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Tight Models of de-Rham Algebras of
Highly Connected Manifolds

Lorenz Schwachhofer

Abstract

The rational homotopy type of a closed oriented manifold M is deter-
mined by the weak equivalence class of its de Rham algebra Q*(M). In [3]
Crowley and Nordstrom invented the Bianchi-Massey tensor of a DGCA
which is invariant under quasi-isomorphisms. In fact, for (r — 1)- con-
nected (r > 1) manifolds of dimension n < 5r — 3, this tensor, together
with the cohomology ring, completely determines the rational homo-
topy type. In this chapter we show that each weak equivalence class of
Poincaré DGCAs contains a tight graded differential algebra, by which
we mean a finite dimensional algebra with a non-degenerate Poincaré
pairing which does not contain any properly enclosed quasi-isomorphic
subalgebra. This tight differential graded algebra can be described ex-
plicitly in terms of the Bianchi-Massey tensor.

11.1 Introduction

By the seminal work of Sullivan [9], it is known that two simply con-
nected CW-complexes X, X, are rationally equivalent if and only if
their rational homotopy algebras m.(X,Q) are weakly equivalent dif-
ferential graded commutative algebras (DGCAs). In the case of closed
simply connected manifolds My, M, this is equivalent to the weak equiv-
alence of the de Rham algebras Q* (M;).

There are numerous known invariants of DGCAs which are preserved
under quasi-isomorphisms and hence may help to distinguish weak equiv-
alence classes of DGCAs. One such invariant, called the Bianchi—-Massey
tensor, was introduced by Crowley and Nordstrém [3] for DGCAs of
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Poincaré type, see Definition 11.3.1 below. This is a class which com-
prises the de-Rham algebras of closed oriented manifolds. In fact, they
showed that, for (r — 1)-connected (r > 1) Poincaré algebras of degree
n < 5r — 3, the Bianchi-Massey tensor is the only invariant (apart from
the cohomology algebra), meaning that two such DGCAs are weakly
equivalent if and only if their cohomology algebra and their Bianchi—
Massey tensors coincide. The degree of the de Rham algebra Q*(M)
equals the dimension of the closed oriented manifold M.

In [5], the Bianchi-Massey tensor was shown to be equivalent to a class
in Harrison cohomology and hence to determine an Aj algebra. Further-
more, it was shown there that each weak equivalence class of a simply
connected Poincaré DGCA of Hodge type (see. Definition 11.3.4) con-
tains a finite dimensional representative; moreover, any (r—1)-connected
(r > 1) Poincaré DGCA of Hodge type is almost formal in the sense of
[2] if its degree m satisfies n < 4r — 1, so that e.g. any closed simply
connected 7-manifold is almost formal; see Corollary 11.4.5 below.

In this chapter, we aim at identifying a “canonical” finite dimensional
representative in each weak equivalence class, similar to the approach
in [6]. For this, we introduce the notion of a tight Poincaré DGCA as
a finite dimensional Poincaré DGCA with a non-degenerate Poincaré
pairing that does not admit any proper quasi-isomorphically embedded
subalgebra (Definition 11.5.1).

For a graded commutative algebra (GCA) H*, we follow [3] in setting
KC* € S?(H*) the kernel of the multiplication map - : S2(H*) — H*.1

Theorem 11.1.1 Let H* be an (r — 1)-connected (r > 1) Poincaré
GCA of degree n < 5r — 3. Then there is a bijective correspondence
between symmetric bilinear forms® 8 € (S%(K*))Y on K* of degree n+ 1
and isomorphism classes of tight DGCAs Q% with cohomology H*.

The construction of the finite dimensional models in [5] implies that
each weak equivalence class of DGCAs with the restrictions in Theorem
11.1.1 contains a tight DGCA. However, different 8 may result in weakly
equivalent DGCAs Q;. A symmetric bilinear form B on S%(H*) is said
to be of Riemannian type if it satisfies

B(hihg, hahy) = —(=1)1"21h21 3(hy by, hohy).

1 Here, S¥(V*) for a graded vector space V* denotes the graded symmetric
k-tensors on V*
2 Here (S?2(K*))V denotes the dual space of S?(K*).
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This terminology is chosen as such a tensor satisfies all (graded) sym-
metries of a Riemannian curvature tensor. Furthermore, a symmetric
bilinear form § on K* is said to be of Riemannian type if 8 = B‘ i« for
a symmetric bilinear form B of Riemannian type on S?(H*). With this,
we can show the following:

Theorem 11.1.2 Let H* be an (r — 1)-connected (r > 1) Poincaré
GCA of degree n < 5r — 3.

1 Fach weak equivalence class of DGCAs with cohomology H* contains
a tight DGCA Qj, B € (S2(K*))V. In fact, B may be chosen to be of
Riemannian type.

2 Tight DGCAs Q3 ¢ = 1,2, are weakly equivalent if and only if
(B1 — Ba2)je= = 0, where £ C S*(K*) is the kernel of S*(K*) —

S2(S2(H*)) ™4 54 (1+).

