \sum_{k=0}^{n} e^{i(2k-n)t} = \begin{cases} 1 + \sum_{k=1}^{\frac{n}{2}} 2\cos(2kt) &, n \text{ gerade} \\ \sum_{k=0}^{\frac{n-1}{2}} 2\cos((2k+1)t) &, n \text{ ungerade.} \end{cases}$$
 (2.2)

Anhand dieser Gleichung erkennt man, dass sp $\{\chi_{V_0}; \ldots; \chi_{V_n}\} = \text{sp } \{1; \cos t; \ldots; \cos nt\}$ in M für alle $n \in \mathbb{N}_0$. Aus der Fourier-Analysis ist bekannt, dass sp $\{\cos nt\}_{n \in \mathbb{N}_0}$ dicht in M ist, also folgt, dass auch sp $\{\chi_{V_n}\}_{n \in \mathbb{N}_0}$ dicht in M ist. Aus dieser Tatsache folgt der nächste Satz, der die eingangs gestellte Frage beantwortet.

2.4 Satz Ist W eine irreduzible Darstellung von SU(2), dann existiert ein $n \in \mathbb{N}_0$, so dass $W \cong V_n$.

Beweis: Sei W eine irreduzible SU(2)-Darstellung, die nicht isomorph zu V_n für alle $n \in \mathbb{N}_0$ ist. Da V_n für jedes $n \in \mathbb{N}_0$ ebenfalls irreduzibel ist, gilt nach Satz 1.2 (iii)

$$\langle \chi_W, \chi_W \rangle = 1 \tag{2.3}$$

$$\langle \chi_{V_n}, \chi_W \rangle = 0 \ \forall \ n \in \mathbb{N}_0.$$
 (2.4)

Nach Satz 1.2 (i) und (ii) liegt χ_W in der Menge M der stetigen Klassenfunktionen von SU(2). Weil sp $\{\chi_{V_n}\}_{n\in\mathbb{N}_0}$ in M dicht liegt existiert eine Folge $(a_n)\subseteq \operatorname{sp}\{\chi_{V_n}\}_{n\in\mathbb{N}_0}$ mit $\lim_{n\to\infty}a_n=\chi_W$. Aus (2.3) und (2.4) folgt nun der Widerspruch

$$1 = \langle \chi_W, \chi_W \rangle = \lim_{n \to \infty} \langle a_n, \chi_W \rangle = 0.$$

Mit den Sätzen 2.2 und 2.4 sind nun alle irreduziblen Darstellungen von SU(2) bekannt. Es soll noch kurz auf weitere aus 2.3 folgende Resultate eingegangen werden.

Folgerung 2.5 Für eine stetige Klassenfunktion $f: SU(2) \to \mathbb{C}$ gilt

$$\int_{SU(2)} f(g)dg = \frac{2}{\pi} \int_0^{\pi} (f \circ e)(t) \sin^2(t) dt.$$
 (2.5)

Beweis: Für $f = \chi_{V_n}$ steht auf der linken Seite nach Satz 1.2 (iv)

$$\int_{SU(2)} \chi_{V_n}(g) dg = \begin{cases} 1 & , n = 0 \\ 0 & , n \ge 1. \end{cases}$$

Das gleiche Ergebnis liefert auch die rechte Seite, denn unter Verwendung von (2.2) gilt zunächst für $t \notin \pi \mathbb{Z}$

$$\chi_{V_n}(e(t)) = \sum_{k=0}^{n} e^{i(2k-n)t}$$

$$= e^{-int} \sum_{k=0}^{n} (e^{i2t})^k$$

$$= \frac{1 - (e^{i2t})^{n+1}}{1 - e^{i2t}} e^{-int}$$

$$= \frac{e^{-it} - e^{i(2n+1)t}}{e^{-it} - e^{it}} e^{-int}$$

$$= \frac{e^{i(n+1)t} - e^{-i(n+1)t}}{e^{it} - e^{-it}}$$

$$= \frac{\sin((n+1)t)}{\sin(t)}.$$

Also hat man tatsächlich

$$\frac{2}{\pi} \int_0^{\pi} \chi_{V_n}(e(t)) \sin^2(t) dt = \frac{2}{\pi} \int_0^{\pi} \sin((n+1)t) \sin(t) dt = \begin{cases} 1 & , n = 0 \\ 0 & , n \ge 1. \end{cases}$$

Also ist (2.5) richtig für alle $f = \chi_{V_n}$ und wegen der Linearität des Integrals dann auch für alle $f \in \operatorname{sp}\{\chi_{V_n}\}_{n \in \mathbb{N}_0}$. Weil diese Menge aber dicht in der Menge M der stetigen Klassenfunktionen liegt, gilt (2.5) dann wegen der Stetigkeit des Integrals auch für alle $f \in M$, was zu zeigen war.

