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Preface: CERME 11 in lovely Utrecht historic sites

Susanne Prediger & Ivy Kidron
ERME President ERME Vice-President
Dortmund (Germany) Jerusalem (Israel)

Each second year, the European Society for Research in Mathematics Education (ERME)
organises a conference. The 11th Congress of ERME (CERME 11) took place in Utrecht (The
Netherlands), in February, 6 to 10, 2019. The conference was hosted by the Freudenthal
Group, in collaboration with the Freudenthal Institute, of Utrecht University. The participants
of the conference were offered an excellent academic environment in a place in which
important blocks in the foundation of mathematics education research were laid fifty years
ago by Freudenthal and his collaborators.

CERME is getting larger from congress to congress: from 774 participants at CERME 10 to
900 participants at CERME 11 - the highest number of participants in comparison with the
previous CERMEs. In order to avoid overflow (more than 300 more people were interested in
participating), the ERME board had to decide to stop the growth tendencies with stopping at
900 participants. Most participants at CERME 11 are European researchers, but CERME is
getting increasingly international with 152 researchers from outside Europe: Asia (30), North
—America (54), South-America (40), Australia/New Zealand (9), Africa (19). The European
researchers are essentially from Germany (169), Norway (82), United Kingdom (57), Sweden
(54), Italy (40), The Netherlands (39), Israel (36), Spain (36), France (33), Portugal (31),
Denmark (27), Turkey (26), Greece (23), Ireland (19), Austria (14), Finland (13), Cyprus
(11), Hungary (8), Czech Republic (6), Croatia (5), Switzerland (4), Iceland (3), Slovakia (3),
and Poland (2), and many other countries with one participant each.

A conference with such a huge number of participants requires a perfect organization in order
to be successful, and indeed it was a real success. All the members of the Local Organizing
Committee contributed to the excellent organization, especially the chair of the LOC, Marja
van den Heuvel-Panhuizen, and her co-chair, Michiel Veldhuis. They did a wonderful work.
They paid attention to all the small details before and during the conference. Both paid
attention to all the specific needs of each participant. They dealt successfully with all the
issues, challenges (small and big), and always with a smile. We thank both of them so deeply!

Inclusion and quality is an integral part of the CERME spirit. The success of the conference is
tightly connected with the quality of the scientific program, which was excellent. We address
our sincere thanks to the International Program Committee, especially to the chair of the IPC,
Uffe Thomas Jankvist, and his co-chair, Miguel Ribeiro, for their excellent work before,
during and after the conference, taking into account ERME principles: selecting deep and
interesting plenaries, organizing a panel discussion, organizing the distribution of Thematic
Working Groups and the publication process of the proceedings.

In his plenary lecture, Paul Drijvers offered a deep reflection on a promising integrative
approach to tool use, called embodied instrumentation, which is based on three lenses: a
Realistic Mathematics Education view; instrumental approaches, and embodied views on
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cognition. In the second plenary lecture, Kathleen M. Clark offered a thoughtful analysis of
examples in which research on the use of history of mathematics contributed to the broader
landscape of research in mathematics education. The examples address the role of history of
mathematics in the learning of different mathematical concepts, ranging from the function
concept to determinants of matrices, as well as topics in analysis and abstract algebra. The
third plenary talk was given by Sebastian Rezat. Using the transition from natural numbers to
integers as an exemplary case, Rezat delineated an insightful analysis on transitions from one
number system to the other with a particular interest in continuities and discontinuities in the
teaching of these number systems. Rezat integrated the results in an approach to achieve
learner-centered coherence in the learning of number. Three papers corresponding to these
three plenary addresses are included in the proceedings.

On the occasion of the 20" anniversary of ERME, the IPC organized an anniversary panel
chaired by Konrad Krainer and Hanna Palmer. The panel offered a deep reflection on ERME
contribution to research in mathematics education. Barbara Jaworski and Susanne Prediger
(past and current ERME president), Paolo Boero and Simon Modeste (representatives of
YESS and YERME - Young Researchers in ERME), and Tommy Dreyfus and Jana Zalska
(editor and reader of the ERME book) made up the panel.

The work done in the plenaries and the panel contributed substantially to the success of the
conference.

The core and the heart of each CERME are the Thematic Working Groups and the serious
work which is done in all of them. In the TWGs, the collaboration between experienced and
young researchers supports the scientific development of the young researchers. At CERME
11, 575 papers and 152 posters were accepted. 26 TWGs were organized with 8 TWGs which
were divided in two subgroups due to the large number of participants. Our sincere thanks are
adressed to the 34 working group leaders and 99 co-leaders for their huge and wonderful
work. Before the conference, the leaders and co-leaders organized the review process and
devoted much time in planning the program of the TWG. As a result, they were able to lead
excellent discussions during the work of the TWG at the conference. A wonderful
atmosphere and a lot of motivation characterized the work in the working groups. Every
participant was involved in the work. After the conference, the authors had the possibility to
further revise their papers, integrating significant changes which emerged in the discussions in
the TWGs. The leaders and co-leaders organized this final review process.

The work done by all the organizers and deep involvement of the TWG leaders, IPC
members, LOC members and ERME board members contributed to the success of the
conference. We thank everybody who has contributed to this success. Specific thanks go to
Uffe Thomas Jankvist, Miguel Ribeiro, Marja van den Heuvel-Panhuizen and Michiel
Veldhuis for all their work with a wonderful result.

We encourage interested researchers to meet us at the next CERME that will take place in
February 2021 in Bolzano (Italy).

Susanne Prediger & Ivy Kidron
ERME President ERME Vice-President

Proceedings of CERME11 2



Introduction

Introduction to the Proceedings of the Eleventh Congress of the
European Society for Research in Mathematics Education

(CERMET11)
Uffe Thomas Jankvist'; Marja van den Heuvel-Panhuizen?; Michiel Veldhuis®
'Danish School of Education, Aarhus University, Denmark, utj@edu.au.dk

%Freudenthal Group & Freudenthal Institute, Utrecht University, Netherlands, m.vandenheuvel-
panhuizen@uu.nl; Nord University, Norway, m.vandenheuvel-panhuizen(@nord.no

?Freudenthal Group, Utrecht University, Netherlands, m.veldhuis@uu.nl; iPabo University of
Applied Sciences, Amsterdam, Netherlands, m.veldhuis@ipabo.nl

About CERME11

The Eleventh Congress of European Research in Mathematics Education (CERME 11) took place in
Utrecht, the Netherlands from 5th to 10th of February 2019. Uffe Thomas Jankvist (Denmark) was
the chair of the International Programme Committee (IPC), which comprised Miguel Ribeiro
(Portugal/Brazil, IPC Co-chair), Marianna Bosch (Spain), Therese Dooley (Ireland), Eirini Geraniou
(UK/Greece), Ghislaine Guedet (France), Jeremy Hodgen (UK), Bozena Maj-Tatsis (Poland), Angel
Mizzi (Germany/Malta), Aoibhinn Ni Shuilleabhain (Ireland), Marja van den Heuvel-Panhuizen (The
Netherlands, LOC chair), and Stefan Zehetmeier (Austria). Marja van den Heuvel-Panhuizen and
Michiel Veldhuis were chair and co-chair, respectively, of the Local Organizing Committee (LOC).

CERME11 hosted 26 Thematic Working Groups, listed in the table below. The TWGs 07, 25, and 26
were new TWGs, created following a call launched just after CERMEI10, and a selection process
involving the CERME11 IPC and the ERME board. They have all been very successful, and all but
one (TWGI11) will be part of CERME12 in February 2021. Eight of the TWGs recieved so many
submissions they had to be split in two — more precisely the TWGs 01, 05, 09, 14, 16, 18, 19 and 20
—and more TWG leaders and co-leaders had to be invited. In the end, CERME11 had 34 TWG leaders
and 99 TWG co-leaders.

Thematic Working Group Leader Co-Leaders

TWG 01a
Argumentation and Proof

Gabriel J. Stylianides (UK)

Anita Valenta (Norway)
Viviane Durand-Guerrier
(France)

TWG 01b
Argumentation and Proof

Andreas Moutsios-
Rentzos (Greece)

Orly Buchbinder (USA)
Jenny Cramer (Germany)

TWG 02
Arithmetic and Number
Systems

Elisabeth Rathgeb-
Schnierer (Germany)

Beatriz Vargas Dorneles
(Brazil)

Renata Carvalho (Portugal)
Judy Sayers (Sweden)

TWG 03
Algebraic Thinking

Reinhard
Oldenburg (Germany)

Dave Hewitt (UK)
Heidi Stromskag (Norway)
Maria Chimoni (Cyprus)
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TWG 04 Joris Mithalal (France) Michela Maschietto (Italy)
Geometry Teaching and Keith Jones (UK)

Learning Chrysi Papadaki (Germany)
TWG 05a Caterina Primi (Italy) Sibel Kazak (Turkey)
Probability and Statistics Orlando Rafael Gonzalez
Education (Thailand)

TWG 05b Aisling Leavy (Ireland) Pedro Arteaga (Spain)
Probability and Statistics Daniel Frischemeier
Education (Germany)

TWG 06
Applications and Modelling

Berta Barquero (Spain)

Susana Carreira (Portugal)
Katrin Vorhoélter (Germany)
Geoff Wake (UK)

Jonas Bergman Arlebick
(Sweden)

Britta Jessen (Denmark)

TWG 07 Kees Hoogland (The Beth Kelly (UK)
Adult Mathematics Education | Netherlands) Fiona Faulkner (Ireland)
Javier Diez-Palomar (Spain)
TWG 08 Stanislaw Inés M. Gémez-Chacon
Affect and the Teaching and Schukajlow (Germany) (Spain)
Learning of Mathematics Cigdem Haser (Turkey)
Peter Liljedahl (Canada)
Karen Skilling (UK)
Hanna Viitala (Norway)
TWG 09a Nuria Planas (Catalonia- Marie Therese Farrugia
Mathematics and Language Spain) (Malta)
Kirstin Erath (Germany)

TWG 09b
Mathematics and Language

Jenni Ingram (UK)

Marcus Schiitte (Germany)

TWG 10

Diversity and Mathematics
Education: Social,
Cultural and Political

Hauke Straehler-
Pohl (Germany)

Anette Bagger (Sweden)
Laura Black (UK)

Anna Chronaki (Greece)
David Kollosche (Austria)

Challenges

TWG 11 Paul Andrews (Sweden) Eva Jablonka (Germany)

Comparative Studies in Jeta Kingji (Slovenia)

Mathematics Education Constantinos Xenofontos
(Cyprus)

TWG 12
History in Mathematics
Education

Renaud Chorlay (France)

Aline Bernardes (Brazil)
Tanja Hamann (Germany)
Antonio M. Oller-Marcén
(Spain)

TWG 13
Early Years Mathematics

Ingvald Erfjord (Norway)

Esther Levenson (Israel)
Bozena Maj-Tatsis (Poland)
Marianna Tzekaki (Greece)
Priska Schoner (Germany)
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TWG 14a Alejandro S. Gonzalez- Ghislaine Gueudet (France)
University Mathematics Martin (Canada/Spain) Iméne Ghedamsi (Tunis)
Education Jason Cooper (Israel)
TWG 14b Irene Biza (UK) Olov Viirman (Sweden)

University Mathematics
Education

Alon Pinto (Israel)
Vilma Mesa (USA)

TWG 15 Alison Clark-Wilson (UK) Ornella Robutti (Italy)
Teaching Mathematics with Iveta Kohanova
Technology (Norway/Slovakia)

and Other Resources Melih Turgut (Turkey)
TWG 16a Hans-Georg Ana Donevska-Todorova
Learning Mathematics with Weigand (Germany) (Germany/Macedonia)
Technology Eirini Geraniou (UK)
and Other Resources

TWG 16b Nathalie Sinclair (Canada) Eleonora Faggiano
Learning Mathematics with (Italy)

Technology Osama Swidan (Israel)
and Other Resources

TWG 17 Angelika Bikner- Arthur Bakker (The
Theoretical Perspectives and Ahsbahs (Germany) Netherlands)
Approaches Esther Chan (Australia)
in Mathematics Education Heather Johnson (USA)
Research

TWG 18a Stefan Zehetmeier (Austria) Laurinda Brown (UK)
Mathematics Teacher Maria Mellone (Italy)
Education

and Professional Development

TWG 18b

Mathematics Teacher
Education

and Professional Development

Joao Pedro da Ponte (Portugal)

Libuse Samkova (Czech
Republic)

Marita Friesen (Germany)
Janne Fauskanger (Norway)

Angela Buforn (Spain)
TWG 19a Charalampos Rukiye Didem Taylan
Mathematics Teaching and Sakonidis (Greece) (Turkey)

Teacher Practice(s)

Ove Gunnar Drageset
(Norway)

TWG 19b Reidar Mosvold (Norway) Sitin Nic Mhuiri (Ireland)
Mathematics Teaching and

Teacher Practice(s)

TWG 20a Miguel Fatma Aslan-Tutak (Turkey)
Mathematics Teacher Ribeiro (Brazil/Portugal) Miguel Montes (Spain)
Knowledge,

Beliefs and Identity

TWG 20b Francesca Martignone (Italy) Sebastian Kuntze (Germany)
Mathematics Teacher Kirsti Re (Norway)
Knowledge,

Beliefs and Identity
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TWG 21
Assessment in Mathematics
Education

Paola Iannone (UK)

Michal Ayalon (Israel)
Johannes Beck (Germany)
Jeremy Hodgen (UK)
Francesca Morselli (Italy)

TWG 22

Curricular Resources and Task
Design

in Mathematics Education

Birgit Pepin (The Netherlands)

Sean Delaney (Ireland)

Andreas Eckert (Sweden)
Nataly Essonnier (France)
Andreas Stylianides (UK)

TWG 23

Implementation of Research
Findings in Mathematics
Education

Mario Sanchez
Aguilar (Mexico)

Kjersti Waege (Norway)
Ana Kuzle (Germany)
Morten Misfeldt (Denmark)

TWG 24 Anna Baccaglini-Frank (Italy) | Carla Finesilver (UK)
Representations in Christian Mercat (France)
Mathematics Samet Okumus (Turkey)
Teaching and Learning Michal Tabach (Israel)
TWG 25 Petra Scherer (Germany) Evelyn H. Kroesbergen (The
Inclusive Mathematics Netherlands)

Education — Hana Moraova (Czech
Challenges for Students with Republic)

Special Needs Helena Roos (Sweden)
TWG 26 Behiye Ubuz (Turkey) Michelle Stephan (USA)
Mathematics in the Context Koeno Gravemeijer (The
of STEM Education Netherlands)

Patrick Capraro (Germany)

Editorial information

These proceedings are available as a complete volume online on the ERME website and each
individual text is also available on the HAL open archive, where it can be found through keywords,
title or author name. This has been the practice since CERMEDY, to increase the visibility of the huge
work done in CERME conferences.

This volume begins with texts corresponding to the four plenary activities of CERMEI11: the plenary
lecture by Paul Drijvers (The Netherlands) on “Embodied instrumentation: combining different views
on using digital technology in mathematics education”; the plenary lecture by Kathleen M. Clark
(USA) on “History and pedagogy of mathematics in mathematics education: History of the field, the
potential of current examples, and directions for the future”; the plenary lecture by Sebastian Rezat
(Germany) on “Extensions of number systems: continuities and discontinuities revisited”; and finally
the “ERME anniversary panel on the occasion of the 20th birthday of the European Society for
Research in Mathematics Education” by Konrad Krainer (Austria), Hanna Palmér (Sweden), Barbara
Jaworski (UK), Susanne Prediger (Germany), Paolo Boero (Italy), Simon Modeste (France), Tommy
Dreyfus (Israel), and Jana Zalska (Czech Republic).

After the plenaries, the reader will find 26 chapters corresponding to the work done in the TWGs of
CERMEI11 (all the split TWGs chose to do combined introductions). These chapters follow a similar
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structure: they start with an introduction; then the long contributions (8-page papers) and the short
contributions (2 pages) are presented — in alphabetical order by first author’s name. However, TWG17
has chosen a different order, corresponding to subthemes in the group.