This chapter is organized as follows. In Section 11.2, we recall the
relation between the rational homotopy equivalence of closed oriented
manifolds or, more generally, of CW-complexes on the one hand and
the weak equivalence of DGCAs on the other. In Section 11.3 we re-
call the definitions of Poincaré GCAs from [3] and Poincaré DGCAs of
Hodge type from [5]. In Section 11.4 we recall from [5] that each sim-
ply connected Poincaré DGCA A* of Hodge type is weakly equivalent
to a finite dimensional DGCA Qgman, called the small quotient algebra
of A*, with a non-degenerate Poincaré pairing. In Section 11.5 we in-
troduce the notion of tight Poincaré DGCAs and show Theorem 11.1.1.
Once this is established, we recall in Section 11.6 the Bianchi—-Massey
tensor of [3] and compute it for the tight Poincaré DGCAs from Section
11.5 and show Theorem 11.1.2. We also given an explicit description of
these models in the case of closed simply connected 7-manifolds.
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11.2 Rational and Weak Equivalence

A continuous map f : X — Y between CW-complexes is called a rational
homotopy equivalence if it induces an isomorphism on rational homotopy,
fe, if fi : m(X)®Q — 7.(Y) ® Q is an isomorphism. If X,Y are
simply connected, then this is equivalently to requiring that f induces
an isomorphisms on rational (co-)homology f. : H.(X,Q) — H.(Y,Q)
or f*: H*(Y,Q) - H*(X,Q), respectively [4, Thm. 8.6]. Observe that
in general, a rational homotopy equivalence does not admit an inverse,
but it generates an equivalence relation by saying that X and Y are
rationally equivalent if there are spaces and maps

X \ Zs ‘e Zok / Y
Z \ : / Zok+1
(11.1)
where all arrows denote rational homotopy equivalences.?

As a special case of Sullivan’s construction of the localization of topo-
logical spaces, it follows that, for each such space X, there is a CW-
complex Xq, called the rationalization of X, together with a rational
homotopy equivalence X — Xgq, and such that Xq is a rational space,
meaning that all homotopy groups mx(Xg) are vector spaces over Q.
Moreover, Xg is uniquely defined up to homotopy equivalence [4, Thmn.
9.7], so that X and Y are rationally equivalent if and only if the diagram
(11.1) may be simplified to

X\XQ/Y

There is an algebraic analogue to this construction. Namely, recall that
a differential commutative graded algebra (DGCA) is a graded vector
space A* = @,zc:o AP with an associative graded commutative product
- and a differential d : A* — A*[~1], i.e., such that A" - A" C A**! and
dA* ¢ AF1 ) and with

(11.2)

3 This is called the localization of the category of simply connected spaces with
respect to rational homotopy equivalences.
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a-B= (_1)|01H/3|5 Ca,
d(a-B) = (da) -+ (—1)%la - (dB), (11.3)
d* =0,

where a € Al®l and 8 € APl are homogeneous elements. Thus, the
cohomology of A* defined by

(A" = (kerd)/(Im d) "Z" A5/d A"

has a well defined product [a] - [8] := [a - 8] which turns H*(A*) into a
commutative graded algebra (GCA).

Given two DGCAs A* and B*, a DGCA-morphism is a graded mor-
phism of algebras ¢ : A* — B* which commutes with the differentials.
Then ¢ induces a homomorphism on cohomologies

p. s H'(A") — H"(B"),

and we call ¢ a quasi-isomorphism if @, is an isomorphism. Just as in
the case of rational homotopy equivalences, a quasi-isomorphism does
not posses an inverse in general, but it generates an equivalence relation
by saying that DGCAs A* and B* are weakly equivalent if there are
DGCAs C; and quasi-isomorphisms

/ “ \ / : \ Copia
A G 5 5"

(11.4)
If IT*(A*) is of finite type, i.e., all cohomologies H*(A*) are finite
dimensional, then there is a DGCA S*, called the Sullivan minimal
model of A*, and a quasi-isomorphism &* — A* such that a DGCA B*
is weakly equivalent to A* if and only if B* has the same minimal model
S8*, so that, in analogy to (11.2), any two weakly equivalent DGCAs A*

and B* can be connected by quasi-isomorphisms

/ S*\
A* B*

(11.5)
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In fact, 8* is a free DGCA, generated by (possibly countably many)
generators {z, | n € N} of positive degree, and where each dzj, is a
decomposable polynomial in the generators |9, 8].

For instance, for a CW-complex X, the (singular) co-chains with coeffi-
cients in a field F, together with the cup product, form a DGCA C*(X;T)
with cohomology H*(X,F). In particular, a continuous map f: X — Y
induces the DGCA-morphism ¢ := f* : C*(Y,F) — C*(X,F), whence
in the case F = Q, ¢ is a quasi-isomorphim if and only if f is a
rational homotopy equivalence. In particular, if X and Y are ratio-
nally equivalent, then C*(X,Q) and C*(Y,Q) are weakly equivalent,
and S* := C*(Xg, Q) is the Sullivan minimal model of C*(X, Q).

The converse of this statement is also true provided that X and Y are
simply connected; in this case X and Y are rationally equivalent if and
only if C*(X,Q) and C*(Y,Q) are weakly equivalent.

Definition 11.2.1 A DGCA A* is called formal if it is weakly equiv-
alent to (H*(A*),d = 0). A topological space X is called formal if its
rational singular co-chain algebra C*(X,Q) is formal.

That is, the rational homotopy type of a formal topological space X
is determined by its cohomology ring I1*(X, Q) only.

A DGCA over the field F is called connected if H°(A*) = F and
(r — 1)-connected if it is connected and H*(A*) =0 for k = 1,...,r — L.
A 1-connected DGA is also called simply connected.