2.6 Clebsch-Gordan-Formel $F\ddot{u}r \ k, l \in \mathbb{N}_0$ gilt

$$V_k \otimes V_l \cong \bigoplus_{j=0}^q V_{k+l-2j}, \tag{2.6}$$

 $wobei\ q = \min\{k; l\}.$

Beweis: Zum Beweis überlegt man sich, dass eine Isomorphie gegeben ist durch:

$$\varphi \colon V_k \otimes V_l \to \bigoplus_{j=0}^q V_{k+l-2j},$$

$$p \otimes q \mapsto \bigoplus_{j=0}^q \frac{1}{j!} \sum_{r=0}^j (-1)^r \binom{j}{r} \frac{\partial^j p}{\partial z_1^r \partial z_2^{j-r}} \frac{\partial^j q}{\partial z_1^{j-r} \partial z_2^r}$$

Der nächste Satz zeigt sich durch schlichtes Nachprüfen und aus dem Homomorphiesatz:

Satz 2.7 Seien G und H kompakte Lie-Gruppen und $f: G \to H$ ein Epimorphismus und (V, ρ) eine irreduzible Darstellung von G mit $l_g = id_V \ \forall \ g \in \ker f$. Dann wird durch

$$\sigma_{(V,\rho)} \colon H \times V \to V, \ (h,v) \mapsto \rho(g,v)$$

für $g \in f^{-1}(\{h\})$ eine irreduzible Darstellung von H definiert. Ist umgekehrt (W, λ) eine irreduzible Darstellung von H, so existiert $(V, \rho) \in \operatorname{Irr}(G, \mathbb{C})$, so dass $(W, \lambda) \cong (V, \sigma_{(V,\rho)})$.

- **2.8 Bemerkung** In der Situation von Satz 2.7 sind also alle irreduziblen Darstellungen von H (bis auf Isomorphie) gegeben durch die irreduziblen Darstellungen von G, für die die Elemente aus ker f als Identität operieren. Dieses Resultat wird im folgenden zur Auffindung der irreduziblen Darstellungen der verbliebenen Gruppen SO(3), U(2) und O(3) sehr hilfreich sein.
- 2.9 irreduzible Darstellungen von SO(3) Nach I. (6.18) existiert ein Epimorphismus $f: SU(2) \to SO(3)$ mit ker $f = \{\pm E\}$, wobei E die 2x2-Einheitsmatrix in SU(2) bezeichne. Nach 2.7 sind die irreduziblen SO(3)-Darstellungen gegeben durch diejenigen irreduziblen SU(2)-Darstellungen V_n aus 2.1, für die E und E als Identität operieren. In einer Darstellung V_n operiert E als neutrales Element von SU(2) stets als Identität und für E gilt $E \cdot P_k = P_k(-z_1, -z_2) = (-1)^n P_k$, so dass E genau dann als Identität operiert, falls n gerade ist. Dies führt auf:
- **2.10 Satz** Die irreduziblen SO(3)-Darstellungen sind gegeben durch V_{2n} für $n \in \mathbb{N}_0$. Diese seien im folgenden mit W_n bezeichnet.
- 2.11 irreduzible Darstellunge von U(2) Man überprüft, dass

$$f \colon S^1 \times \mathrm{SU}(2) \to \mathrm{U}(2), \ (e^{it}, A) \mapsto e^{it}A$$

ein Epimorphismus mit ker $f = \{(1, E); (-1, -E)\}$ ist. Wieder aus 2.7 folgt, dass die irreduziblen U(2)-Darstellungen gegeben sind durch die irreduziblen Darstellungen von $S^1 \times \mathrm{SU}(2)$, für die (-1, -E) als Identität operiert. (1, E) ist neutrales Element und operiert daher ohnehin als Identität. Die irreduziblen Darstellungen von $S^1 \times \mathrm{SU}(2)$ sind nach II. (4.15) gegeben durch $A_m \otimes V_n$, wobei A_m

$$S^1 \times \mathbb{C} \to \mathbb{C}, \ (\lambda, z) \mapsto \lambda^m z$$

für $m \in \mathbb{Z}$ die irreduziblen Darstellungen von S^1 bezeichnet. Es gilt $(-1, -E) \cdot (1 \otimes P_k) = (-1)^m \otimes (-1)^n P_k = (-1)^{m+n} (1 \otimes P_k)$, so dass folgt