There are two kinds of introductions to the TWGs, according to the team’s choice: short introductions
(4 pages) presenting the contributions; or long introductions (8 pages), which propose, in addition, an
analysis of the current research on the theme of the TWG, and perspectives for the future. TWGs 06,
07,09, 14, 15,17, 19, 22, 23, 25 and 26 have chosen this form of long introduction.

The publication of these proceedings is the result of a collaborative work, involving CERME11 IPC,
the TWG leaders and co-leaders, and the LOC co-chair. We warmly thank all these people for their
involvement, and hope that this volume will contribute to the development of mathematics education
research in Europe and beyond.
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Embodied instrumentation: combining different views on using digital
technology in mathematics education

Paul Drijvers

Utrecht University, the Netherlands;
HU University of Applied Sciences Utrecht, the Netherlands; p.drijvers@uu.nl

The potential of digital technology for mathematics education has been widely investigated in recent
decades. Still, much remains unknown about how to use tools to foster mathematics learning. To
address this issue, I first consider the didactical functionalities of digital technology in mathematics
education, and the overall modest effects of using these tools for learning. Next, to find possible
explanations of these findings I address three relevant views: (1) a Realistic Mathematics Education
(RME) view on tool use, (2) an instrumental approach to tool use, and (3) an embodied view on
cognition. As a conclusion, I claim that all three lenses share a focus on mathematical meaning.
Whereas the RME view provides important general guidelines, an integrative approach to tool use,
which I label embodied instrumentation, and which includes the careful alignment of embodied and
instrumental experiences, seems promising to generate powerful learning activities.

Keywords: Digital technology, Embodied instrumentation, Embodiment, Instrumental approach,
Mathematics education, Realistic mathematics education.

An introduction to tool use

Since the origin of mankind, humans have been using tools to extend their scope and to carry out
tasks more easily and more efficiently. A wide range of tools has been developed over time. The most
basic ones, such as a stone axe for chopping wood, enabled their users to go beyond their physical
limitations to achieve specific goals. The tools were not always designed as such. In some cases,
people — or animals, as tool use is not limited to the human species — appropriated objects for a
specific task, and in this way ‘turned objects into tools’. For example, one could use a tree branch to
hit somebody harder than one could do with bare hands, but the branch did not grow from the tree to
facilitate beating.

Over time, tools have become more sophisticated and have been designed to address cognitive tasks.
Think, for example, of clay tablets to capture calculations (Proust, 2012). Writing down calculations
assumes ways to represent numbers and operations, which are quite abstract mathematical notions;
these representations themselves can be considered tools already (Monaghan, Trouche, & Borwein,
2016). Since clay tablets, many other tools for mathematics have been designed and used over the
centuries. Physical artefacts such as the abacus and compasses respectively facilitated calculations
and geometrical constructions.

Gradually, new types of tools emerged, such as mechanical tools — think of Pascal’s Pascaline
(Maschietto & Soury-Lavergne, 2013) — and digital tools. Nowadays, digital technology such as
calculators, tablets (but no longer made from clay), smartphones and smart watches, gives access to
a wide range of mathematical features, including sophisticated computer algebra engines and
statistical packages. In many cases, the mathematics embedded in the latter types of software has a
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non-transparent black-box character. In addition to this, the role of mathematics under the hood of
advanced tools, such as search engines, navigation tools and credit cards, to mention just some
examples, is becoming more and more invisible.

As education prepares for future private and professional life, the development and widespread
availability of sophisticated mathematical tools affects mathematics education. These tools transform
mathematical activity (Hoyles, 2018). However, much is still unknown about how to exploit the
potential of these powerful technologies for mathematics learning. In spite of the available body of
literature (for overviews see Ball et al., 2018; Hoyles & Lagrange, 2010; Trgalova, Clark-Wilson, &
Weigand, 2018), the mathematics education community is still struggling with the integration of
digital technology in teaching and learning. The question of how the use of digital technology may
foster mathematics learning and which theoretical lenses may guide us, is waiting to be answered.

To address this question, I will first globally address the didactical functionalities of digital
technology in mathematics education, and the overall modest effects of using these tools for learning.
To consider possible explanations of these findings, I will then address three relevant theoretical
views in more detail: (1) a Realistic Mathematics Education view on tool use, (2) an instrumental
approach to tool use, and (3) an embodied view on cognition. Finally, I will claim that these three
lenses share a focus on mathematical meaning. Whereas the RME view provides important general
guidelines, an integrative approach to tool use, which I will label embodied instrumentation, and
which includes the careful alignment of embodied and instrumental experiences, seems promising to
generate powerful learning activities.

Digital tools in mathematics education
A taxonomy of digital tools

In the last decades, a myriad of digital tools for mathematics education has been developed. These
tools show a wide variety with respect to mathematical focus, didactical functionality, user-
friendliness, and other features. All, however, come with affordances and limitations, with
opportunities and constraints. Let me try to sketch an overview of the fragmented landscape of digital
technology in mathematics education. A first dimension, of course, is the tool’s mathematical
functionality. A categorization of the mathematical functionality of a tool can be close to a
categorization of the field of mathematics itself. Digital tools can carry out algebraic work, graphing
tasks, statistical analyses, calculus procedures, and geometric jobs. The traditional domains of school
mathematics (e.g., number, ratio, algebra, geometry, calculus, statistics) may do for globally
classifying the mathematical functionality of digital tools for mathematics education. It goes without
saying that a specific digital tool may cover a range of these domains and as such serve more than
one mathematical functionality, but this mathematical categorization still seems to work.

Slightly more complicated is a taxonomy of the didactical functionality of a digital tool, all the more
as this is not just a matter of the tool itself, but also highly depends on the type of tasks and on the
way the use is embedded and orchestrated in the teaching and learning processes. In spite of this
evident limitation, I do feel that the very global model presented in Figure 1 (Drijvers, Boon, & Van
Reeuwijk, 2011; Drijvers, 2018b) may help teachers and educators to prepare their teaching with
technology, and to be explicit about their main goals and corresponding choices with respect to the
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tool to use. The first didactical functionality in Figure 1 is to “do mathematics”. This functionality
does not target the heart of the mathematical activity itself, but concerns outsourcing part of the work
to relieve the student’s mind. In this way, energy can be saved for the core matter; a division of labour
between student and machine, so to say. Next, Figure 1 shows two types of didactical functionality
that focus on learning. With respect to learning through practicing mathematical skills, digital tools
may offer variation and randomization of tasks, and automated and intelligent feedback. As such, the
digital tools form a personal environment in which one can safely make mistakes and learn from
them. Finally, tool use for concept development involves using a digital tool to explore phenomena
that invite conceptual development. This is probably the most challenging and subtle didactical
functionality to exploit, as concept development can be considered a higher-order learning goal.

Of course, the categories in this didactical functionality taxonomy are not mutually exclusive; in many
cases, the “developing concepts” didactical functionality rests on the outsourcing function for doing
mathematics. Also, the didactical function of a digital tool is just a tool feature to a lesser extent than
the mathematical functionality is; it also depends on the type of tasks and student activity, and the
educational setting. This being said, the model may help to identify some main roles of digital
technology in the learning of mathematics.

Do mathematics

Didactical functionality
of digital technology in Practice skills
mathematics education

Learn mathematics

Develop concepts

Figure 1: Didactical functionality of digital technology in mathematics education (Drijvers, Boon, &
Van Reeuwijk, 2011; Drijvers, 2018b)

The benefits of tool use

After this global sketch of the mathematical and didactical landscape, one might wonder about the
benefits of using digital technology in mathematics education. How much evidence is there for the
learning gains? Recently, OECD was not very optimistic about this evidence:

Despite considerable investments in computers, internet connections and software for educational
use, there is little solid evidence that greater computer use among students leads to better scores
in mathematics and reading. (OECD, 2015, p. 145)

To further investigate this, I revisited some review studies in this domain (Drijvers, 2018a). While
doing so, a main source was a second-order meta-analysis carried out by Young (2017), who,
interestingly enough, took the didactical functionality typology shown in Figure 1 as a starting point.
Including 19 meta studies, Young finds a significant positive effect of the use of technology in
mathematics education with a small to moderate average effect size of 0.38 (Cohen, 1988). In his
calculation, Cohen’s d and Hedges g are considered comparable. This average varies slightly over the
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three different didactical functions: 0.47 for the “do mathematics” role, 0.42 for the “practice skills”
role, and 0.36 for the “develop concepts” role. This not surprising to me, as the latter functionality
usually requires more student reflection than the other two do. For studies in which the different
didactical functionalities are combined, however, the average effect size is lower, namely 0.21.

An interesting finding by Young (ibid.) is that the reported average effect size seems to decrease with
the increasing quality of the meta-analyses included. Quality here refers to both the meta-analysis
itself and to the quality of the studies included in it. For example, the three review studies mentioned
in Table 1 are the only ones rated high quality and they show relatively low effect sizes. A more
detailed look at these studies also reveals that the effect sizes reported in the different research reports
do not significantly increase over time, whereas one might hope that technological tools are
improving, along with teachers’ ability to exploit them in teaching. A possible explanation might be
that a possible positive development over time is compensated by other factors, such as more rigorous
study designs and methods, and bigger sample sizes.

Number of . Global conclusion according
Study ) Average effect size
effect sizes to the authors
) ) Moderate significant
Li & Ma, 2010 85 d =0.28 (weighted) o
positive effects
] A positive, though modest
Cheung & Slavin, 2013 74 d=0.16
effect
Steenbergen-Hu & Cooper, No negative and perhaps a
61 grange 0.01 —0.09 .
2013 small positive effect

Table 1: Effect sizes reported in in three high-quality meta review studies (based on Drijvers, 2018a)

Of course, this zooming out approach suffers from important limitations. The review studies are based
on older research, so the picture might have changed since then. Also, the review studies only include
experimental, quantitative studies and neglect qualitative or design-based research. And, finally,
overviews such as these do not distinguish educational levels, types of technology used, and other
educational factors that may be decisive.

Still, it would be too easy to ignore the above findings because of these limitations. The effect sizes
are not overwhelming and the OECD quote at the start of this section seems appropriate. Why is the
integration of digital technology in mathematics education not the success that one might have hoped
for? In my opinion, the question “does ICT work in mathematics education?” is too broad. If we
would replace “ICT” by “textbook”, for example, no one would be surprised to get an answer like “it
just depends on the quality of the textbook™. In a similar way, exploiting the full potential of digital
tools in mathematics education is a complex issue that requires more detailed insights into the learning
processes that play a role, into the targeted mathematical content, and in the ways in which the
mathematical activity is affected by the use of the tool. Therefore, I will now zoom in on three
theoretical and more nuanced views on the use of digital tools in mathematics education, that may
offer principles and frameworks to better tackle the subtlety of the topic.
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A Realistic Mathematics Education view

Even though the theory of Realistic Mathematics Education (RME) applies to mathematics education
in general, it might also shed some light on the possible benefits of using digital technology in
mathematics education. Let me first explain some general RME features. RME is an instruction
theory for the teaching and learning of mathematics that was developed in the Netherlands. A starting
point was Freudenthal’s (1973) view on mathematics as a human activity, i.e., mathematics should
be experienced as meaningful, authentic, sensemaking and real by the students. The following quote
stresses that the word “realistic” should not be understood as “real world”:

Although ‘realistic’ situations in the meaning of ‘real-world’ situations are important in RME,
‘realistic’ has a broader connotation here. It means students are offered problem situations which
they can imagine. This interpretation of ‘realistic’ traces back to the Dutch expression ‘zich
REALISEren’, meaning ‘to imagine’. It is this emphasis on making something real in your mind
that gave RME its name. Therefore, in RME, problems presented to students can come from the
real world, but also from the fantasy world of fairy tales, or the formal world of mathematics, as
long as the problems are experientially real in the student’s mind. (Van den Heuvel-Panhuizen &
Drijvers, 2014, p. 521).

This starting point is elaborated in some key concepts, including the activity principle,
mathematization, and didactical phenomenology. Let me briefly elaborate on each of these three.

- The activity principle links to the view of mathematics as a human activity and highlights
that students should have the opportunity to explore and to re-invent mathematics, and in
this way build up their mathematical knowledge.

- In line with this, mathematization refers to the activity of doing mathematics. Treffers
(1987) distinguishes horizontal and vertical mathematization. Horizontal mathematization
concerns mathematizing reality and the process of formulating a mathematical description,
involving the transfer between different domains. Vertical mathematization concerns
mathematizing mathematics and the process of reorganization within the mathematical
system, involving the genesis of mathematical objects and relations between them.

- Adidactical phenomenology is an analysis of “how mathematical thought objects can help
organizing and structure phenomena” (Van den Heuvel-Panhuizen, 2014, p. 175). It
identifies phenomena that beg to be organized with the specific mathematical means that are
the topic of the learning, and as such may “show the teacher the places where the learner
might step into the learning process of mankind” (Freudenthal, 1983, p. ix). It invites the
development of the mathematics at stake and gives meaning to it. As said before, these
phenomena can come from different “worlds” as long as they are experientially real to the
students (Gravemeijer & Doorman, 1999). Such an analysis on the one hand asks for a
thorough analysis of the mathematical topic, and on the other hand for a clear view on the
targeted audience of the teaching.

How do these RME principles inform the use of digital technology in mathematics education? First,
the interpretation of the word “realistic” in the sense of experientially real suggests that students
should experience the activity with the digital technology as meaningful. In line with Ainley, Pratt
and Hansen (2006), students may perceive an activity as meaningful if they are aware of its purpose
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and its utility, where purpose refers to the activity leading to a “meaningful outcome for the pupil, in
terms of an actual or virtual product, or the solution of an engaging problem” (p. 29), and utility to
“the ways in which those mathematical ideas are useful” (p. 30). I expect that a certain level of
transparency of the tool would foster meaning in terms of experienced purpose and utility.

Second, the activity principle and the human activity view suggest that the digital tool should offer
the students opportunities to explore, and to be an actor rather than a passive user. I expect that a
degree of ownership and the feeling of being in control may invite this. From a mathematization
perspective, being in control also includes the opportunity to easily express yourself mathematically
with the amount of freedom that one also has while doing paper-and-pen mathematics. This requires
a sound mathematical basis for the tool in use.

Third and final, taking a didactical phenomenology perspective leads me to expect that the
phenomena may change in a technology-rich classroom: the digital environment itself may be a
meaningful phenomenon to study. For example, if students regularly use digital tools like graphing
calculators or software for dynamic geometry, these environments really become part of the
classroom environment and as such may elicit inspiring phenomena that invite further investigation.
Also, as many students nowadays are familiar with games and tools, digital environments may be
quite natural and authentic to them, which offers opportunities to better realize this RME principle.

Let me illustrate these principles through the example of an online lesson series on arrow chains and
functions for grade 8 (14-year-old students), implemented in the Freudenthal Institute’s Digital
Mathematics Environment' (Doorman, Drijvers, Gravemeijer, Boon, & Reed, 2012; Drijvers,
Doorman, Boon, Reed, & Gravemeijer, 2010). In this lesson series, students first explore chains of
operations in meaningful contexts. As an example, they figure out how the breaking distances of
different types of vehicles, the distance needed to stop in case of emergency, depend on their velocity.
Next, they act out the chaining by standing next to each other, creating an input-output-chain in which
each student is responsible for performing one of the operations, to prepare for the work in the digital
environment.

Figure 2 shows some snapshots of the work in the digital environment that follows. The first row
shows how students can chain operations to calculate the breaking distance in meters of a scooter
with an initial velocity of 40 km/hour. Of course, after their previous experience with series of
numerical calculations, the construction of these chains should be experienced by the student as a
meaningful way to organize these calculations. In the second row, the breaking distance is
investigated as function of the initial velocity, and a graph is added. In the third row, these breaking
distance functions are compared for scooters, cars and lorries. As the window got too full, the user
has collapsed the function chains into single boxes, allowing for a good comparison of the three
graphs.

Even if these activities are described only briefly, some RME principles can be recognized. As for
the reality principle, the students have been introduced to arrow chains to organize calculations in

! See https://app.dwo.nl/en/student/ -> Old -> Secondary education -> Algebra -> Lesson function and arrow chains.
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whole-class and paper-and-pen activities, so these have become meaningful ways to capture
calculations. The open character of the environment, with a big empty window as exploration room
for students, is meant to provide the students with means to freely build, change and organize arrow
chains and to be in control of what is happening. Horizontal mathematization is addressed through
the task of modelling the arrow chains for the case of the breaking distances, and vertical
mathematization comes into play as soon as the three quadratic functions and their relationships are
compared, independently from the initial breaking distance problem situation. The option to collapse
function chains into boxes is intended to support an object view on function. A didactical
phenomenology lens led the designers to consider the breaking distance context as a phenomenon
that can very well be organized through mathematical functions and arrow chains.