11.3 Poincaré DGCAs and DGCAs of Hodge Type

In this section we recall the terminology introduced in [5]. In general,

for a graded vector space V* = @, V* we say that a bilinear pairing

(=, =) : V*x V* = Fis of degree n, if (V¥ V') = 0 whenever k +1 # n.
We begin with the following definition.

Definition 11.3.1  (sce [3, Def. 2.7]) Let H* = @), H* be a GCA,
and let [ € (H™)Y, where the latter denotes the dual of H". Then the
bilinear pairing of degree n on H* given by

(o, By = /ak./x’, (11.6)

if k+ 1 = n, is called the Poincaré pairing of degree n induced by |.
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We call H* a Poincaré algebra of degree n if it is finite dimensional
and admits a non-degenerate Poincaré pairing of degree n, i.e., such that
(a, H*Y = 0 if and only if o = 0.

Clearly, a Poincaré algebra of degree n is of the form H* = @Zzo H*
whose Betti numbers b¥ = b¥(H*) := dim H* satisfy b* = "%, If in
addition b° = b = 1, then the pairing (11.6) is unique up to multiples.

Note that in [3, Def. 2.7], the degree of a Poincaré algebra is called
the dimension, but as later we wish to consider the dimension of A* as
a graded vector space, the notion of degree seems more appropriate.

Definition 11.3.2 (see [3, Def. 2.7]) A Poincaré DGCA of degree n
is a DGCA A* whose cohomology algebra H* := H*(A*) is a Poincaré
algebra of degree n.

Proposition 11.3.3 Let A* be a Poincaré DGCA of degree n. Then

there is a Poincaré pairing (—,—) of degree n on A* such that
<a»/3> = <[O‘L [/BDH* (11.7)
for all o, B € A}, where [—] : A — H* denotes the canonical projection
and (—, —) g~ is the Poincaré pairing on H*. In particular,
<ak7 6l> = (_1)kl<ﬂl7ak>7
(@* - B'47) = (o, " 9"), (11.8)

<d0¢k,6l> _ (—1)k+1<0zk,dﬁl>.

Proof Pick [,. € (A")" such that [,.a, = [[a,] for all oy, € A"
Then it is straightforward to verify that the Poincaré pairing of degree
n induced by f 4~ has all the asserted properties. O

Strictly speaking, in order to extend the functional f 4~ defined on
Al to all of A™ in the proof of Proposition 11.3.3 we need to make use
of the axiom of choice. However, we shall later apply this to the case
where either A" is finite dimensional, or A"t! = 0, so that A" = A,,; in
these cases, the existence of this extension does not require the axiom
of choice.

Observe that this pairing induces another pairing of degree n + 1 on
dA*, given by

(a,B) ==(d"a,B), o BecdA, (11.9)

where d~« is an element such that dd~« = «. Indeed, since d~« is well
defined up to adding an element of A%, and (A%, dA*) = 0 by (11.8), it
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follows that the pairing (11.9) is well defined. From (11.6) and (11.8) we
easily deduce that this pairing is also graded symmetric, i.e.,

{(*, 8") = (=D)F (B, a"). (11.10)
Definition 11.3.4 (|5, Def. 2.2]) Let A* be a connected Poincaré
DGCA of degree n with a Poincaré pairing (—, —).

1 A harmonic subspace of A* is a graded subspace H* C A} comple-
mentary to d.A* and such that 1 € H°.

2 A Hodge type decomposition of A* is a direct sum decomposition of
the form

A = dA* & H* 3 B* (11.11)
where H* C A} is harmonic, such that
(H* & B*,B*) = 0. (11.12)

3 A Poincaré DGCA admitting a Hodge type decomposition is called a
Hodge type DGCA.

By (11.7) the restriction of the projection A% — H*(A*) yields an
isometric isomorphism

(H*7<777>) — (H*(A*)><777>H*)' (11~13)
In particular, H* is finite dimensional and the restriction of the Poincaré
pairing to H* is non-degenerate.
If #* C A}, is a harmonic subspace, then we have the decomposition
A4 = dA* @ H*, and we define the cocycle of H* to be the linear map

by 1 SP(HY) — dA™, &y ([], [ha]) := praa- (b1 - ha), hy € H*.
(11.14)

Proposition 11.3.5 Let A* = dA* @ H* © B* be a Poincaré DGCA
with a Hodge type decomposition. Then every harmonic subspace H* C
A% is of the form

H* = {v+8w)|veH} (11.15)
for some linear map B : H* — dA* with 8(1) = 0. Defining
B = {2 B(x) - %ﬁBT(:p) |z € B'Y, (11.16)

where BT B* — H* is the unique map satisfying (87 (z), h) = (x, B(h))

for allx € B*, h € H*, the decomposition A* = dA*SH*®B* is a Hodge
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type decomposition. Moreover, the cocycles of H* and H* are related by
the formula

Eq- ([ha], [ha]) = & ([ha], [ha])
+ ha - B([ha]) = B([Pa] - [h2]) + B(Jha]) - 2
+ B([ha]) - B([ha]). (11.17)

Proof Since A% = dA* & H* = dA* & H*, it follows that H* is of the
form (11.16), and it is straightforward to verify that A* = dA*®H* o B*
is a Hodge type decomposition and that the cocycle £. is of the asserted
form. O

We define K* C S2(H*) as the kernel of the multiplication map, i.e.,
via the short exact sequence