2.12 Satz Die irreduziblen Darstellungen von U(2) sind gegeben durch $A_m \otimes V_n$ für $m \in \mathbb{Z}$, $n \in \mathbb{N}_0$ und m + n gerade.

2.13 irreduzible Darstellungen von O(3)

$$f: O(3) \to SO(3) \times C_2, A \mapsto ((\det A) \cdot A, \det A)$$

ist ein Isomorphismus (C_2 bezeichnet die Gruppe ($\{\pm 1\}$, ·)), so dass die irreduziblen Darstellungen von O(3) genau die irreduziblen Darstellungen von SO(3) × C_2 sind. Letztere sind nach II. (4.15) gegeben durch $W_n \otimes \mathbb{C}_m$ für $n \in \mathbb{N}_0$ und $m \in \{\pm 1\}$, wobei \mathbb{C}_m

$$C_2 \times \mathbb{C} \to \mathbb{C}, \begin{cases} (1,z) & \mapsto z \\ (-1,z) & \mapsto mz \end{cases}$$

die irreduziblen C_2 -Darstellungen bezeichnet. Es gilt also:

2.14 Satz Die irreduziblen Darstellungen von O(3) sind gegeben durch $W_n \otimes \mathbb{C}_m$ für $n \in \mathbb{N}_0$ und $m \in \{\pm 1\}$.

3 Harmonische Polynome

Die irreduziblen Darstellungen von SO(3) sollen in diesem Kapitel noch unter Verwendung anderer Darstellungsräume beleuchtet werden.

3.1 Für $l \in \mathbb{N}_0$ sei

$$P_l := \{ \sum_{m,n \ge 0, m+n \le l} a_{mn} x_1^m x_2^n x_3^{l-m-n} \mid a_{mn} \in \mathbb{C} \}$$

der \mathbb{C} -Vektorraum (mit den kanonischen Verknüpfungen) der homogenen Polynome vom Grad l in drei rellen Variablen. Mit der Operation

$$SO(3) \times P_l \to P_l, (A, P) \mapsto (AP)(x) := P(xA)$$

erhält man eine Darstellung von SO(3), die jedoch i.a. nicht irreduzibel ist. Es ist nämlich etwa sp $\{x_1^2 + x_2^2 + x_3^2\}$ ein SO(3)-invarianter Unterraum von P_2 . Der Untervektorraum der harmonischen Polynome vom Grad l ist definiert durch

$$H_l := \{ f \in P_l \mid \Delta f = 0 \}.$$

Es wird im folgenden untersucht, ob H_l SO(3)-invariant oder vielleicht sogar irreduzibel ist.

3.2 Lemma Es gilt für $l \in \mathbb{N}_0$

dim
$$P_l = \frac{1}{2}(l+1)(l+2)$$

dim $H_l = 2l+1$.

Beweis: Eine Basis von P_l ist offensichtlich gegeben durch die Polynome $x_1^m x_2^n x_3^{l-m-n}$ für $m,n\geq 0$ und $m+n\leq l$. Daher ist dim $P_l=\sum_{m=0}^l l-m+1=\frac{1}{2}(l+1)(l+2)$. Ist $f\in P_l$, so kann f geschrieben werden als

$$f(x_1, x_2, x_3) = \sum_{k=0}^{l} \frac{x_1^k}{k!} f_k(x_2, x_3)$$

wobei f_k homogene Polynome vom Grad l-k in den Variablen x_2 und x_3 sind. Also gilt

$$\Delta f = \sum_{k=0}^{l} \frac{\partial^{2}}{\partial x_{1}^{2}} \frac{x_{1}^{k}}{k!} f_{k}(x_{2}, x_{3}) + \sum_{k=0}^{l} \frac{x_{1}^{k}}{k!} (\frac{\partial^{2}}{\partial x_{2}^{2}} + \frac{\partial^{2}}{\partial x_{3}^{2}}) f_{k}(x_{2}, x_{3})$$