To summarize, the example illustrates how the general RME principles can be applied to the specific
situation of using digital tools in a meaningful way, and as such provide guidelines and criteria for
sensible tool use. In this way, the RME lens may offer a nuanced view on using digital technology in
mathematics education, even if it is not dedicated to this particular case.
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Figure 2: Snapshots from the Function and Arrow Chains material (from Drijvers, Boon, Doorman,
Bokhove, & Tacoma, 2013). See https://youtu.be/OMDjCS5yVIr( for an animation.
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An instrumental approach

In addition to the general guidelines offered by RME, a more detailed view on the interplay between
mathematics and tool use is needed. A first, somewhat naive view on digital tools and their use in
mathematics education might be that tools are just “objective” mathematical assistants that help us to
carry out tasks, to “do the jobs”: using them reduces solving mathematical tasks to pressing buttons,
and as such simplifies our lives. However, things turn out to be not that straightforward. Tools are
not as neutral as one might hope, but come with affordances and constraints, with opportunities and
obstacles, and as such guide the user’s mathematical practices:

Tools matter: they stand between the user and the phenomenon to be modelled, and shape activity
structures. (Hoyles & Noss, 2003, p. 341)

For example, drawing a circle with physical compasses is quite different from drawing it in a dynamic
geometry environment such as GeoGebra. In the first case, one really experiences a circular
movement, after deciding on the centre and the radius. In the latter case, the focus is on setting the
centre and the radius, but while enlarging the radius, the circle is growing, and the circular movement
is no longer needed. Different tools lead to different techniques, and as such to different views on the
same underlying mathematical concept.

Indeed, in line with Vygotsky (1978), tools mediate between human activity and the environment. As
a consequence, using digital tools for learning and doing mathematics is not just a matter of directly
transforming mathematical thinking into tool commands. On the one hand, the user shapes the
techniques for using the tool, but on the other hand the tool shapes and transforms the user’s
mathematical practice. These considerations gave rise to the development of a new theoretical view,
called the instrumental approach to tool use. Key in this approach are the notions of artefact,
instrument, instrumental genesis, scheme, and technique. Let me briefly explain these notions.

A starting point in instrumental approaches is the distinction between artefact and instrument
(Rabardel, 2002; Vérillon & Rabardel, 1995). The artefact is the object that is used as a tool. In our
case, graphing calculators or dynamics geometry software are artefacts, even if we also might want
to look in more detail, and consider the graphing window in GeoGebra an artefact, or the Solver
option in a graphing calculator. An instrument consists of an artefact and “one or more associated
utilization schemes” (Verillon & Rabardel, 1995, p. 87). So, besides the artefact, the instrument also
involves the schemes that the user develops and applies while using the artefact for a specific class
of instrumented activity situations, in our case often involving a type of mathematical tasks. To
summarize this in a somewhat simplified ‘formula’: Instrument = Artefact + Scheme. The process of
an artefact becoming part of an instrument is called instrumental genesis (Artigue, 2002; Trouche &
Drijvers, 2010).

What are these schemes, key in instrumental genesis? Based on the work by Piaget (1985) and others,
a scheme is considered a more or less stable way to deal with specific situations or tasks. Vergnaud
claims that “the sequential organization of activity for a certain situation is the primitive and
prototypical reference for the concept of scheme” (Vergnaud, 2009, p.84). Referring to the scheme
of counting in particular, Vergnaud (1987, p.47) speaks of “a functional and organized sequence of
rule-governed actions, a dynamic totality whose efficiency requires both sensorimotor skills and
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cognitive competencies.” Later, Vergnaud (2009) prefers to speak about percepto-gestual schemes
rather than of sensorimotor schemes, as to go beyond the purely biological level and to highlight the
close relationship between perception and gesture on the one hand, and conceptualization on the
other. In agreement with these ideas, the term sensorimotor scheme in this rest of this text should be
interpreted in this wider sense.

Scheme development involves the intertwined development of sensorimotor skills and cognition. As
we see a scheme here as part of an instrument, we speak of an instrumentation scheme. Artigue (2002)
highlights the pragmatic and epistemic value of schemes: the pragmatic value in the sense of their
productive potential to “get things done”, and the epistemic value in the sense of contributing to the
meaning and understanding of the mathematics involved.

The observable parts of an instrumentation scheme, the concrete interactions between user and
artefact, are called instrumented techniques. Instrumented techniques are more or less stable
sequences of technical interactions between the user and the artefact with a particular goal. As such,
an instrumentation scheme consists of one or more observable instrumented techniques, that are
guided by the opportunities and constraints the artefact offers, and by the students’ knowledge. In the
meantime, the techniques may also contribute to the development of this knowledge. As such,
techniques can be seen as actions that reflect students’ knowledge. And, even more important,
techniques and knowledge may co-emerge. It is this co-emergence that forms the heart of instrumental
genesis and that reflects the main educational potential of using the artefact in a given situation.

In the instrumental approach, a scheme depends on the subject, the artefact and the task. Three
comments should be made here. First, this implies that carrying out a similar task with different
artefacts is likely to lead to different schemes. The compasses case described above shows that
different instrumental geneses will take place. It is interesting to use different artefacts for similar
tasks and to confront and compare the different schemes that emerge (Maschietto & Soury-Lavergne,
2013). As a consequence, mathematical practices transform through the use of digital artefacts
(Hoyles, 2018). Second, instrumental genesis is not just an individual process, but is part of social
learning processes and institutionalization within the specific educational context. Through teachers’
instrumental orchestration (Trouche, 2004), a collective instrumental genesis is taken care of, to
assure the convergence towards shared instruments and shared mathematical knowledge. In fact,
teachers are involved in a double instrumental genesis, including their personal development of
schemes on the one, and schemes for use in teaching their students on the other. Third, some artefacts
are more suitable for specific types of instrumental genesis than others. Haspekian (2014) introduced
the notion of instrumental distance to stress the change in mathematical practice that may emerge as
a result of some type of tool use. If the distance between regular or targeted mathematical practices
on the one hand, and techniques invited by the artefact on the other is too big, instrumental genesis
might be not productive for the learning process.

The importance of this instrumental view for the use of mathematical tools in mathematics education
lies not only in the acknowledgement of the subtlety and complexity of the issue, but also in the
concrete guidelines it offers for a fruitful use: as teachers and educational designers, we should set up
activities for students and choose appropriate artefacts that together lead to instrumental genesis
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processes in which the targeted mathematical knowledge is developed in a meaningful and natural
way. A mismatch between the task, the affordances of the artefact, and the mathematical knowledge
at stake will not be effective. Outlining these three elements is the game to play; it includes being
explicit about the instrumental genesis and scheme development that is aimed for.
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Figure 3: Intersecting graphs to solving equations with two different tools

As an example of such scheme development, Figure 3 shows two ways in which an equation can be

solved graphically through an Intersect procedure, one using a graphing calculator (screens on the
x%+100
2x+20

problem situation in a national examination task in the Netherlands, in which students used a graphing

left) and one using GeoGebra (screen on the right). This equation, = 4.5, appeared in a realistic

calculator. Technically speaking, the procedure comes down to entering the left-hand side and the
right-hand side of the equation separately as functions in the graphing tool. Next, a viewing window
should be set so that the two graphs show an intersection point. Then the intersect procedure is called,
through selecting the two graphs. This will lead to the coordinates of such an intersection point.
Finally, its first coordinate is a solution of the equation. Phrased this way, the technique sounds very
straightforward and procedural.

However, several conceptual elements are involved, First, the student needs to be aware of the
relationship between solutions of an equation and graphical intersection points. Second, while setting
the viewing window dimensions, the student needs to have an idea of where intersection points can
be found, which requires some reasoning (or some trial-and-error behaviour). Third, the result
consists of not one but two numerical values, and a solution is a numerical, approximated value.
Fourth and final, the procedure leads to one, single solution; the procedure needs to be repeated for
equations with multiple solutions, that can be visible in the current viewing window, but may also
exist outside its boundaries. Again, some reasoning is needed to consider the option of other
intersection points outside the current view. Eventually, this technique can be complemented by
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zooming in at intersection points, by zooming out to get an overview, or by generating tables of
function values.

It is this intertwinement of technical and conceptual elements that makes me speak of an Intersect
instrumentation scheme. The development of this scheme impacts on students’ view on equation
solving in a subtle and somewhat implicit way. Solving an equation is no longer a matter of exact
algebraic manipulation while maintaining equivalence, but is replaced by a functional, graphical view
that leads to approximated values. As such, the tool use affects the mathematical content. The
Intersect scheme, therefore, integrates techniques and mathematical ideas, and this is exactly what
instrumental genesis is about.

The instrumentation schemes that students develop depend on the digital tool in use. In Figure 3, the
left part shows two screens of a graphing calculator, here a Texas Instruments model (Drijvers &
Barzel, 2012). The right-hand side shows a similar screen in GeoGebra, which offers a larger screen
and higher resolution. The techniques are also slightly different: GeoGebra does not ask for a starting
value, but immediately comes up with a point. This makes the procedure more efficient, but it also
makes it harder to find the coordinates of the second intersection point. Also, whether the coordinates
are displayed depends on the settings in GeoGebra. The two tools — again, in the default setting —
provide the results with different accuracy.

To summarize, this example illustrates the interplay between techniques for using a digital tool, and
the related mathematical knowledge involved; an interplay that fundamentally affects the
mathematics, but in the meantime is subtle to study. The example shows, to rephrase the quotation
by Hoyles and Noss (2003) earlier in this section, that tools and techniques are not neutral, but may
highlight or even require specific mathematical views on the task at stake. As a consequence, tool use
is less simple than it might seem. Instrumental views are helpful to become aware of this complexity
and to identify the interplay between artefacts and tasks, between techniques and schemes.
Recognizing instrumental genesis as a path to learning mathematics, and probably also different
mathematics, is an important step forward to fostering learning while using digital tools.

An embodied view on cognition

The instrumental approach to tool use has proved valuable in understanding the interplay between the
technical and the conceptual when learners use artefacts. So far, however, it focused mostly on higher-
level mathematics such as pre-university streams, and on sophisticated digital tools such as computer
algebra and dynamic geometry systems. It is maybe due to these foci that mathematics is approached
as a cerebral activity, and that the bodily foundations of cognition tend to be neglected. To do justice
to the latter aspect, I now consider an embodied view on cognition as a third lens to look at the use
of digital technology in mathematics education.

A general starting point here is that body and mind cannot be separated and that a dualistic view on
them is inappropriate. Cognition is not considered an exclusively mental affair, but based on bodily
experiences, that take place in interaction with the physical and social world (e.g., see Radford, 2009;
Lakoff & Nuiez, 2000; de Freitas & Sinclair, 2014; Ferrara & Sinclair, 2016). Embodiment “is the
surprisingly radical hypothesis that the brain is not the sole cognitive resource we have available to
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us to solve problems” (Wilson & Golonka, 2013, p.1). Phrased differently, Alibali and Nathan (2012)
claim:

According to this perspective, cognitive and linguistic structures and processes — including basic
ways of thinking, representations of knowledge, and methods of organizing and expressing
information — are influenced and constrained by the particularities of human perceptual systems
and human bodies. Put simply, cognition is shaped by the possibilities and limitations of the human
body. (p. 250)

Also for the case of mathematics, often considered a highly abstract and mental subject, cognition is
more and more acknowledged to be rooted in sensorimotor activities, and mathematical objects to be
grounded in sensorimotor schemes. Two special issues—57(3) and 70(2)—of Educational Studies in
Mathematics, dedicated to embodiment in mathematics education, testify to the growing interest of
mathematics education research in this perspective. Many embodied approaches take “the four E’s”
of embodied, extended, embedded and enactive cognition® as a starting point. In these terms, the
initial views on tool use in this paper highlight the role of tools to extend the body; now the focus
shifts towards the other E’s, and to digital technology providing opportunities to create embodied
experiences in particular.

At first glance, a tension might seem to exist between this embodied view on cognition and the use
of digital technology in mathematics education. Digital tools such as spreadsheets, computer algebra
software and dynamic geometry systems embed an impressive amount of mathematical knowledge.
As these tools are not transparent, they seem to “hide this knowledge under the hood”, which may
create a distance between user and mathematics used. And, even more importantly, ways to interact
with these tools have not so far been ‘body-based’, as the interaction mainly took place through
keyboard strokes in the more remote past, and through mouse movements in the more recent past.
Recent technological developments, however, open up new horizons to do justice to the
multimodality of mathematical knowledge. Maybe partly due to the need for embodied experiences,
improved user interfaces — think of multitouch screen technology, handwriting recognition, motion
sensors, and virtual and augmented reality — have been developed, offering new opportunities to
investigate an embodied approach to tool use. For example, some researchers studied students who
“walk graphs” using a motion sensor, and in this way create embodied experiences of distance, speed
and acceleration changing over time (Duijzer, Van den Heuvel-Panhuizen, Veldhuis, Doorman, &
Leseman, 2019; Robutti, 2006).

In line with the didactical engineering tradition within my institute (Margolinas & Drijvers, 2015),
the work done in this field by my colleagues an myself within my institute follows an embodied
design approach (Abrahamson, 2009; Abrahamson, Shayan, Bakker, & Van der Schaaf, 2016). We
use “design genres” (Abrahamson, 2014; Bakker, Shvarts, & Abrahamson, 2019) in which activities
in digital environments. In these activities, students can engage in bodily experience and develop
mathematical cognition. Let me illustrate this embodied design approach with two examples.

2 https://4ecognitiongroup.wordpress.com/
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As a first example, Figure 4 shows a task designed by Shvarts (2018) in the Digital Mathematics
Environment. The left screen shows a fixed base line and a small, fixed black point. The larger grey
dot is projected onto the base line. The three points together define a triangle, which in the left screen
is red. The student can move the big grey point with her finger, and the triangle changes accordingly.
Suddenly, the triangle becomes green (right screen). The triangle turns green when it is isosceles,
otherwise it is red. As a consequence, the triangle is green if the grey, moveable point lies on the
parabola which has the base line as directrix and the fixed point as focus. This dashed parabola,
however, is not shown to the student, but it is included here for the reader.

Figure 4: The parabola task (Shvarts, 2018; Shvarts & Abrahamson, 2019). See
https://youtu.be/JHiHIFdUGtw for an animation.

The task, now, is to constantly move the grey point so that the triangle remains green. When the
students become fluent in their movements, they are asked about the rule that determines the colour
of the triangle. The task is challenging from different perspectives. From an embodiment perspective,
the sensorimotor coordination is quite complex, as the direction to move should be constantly checked
with the orientation of the triangle’s base. Eye-tracking data indeed show many eye movements
jumping between the movable grey point and the midpoint of the base, along the triangle’s median
(Shvarts & Abrahamson, 2019). These iterative jumps reveal the most important “attentional anchors”
(Duijzer, Shayan, Bakker, van der Schaaf, & Abrahamson, 2017). From a mathematical perspective,
the property that makes the triangle green is it being isosceles. As one vertex of the triangle is fixed
to a point and another runs through a line, this task provides students with sensorimotor experiences
that in the future learning might feed the notion of parabola. At a higher mathematical level, and this
goes beyond how the example is presented here, one might elaborate this activity towards reflection
on the locus of the grey point for the case that the triangle remains green (Shvarts, 2018). As the
triangle is isosceles, and one of the sides is perpendicular to the base line (directrix), we can recognize
the property of a conic: the distances to the focus and the directrix remain equal, so the locus is a
parabola! This example shows how sensorimotor experiences may draw students’ attention to the
notion of a triangle being isosceles as preparation to the notion of parabola. Of course, many design
decisions need to be taken, such as on how to phrase the task, which support to offer (do we display
coordinates, or a grid), how to sequence different variations on this task, how to foster the notion of
parabola, et cetera. The learning effect of such tasks may to an important extent depend on these
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subtle design decisions, but goes beyond the scope of the present example. Digital design is a
relatively new phenomenon, which puts high demands on the designers (Leung & Baccaglini-Frank,
2017).