0— K* — S*>(H*) — H* — 0. (11.18)

Given a Hodge type decomposition (11.11), the restriction d : B* —
dA*[—1] is a linear isomorphism, whence there is an inverse d~ : dA* —
B*[1]. We may extend d~ to all of A* by defining dI_H*@B* = 0. Thus,
(d7)? =0, and

dd—d =d, d=dd~ =d". (11.19)
It follows that the projections in (11.11) are given by
pry« =1—[d,d7], praa = dd—, prgc—qg-4- = d-d, (11.20)

where [d,d”] = dd™ + d~d is the super-commutator. Therefore, (11.11)
may be written as

A" =dA" dH ®d A" =dd" A" dH & d dA", (11.21)
and, setting A%_ 1= kerd™ = H* ® d~ A", (11.12) implies
(A7, dA") = (A5, d”A") = 0. (11.22)

Ezxample 11.3.6 The quintessential example of a Poincaré algebra of
degree n of Hodge type (which motivates our terminology) is the de
Rham algebra (2*(M), d) of a closed smooth oriented manifold M, with
J given by the integration of n-forms. The Hodge decomposition w.r.t.
some Riemannian metric g on M is then a Hodge type decomposition
in the sense of Definition 11.3.4 whose harmonic subspace is the space
H*(M) of Ag-harmonic forms. Note that the maps d* and d~ are related
by the formula d* =A, d~.
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Given a Poincaré pairing on A*, as a consequence of (11.8), the null-
space
Ti={ae A" | (a, A*) =0}
is a differential ideal of .A*, whence the quotient Q* := A* /A% is again
a DGCA, fitting into the short exact sequence
0— A —m A" — Q9" —0. (11.23)

Then there is an induced non-degenerate pairing on Q*, satisfying

([a], [B) @+ = (o, B)a+, (11.24)
where [] : A* — Q* is the canonical projection.

Lemma 11.3.7 If the Poincaré DGCA A* admits a Hodge type de-
composition, then the differential ideal A% is invariant under d—, and
has the decomposition

P =dd” AL @d dAY. (11.25)

In particular, (A%, d) is acyclic, i.e., has trivial cohomology.
Proof The orthogonality relations (11.21) and (11.22) imply that A} C

Y =dd”A* & d dA.

If aF € A% and gn—F+l € A"~F+1 then by (11.8)

(d~da,dB" 1) = (=1)*"H(dd~da, 3" 1)
_ (—1)k+1<da.ﬁn_k+1>
= —(a,dp" ") =0,

where we used dd~d = d. That is, (d"dA",dA*) = 0, and then the
orthogonality relations (11.22) imply that (d-dA%, A*) = 0, i.e., A%
is invariant under d~d. Thus, because A% C dd~A* & d~dA*, (11.25)
follows. In particular, A% is also invariant under dd~.

To see that A% is also invariant under d~, let a* € A% and "% €
A"F_ Then

(d=a”,dp" ") = (=1)¥{dd~o*, g"F) = 0,

as dd~ o € A by the dd~-invariance of A% . Therefore, (d~ A" ,dA*) =
0, and then (11.22) implies (d~A*, A*) = 0, i.e., A" is invariant under
d~. This together with (11.25) now implies that A% is acyclic. |
Corollary 11.3.8 If A* is of Hodge type, then the projection 7w : A* —
Q* is a quasi-isomorphism, Q* is of Hodge type and (—,—)g+ from
(11.24) is a non-degenerate Poincaré pairing.
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Proof The first statement follows from the long exact sequence associ-
ated to (11.23) and H* (A" ) = 0 by Lemma 11.3.7. Furthermore, (11.21)
and (11.25) imply that d,d™ : @* — Q* are well defined, and that there
is a decomposition

Q' =dd QeH &d dQ7,

and (11.24) easily implies that this is a Hodge type decomposition and
that (—, —) g~ is the Poincaré pairing. |

Remark 11.3.9 As the induced pairing on Q* is non-degenerate by
construction, Corollary 11.3.8 implies that every Hodge type Poincaré
DGCA is equivalent to a non-degenerate one. This has been shown in
[6, Thm. 1.1] by slightly different means.

11.4 Small Algebras of Hodge Type DGCAs

Given a Poincaré DGCA A* with a Hodge type decomposition (11.21),
we consider the following class of subalgebras:

Definition 11.4.1 ([5, Def. 3.1]) Let A* be a Poincaré DGCA with a
Hodge type decomposition (11.21). A H*-subalgebra is a DG-subalgebra
of A* which is d~-invariant and contains H*.

If C* C A* is such an H*-subalgebra, then — as it is closed under
both d and d~ — it follows that it admits a Hodge type decomposition
analogous to (11.21)

C'=dC"OH ®d C =dd C"eH &d dC".

It is evident from here that H*(C*) = H* = H*(A*), whence the inclu-
sion C* — A* is a quasi-isomorphism. As the class of H*-subalgebras
contains A* itself and is invariant under arbitrary intersections, it fol-
lows that there is a minimal such algebra, namely the intersection of all
‘H*-subalgebras of A*.