$$= \sum_{k=2}^{l} \frac{x_{1}^{k-2}}{(k-2)!} f_{k}(x_{2}, x_{3}) + \sum_{k=0}^{l} \frac{x_{1}^{k}}{k!} (\frac{\partial^{2}}{\partial x_{2}^{2}} + \frac{\partial^{2}}{\partial x_{3}^{2}}) f_{k}(x_{2}, x_{3})$$

$$= \sum_{k=0}^{l-2} \frac{x_{1}^{k}}{k!} f_{k+2} + \sum_{k=0}^{l} \frac{x_{1}^{k}}{k!} (\frac{\partial^{2} f_{k}}{\partial x_{2}^{2}} + \frac{\partial^{2} f_{k}}{\partial x_{3}^{2}}),$$

und somit ist $\Delta f=0$ genau dann, wenn $f_{k+2}=-(\frac{\partial^2 f_k}{\partial x_2^2}+\frac{\partial^2 f_k}{\partial x_3^2})$ für $0\leq k\leq l-2$ und $(\frac{\partial^2}{\partial x_2^2}+\frac{\partial^2}{\partial x_3^2})f_k(x_2,x_3)=0$ für k=l-1 und k=l. Letzteres ist aber stets erfüllt, da f_{l-1} ein Polynom vom Grad l-(l-1)=1 und f_l ein Polynom vom Grad l-l=0 in den Variablen x_2 und x_3 ist. Ein Polynom $f\in H_l$ ist also eindeutig festgelegt durch f_0 und f_1 , also zwei homogene Polynome vom Grad l und l-1 in zwei Variablen. Daher ist dim $H_l=(l+1)+l=2l+1$.

3.3 Lemma Mit der Operation

$$SO(3) \times C^{\infty}(\mathbb{R}^3) \to C^{\infty}(\mathbb{R}^3), (A, f) \mapsto (Af)(x) := f(xA)$$

ist die Abbildung

$$\Delta \colon C^{\infty}(\mathbb{R}^3) \to C^{\infty}(\mathbb{R}^3), \ f \mapsto \Delta f$$

SO(3)-äquivariant.

Der Beweis ergibt sich durch einfaches Nachrechnen. Aus dem Lemma 3.3 ergibt sich sofort das

- **3.4 Korollar** H_l ist ein SO(3)-invarianter Untervektorraum von P_l .
- **3.5 Satz** Die SO(3)-Darstellungen H_l sind irreduzibel.

Beweis: Es wird gezeigt, dass $H_l \cong W_l$. H_l besitzt als SO(3)-Darstellung jedenfalls eine Zerlegung in irreduzible Faktoren, d.h. es gilt

$$H_l \cong \bigoplus_{\nu} W_{n_{\nu}}.$$

Es ist dim $W_{n_{\nu}}=2n_{\nu}+1$ und dim $H_{l}=2l+1$, daher reicht es aus Dimensionsgründen zu Zeigen, dass $n_{\nu}\geq l$ für gewisses ν . Sei

$$R(t) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{pmatrix} \in SO(3)$$

für $t \in \mathbb{R}$. Für den Charakter der SO(3)-Darstellung W_n erhält man $\chi_{W_n}(R(t)) = \sum_{k=0}^{2n} e^{i(n-k)t}$, daher ist $\chi_{H_l}(R(t))$ nach Satz 1.2 (vi) eine Linearkombination von e^{ikt} , wobei $|k| \leq \max n_{\nu}$. Andererseits kann auf H_l als SO(3)-Darstellung ein SO(3)-invariantes Skalarprodukt eingeführt werden. Die Linkstranslation mit R(t) ist dann unitär und es gibt somit eine Basis, so dass sie die Matrixdarstellung diag $(e^{ik_1t}, \dots, e^{ik_{2l+1}t})$ besitzt. Für den Charakter gilt dann also $\chi_{H_l}(R(t)) = \sum_{j=0}^{2l+1} e^{ik_jt}$. Man prüft leicht nach, dass $(x_2+ix_3)^l \in H_l$ ein Eigenvektor der Linkstranslation $l_{R(t)}$ zum Eigenwert e^{-ilt} ist, sodass e^{-ilt} in der Matrixdarstellung der Linkstranslation vorkommt und somit auch als Summand im Charakter auftaucht, woraus wiederum $\max n_{\nu} \geq l$ und daraus die Behauptung folgt.