The second example concerns handwriting recognition. Writing mathematics by hand, whether it is
on an old, dusty chalk board or on a tablet, involves hand movements and gestures that may provide
a sensorimotor experience to students. Therefore, the Digital Mathematics Environment now has a
handwriting recognition module, that allows for the integration of the human experience of hand
movements while writing, and the software’s intelligence to interpret the handwriting and to evaluate
mathematical correctness for the sake of feedback.

5.1 Vergalilkingen van een ljn - deel 2

14 Kies de handigste vorm

Stel bij ljn /
Kies de mees

Figure 5: Handwriting recognition in the Digital Mathematics Environment. See
https://youtu.be/YKtrr1IxWaA for an animation.

To summarize, the two examples illustrate how an embodied design approach may lead to tasks in
which sensorimotor experiences form the basis of mathematical cognition, a view that is not explicitly
present in the two views presented earlier.

Embodied instrumentation

Instrumental and embodied views on the use of digital tools in mathematics education may seem quite
different. On the one hand, instrumental approaches in many cases focus on the development of
individual, mental schemes — even if collective instrumental genesis is acknowledged —, on high-level
conventional mathematics, and on sophisticated digital tools. Embodied views, on the other hand,
focus on sensorimotor schemes, on bodily experiences, on basic mathematical ideas, and make use
of dedicated software tools; the convergence to conventional mathematical cognition and techniques
sometimes receives less attention. From a networking theory perspective (Bikner-Ahsbahs &
Prediger, 2014), however, it seems interesting to compare, contrast, combine and coordinate these
different views.

The claim I want to make here is that, in spite of these apparent differences, embodied and
instrumental approaches both highlight the complexity of user-tool interaction, share some similar
theoretical bases, and can be coordinated and aligned in a meaningful way. In line with researchers
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who in the past have been exploring the interface between embodied and instrumental approaches
(e.g., Artigue, Cazes, Haspekian, Khanfour-Armale, & Lagrange, 2013; Arzarello, Paola, Robutti, &
Sabena, 2009; Maschietto & Bartolini-Bussi, 2009), I argue for an embodied instrumentation
approach, to reconcile the embodied nature of instrumentation schemes and the instrumental nature
of sensorimotor schemes. As such, an embodied instrumentation approach explores the co-emergence
of sensorimotor schemes, tool techniques and mathematical cognition, and offers a design heuristic
for ICT activities which align the bodily foundations of cognition and the need for instrumental
genesis.

As for the shared theoretical basis, embodied and instrumental approaches share a theoretical
foundation in ideas from Vygotsky (1978) on tool use and from Piaget (1985) on schemes, and both
approaches acknowledge the subtlety of tool mediation in meaningful mathematical activity. In the
meantime, the two approaches can be complementary, in the sense that embodied approaches so far
have not overstressed the convergence of tool techniques and conventional mathematical notions,
whereas instrumental approaches have tended to neglect the sensorimotor view on schemes and the
embodied nature of cognition.

Concerning the coordination and alignment of the two approaches, I can image productive learning
trajectories on fundamental mathematical concepts, in which the development of sensorimotor
schemes may gradually go hand in hand with, or even be part of instrumental genesis. Such a
trajectory might lead to schemes in which embodied experiences still form the basis, and through a
process of reflective abstraction (Abrahamson, Shayan, Bakker, & van der Schaaf, 2016) lead to
instrumental genesis. In this way, embodied and instrumental approaches might be aligned: the
process of instrumental genesis 1s fostered by embodied activities. As students advance in a learning
trajectory, the tool techniques and mathematical knowledge emerge from an instrumental genesis
process, and the embodied basis may move more to the background. Ensuring coordination between
the development of sensorimotor schemes and instrumental genesis might be a strong design heuristic
for technology-rich tasks in mathematics teaching.

Figure 6: MIT-T tasks (Alberto, Bakker, Walker-van Aalst, Boon, & Drijvers, 2019). See
https://voutu.be/1eOU4XyyHmg for an animation.

Let me illustrate this embodied instrumentation approach in a final example. Figure 6’s left screen
shows the so-called MIT-T app, where the abbreviation stands for Mathematics Imagery Trainer —
Trigonometry (Alberto, Bakker, Walker-van Aalst, Boon, & Drijvers, 2019). It shows a unit circle
and a sine graph, with a movable point on each of them. As a first task, students use the multitouch
screen to simultaneously move the two points and, similar to the case in the parabola example
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presented above, to explore when the frame around the graphs becomes green. This is the case if a
correct match is made between the sine of an angle in the unit circle and the function value of the sine
in a point on the horizontal axis, so if the two points are at equal height. The activity of “keeping the
frame green” clearly invites appropriate sensorimotor coordination of keeping two points at the same
height and is expected to induce a “feeling” for the coordination of the two movements. As was the
case for the parabola task (Fig. 4), this may lead to many follow-up activities, each requiring design
decisions and subtle arrangements of tasks and tools. As a possible end point of such a sequence,
Figure 6’s right-hand screen shows the additional tool of a horizontal line, which can be moved up
and down through the central big grey point with label its height, 0.5, thus implementing the
coordination that just was enacted. Now both the unit circle and the sine graph can be used to solve
the equation sin a = 0.5: in the unit circle, one can move the point to meet the intersection of circle
and line, and similarly in the graph. Of course, these two techniques need to be coordinated as well:
if the two intersection points do not match, the feedback frame will not become green. In a later phase,
one might want to drop the unit circle and focus on the sine graph. At that stage, the task in fact comes
down to graphically solving equations of the form f{x) = ¢, which is exactly the example shown at the
end of the instrumental view section (see Figure 3).

To summarize, this example illustrates how embodied and instrumental approaches may be
coordinated and aligned in a learning trajectory. In this design, the embodied experiences mediated
by digital tools prepare for instrumental genesis. Of course, more research is needed to decide whether
such alignments would lead to higher effect sizes than the ones reported earlier. Speaking in general,
both the common theoretical bases of embodied and instrumental views, and their complementarity
make exploring their potential alignment, as expressed in the notion of embodied instrumentation, a
highly interesting enterprise.

Conclusion

In this paper, I first outlined a taxonomy for the didactical functionality of digital technology in
mathematics education. This taxonomy guided a second-order meta-analysis, the results of which
suggest that the effect sizes of technology-rich interventions are significantly positive, but small to
moderate. This led to the idea of looking in more detail at three views on tool use in mathematics
education. As a first lens, Realistic Mathematics Education theory highlights that students should
experience mathematics as meaningful. Applied to tool use, this implies that tools should be
transparent and should provide the students with authentic ways to express themselves
mathematically. More specifically focusing on tool use, the second lens of instrumentation stresses
the intertwinement of techniques for using the tool and the mathematical knowledge involved.
Techniques and mathematical meaning co-emerge in processes of instrumental genesis. The third lens
of embodied cognition claims that sensorimotor activities form the basis of cognition, and, more than
the other two approaches, highlights the need to root mathematical knowledge in bodily experiences.

A key guiding principle shared by all three approaches is mathematical meaning, even if each
approach stresses different aspects of it: RME highlights the idea of mathematics being
“experientially real”, instrumentation theory points to the mathematical meaning embedded in
techniques for using tools, and embodied views see sensorimotor schemes as the foundation of
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mathematical meaning. This stress on meaning makes sense: if we do not manage to incorporate
digital technology in students’ mathematical practices in a way that they experience as meaningful,
it is a useless enterprise.

As a conclusion, in my opinion the three views have much to offer for technology-rich mathematics
education. The RME view provides some important general guidelines, which may inform
instrumental and embodied approaches. As for the interplay between embodied and instrumental
views, I strongly believe that the two can be coordinated and aligned in a so-called embodied
instrumentation approach. Embodied and enacted experiences, so present in the embodied cognition
approach, can form the basis for learning. As such, these experiences are the foundations on which
instrumental genesis can build; a bodily-based instrumental genesis during which tool techniques and
mathematical cognition co-emerge.

Of course, this argument for an embodied instrumentation approach needs further elaboration on
several aspects. First, the RME lens may reveal possible tensions between its reality principle and the
instrumental approach’s focus on tool techniques. Similarly, the alignment of sensorimotor schemes
and tool techniques is a subtle one, even if the examples in Figures 4, 5 and 6 provide some possible
approaches. Also, a body of empirical evidence for positive effects of such an embodied
instrumentation approach is lacking so far. In spite of these limitations, I do believe that the three
lenses do justice to three main elements in the “landscape” of mathematics education: the world
around us, our bodily interaction with it, and the tools we use to facilitate this interaction. As such, I
suggest that embodied instrumentation, seen as an integrated embodied and instrumental approach in
which sensorimotor schemes, tool techniques and mathematical cognition co-emerge, deserves
priority in the research agenda of those interested in the use of digital technology in mathematics
education.
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History and pedagogy of mathematics in mathematics education:
History of the field, the potential of current examples, and directions
for the future
Kathleen M. Clark
Florida State University, School of Teacher Education, Tallahassee, Florida USA; kclark@fsu.edu

The field of history of mathematics in mathematics education—often referred to as the history and
pedagogy of mathematics domain (or, HPM domain)—can be characterized by an interesting and
rich past and a vibrant and promising future. In this plenary, I describe highlights from the
development of the field, and in doing so, I focus on several ways in which research in the field of
history of mathematics in mathematics education offers important connections to frameworks and
areas of long-standing interest within mathematics education research, with a particular emphasis
on student learning. I share a variety of examples to serve as cases of what has been possible in the
HPM domain. Finally, I propose fruitful future directions that call for the contributions of both
established and emerging scholars in the field.

Keywords: History of mathematics, mathematics education research, primary historical sources,
qualitative research.

Introduction
George Sarton (1884—1956), a Belgian-born American historian of science, said:

The main duty of the historian of mathematics, as well as his fondest privilege, is to explain the
humanity of mathematics, to illustrate its greatness, beauty and dignity, and to describe how the
incessant efforts and accumulated genius of many generations have built up that magnificent
monument, the object of our most legitimate pride as men, and of our wonder, humility and
thankfulness, as individuals. The study of the history of mathematics will not make better
mathematicians but gentler ones, it will enrich their minds, mellow their hearts, and bring out their
finer qualities. (Sarton, 1936, p. 28)

Putting aside that to Sarton—in this example—only men experienced this “legitimate pride” (perhaps
due to the academic fabric of the 1930s), he beautifully captures one of the often-cited effects of
studying the history of mathematics: that such a use of history' of mathematics has the ability to
humanize the subject, by way of appealing on some aesthetic or non-academic level to the added
value of the discipline.

I first experienced this humanistic element of studying the history of mathematics from the desire to
provide a different perspective regarding mathematics for my students. At the time some 20 years
ago, I was teaching mathematics to students in grades 11 and 12 at a publicly-funded residential
school for academically talent students in Mississippi in the United States. I was most concerned
about the content that would comprise a history of mathematics course that I was tasked to teach as
part of the school’s mathematics course electives. In preparation for teaching the course I became

! As part of the plenary talk (and paper), I plan to highlight the different notions of “use of history” —as the variants of

99 ¢C:

“use” (e.g., “incorporate,” “include,” etc.) may be a point of contention for some.
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involved with the Institute of the History of Mathematics in its Use in Teaching (IHMT), and my
world of mathematics changed forever. As a result of that experience, I not only gained access to
materials that would inform the first history of mathematics course I taught, I also acquired a new
lens on teaching mathematics in general. Although I was teaching students who chose to attend a
school focused on mathematics and science (e.g., the Mississippi School for Mathematics and Science
in Columbus, MS), not all of the students had a positive relationship with mathematics. For many,
they had become trained to view mathematics as a set of procedures to acquire a numerical answer
for a “problem.” As a high school mathematics teacher, I felt that I was living the embodiment of
what Glaisher (1848—-1928) described: “I am sure that no subject loses more than mathematics by any
attempt to dissociate it from its history” (1890, p. 466). However, continued participation in [HMT
and my eventual doctoral work would provide me with new perspectives, tools, and a community
with which to view, study, and teach mathematics. Therefore, in this talk, I hope to share with you a
small part of the development of the community—its history, if you will—as well as its exciting
present and promising future.

Plan for the plenary paper

In this paper, I will first situate the field of history of mathematics in mathematics education—often
referred to as the history and pedagogy of mathematics domain (or, HPM domain) within
mathematics education, with careful attention to the development leading up to establishing the
International Study Group on the Relations between the History and Pedagogy of Mathematics (HPM
Group) in 1976. Precipitated by the creation of the HPM Group, research in the HPM domain has
continued to grow in last 40-plus years, and includes all levels of learners and teachers. Part of this
growth has been marked by the creation of a thematic working group on history in mathematics
education, beginning with CERMEG6 in 2009. Next, I will provide examples of approaches and
frameworks that are useful in empirical research in the HPM domain and I will highlight a collection
of specific examples in which research on the use of history of mathematics contributes to the broader
landscape of research in mathematics education and will do so with respect to two frameworks useful
to mathematics education research. As a first example, I will discuss contributions of working with
primary historical sources on pre- and in-service teachers’ mathematical knowledge for teaching. As
a second example, I discuss the application of Sfard’s (2008) thinking as communicating framework
in research, including work by colleagues in Denmark and Brazil, as well as that currently undertaken
within the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources
(or, TRIUMPHS) project in the United States. Finally, after a brief analysis of ongoing discussions
for calls to strengthen empirical work in the HPM domain in light of certain pitfalls and dilemmas
facing the field, I will propose directions for future research and the ways in which various CERME
thematic working groups can contribute to bridging research in this important field with the broader
mathematics education research community

Development of HPM: A study domain and a group

What is now known as HPM was established as part of the second International Congress on
Mathematical Education (ICME) in 1972 in Exeter, UK, first as an official working group there
(EWG 11) and then as an official study group (with the onerous original name of International Study
Group on Relations between History and Pedagogy of Mathematics, cooperating with the
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International Commission on Mathematical Instruction; simplified to the HPM Study Group and later
as just the HPM Group) subsequent to ICME3 in Karlsruhe, Germany in 1976. The principle aims of
the group were perhaps a description of the culmination of efforts focused on integrating or using
history of mathematics in teaching in different contexts around the world since the end of the 19%
century. In particular, the principle aims given by the HPM Study Group were:

1. To promote international contacts and exchange information concerning;:
a. Courses in History of Mathematics in Universities, Colleges and Schools.
b. The use and relevance of History of Mathematics in mathematics teaching.
c. Views on the relation between History of Mathematics and Mathematical Education at
all levels.

2. To promote and stimulate interdisciplinary investigation by bringing together all those
interested, particularly mathematicians, historians of mathematics, teachers, social scientists
and other users of mathematics.

3. To further a deeper understanding of the way mathematics evolves, and the forces which
contribute to this evolution.

4. To relate the teaching of mathematics and the history of mathematics teaching to the
development of mathematics in ways which assist the improvement of instruction and the
development of curricula.

5. To produce materials which can be used by teachers of mathematics to provide perspectives
and to further the critical discussion of the teaching of mathematics.

6. To facilitate access to materials in the history of mathematics and related areas.

7. To promote awareness of the relevance of the history of mathematics for mathematics teaching
in mathematicians and teachers.

8. To promote awareness of the history of mathematics as a significant part of the development
of cultures. (Fasanelli & Fauvel, 2006, p. 2; originally in May, 1978, p. 76)

It is important to note that the essence of these eight aims have remained relevant and present in
subsequent HPM-related meetings and remain a source of motivation for research and practice for
many in the field today. It is also important to note that when appropriate, the aims apply to all levels
of learners and teachers (e.g., primary (elementary), secondary, tertiary, and teacher education).

After the establishment of the HPM Study Group in 1976, the community continued to grow in
important ways, including a focus on practitioners (e.g., school teachers) who wished to humanize
mathematics in school teaching but to also engage students with historical materials, methods, and
problems in their learning of mathematics. A classic example of the recommendations that were
offered to teachers are given by Fauvel (1991) and which resulted from a brief historical look through
curriculum documents for school mathematics teachers in the UK. In his introduction, Fauvel noted
that for “decades if not centuries now, a few voices in each generation have urged the value and
importance of using history in teaching mathematics—but so far without this insight taking firm and
widespread root in the practice of teaching” (p. 3). National curriculum documents echoed a similar
call for history of mathematics in both the UK and US in 1989:

Pupils should develop their knowledge and understanding of the ways in which scientific ideas
change through time and how the nature of these ideas and the uses to which they are put are
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affected by the social, moral, spiritual and cultural contexts in which they are developed. (Science
in the National Curriculum, 1989; as cited in Fauvel, 1991, p. 4).