Definition 11.4.2 ([5, Def. 3.2|) For a Poincaré DGCA A* with a
Hodge type decomposition (11.21), we define the small algebra A%, ., of
A* to be the (unique) smallest H*-subalgebra of A*. Furthermore, the

small quotient of A* is defined to be QF 1 = A%/ (AL ) 1-

N e *
In general, A% .,

connected case, it is not, as the following shows.

may be of infinite type. However, in the simply
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Proposition 11.4.3 ([5, Prop. 3.3]) Let A* be a simply connected
Poincaré DGCA with a Hodge type decomposition (11.21). Then the
small algebra A% ., s given recursively as

Agmall =F-1a,
Apan =0, (11.26)
Ak o =dd- A @ HE @ d- AF, k> 2,

where, for given 1 > 2,
Al = span{ Al ARl > 2,0 + 1 =1}

small ©
depends on A2 - ,Aé;i“ only. In particular, A%, .y is of finite type,
that is, dim A’S“ma“ < oo for all k, and the small quotient QF ., of A* is

finite dimensional.

Proof 1t is straightforward to verify that the space given in (11.26)
is an H*-subalgebra of A*, and, conversely, it must be contained in
any H*-subalgebra of A*, showing that (11.26) indeed defines the small
algebra. The finite dimensionality of A% . follows from induction on
k. As A% ., surjects to Q it follows that Q7 ., is of finite type

* *
smal small’ smal

as well; on the other hand, as the Poincaré- pairing on Q7 ., is non-
degenerate, it follows that Qfma“ = 0 for k > n, whence Q. is finite
dimensional. O

As an important consequence of this, we obtain the following result.

Theorem 11.4.4 ([5, Cor. 3.5]) Any simply connected Poincaré DGCA
of Hodge type is weakly equivalent to a finite dimensional DGCA with a
non-degenerate Poincaré pairing.

Proof By definition, the restriction of the Poincaré pairing on A* to
A is a Poincaré pairing on A% with the Hodge type decomposi-
tion given in (11.26). In particular, the inclusion AZ ., — A* is a quasi-
isomorphism. Moreover, Corollary 11.3.8 implies that the canonical pro-
jection to the quotient Q7 ., = Az /(A% 1)L is a quasi-isomorphism
as well, whence the maps

* * *
A Asmall Qsmall

are quasi-isomorphisms, showing that A* is weakly equivalent to Q% ., -

a

Let us now use the description of A%, ., and QX ., in the case where
A* is (r — 1)-connected, r > 1, i.e., H*(A*) =0 for k=1,...,r — 1.
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In this case, it follows from the recursion formula in Proposition 11.4.3
that

H, 1=0,...,2r—2,
R DU (11.27)
WL d=(H-HT), 1=2r— 1.

Thus, since dim 97~ = dim O! < dim Al , and Q! 1D HE, it

small small smal smal
follows that

ol =M, 1=0,....2r—2, l=n—-2r+2,...,n,
(11.28)
Qi =H" @ d (W H),
and we obtain the following result.

Corollary 11.4.5 (|5, Cor. 3.11|) Let A* be an (r — 1)-connected
(r > 1) Poincaré DGCA of Hodge type of degree n. Then A* is weakly
equivalent to a finite dimensional non-degenerate Poincaré DGCA QF .
for which the differential d : Qf;,iu — Qfma“ 18 possibly nonzero only for

2r <k <n-—2r+1. In particular,

1 if n <4r —2, then A* is formal;
2ifn=4r—1, thend: Q*"L — Qfman vanishes for k # 2r.

small

Remark 11.4.6 1. The first statement of Corollary 11.4.5 has been
shown by Miller in [7] using the Quillen’s functor. In particular, it im-
plies that any closed simply connected manifold of dimension < 6 is
formal.

2. A DGCA which is weakly equivalent to a DGCA whose differential
vanishes in all but one degree is called almost formal. That is, Corollary
11.4.5 (2) shows that an (r — 1)-connected (r > 1) Poincaré DGCA of
Hodge type of degree n = 4r — 1 is almost formal.

For instance, the case r := 2 implies that any simply connected closed
7-manifold is almost formal; this may be compared with [2, Thm. 4.10],
which states that closed Go-manifolds are almost formal.

3. Let M be a closed n-manifold admitting a Riemannian metric of
non-negative Ricci curvature (or, more general, such that all harmonic
1-forms are parallel). Using the Cheeger—Gromoll splitting theorem, one
can show that Q*(M) is weakly equivalent to A* ® A*(H*(M)), where
A* is a simply connected Poincaré DGCA of degree n— by (M) [5, Prop.
5.3].
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Therefore, if n—by (M) < 6, then, by Corollary 11.4.5(1), A* is formal
and hence A* ® A*(H!'(M)) is formal, whence so is M. In particular,
this applies to G-manifolds with holonomy properly contained in Gs,
as these are Ricci-flat and have by (M) > 0. This generalizes [2, Thm.
4.10] in the non-simply connected case as well.

11.5 Tight DGCAs of Highly Connected DGCAs

In this section, we shall assume throughout that H* is an (r — 1)-
connected (r > 1) Poincaré GCA of degree n < 5r — 3. Motivated by
the definition of the small quotient algebra, we introduce the notion of
a tight Poincaré DGCA (see Definition 11.5.1). We shall give an explicit
construction of a tight representative in each weak equivalence class of
such algebras.

Definition 11.5.1 A Poincaré DGCA Q* is called tight if it is of Hodge
type with a non-degenerate Poincaré pairing (—, —), and if there is no
proper quasi-isomorphically embedded sub-DGCA Q* — Q*.

In order to describe the construction, consider a graded vector space

n+1-2r
k=2r
with a non-degenerate graded bilinear form ((—, —)) of degree n + 1.
Let B* := (V*)V[n], and define Q* := V* @ H* @ B* as a vector space.
We extend the Poincaré pairing (—, —) on H* = H* to a non-degenerate
pairing of degree n on Q* by
(H*,V*@B*) = (V*,V)=(B*"B")=0,

11.
(B*,V*), the evaluation map. (11.30)

Since both (—,—) and ((—,—)) are non-degenerate of degree n and
n + 1, respectively, it follows that there is an isomorphism d~ : V* —
B*[1] satisfying (11.9), and we denote its inverse by d : B* — V*[—1].

Extending d and d~ to all of @* by requiring them to vanish on V*H*
and on H* @ B*, respectively, it follows that d*> = 0 and (d~)? = 0, and
that V* =dQ*, B* = d~ Q*. That is, we have the decomposition

Q" =V'eH ®B, V' '=dQ', B'=d Q.  (1131)

We denote the identification H* + H* by h « [h]; in particular,
[h1] - [he] € H* = H* refers to the multiplication in H*.
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Given a graded map & : S?(H*) = S?(H*) — V*, we define a product
on Q* by

ki - ko = (ky, ko)vol, for k; € V* & B*, (11.32)
VeeH =0 for I >0, (11.33)
hy-hy = [h1] - [ho] + E(h1, he)  for by € H*,  (11.34)
B H cH* forl>0, (11.35)
(d™k - hy,hy) = (k,E(h1, he))  for ke V*, hy € H*. (11.36)

In (11.32), vol,, € H" denotes the (unique) element for which [ vol,, = 1.
Observe that (11.32) implies

dQ* - (Q)g=V"- (V' &N )=8B"-B"=0. (11.37)

It is now straightforward to verify that, with this product, Q* becomes
a Poincaré DGCA with Hodge type decomposition (11.31) and the non-
degenerate Poincaré pairing (—, —), and £ = &« is the cocycle of the
harmonic subspace H* defined in (11.14).

Lemma 11.5.2 Let Q* be a Poincaré DGCA of Hodge type with a
non-degenerate Poincaré pairing (—,—), and suppose that QF = H* for
all k < 2r—2. Then V* := dQ* is of the form (11.29) with {—,—)) from
(11.9), and there is a Hodge type decomposition (11.81) such that the
product structure on Q is given by (11.82) (11.36), where € = E3- :
S2(H*) — V* is the cocycle map defined in (11.14).

Proof Pick a Hodge type decomposition (11.31) of Q*. It is immediate
from (11.9) that the pairing {(—,—)) on V* = dQ* is non-degenerate.
Furthermore, Yk = ko_l, whence V¥ = 0 for k < 2r — 1. The non-
degenericity of ((—, —)) implies that V¥ = (V"+1=F)V 50 that, in partic-
ular, V¥ =0 for k > n +2 — 2r, i.e., V* is of the form (11.29).

The non-degenericity of (—, —) and the orthogonality relations (11.12)
imply that B* = (V*)¥[n], and the Poincaré pairing (—, —) corresponds
to the pairing from (11.31) under this identification. In particular, Q% =
(Q"*)V, so that

QF 2 P = (HP )Y, fork<2r—2and k>n—2r+2. (11.38)
Since V* @ B* has only elements of degree > 2r — 1, and by assumption

2(2r — 1) > n— (r — 1), it follows that

n
VeB) (VeB)c @ Q=" =Fvl,

k=2(2r—1)
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where the latter follows from (11.38) and H* =0 for k = 1,...,r — 1.
Thus, (11.32) follows from (11.6).
By (11.29) it follows that

n
H-ves)c p o~
k=2r+i—1

If I > 0 then H! # 0 only if I > r, in which case 2r +1—1>3r—1>
n—(2r—2), so that (11.38) implies Q% = H* for all k > 27 +1— 1. That
is, H' - (V* @ B*) C H*, showing (11.35). Also, K* C (Q*)4 is an ideal,
so that H' - K* € K* N'H* = 0 which shows (11.33).

Equation (11.34) follows immediately from the definition of £ = £+
in (11.14), and to show (11.36), let k € V* and hy, hy € H*. Then

(11.34)

(d k- b1, ha) "= (d kb - ho) (d™ K, &R, [ha))) = (b, E([a), [h2])))-

a

Lemma 11.5.3 There is a one-to-one correspondence of Poincaré
DGCAs Q* of Hodge type with QF = H* for all k < 2r — 2 and a
non-degenerate Poincaré pairing (—, =), and linear maps § : K* — dQ*.
This correspondence is given by the restriction of the cocycle map &y~ :
S2(I*) — dQ* from (11.14) to K* C S?(IT*).