Students should have numerous and varied experiences related to the cultural, historical, and
scientific evolution of mathematics so that they can appreciate the role of mathematics and the
disciplines it serves.... It is the intent of this goal—learning to value mathematics—to focus
attention on the need for student awareness of the interaction between mathematics and the
historical situations from which it has developed and the impact that interaction has on our culture
and lives. (NCTM, 1989, pp. 5-6)

However, policy statements and reform efforts tell only one side of the story and to actually enable
teachers with materials, techniques, skills, etc., is quite another. Still, in the decades since the HPM
Group’s establishment, the community grew in ways that brought together different stakeholders—
mathematicians, mathematics historians, mathematics teachers, mathematics education researchers,
and others—for the purpose of sharing research, historical materials, and examples of pedagogical
practice in which history of mathematics informed the teaching of mathematics. The first HPM Group
satellite meeting (associated with an ICME) took place in 1984 at the Stuart campus of the University
of Adelaide, and the satellite meetings have taken place every four years (as with ICME) since then.
Additional supports to the international community were also established. For example, also in 1984,
a meeting took place at University High School in San Francisco, CA, in which the creation of an
Americas Section of the HPM Group was planned. The aim for an “HPM Americas” section was to
“have a more active presence in the mathematics education community than was forthcoming from
the international organization” (Fasanelli & Fauvel, 2006, p. 6). In 1993, the first of regularly-
occurring meetings called European Summer University (ESU), were organized by the Institutes of
Research in Mathematics (IREM) and took place in Montpellier, France. The ESU was held every
three years until 2010?, when it was decided that they would occur every four years and would be
staggered by two years from the quadrennial ICME/HPM satellite meeting pair.

HPM within CERME

Of course, the inclusion of a working group on history of mathematics in mathematics education at
CERME may be the international venue of most interest to the present audience. The working group
made its first appearance at CERME6 (Working Group 15: Theory and Research on the Role of
History in Mathematics Education), and since then, it was established as Thematic Working Group
(TWG) 12, History in Mathematics Education. The TWG has focused on a wide array of concerns to
the field, which are represented by nine overarching themes taken from the “call for papers” since
2009:

1. Theoretical, conceptual and/or methodological frameworks for including history in
mathematics education;

2 There was a five-year gap between the 1999 ESU-3 held in Leuven and Louvain-la-Neuve, Belgium and the 2004 joint
ESU-4 and ICME-10 satellite meeting of HPM held in Uppsala, Sweden.
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Relationships between (frameworks for and empirical studies on) history in mathematics
education and theories and frameworks in other parts of mathematics education [this point
featured only from CERME 7 onwards];

The role of history of mathematics at primary, secondary, and tertiary level, both from the
cognitive and affective points of view;

The role of history of mathematics in pre- and in-service teacher education, from cognitive,
pedagogical, and/or affective points of view;

Possible parallelism between the historical development and the cognitive development of
mathematical ideas;

Ways of integrating original sources in classrooms, and their educational effects, preferably
with conclusions based on classroom experiments;

Surveys on the existing uses of history in curricula, textbooks, and/or classrooms in primary,
secondary, and tertiary levels;

Design and/or assessment of teaching/learning materials on the history of mathematics;

The possible role of history of mathematics/mathematical practices in relation to more general
problems and issues in mathematics education and mathematics education research. (Jankvist
& van Maanen, 2018, p. 242)

Table 1 provides the titles and authors of sample papers (and the CERME meeting in which they

were presented) corresponding to the nine themes given, as a way to exhibit the variety and context

in which work in HPM is conducted within the CERME community.

TWG 12° Sample paper
theme

1 “The Teaching of Vectors in Mathematics and Physics in France During the 20th
Century” (Ba & Dorier; CERMEG)

) “Uses of History in Mathematics Education: Development of Learning Strategies and
Historical Awareness” (Kjeldsen; CERME7)

3 “The Role of History of Mathematics in Fostering Argumentation: Two Towers, Two
Birds and a Fountain” (Gil & Martinho; CERMED9)

4 “Mathematical Analysis of Informal Arguments: A Case-Study in Teacher-Training
Context” (Chorlay; CERME10)

5 “Teaching the Concept of Velocity in Mathematics Classes” (Moller; CERMEY)

6 “Designing Teaching Modules on the History, Application, and Philosophy of

Mathematics” (Jankvist; CERME7)

3 Again, for CERMES6 only, this was Working Group 15.
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7 “The Implementation of the History of Mathematics in the New Curriculum and
Textbooks in Greek Secondary education” (Thomaidis & Tzanakis; CERMEG6)

2 “The Development of Place Value Concepts to Sixth Grade Students via the Study of
the Chinese Abacus” (Tsiapou & Nikolantonakis; CERMES)

9 “Lessons from Early 17th Century for Current Mathematics Curriculum Practice”
(Kriiger, CERME7)

Table 1: Sample collection of CERME papers presented in TWG 12

Jankvist and van Maanen (2018) noted that TWG 12 seeks to “create a forum and a platform for
fostering empirical studies in the field of history in/of mathematics education and fo also better link
research in this field with research in mathematics education in general” (p. 241, emphasis added).
In the examples that follow, I especially focus on themes 2, 3, and 4 in the list summarized by Jankvist
and van Maanen.

History in mathematics education: A very brief history of early research

Early scholarship* (e.g., conducted before 2000) in the field of history in mathematics education was
primarily focused on (a) anecdotal reports of interventions used with students; (b) historical research
on topics that could serve as the focus of classroom instruction; and (c) survey research, including
research on students’ or teachers’ attitudes and beliefs related to history of mathematics. A classic
example of empirical research is that of McBride and Rollins (1977), in which, as part of McBride’s
doctoral dissertation, they examined the effects of studying mathematics history on attitudes of
college algebra students toward mathematics. The research was motivated by the lack of research
reports (available at the time) that studied “the problem of determining the effectiveness” (p. 57) of
“incorporating items from the history of mathematics into classroom discussions of mathematical
topics” (p. 57). For McBride and Rollins, the “incorporation” of items was restricted to the use of
vignette material to introduce or comment on mathematical topics in the college algebra curriculum.
The authors found a significant increase in attitude (particularly since the attitudes of the treatment
group increased and the those of the control group decreased); however, several limitations were
identified, including the notion that the teacher effect may have been significant. Limitations aside,
the McBride and Rollins contribution represented two impacts for subsequent research in the field of
history in mathematics education. First, it placed the potential of history in mathematics education
on the radar of future researchers (myself included). And, their use of existing research—that on
attitudes towards mathematics by Aiken (such as his early work in the Journal for Research in
Mathematics Education in 1974)—exemplified the fruitful connections for research on history in
mathematics education within the broader landscape of mathematics education research. In more
recent years, scholarship has begun to shift to capitalize on empirical methods that are more
mainstream, and for which researchers seek a broader application of the interventions that have been
the focus of their research. In the following, I discuss more recent examples of different approaches

4 Apologies to my colleagues around the globe: for the purposes of this plenary talk (and paper), I focus on English-

language scholarship.
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and frameworks that are useful in empirical research in the HPM domain, including mathematical
knowledge for teaching and thinking as communicating.

Mathematical knowledge for teaching and HPM

Mathematical knowledge for teaching (MKT) is a practice-based theory of the domains of knowledge
that are considered necessary for the work of teaching mathematics. The framework itself (often
relegated to the “egg model” diagram; see for example, Ball, Thames, and Phelps (2008)) has been
applied in a variety of research contexts around the world since the early 2000s and has its foundation
in the work of the Learning Mathematics for Teaching (LMT) Project. However, it is important to
keep in mind that rather than taking the egg model too literally (as in, trying to situate all relevant
and possible knowledge for teaching mathematics into the original six domains of knowledge), the
practiced-based theory of MKT comprises two key aspects: knowledge of content in the discipline of
mathematics and the recognition that teaching is at the core, and this brings with it the notion that
mathematics teaching can be decomposed into tasks of teaching, of which there are many.

In my own early work with prospective mathematics teachers (PMTs), I was struck by the idea that
the MKT framework could provide ways to problematize (or clarify) the ways in which studying
history of mathematics informs PMTs’ knowledge of topics they would soon teach. In one study
(Clark, 2012), I analyzed reflection journal entries of 80 students enrolled in a “Using History in the
Teaching of Mathematics”™ course, across four semesters. In the particular investigation, I examined
15 weeks of journal entries for each of the 80 students for their reference to solving quadratic
equations using completing the square. In the course, students worked with English translations of
primary source material as part of investigations designed to engage them with the historical
development of a mathematical concept, and which would provide them with opportunities to expand
their mathematical and pedagogical knowledge, and to consider ways in which student learning may
benefit from incorporating content similar to what they worked with in the “Using History” course.
The source excerpt was taken from Fauvel and Gray (1987, p. 229):

Roots and squares are equal to numbers: for instance, ‘one square, and ten roots of the same,
amount to thirty-nine dirhems’; that is to say, what must be the square which, when increased by
ten of its own roots, amounts to thirty-nine? The solution is this: you halve the number of the roots,
which in the present instance yields five. This you multiply by itself; the product is twenty-five.
Add this to thirty-nine; the sum is sixty-four. Now take the root of this, which is eight, and subtract
from it half the number of the roots which is five; the remainder is three. This is the root of the
square you sought for; the square itself if nine. [...]

When students elected® to discuss course tasks from al-Khwarizmi’s text on solving quadratic
equations in their reflection journals, they revealed what it contributed to their mathematical learning
and how they would consider incorporating such content in their future teaching. Brad’s reflection of

5 For the reflective journal assignments, students made the choice of what to include in their journals. However, regardless
of content selection (typically driven by course readings, tasks, and assignments), PMTs needed to respond to at least one
of six fixed reflection prompts, e.g., In what ways has your understanding of {mathematical topic} changed as a result
of considering the history of the topic?, or, In what ways do you envision being able to incorporate the history of

{mathematical topic} in your teaching?
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his prior and current experience (with respect to his mathematical learning) was representative of the
tenor of the PMTs’ reflection of the al-Khwarizmi tasks:

I remember learning the quadratic formula in 8th grade. I was in Algebra I and Mrs. Horst had
politely drilled the “opposite of b plus or minus the square root of b squared, minus four ac, all
over two a” routine into our heads. All I recall knowing is that I could apply this formula to solve
polynomials of a 2nd degree. [ T]he lesson and activity we completed...were particularly influential
to my understanding. This was essentially the first proof of any sort that I’ve experienced relevant
to the formula itself. It was this part where I really had the “a-ha” feeling. As 1 began to compose
the area relationships using algebraic notation, I could see the beginnings of the quadratic formula;
I realized that this was actually going to work! More importantly I began to view the quadratic
equation as less of an algebraic equation and more of a geometric relationship. (Clark, 2012, p.
78)

From another view, Hillary described her idea for the ways in which she might consider history of
mathematics informing her future teaching:

If I were going to use this in my classroom I would be sure to explain to them how al Khwarizmi
used his vast knowledge of many subjects to work with these numbers and develop a similar
quadratic formula, one that is like that of ours today, except for the use of the negative numbers. I
would show them that with a few simple manipulations and algebraic transformations, we would
have the same equation and we could even have groups each try a different method but with the
same equation, then compare answers; that way students can find which method suits them the
best.... I feel that math has so many possibilities, so many ways in which something can be taught
and or understood, so why not provide those so the students can make sense of what to them might
be complicated mathematics. (Clark, 2012, p. 80)

As a result of studying PMTs’ reflections of course content and engagement with materials using
history of mathematics in teaching, I claimed that the work on the part of teachers to incorporate
history of mathematics in teaching is a component of the “something else” that Ball and her
colleagues (2008) described as knowledge for teaching beyond the obvious knowledge of “topics and
procedures that [teachers] teach” (p. 395). As part of their definition of horizon content knowledge,
Ball et al. concentrated on “how teachers need to know that content” (p. 395) and they sought to
“determine what else teachers need to know about mathematics and how and where teachers might
use such mathematical knowledge in practice” (p. 395). My study of PMTs’ work to develop
knowledge of history of mathematics—and, therefore of mathematics that they were tasked to teach—
pointed to the strong potential of the history of mathematics to contribute to the “what else” described
by Ball et al. and how this specialized knowledge contributes to PMTs’ future practice. I also made
the claim, by using Boero and Guala’s (2008) component of the “cultural analysis of the content to
be taught” (p. 223), that engaging in the mathematical, historical, and cultural aspects of a
mathematical concept is an important way in which teachers need to know the content that they teach.
Thus, although the call to “focus attention on the need for student awareness of the interaction
between mathematics and the historical situations from which it has developed and the impact that
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interaction has on our culture and lives” (NCTM, 1989, p. 6) seems to be a distant memory?®, situating
an analysis of what PMTs’ claim as a contribution to their mathematical knowledge within the MKT
framework enables researchers to make decisions regarding the development of prospective
mathematics teachers, as well as the role that history of mathematics plays in that important work.
There are still too few studies that capitalize on investigating the role that the study of history of
mathematics, organized in meaningful and powerful ways to inform not only PMTs’ disciplinary
content knowledge but the multiple forms of tasks of teaching that they will perform in their future
teaching. However, the contribution of history of mathematics on the MKT of practicing teachers is
also productive for research in mathematics education.

Additional contexts for the application of MKT

There is further potential for the application of MKT in the HPM domain. Recent scholarship reveals
multiple contexts and applications in which the linkages between MKT and the use of history of
mathematics in the development of prospective and practicing teachers further contribute to research
on teacher knowledge and the work of mathematics teachers. Two examples are worth noting here.
Smestad, Janviskt, and Clark (2014) investigated components of horizon content knowledge (HCK)
within MKT in relation to curricular demands that teachers experience in general, and with regard to
curricular transition periods in particular; that is, when the transition taking place involves “the
inclusion of elements of history of mathematics in new curricula and accompanying textbooks” (p.
180). We approached the three cases of interest with a focus on a dual aspect of HCK. For example,
“concrete inclusions of history of mathematics...calls for an already developed [HCK] of a teacher”
(p. 174), which can be considered “a priori HCK.” Yet this inclusion of history of mathematics in a
teacher’s practice may itself contribute to [a] teacher’s HCK—which might then be referred to as “a
posteriori HCK.”

The three cases (Denmark, Norway, and the US) discussed in Smestad et al. (2014) each stemmed
from concrete directives (yet still considered rhetoric) calling for the inclusion of history of
mathematics in school curriculum, and which represented a continuum of curricular demands for
teachers in delivering their instruction while heeding the various directives. These particular
transitions—for example, shifting the extent to which inclusion of elements of history of mathematics
in new curricula or textbooks—impact a teacher’s HCK. For example:

In the transition phase from one curriculum not including elements of history of mathematics to
another which does, in-service teachers often lack the associated CCK, KCC’, etc. And, at this
particular time, in this particular transition period while implementing the new curriculum and
training in-service teachers, a priori HCK comes to play a more crucial role. (p. 180)

This example highlights the dynamic nature of a model (MKT) for understanding the nature of the
practice (and perhaps, the purpose) of mathematics teaching. Furthermore, there is a synergetic

6By 2000, when NCTM issued its new Principles and Standards for School Mathematics, what was originally recognized
as a goal for learning mathematics was now reduced to identification of a feature of mathematics, Mathematics as a part
of cultural heritage: “Mathematics is one of the greatest cultural and intellectual achievements of humankind, and citizens

should develop an appreciation and understanding of that achievement...” (p. 4).

7 Common content knowledge (CCK), knowledge of content and curriculum (KCC), etc.
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relationship between research on history of mathematics in teacher education and the evolution of
models for understanding teacher knowledge. As Jankvist, Mosvold, Fauskanger, and Jakobsen
(2015) observed, “the MKT framework provides a powerful language to communicate results from
research on the uses of history of mathematics to researchers in other areas of mathematics education
research” (p. 495).