Proof 1f Q* is as requested, Lemma 11.5.2 implies that Q* has a Hodge
type decomposition (11.31), and the product is determined by (11.32)—
(11.36) for the cocycle map € := &

Let #* C Q7 be another harmonic subspace which is hence of the form
(11.15) for some linear map § : H* — V*. Since QF = H*, and hence
d- V1l =0 for k < 2r —2 and d~ : V¥ — B¥ is an isomorphism, it
follows that V* = 0 for k < 2r, whence |3(h)| > 2r. Thus, if hy, hy € H*
are not 1 and hence of degree > r, it follows that |hy - B(ha)| > 3r >
n+ 1 —2r, whence by (11.29) it follows that hy - (h2) = 0 and likewise
B(h1) - ha = 0. Also, B(h1) - B(he) € V* - V* = 0. That is,

&+ ([, [h2]) = Gu-([Mal, [ha]) — B([ha] - [ha]) (11.39)

by (11.17). If we now define B* by (11.16), then we obtain the Hodge
type decompositon

o =V'oH oB, (11.40)
and the DGCA structure on Q* is again determined by (11.32)—(11.36),
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replacing H* by H* and B* by B* and £ := &x- by & = £+ [rom
(11.40), respectively.

Conversely, Q% = V* @ H* is a central extension of H* by (11.37)
whose Hochschild cocycle is given by € = &x«. Therefore, replacing &
by € yields an isomorphic DGCA-structure if and only if & — € is a
Hochschild coboundary, implying that £ := &y s given in (11.39) for
some 3 : H* — V*. That is, two maps & and ¢ in (11.32)—(11.36) yield
isomorphic DGCAs if and only if (£ — €)(hy, he) = B(h - ho) for some
B: H* — V*, and clearly, this is the case if and only if £ 1= & = €_|,IC*;
that is, Q" is determined up to isomorphism by & : £* — V* = dQ~*,
and, since any such ¢ is the restriction of some map & : S?(H*) — V*,
the assertion follows. O

Lemma 11.5.4 Let Q* be the Poincaré DGCA of Hodge type with
QF = HF for all k < 2r — 2 and a non-degenerate Poincaré pairing
(—,—) corresponding to the map & : K* — dQ* by Lemma 11.5.3. Then
9* s tight if and only if & is surjective.

Proof Pick a decomposition S?2(H*) = K* & N*, and define the map
£:8%(II*) - V* by f_‘;c* = ¢ and EIN* =0.

According to Lemma 11.5.3, there is a Hodge type decomposition
(11.40) of Q* such that the product is given by (11.32)—(11.36) for the
map & from above. It follows that

Q = E(SP(H)) o H @ d §(S*(H") =E(K) @ H ©d E(K") € ©°

is a sub-DGCA of Q* whose inclusion 9* < Q* is a quasi-isomorphism.
If ¢ is not surjective, then o* C QF is a proper quasi-isomorphically
embedded sub-DGCA, showing that Q* is not tight.

Conversely, suppose that & is surjective, and let Q" C Q" bea quasi-
isomorphically embedded sub-DGCA. Then Q* contains a harmonic sub-
space H* C Qf. We may choose the Hodge type decomposition (11.40)
of Q* containing H* as a factor, whence the product on Q* is given
by (11.32)-(11.36) for some map & which extends ¢, so that, in particu-
lar, € is surjective as well. Therefore, (11.34) and #* C Q* imply that
E(SQ(H*)) = V* C O*. Since the inclusion map O < O is a quasi-
isomorphism, it follows that each k € V* is exact in Q*, implying that
d~V* =B C Q*, whence Q* = Q*. This shows that Q* is tight. O

Proof of Theorem 11.1.1 Let p = {(—,—)x+ on K* be a symmetric
bilinear form of degree n+1, and define the quotient space V* := K*/KC*
with the canonical projection € : £* — V*. Evidently, there is an induced
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non-degenerate symmetric pairing Sy~ on V* satisfying

By (§(k1). E(k2)) = Bk, k). (11.41)

Since H* is (r — 1)-connected, it follows that K* C S2(H*) has only
elements of degree > 2r, whence so does V*. By the non-degenericity
of By~ it follows that VF = (V"+1=F)V and, in particular, V¥ = 0 for
k > n+1— 2r. Therefore, V* is of the form (11.29).

Pick an extension ¢ : S2(H*) — V* of ¢ and define the algebra QF by
(11.31) with the product given by (11.32)—(11.36). The surjectivity of £
implies that QE is a tight DGCA by Lemma 11.5.4, and it is independent
of the choice of the extension £ of £ by Lemma 11.5.3. That is, to a given
B € S?(K*)Y we have associated a tight DGCA Q5 with cohomology H*.

For the converse, let Q* be tight and choose a Hodge type decom-
position (11.31). As Q. — Q* is quasi-isomorphically embedded, it
follows that Q7 ., = Q*, whence by (11.28), the (r — 1)-connectedness
of Q* implies that QF = H* for k < 2r — 2. Thus, Lemma 11.5.2 implies
that multiplication in Q* is given by (11.32)—(11.36) for some decompo-
sition (11.31) and some cocycle map £ := &y : S2(H*) — V*, and the
pairing By 1= ((—, —)) on V* = d.A* defined in (11.9) is non- degenerate.

The tightness of @* and Lemma 11.5.4 implies that £ := £_| i+ 1Is sur-
jective, whence the pull-back § := £*(By+) € (S?(K*))V satisfies (11.41),
so that V* = K* /K% . Therefore, Q* = Q:‘, O

11.6 The Bianchi—Massey Tensor

In this section, we recall the definition and basic properties of the Bianchi—
Massey tensor of a DGCA A* introduced by Crowley—Nordstrém [3], and
apply it to the tight DGCAs QF constructed in Section 11.5.