Thinking as communicating and HPM research

In an attempt to resolve certain quandaries related to mathematical thinking and learning, Sfard
(2008) operationally defined thinking as a personalized version of communication. Given the
collective nature of communication, she introduced the term commognition to highlight the
communicative nature of activities in our minds, emphasizing that individual cognitive processes
(thinking) and interpersonal communication are “but different manifestations of basically the same
phenomenon” (Sfard, 2008, p. 83). Using this communicative, or discursive lens, Sfard (2008)
determined that “mathematics begins where the tangible real-life objects end and where reflection on
our own discourse about these objects begin” (p. 129). That is, what identifies the objects of
communication in mathematics is their discursive nature: they come to exist as we talk about them.
Thus, taken from this viewpoint, mathematics is seen as a highly situated human activity which
generates itself. As a result, the learner of mathematics faces an interesting and paradoxical situation:
How can a person join a discourse for which familiarity with the discourse is a precondition for
participation in that discourse?

Yet further complications exist. Sfard (2008) noted that participation in any discourse requires
adopting the rules that govern that discourse, in addition to becoming familiar with the objects of the
discourse. She referred to the former rules as meta-level, or metadiscursive, and the latter as object-
level. For instance, asserting that a particular function is differentiable constitutes an object-level
narrative about functions. However, a student’s method of justifying this assertion (e.g., sketching a
graph versus an € — § proof) would be indicative of the metadiscursive rules that govern her discourse
about functions. Despite the usual implications of the word rule as being invariable and strictly
deterministic, metadiscursive rules are subject to change in time and space, and they possess certain
characteristics; they are tacit, contingent, constraining, flexible, value-laden, and are difficult to
change. Sfard posits that these characteristics render meta-level learning possible only through direct
encounters with a new discourse that is governed by meta-level rules different from those governing
the learner’s current discourse (p. 256). Furthermore, such encounters generally entail a
commognitive conflict when the discursants unknowingly operate under completely different meta-
level rules.

Given their role in governing the actions of the participants in a mathematical discourse, researchers
have paid particular attention to factors that affect the learning of metadiscursive rules in
mathematics. In a number of these studies, the history of mathematics, and primary source readings
in particular, emerged as an instructional approach with strong potential to promote such learning.

Example from Denmark

In their study of university mathematics students, Kjeldsen and Blomhgj (2012) showed that a careful
selection of historical sources can help students learn about the metadiscursive rules that govern
mathematicians’ discourse about functions and can allow them to recognize that these rules changed
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during the development of that concept. This meta-level learning, they argued, fostered students’
learning of mathematics at the object-level as well. The authors shared an in-depth analysis of project
reports produced by two groups of students, which were based on project work designed and carried
out as part of the mathematics bachelor’s and master’s programs at Roskilde University. The reports
result from semester-long work in which students operate within particular project constraints; in the
case of the two projects described by Kjeldsen and Blomhgj, these belong to the “mathematics as a
discipline” constraint. The projects exemplified were “Physics’ influence on the development of
differential equations and the following development of theory” and “Fourier and the concept of a
function — the transition from Euler’s to Dirichlet’s concept of function.” In their analyses of student
projects, Kjeldsen and Blomhgj brought attention to the incongruent discourses of their students when
compared to the primary source texts. For example, for the group whose project was “Physics’
influence...,” students read and studied three original sources from the 1690s:

In order to answer their questions, the students had to read and understand the sources within the
mathematical discourse of the time. On one hand, this is a difficult task because the students’
points of departure in dealing with the sources are their own mathematical discourses, which are
different from the discourse of the authors of the sources. On the other hand, this is exactly the
reason why history, and working with original sources, can serve as an effective method for meta-
level learning. (p. 336)

In their discussion of students’ project work—for both project examples—Kjeldsen and Blomhgj
(2012) beautifully situate the power of primary historical sources to promote students’ ability to
reflect upon metadiscursive rules of mathematics:

Didactically, it is important to find and identify historical sources that are suitable for provoking
discussion in classrooms among students and with their teachers about different meta-discursive
rules. Likewise, it is important to perform research about how this can be done, how teaching
activities that support such discussions and reflections can be designed and how the effectiveness
of such teaching and learning situations can be evaluated in practice. (p. 347)

Example from Brazil

In a similar way and drawing upon the work of Kjeldsen and Blomhej (2012) and Kjeldsen and
Petersen (2014), as well as Sfard’s theory of thinking as communicating, Bernardes and Roque (2018)
conducted two experiments with a small group of undergraduate students in a mini-course focused
on the topic of “Different roles of the notion of matrix in two episodes of the history of matrices” (p.
219). The course included two teaching modules which introduced students to original source
materials from J. J. Sylvester (1814-1897) and Arthur Cayley (1821-1895). In a similar way to
Kjeldsen’s empirical work with colleagues, Bernardes and Roque’s research consisted of three goals,
in which they sought to investigate:

(1) how historical sources encourage reflections about metarules related to matrices and
determinants;

(2) how reflections about metarules impact students’ conceptions about matrices and
determinants; and

(3) the development of a historical consciousness in the students. (p. 211)
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In their analysis, Bernardes and Roque (2018) found that students were able to discuss and reflect on
the historical metarules present in the primary source texts; as well, they identified three metarules in
the student participants’ discourse. Furthermore, Bernardes and Roque highlighted the occurrence of
commognitive conflicts — that is, “conflicting narratives in which the...participants and the historical
sources were guided by different metarules” (p. 224). The combination of these outcomes prompted
the researchers to question the order in which they teach topics in a Linear Algebra course. For
example, they questioned whether it is appropriate to begin such a course with the “concept of a
matrix as an object in itself” (p. 226). In their proposal for a future instructional sequence, Bernardes
and Roque observed that historical episodes showed that the introduction and development of the
concept of matrix was driven by a need for such a representation (e.g., introduction of multiplication
of matrices in conjunction with composition of linear transformations). Thus, in addition to the use
of primary sources promoting students’ reflection of metalevel rules governing their mathematical
discourse, such an innovation has the potential for guiding instructional changes which can serve to
impact students’ mathematical learning.

Example from the United States: The TRIUMPHS Project

As part of a large grant project, several colleagues and I have begun a study to further investigate the
potential that “history can have a profound, perhaps even indispensable, role to play in teaching and
learning mathematics from the point of view of learning proper meta-discursive rules” (Kjeldsen and
Blomhgj, 2012, p. 328). Before describing features of that work, it is perhaps helpful to describe the
greater context in which the research is taking place.

In 2015, the National Science Foundation (NSF) in the United States funded a seven-institution
collaborative project to design, test, and evaluate curricular materials for teaching standard topics in
the university mathematics curriculum via the use of primary historical sources. The goal of the
project is to assist students in learning and developing a deeper interest in and appreciation of
mathematical concepts by creating educational materials in the form of Primary Source Projects
(PSPs) based on original historical sources written by mathematicians involved in the discovery and
development of the topics being studied. The project, Transforming Instruction in Undergraduate
Mathematics via Primary Historical Sources, or TRIUMPHS, is developing PSPs which contain (1)
excerpts from one or several historical sources, (2) a discussion of the mathematical significance of
each selection, and (3) student tasks designed to illuminate the mathematical concepts that form the
focus of the sources. PSPs are designed to guide students in their explorations of these original texts
in order to promote their own understanding of those ideas.

The numerous PSPs are indeed the life force of the TRIUMPHS project. During the grant-funded
effort, the principal investigators (PIs) promised that some 50 PSPs (which span the undergraduate
mathematics curriculum, from basic statistics and trigonometry, to real analysis, abstract algebra, and
topology) will be developed, tested, and evaluated. Of the 50 PSPs, 20 are planned to be “full-length”
and 30 are what we refer to as “mini-PSPs.” Full-length PSPs are designed to typically encompass at
least two to four class sessions, which represents the same amount of time that it normally takes to
teach the mathematical topic of focus within the PSP. However, among the full-length PSPS there
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are also longer ones that could be used by instructors to comprise an entire course’s content®.
Alternatively, “mini-PSPs” can be completed in one to two class sessions and each of the mini-PSPs
have been developed to teach a particular topic or concept in mathematics that would normally be
addressed in a single class session, but which will be done via a primary historical source. To date,
33 full-length PSPs and 28 mini-PSPs have been developed. Though we have exceeded our
commitment to develop 20 full-length PSPs, there are additional full-length PSPs in development, as
well as the remaining, promised mini-PSPs.

In Fall 2015 the first PSPs were tested’ in two undergraduate mathematics classrooms in the United
States; in Year 3 (academic year 2017-18), 46 distinct site testers tested one or more PSPs in
undergraduate mathematic classrooms. However, in total, by the end of Year 3, 53 instructors have
site tested PSPs as part of the TRIUMPHS project, with some one-third of those serving as repeat
testers. In the first semester of Year 4, we have 20 student data collection site testers; again, of these,
we have several repeat site testers, where 13 are new to site testing TRIUMPHS PSPs.

Whereas this progress across almost four years of a large NSF grant project may seem to some as
modest, it is important to note that as only one of three such grants ever funded on this level in the
United States, this represents significant progress with regard to efforts designed to promote the
teaching of undergraduate mathematics via primary historical sources. The two previous grants — to
which three of the seven TRIUMPHS PIs and one of the advisory board members contributed — also
produced a number of primary source projects. Table 2 summarizes the origin and availability of
these projects.

Years Name of funded project (URL) Number of  projects
developed (and tested in
classrooms)

2003-2006 Teaching Discrete Mathematics via Primary | 14
Historical Sources; Pilot Grant
(https://www.math.nmsu.edu/hist_projects/)

2008-2012 Learning Discrete Mathematics (LDM) and | 20
Computer Science via Primary Historical
Sources; Expansion Grant
(https://www.cs.nmsu.edu/historical-
projects/)

2015—present Transforming Instruction in Undergraduate | 61, to date
Mathematics via Primary Historical Sources;
Collaborative Grant
(http://webpages.ursinus.edu/nscoville/TRIU
MPHS . html)

8 In fact, this was done recently (Spring 2018) by Janet H. Barnett, in an Abstract Algebra course.

% By “tested” we mean that we collected student data from the implementation of PSPs in these classrooms.
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Table 2: PSP development, 2003-2018

There are two features unique to TRIUMPHS when compared to the two previous grants. First, it
was difficult to recruit site testers for the projects that were developed. The Pilot Grant (2003-2006)
involved only five total site testers and in the Expansion Grant (2008-2012), a total of 10 site testers
participated. However, in the TRIUMPHS project we have developed mechanisms to recruit site
testers through a variety of outreach efforts, including presentations at conferences, three-day
TRIUMPHS-focused workshops (particularly focused on instructors who might not have previously
included primary sources in their teaching), mini-courses and short workshops at conferences, and
listserv announcements via professional organizations with members who may share interests in
history of mathematics and its use in teaching'®. In advance of each autumn and spring semester we
advertise the site testing opportunity and accept applications for two different site tester streams:
those who will serve as student data collection site testers and those who will serve as instructor-only
data collection sites.

The second feature unique to TRIUMPHS (when compared to the previous grant efforts) is the
evaluation-with-research (EwR) component of the grant project. The two previous grants included
only an evaluation component, which resulted from the analysis of surveys completed by students at
the beginning and end of courses at the particular participating institutions “in any course in which a
historical project could be used, regardless of whether a project [was] actually used or not”
(“Instructions for testers,” LDM, n.d.). The surveys asked students to respond to approximately 30
questions: 18 “Need for Cognition Scale” items, 10 “Understanding Computer Science Scale” (and/or
Mathematics, depending upon the course) items, and two open-ended items:

In your opinion, what are the benefits of learning Mathematics (and/or Computer Science) from
historical sources?

In your opinion, what are the drawbacks of learning Mathematics (and/or Computer Science) from
historical sources?

Thus, in the evaluation of the funded grant projects just prior to TRIUMPHS, assertions were made
only with regard to students’ self-reported understanding of mathematics or computer science
concepts broadly and beliefs about their problem solving and cognitive efforts. That said, student
responses to the two open-ended items did provide the PI team with confirmation that the use of
primary historical projects was a worthwhile inclusion in the teaching of mathematics and computer
science courses. Typical student responses (LDM, n.d.) include:

[ really enjoyed it. I found it to be very intriguing.

As a student you get to see where the math we do today came from and engage in the kind of
thinking that was necessary to create it.

It’s a perfect way to given math some context in the world. Historical sources teach you the math
while simultaneously fitting math into history and give you meaning for why the math was and is

10 We have also advertised training opportunities and site testing via inquiry-based learning (IBL) audiences, since
mathematics faculty interested in active learning strategies in undergraduate mathematics courses may find PSPs provide

useful materials for promoting active learning, particularly in upper-division mathematics courses.
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important. Historical sources also break up the monotony of textbooks, making math more
accessible for a wider variety of students.

I think that it gives the student a [deeper] understanding of the subject.
The TRIUMPHS Project: Metadiscursive rules investigation (MDRI)

It is important to point out that the EwR component of the TRIUMPHS project was built after the
formulation of the main focus; that is, the development and dissemination of the PSPs was the
primary focus of the grant effort. Therefore, evaluation questions were constructed that would enable
the PI team to report several metrics to the funding agency (in this case, the NSF in the US) regarding
the successful completion of the goals and sub-goals of the project. However, developing research
questions about what can be learned from TRIUMPHS—given that the design of the development of
the PSPs was fixed first—proved difficult in both the development of the grant proposal and the “pilot
year” of the project. In particular, the PIs working on the EwR component'! strongly believe that
TRIUMPHS provides a unique opportunity to contribute to mathematics education research more
broadly, especially given the potential that a large collaborative grant project affords, including
working with a variety of university teaching contexts (e.g., two-year colleges and four-year colleges
and universities) and student populations. And, in response to the NSF prior to receiving funding, we
highlighted the importance of the development of communication skills—and all modes of this:
written, verbal, reading—as part of students’ mathematical learning was an area of potential impact.
After several iterations, the EwR working group decided that the thinking as communicating
framework (Sfard, 2008) would provide the most fruitful lens for our research.

Our investigation builds on prior research concerning the potential of primary source readings for
mathematics education (e.g., Bernardes & Roque, 2018; Kjeldsen & Blomhgj, 2012) that has been
conducted within the framework of Sfard’s participationist theory of “learning as discourse” (Sfard,
2008). In particular, we focus on the role played within that framework by the metadiscursive rules
which govern the actions of the participants in a mathematical discourse. When considering the
research literature available which contains similar emphases with regard to using primary historical
sources in the teaching and learning of mathematics, we have been empowered with a strong
conviction—as have others—that, under the right conditions, the use of history does promote the
learning of metadiscursive rules in mathematics. Our goal, within the EwR component of the
TRIUMPHS project, is to contribute to the important work of identifying what occurs for student
learning under what conditions, work which is important to both the researcher who is interested in,
for instance, how the learner is thinking along the way, and to the practitioner, for whom the
educational setting that motivates meta-level learning opportunities for students is of paramount
importance.

Thus, we launched a metadiscursive rules investigation (MDRI), in which we posed the following
research questions:

' There are actually three foci of the EwR component of TRIUMPHS: “student change,” “faculty expertise,” and

“development cycle.”
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What is the evidence of students’ progress in “figuring out” (Sfard, 2014, p. 201) the meta-level
rules that govern a new mathematical discourse as a result of studying specific mathematical
concepts when using primary source projects?

To what extent do students’ actions (e.g., verbal, written), both during and after engagement with
the primary source projects, provide evidence of their acceptance of a new discourse?

The construction of our research questions was heavily influenced by Sfard’s (2014) observation that
university mathematical discourse is “far removed from what the student knows from school as a
discourse can be” (p. 200). Thus, in our work, we investigate an alternative to lecturing that makes
use of the history of mathematics (e.g., via PSPs) in order to provide a learner with the opportunities
for “watching a mathematician in action and imitating his moves while also trying to figure out the
reasons for the strange things he is doing” that Sfard suggests “may be the only way to come to grips
with [the] objects [that she is supposed to operate upon]” (Sfard, 2014, p. 202; emphasis added).