Let K* C S2(H*) be the kernel of the multiplication map (11.18). We
define the space £* C S2(K*) C S2(S2(II*)) as the kernel

S2(S2(I™)) (11.42)

N

00— & —— S2(K¥) SA(H*)

where the bottom row is exact, and the diagonal maps are induced by
the inclusion K* «— S?(H*) and the multiplication map S?(S2(H*)) —
S4(H*), respectively. If we wish to emphasize the dependence of K* and
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£* on the cohomology ring H* = H*(A*), then we shall denote them by
K%« and &7%., respectively.

Given a Poincaré DGCA A* with cohomology ring H*, let H* =
o(H*) C A}, be a harmonic subspace, where ¢ is a right inverse of the
projection A — H*. Then multiplication induces maps my, : S¥(H*) —
Ag, mg(21, . wg) = (1) - a(a), and, evidently, K* = my ' (dA*).
Therefore, we may choose a map ¢ : K* — A*[1] such that

ma(p) =ds(p), €K7, (11.43)

and furthermore we define the map

ErS3(KY) — AT[1],  (poy) r— e(p) -ma(p) = () - de(¥).
(11.44)
Observe that dé(¢ o ) = ma(p) - ma2(¥) = ma(p o ¢). That is, for
e € & C S%(K*) we have dé(e) = 0, so that projection onto cohomology
yields a map

BMa- € — H*[1],  BMu-(e) == [é(e)],

which is the Bianchi-Massey tensor of A* (see [3, Def. 1.1]).

Since ¢ is uniquely determined up to adding closed elements, it follows
that € is well defined up to adding exact elements, whence BM 4+ is well
defined, independently of the choice of €. Moreover, it is natural in the
sense that for a DGCA-morphism f : A* — B* there is an induced
commutative diagram

BM 4+
Etpeay —= H* (AM)[1]

Lf* Lf*
B Mg

Epe gy — H7(B")[1]

Here we denote both the cohomology morphism H*(A*) — H*(B*)
induced by f and its extension to the symmetric tensor algebra

ST(H™ (A7) = S*(H*(B"))

by the same symbol f.. In particular, if f is a quasi-isomorphism, then
[« canonically identifies the Bianchi-Massey tensors, so that these are
invariants of the weak equivalence class of A*.

Remarkably, in the case in which A* is highly connected, BM 4-
uniquely determines the weak equivalence class of A*. Namely, Crowley—
Nordstréom showed the following.
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Theorem 11.6.1 ([3, Thm. 1.3]) Let H* be an (r — 1)-connected (r >
1) Poincaré GCA of degree n < 5r — 3. Then two DGCAs Af, i =1,2,
with cohomology H* are weakly equivalent if and only if their Bianchi—
Massey tensors

BMy: : EMY — H™ = Fvol,
coincide.

We say that a bilinear form 3 on S2(H*) is of Riemannian type if it
satisfies for all homogeneous h; € H!"! the symmetry relation

B(hyihy, hshy) = —(=1)1"2slG(h by hohy). (11.45)

Furthermore we say that a bilinear form S on K* is of Riemannian
type if 8 = BIK* for 3 a bilinear form on S2(H*) of Riemannian type.
This terminology is due to the fact that tensors of Riemannian type
satisfy all (graded) symmetries of a Riemannian curvature tensor.

It follows that there is a decomposition S%(S?(H*))V = 1(S4(H*)) ®

R(H*), where ¢ : S*(H*)Y — S%(S%(H*))V is the dual of the multi-
plication map and R(H*) is the space of bilinear forms of Riemannian
type.
Proof of Theorem 11.1.2 We need to compute the Bianchi-Massey ten-
sors BMQZ. By construction, the product structure of Qj is defined by
(11.32)—(11.36) for some extension & : S2(H*) — V* of the canonical
projection £ : K* — V*. Thus, when defining the Bianchi-Massey ten-
sor, the map e : £* — Qp[1] from (11.43) may be chosen as

e(k) .= d &(k).

Let e € £ € S*(K*) and write it as e = Y,k ok € £ C S*(K¥)
with ki € K£*. Then, by (11.44),

£(e) = Zd*ki ok =Y (K}, kj)vol, = B(e)voln,

i
that is, the Bianchi-Massey tensor of Qj is determined by the restriction
of 3 to £* C S(K*):

BMgy(e) = B(e)voly for all e € £*. (11.46)

Since any element in (£%)Y can be realized as the restriction of some
B € (S%(K*))V of Riemannian type, and since by Theorem 11.6.1 the
Bianchi-Massey tensor determines the weak equivalence type, the state-
ments follow. O
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Example 11.6.2 Let H* be a simply connected Poincaré algebra of
Hodge type of degree 7, so that r = 2 and n =7 = 5r — 3. As I* has
elements of degree > 21 = 4 only, any bilinear form 3 of degree n+1 =8
on K* is a bilinear form on

K* =ker(-: H*> @ H*> — H*).

In fact, we may assume that 3 € S?(K*)V is the restriction of an element
in R® C S%(S%(H?))V of Riemannian type to 2.
Then V* = V4 = IC4/IC‘j_, where IC‘i is the null space of 3, so that

HE, for k # 3,4,
Qf =S H} @ d V4, for k=3,
HE D VA, for k = 4,

and the algebra structure of Qj is given by (11.32)-(11.36) for some
extension £ : S?(H?) — V* of the canonical projection £ : K* — V4.

In particular, the de Rham algebra Q*(M) of a closed simply con-
nected 7-manifold M is weakly equivalent to such an DGCA QZ.
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