We are also strongly influenced by the agenda articulated by Kjeldsen and Blomhej (2012):

Didactically, it is important to find and identify historical sources that are suitable for provoking
discussion in classrooms among students and with their teachers about different meta-discursive
rules. Likewise, it is important to perform research about how this can be done, how teaching
activities that support such discussions and reflections can be designed and how the effectiveness
of such teaching and learning situations can be evaluated in practice. (p. 347)'?

In particular, our MDRI research draws upon three semesters of undergraduate mathematics
instruction that took place at one institution during the Autumn 2016 (Introduction to Analysis; 11
consenting students), Spring 2017 (Number Theory; 8 consenting students), and Spring 2018
(Abstract Algebra; 15 consenting students). The contexts, student populations, and PSPs used are
somewhat different across the three semesters'’. However, the data sources were similar in each
instance, and included:

e Video recordings of all class sessions;
e Audio recordings of each group during small group work;

e Students’ written work on all PSPs implemented during the courses and related “Reading and
Study Guides” (RSGs);

e Instructor class notes;
e Pre- and post-PSP student interviews'#; and

e Responses to four surveys per student (pre- and post-course surveys, and two post-PSP
surveys).

12 This passage was previously quoted in this paper, but it bears repeating here because it is particularly critical for the
MDRI work as part of TRIUMPHS.

13 However, there was a small subset of students (8) who participated in two of the three courses.

14 Not all consenting students were interviewed pre- and post-PSP, due to students’ class and work schedules.
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An example from the Autumn 2016 course (I/ntroduction to Analysis), which contained source
material “suitable for provoking discussion in classrooms among students and with their teachers
about different meta-discursive rules” (Kjeldsen & Blomhgj, 2012, p. 347), was the first PSP of the
semester (and which students met during the second week of the course): Why Be So Critical:
Nineteenth Century Mathematics and the Origins of Analysis (Barnett, 2017a). This project explored
the question of: Why, after nearly 200 years of success in the development and application of calculus
techniques, did 19th-century mathematicians feel the need to bring a more critical perspective to the
study of calculus? — and did so through selected excerpts from the writings of the nineteenth century
mathematicians who led the initiative to raise the level of rigor in the field of analysis (Barnett, 2017a,
p. 1).

The project includes excerpts from four mathematicians: Bolzano, Cauchy, Dedekind, and Abel. In
the PSP, Barnett (2017a) provided oriented students to the various primary sources with: “...these
mathematicians expressed their concerns about the relation of calculus (analysis) to geometry, and
also about the state of calculus (analysis) in general. As you read what they each had to say, consider
how their concerns seem to be the same or different” (p. 1). For example, Figure 1 displays an excerpt
from Dedekind.

Richard Dedekind, 1872, Stetigkeit und irrationale Zahlen (Continuity of irrational numbers)

My attention was first directed toward the considerations which form the subject of this pam-
phlet in the autumn of 1858. As professor in the Polytechnic School in Ziirich | found myself
for the first time obliged to lecture upon the elements of the differential calculus and felt more
keenly than ever before the lack of a really scientific foundation for arithmetic’. In discussing
the notion of the approach of a variable magnitude to a fixed limiting value, and especially in
proving the theorem that every magnitude which grows continually but not beyond all limits,
must certainly approach a limiting value, | had recourse to geometric evidences. Even now
such resort to geometric intuition in a first presentation of the differential calculus, | regard
as exceedingly useful, from the didactic standpoint, and indeed indispensable, if one does not
wish to lose too much time. But that this form of introduction into the differential calculus
can make no claim to being scientific, no one will deny. For myself this feeling of dissatis-
faction was so overpowering that | made the fixed resolve to keep meditating on the question
until | should find a purely arithmetic and perfectly rigorous foundation for the principles of
infinitesimal analysis.

Figure 1: Excerpt from Barnett, 2017a (source: Dedekind, 1901)

In keeping this excerpt in mind, we found evidence that such sources can prompt classroom
discussion around the metadiscursive rules that we see at the time of Dedekind—which constituted a
shift from what had been in place—and that are different still from what students were trying to
reconcile.

Some weeks later—approximately seven weeks into the course—students spent approximately two
weeks working on the second PSP in this analysis course: Rigorous Debates over Debatable Rigor:
Monster Functions in Introductory Analysis (Barnett, 2017b). In the project, students are introduced
to the correspondence between Gaston Darboux (1843—1917) and Jules Houél (1823-1886), in which
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Houél has requested feedback on early drafts of his intended textbook on differential calculus.
Throughout the correspondence, however, Darboux “offered various counterexamples in a (vain)
attempt to convince Houél of the need for greater care in certain of his (Houél’s) proofs” (Barnett,
2017b, pp. 2-3). Examples of this correspondence are provided in Figures 2 and 3.

Here is what | reproach in your reasoning which no one would now find rigorous. When we have

f(l‘—l—h)—f(ﬂ?) —f/(l’) — ¢,
h
¢ is a function of two variables x and h that approaches zero when, = remaining fixed, h
approaches zero. But if = and h [both] vary as they do in your proof, or worse yet, if to each
new subdivision of the intervals z; — xg there arise new quantities ¢, then | find it altogether
unclear and your proof has nothing but the appearance of rigor. [Darboux, as quoted in (Gispert,
1983, p. 99)]

Figure 2: Excerpt (A): Darboux correspondence with Houél (Barnett, 2017b, p. 6)

Yes, | admit as a fact of experience (without looking to prove it in general, which might be
difficult) that in the functions that | treat, one can always find & satisfying the inequality

W — f'(x) < €, no matter what the value of z, and | avow to you that | am ig-
norant of what the word derivative would mean if it is not this. ...l believe this hypothesis is

identical with that of the existence of a derivative. [Houél, as quoted in Gispert 1987, pp. 56 — 57].

Figure 3: Excerpt (B): Houél correspondence with Darboux (Barnett, 2017b, p. 6)

Two project tasks related to these excerpts were:

Do you agree with Houél about this being what the word ‘derivative’ means? Why or why not?

How does what Darboux said in the excerpt (A) seem to be different from what Houél is saying
here [excerpt (B)]?

The intensive work on how to analyze the data in order to address our original research questions is
just beginning. We produced a preliminary report on an initial discussion of methodological issues
that we experienced in our first review of the Autumn 2016 data. In our report (Can, Barnett, & Clark,
2018), we addressed two questions:

1.

2.

How can we characterize the nature of students’ participation in mathematical discourse in
their written work related to primary source projects?
What constitutes evidence of students’ noticing of meta-level rules in this written work?

Since our research report was quite preliminary (and page-limited), we focused on analyzing
students’ written work from just one PSP!® (and associated RSGs) that was implemented in the
Introduction to Analysis course we studied in Autumn 2016. We sought to document evidence of

15 For the purposes of the preliminary report, we focused on the PSP, Rigorous Debates over Debatable Rigor: Monster

Functions in Introductory Analysis (Barnett, 2017b).
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students’ noticing of metadiscursive rules in the form of meta-level reflections of two kinds: on either
the mathematical objects under discussion (what we called object-reflection) or the discourse itself
(what we called discourse-reflection). In the sample student’s reflection (given in Figures 4a, 4b, Sa,
and 5b), we identified the student’s ‘talk’ as object-reflection, in which she provided meta-level
narrative about mathematical objects (i.e., derivative).

2. Complete Task 3 part (a):

Do you agree with Houél about this being what 'the word ‘derivative’ means? Why or why not?
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How does what Darboux said in the excerpt at the bottom of page 4 seem to be different from
what Houél is saying here?
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Figure 4a: Student object-reflection (meta-level)
Do you agree with Houél about this being what the word ‘derivative’ means? Why or why
not?
1 disagree with Houél about w — f'(x) < e€isthe

derivative because we use f'(x) to define the derivative & you
would have to find this first before even using the equation above.

How does what Darboux said in the excerpt at the bottom of page 4 seem to be different from
what Houél is saying here?

It’s a way to [describe] what Houél [1s] trying to do but is
not a derivative, they use the derivative in it.

Figure 4b: Transcription of task and student response given in Figure 4a

1. Read the three excerpts (two from Darboux, one from Houél) on pages 4 - 5

Write at least one question or comment about these three excerpts.
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Figure 5a. Student discourse-reflection (meta-level)

Write at least one question or comment about these three excerpts.
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Darboux really seems to hate Houél’s proof-
The third excerpt, however, was a bit confusing to me,
Especially when it says “hypothesis is identified with that
of the existence of a derivative.”
Figure 5b: Transcription of task and student response given in Figure 5a

We intended the further application of our definitions for object-reflection and discourse-reflection
to serve as tools to characterize the nature of students’ participation in mathematical discourse in
other course artifacts (e.g., small group work, whole-class discussion, interviews), but we have since
found that a we need an analytical framework that includes at least two components. One component
of the analytical framework is the set of metadiscursive rules that we have identified for each of the
PSPs that students used in a given course; it is imperative that our analysis attends to and is informed
by the relevant metadiscursive rules present in the PSPs used. The second component is the criteria
for evidence of students’ “figuring out” the meta-level rules governing a new mathematical discourse.
We believe these two components in tandem will enable us to capture a critical perspective in the
work surrounding the role of primary sources (and in this case, specifically, the PSPs); that is, the
implemented PSPs were intended to promote the mathematical learning goals of a given course. And,
given the nature of the Introduction to Analysis course curriculum, these included both object- and
meta-level learning goals. That said, the data analysis for the research described here is ongoing, and
our particular struggle at the moment is figuring out what we mean by “figuring out,” as suggested
by Sfard (2014, p. 202), in order to move forward through our data to determine not only the progress
made by students but what such progress could signal for changing instructional practice at the
undergraduate level. This work is complex and draws upon multiple perspectives from mathematics,
history, and mathematics education, and consequently, possesses ample opportunity for future
collaborations and contexts in mathematics education research.

Calls for the future: Future contributions
Need for collaboration

There has been exciting progress in research conducted in the HPM domain in the last 40 years, and
in the last 20 years, this is particularly true. As I shared earlier in this paper, at some point not so
many years ago, empirical work (available in the English language) in the field of history in
mathematics education was predominantly anecdotal in nature. With the growth of professional
conferences—HPM, ICME, ESU, and now CERME—collaboration with colleagues around the world
has not only afforded but has increased the demand for ways in which research on history in
mathematics education can inform and be informed by research in mathematics education more
broadly.

To this end, I would like to end with proposing two areas of research that I believe are particularly
important and interesting (and necessary?), which draw upon the themes of different CERME
thematic working groups and which present opportunities for fruitful collaboration in the future.

History of mathematics in mathematics teacher education

An overarching question that requires careful and thorough study is:
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How does a historical perspective contribute to the mathematical and pedagogical development
of mathematics teachers (at all levels, and both pre-service and in-service)?

And, there are numerous questions it motivates, including:
What are the different ways in which history of mathematics is used in the education of teachers?

What are the different challenges (e.g., historical, mathematical, attitudinal, philosophical,
methodological, institutional) for each?

Are the outcomes of teachers’ study of history of mathematics seen in their classroom practice in
explicit ways, and if so how? If not, why? Are the implicit ways equally meaningful?

Although these questions represent only a small sample of what is yet unknown to any extent in the
HPM domain, the collaboration with other domains represented by CERME TWGs could provide
the means to increase efforts to conduct research in concerted ways. Some of the TWGs, in addition
to contributions from TWG 12, well poised to do so include:

TWG 18: Mathematics Teacher Education and Professional Development

TWG 19: Mathematics Teaching and Teacher Practice(s)

TWG 20: Mathematics Teacher Knowledge, Beliefs and Identify

TWG 22: Curricular Resources and Task Design in Mathematics Education

TWG 23: Implementation of Research Findings in Mathematics Education
History of mathematics in the teaching and learning of mathematics

Research on the many ways in which history of mathematics can be used in the teaching and learning
of mathematics seems boundless. There are many open questions in the field, yet when considering
educational standards set by different countries around the globe and the persistent (primary and
secondary) teacher lament that “there is not enough time to teach history of mathematics™!'® in
mathematics lessons, addressing the questions through different research efforts can be problematic.
Part of the issue with conducting research on the use of history in teaching and learning mathematics
is the need to make clear the potential for student learning that research in the HPM domain has
shown. Thus, a question of particular interest is: How do we encourage, enable, and enlighten large-

scale research on the ways in which using history of mathematics in teaching impacts learning?

Similar to proposing research on history of mathematics in mathematics teacher education, inquiry
on teaching and learning of mathematics informed by history of mathematics can be addressed by the
expertise represented within several CERME TWGs. For example, for research focused on how

16 Many classroom teachers perceive of “using history” as being equivalent to teaching the history of mathematics.
However, this is often a misguided idea. That is, many who propose to use history of mathematics call for robust ways to
do so, such as using historical methods to solve problems and to help make sense of the procedures many students find
difficult, or reading, interpreting, and applying historical sources in learning mathematics, and not to simply teach who

was the first to discover a particular mathematical concept.
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history of mathematics can contribute to student learning and engagement with mathematics,
collaboration amongst the following TWGs (again, in addition to TWG 12) is valuable:

TWG 1: Argumentation and Proof

TWG 2: Arithmetic and Number Systems

TWG 3: Algebraic Thinking

TWG 4: Geometry Teaching and Learning

TWG 8: Affect and the Teaching and Learning of Mathematics
TWG 14: Undergraduate Mathematics Education

Furthermore, investigating ways in which history of mathematics can connect tools and technologies
in the teaching and learning of mathematics may benefit from the expertise of:

TWG 6: Applications and Modelling
TWG 9: Mathematics and Language
TWG 15: Teaching Mathematics with Technology and Other Resources
TWG 16: Learning Mathematics with Technology and Other Resources

And, finally, under the purview of TWG 21 (Assessment in Mathematics Education), there are
considerable opportunities to address concerns held by many regarding whether teaching
mathematics informed by history of mathematics actually contributes to student learning.

An additional consideration: Flipping the research perspective

A large proportion of research conducted on questions regarding the use and impact of history of
mathematics has been focused either pre-service or in-service teachers (at the elementary and
secondary level) and their students. However, investigating another population of teachers is a
promising direction to pursue: teachers of teachers (e.g., university educators). Povey (2014)
conducted research conversations with four university instructors designed to address the following
research question: What can studying the history of mathematics with initial teacher education
students offer us? (p. 148). In her analysis, Povey determined four broad themes, two which seem
aligned with affective dimensions and two which are situated more with content and mathematical
understanding. The thematic categorizations of the instructors’ responses were:

e to deepen mathematical understanding;

e to broaden and humanize mathematics;

e to develop critical thinking; and

e to provide motivation and fun for learners. (Povey, 2014, p. 148)

Povey (2014) provided the foundation for what I believe could promote research that focuses on
educators of teachers, who can provide opportunities “for studying history of mathematics [that] sets
up a productive relationship with the subject and deepens mathematical understanding” (p. 154).
From application and further extensions of existing frameworks such as MKT and Mathematical
Knowledge for Teaching Teachers (MKTT; see for example Jankvist, Clark, & Mosvold, 2019),
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mathematics education research and history in mathematics education can both capitalize on what
many in the field know (as in, instinctually know): that historical content, problems, and perspectives
in mathematics teaching “requires the development of such critical skills and can develop disposition
towards enquiry based on questions posing and evidence” (Povey, p. 155). However, it is imperative
that researchers seek to legitimize what has been known for decades, and to do so in concrete and
robust ways so that mathematics educators, teachers, and learners can benefit from ways of knowing
mathematics to which history of mathematics uniquely contributes. An interesting “flipping” of the
research perspective begins with extending research that Povey began with teacher educators, and
from what is learned, it is possible to build on these new perspectives coupled with guidance from
existing frameworks to develop new knowledge. We may find, as Jo (one of the teacher educators)
did:

[finding out about the history of mathematics] has made me realise that there are many more

questions to ask than I ever thought about before and there’s probably no end to that, and I think

that’s a good thing for maths teachers to know. (Povey, 2014, p. 155)

More importantly, once teacher educators experience this shift, it can permeate their practice with
pre-service teachers, which can in turn be impactful in their future practice. The greatest imperative,
however, is that we must make research in history in mathematics education part of the research
landscape, as much as say, how the field has investigated the educational benefit of use of technology
in teaching and learning mathematics, or ways to improve concept building in learning algebra.

Wanted: A few good researchers

As previously described, there are numerous perspectives from which researchers can approach
important questions regarding teaching and learning of mathematics, of which an historical
perspective is just one. Though empirical literature in the field of history of mathematics in
mathematics education is much more prevalent today than some 40 years ago, there are several
approaches, frameworks, and methodological lenses that are can and should be employed in order to
strengthen and expand current examples.

In addition to the examples I have provided, there are other calls for research that have recently been
issued and investigated to some degree. However, the potential for future research is significant and
importantly, within the field of history in mathematics education, there are applications across age of
learners, level of teachers, and mathematical concepts. For example, there are examples for which
design-based research seems well-suited, as in the study described by Wang, Wang, Li, and Rugh
(2018), in which they proposed a framework to make sense of “how to help teachers...who lack
experience in [integrating the history of mathematics in teaching] IHT, use historical materials in
their teaching” (p. 135). Wang et al. concluded that

Although the framework provides a new pathway for teachers’ professional development in IHT
and a new opportunity for the theoretical development of IHT, it still requires further empirical
studies to confirm its educational value in the future. It is also essential that researchers closely
collaborate with teachers and historians as suggested by the dynamic pyramid model. (p. 153,
emphasis added)
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In closing, I have attempted to provide a broad landscape of questions, approaches, and collaborative
contexts in which educational research of interest to the CERME community is possible and
motivated by the field of history of mathematics in mathematics education. I challenge mathematics
education researchers to embrace and pursue these questions, approaches, and contexts and to
contribute to the expanding perspectives that move teaching and learning of mathematics forward.
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Extensions of number systems: continuities and discontinuities
revisited
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The extension of number systems from natural to rational and real numbers and related arithmetic is
a prominent theme in mathematics from primary to upper secondary education. In parallel to the
development of the number concept and the extension of number systems, students need to proceed
from arithmetic to algebra. Students’ difficulties in mastering both, the extension from one number
system to another and the progression from arithmetic to algebra are well documented. The paper
focuses on the extension from natural numbers to integers with a particular interest in the relationship
to the progression from arithmetic to algebra. Continuities and discontinuities in the alignment of
these two parallel curricular developments are analyzed from three different perspectives, namely an
epistemological, a psychological, and a pedagogical perspective. This analysis will include work
from TWGO02 “Arithmetic and Number Systems”, which gives a flourishing account of the
multifaceted issues related to the teaching and learning of different number systems since its
foundation at CERME?7 in 2011 and also draws on the work of TWG03 “Algebraic Thinking”.
Finally, conclusions will be drawn from the analysis of the relationship between the extension from
natural numbers to integers and algebraic thinking in terms of the construction of a more coherent
curriculum regarding these two developments.

Keywords: number systems, integers, negative numbers, algebraic thinking, coherence
Introduction

From the beginning of their lives and throughout schooling, students have to develop their number
concept and related number sense. The extension of number systems from natural numbers to rational
and real numbers' and related arithmetic is an endeavor that students are involved in from primary to
upper secondary education in mathematics. In parallel to the development of the number concept and
the extension of number systems, students need to proceed from arithmetic to algebra, i.e. from
operating with known quantities to operating with unknowns, from the particular to the general, from
numbers to symbols.

A large body of research shows that learners experience gaps and discontinuities related to both, the
learning of number systems (Van Dooren, Lehtinen, & Verschaffel, 2015) and the learning of algebra
(Hodgen, Oldenburg, & Stremskag, 2018; Kaput, 2008). In terms of the development of the number
concept the transition from natural numbers to non-negative rational numbers (i.e. fractions and
decimals) has received much attention. Research has unraveled the problems students encounter at

! There are ambiguities in the use of the terms natural number, rational number, and integers in the literature. I use the
term natural number to refer to set N = {1, 2, 3, ...}. The term infeger is used to refer to the set Z comprising positive
natural numbers including zero and their additive inverses, while with the term rational number, 1 refer to the set Q

comprising all positive and negative fractions and decimals respectively (and therefore also N and Z).
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this transition. In particular, it shows that the extension from natural numbers to non-negative rational
numbers requires changes in the basic understanding of what numbers can do and what effect
operations have on numbers. The problems at this transition exemplify that natural number
knowledge on the one hand is a prerequisite for the learning of other number systems, but on the other
hand has manifold adverse effects (Vamvakoussi, 2015). This phenomenon is so pervasive that it has
been termed the whole or natural number bias (N1 & Zhou, 2005). Consequently, students’ prior
knowledge that was developed with respect to the set of natural numbers has to be reorganized in
such a substantial way that Vosniadou and Verschaffel (2004) speak of a “conceptual change” that is
necessary at the transition from natural numbers to non-negative rational numbers.

In terms of the transition from arithmetic to algebra, the difficulties that students experience with
operating on the unknown led Linchevski and Herscovics (1996) to speak of a “cognitive gap”
between arithmetic and algebra. Kaput (2008) calls the separation of arithmetic and algebra in terms
of “a computational approach to school arithmetic and an accompanying isolated and superficial
approach to algebra” the “algebra problem”. The answer to this problem has been to foster what has
been termed algebraic thinking, relational thinking, functional thinking, or early algebra in the
context of arithmetic, in order to provide students with ways of thinking that are crucial for school
algebraic contexts.

Both of these long-term developments require a careful construction of the curriculum in order to
facilitate students’ understanding of these central mathematical ideas. However, researchers criticize
the lack of a coherent vision for the teaching and learning of number systems and related transitions
(Bruno & Martinon, 1999). This also seems to be the case for the link of the extension of number
systems and the progression from arithmetic to algebra. Both, the discourse on the extension of
number systems and the discourse on algebraic thinking only seem to be loosely related. This is also
noticeable in CERME in that negative numbers are rarely considered in TWGO03 on algebraic
thinking.

Therefore, the goal of this paper is to unfold the relationship between the extension of number systems
and the progression from arithmetic to algebra in order to analyze continuities and discontinuities in
the alignment of these two curricular progressions. For reasons that will become obvious later, I will
focus on the extension from natural numbers to integers in my analysis. In particular, I seek to answer
the following questions:

1) What is relationship between the development of the negative number concept and algebra?
2) How could the teaching and learning of the extension from natural numbers to integers be
aligned with the teaching and learning of algebraic thinking?

In order to answer these questions, I will analyze the transition from natural numbers to integers from
different perspectives: a) epistemological; b) pedagogical; and c) psychological. The epistemological
perspective will mainly serve to answer the first question. I will show that the development of the
negative number concept and the development of algebra were mutually related. In fact, negative
numbers play a crucial role in these two developments. The pedagogical and psychological
perspective will yield answers to the second question.
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Based on my analysis of the relation between the extension from natural numbers to integers and the
progression from arithmetic to algebra from the three different perspectives, I will draw conclusions
regarding the construction of curricula, in which both, the extension of number systems and the
progression from arithmetic to algebra are more coherently aligned.

Epistemological perspective

In this section, I will show that the same cognitive achievements which underlie the development of
algebra were also crucial for the development and acceptance of the negative number concept. I start
with a summary of the main cognitive achievements that have been pointed out as characteristic and
crucial for the development of algebraic thinking. I will then show, how these cognitive achievements
also have been crucial for the development of the negative number concept. However, I will not be
able to give a comprehensive overview of this mutual related historical development of the negative
number concept and algebra. An analysis of the obstacles in the historical development of the negative
number concept was provided by Glaser (1981). Schubring (2005) gives an overview of the historical
development of the negative number concept and its relation to the development of algebra.

Hodgen et al. (2018) regard algebraic thinking as the human activity from which algebra emerges. It
focuses on generalization and the expression of generalization in increasingly systematic and
conventional symbol systems as one core aspect of algebra rather than on syntactically guided actions
on symbols (Kaput, 2008). The main cognitive achievements that have been pointed out as being
characteristic and crucial for the development of algebraic thinking and algebra are:

1. Algebra deals with objects of indeterminate nature (unknowns, variables, parameters)
(Radford, 2010)

2. Indeterminate objects are dealt with in analytic manner (Radford, 2010).

3. The development of algebraic thinking is characterized by a transition from an operational to
a structural or relational perspective, i.e. by “reification” (Sfard 1995) or “objectification*
(Radford, 2010) of processes into mathematical objects.

4. The new mathematical objects are detached from their original content meanings and achieve
a formal character.

In the development of algebra and algebraic thinking, these four aspects are mutually related and
difficult to consider in isolation. However, for the sake of clarity I elaborate on them separately.

Algebra deals with objects of indeterminate nature

The epistemological development of algebra is closely related to dealing with objects of indeterminate
nature. These indeterminate objects yielded the concepts of variable and parameter. It was also in the
realm of dealing with indeterminate objects in the context of solving (systems of) equations that
negative numbers became relevant (Gallardo, 2002; Glaser, 1981; Hefendehl-Hebeker, 1991).
According to Damerow (2007, p. 49) the use of variables “opens a potential means of representation
for a higher level of meta-cognitive insights such as the recognition that the natural numbers can be
complemented with negative numbers to the system of whole numbers”. Diophantus was one of the
first who solved equations based on transformation methods. Applying these methods also yielded
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negative solutions. For example, in his Arithmetica, Diophantus referred to the equation 4 = 4x + 20
as absurd, since it would give the solution x = —4.

It was not until the second half of the 19'" century that negative numbers were accepted as autonomous
mathematical objects. However, in solving equations they were already accepted as auxiliary means,
which had to be interpreted correctly after the equation was solved. A famous example is the problem
discussed by D’ Alembert in the article Négatif from Diderot’s Encyclopedia:

suppose that we are looking for the value of a number x which when added to 100 yields 50
According to the rules of algebra; we have x + 100 = 50, so that x = —50. This shows that the
magnitude x is 50 and that instead of being added to 100 it must be subtracted. This means that
the problem should have been formulated as follows: find a magnitude x which when subtracted
from 100 leaves the remainder 50; if the problem had been formulated in this manner, then we
would have 100 — x = 50 and x = 50, and the negative form of x would cease to exist. Thus, in
computations, negative magnitudes actually stand for positive magnitudes that were guessed to be
in the wrong position. The sign “— before a magnitude is a reminder to eliminate and to correct

an error made in the assumption, as the example just given demonstrates very clearly. (D'Alembert
as cited in Hefendehl-Hebeker, 1991).

D’Alembert does not except the existence of a magnitude with value “~50” in his argumentation. To
him, this solution only indicated an error made that had to be corrected.

Another way of making sense of negative solutions was to interpret them metaphorically by the
opposite magnitude. This metaphorical interpretation of negative solutions by the opposite magnitude
developed into the concept of opposite quantities, which cancel each other out:

“Quantities of the same kind which are considered under conditions that one diminishes the other
shall be called opposite quantities. E.g., assets and debts, walking forward and walking backward.
One of these quantities, as one likes, shall be called positive or affirmative, and its opposite
negative or denying” (Késtner as cited in Schubring 2005, 134).

A similar understanding as “something being opposed to something familiar” was also crucial for the
development of the concept of variable. There, it was the dualistic opposition to a known or constant
quantity. This concept of variable was first overcome by Euler, who replaced this dichotomy by the
universal concept of variable (Schubring, 2005). Similarly, the concept of negative quantity was for
a long time conceptualized as an opposite quantity and had to be overcome by the formal concept of
number.

Indeterminate quantities are dealt with in analytic manner

As a second important characteristic of algebraic thinking, Radford (2010) points out that
indeterminate quantities are dealt with in an analytic manner, i.e. it is calculated with these
indeterminate quantities as if they were known by referring to their mutual relationships and the
relationships to known quantities. (Hefendehl-Hebeker & Rezat, 2015; Radford, 2010).

As negative numbers occurred in the context of solving equations they result from calculations in
which indeterminate quantities were treated as if they were known by referring to their mutual
relationships and the relationships to known quantities. This aspect is especially apparent in the
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formulation of the rules for calculating with negative numbers. For example, although not accepting
negative solutions, Diophantus formulated the rules minus times minus gives plus and plus times
minus gives minus (Tropfke, 1980). However, these rules were derived from calculating with complex
expressions, such as (a — b) (¢ — d), by analyzing the internal relationships. The explanation of the
rule for subtracting negative numbers by Bernard Lamy (1640-1715) is a revealing example. He
explains that when subtracting complex quantities like ¢ + f and b — d. One did not want to subtract
from c + f the entire b, thus ¢ + f — b, but somewhat less. One thus had to change the algebraic sign
of d from — into +, so as to perform the operation ¢ + f—b + d (Schubring, 2005, p. 76). Consequently,
the expression —(—b) = +b in solving the brackets is given sense in its relations to b and of (b — d)
to (¢ + 1).

Reification and Objectification

It has been pointed out that “reification” (Sfard, 1994, 1995) or “objectification” (Radford, 2010) of
operations or—more generally—processes into mathematical objects had been crucial in the
development of algebra. Just as the expression 4x + 20 can be seen either as a sequence of operations
or as a mathematical object such as a representation of a number or as a function, the expression a —
b can be seen as the operation of subtracting b from a or as the number resulting from this subtraction.
From this perspective, the construction of negative numbers as autonomous mathematical objects
required a transformation of mathematical processes into mathematical objects, which is visible in
the step from carrying out the “hypothetical” subtraction a — b omitting the restriction » < a and
accepting the negative number as an own entity. In fact, it may be regarded as one of the cognitive
roots of negative numbers (Hefendehl-Hebeker & Rezat, 2015; Sfard, 1994, 1995) that carrying out
fictive operations such 50 — 100 was actually considered as a possibility. Peacock refers to this
generalization of operations as the move from arithmetical to symbolical algebra (Chiappini, 2011).
While in arithmetical algebra the operations on symbols underlie the same restrictions as in arithmetic
(of natural numbers), the operations with symbols in symbolic algebra are defined according to the
properties of the operations.

According to Schubring (2005), it was Euler who first constructed the series of negative numbers by
“perpetually subtracting unity”. Later, Hankel used the term a — b to construct negative numbers
(Tropfke, 1980). It was also Hankel who noticed that it is sufficient to use a = 0 and name the
resulting number by —b.

The new mathematical objects are detached from content meanings and achieve a formal
character.

Descartes’ achievement to develop a symbolic language, which primarily relied on the relationships
among the symbols and not on justifications through arithmetic or geometry is regarded to be a crucial
step in the development of the symbolic language of algebra (Scholz, 1990). This can be understood
as a detachment of the mathematical objects from content meanings.

Although at a very different time, the detachment of the number concept from content meanings was
crucial for the acceptance of negative numbers. Schubring (2005) points out that the separation
between numbers on the one hand and quantities or magnitudes on the other is decisive for
understanding the historical development of negative numbers. He shows that in the history of
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mathematics the epistemological limitation of the concepts of quantity and magnitude impeded the
generalization of operations and thus the development of the negative number concept. As long as
the concept of negative numbers was subordinated to that of magnitude, negative magnitudes were
not accepted as autonomous mathematical objects. As already shown in the example by D’ Alembert,
the problems and their solutions were reinterpreted in the domain of positive numbers in order to
avoid negative solutions. This view restricted the applicability of negative numbers to operations with
“subtractive” or “opposite” quantities, which have a “natural element of opposition as giving and
taking” (Schubring, 2005, p. 106). According to Schubring (2005), Euler was the first to consistently
present algebra as a science of numbers and to conceptually separate numbers clearly from quantities
and magnitudes. However, it was not until the 19th century that these obstacles imposed by the
subordination of number to the concept of quantity and magnitude were overcome by a shift of view:
The change consisted in the transition from the concrete to the formal viewpoint, which was advanced
by Ohm, Peacock and Hankel. Subsequently, the concept of number could be introduced in a purely
formal manner without consideration of the concept of magnitude. Hankel, who advanced this
viewpoint argues:

Thus, the condition for the construction of a general arithmetic is that it be a purely intellectual
mathematics detached from all intuition, a pure science of forms in which what are combined are
not quanta or their number images but intellectual objects to which actual objects, or relations of
actual objects, may, but need not, correspond (Hankel as cited in Hefendehl-Hebeker, 1991)

Accordingly, the underlying epistemology of justification changed from realism to that of internal
consistency (Pierson Bishop et al., 2014). While operating with negative quantities and the related
rules were known and used confidently already for a long time, the consistent system of rules for
manipulating negative numbers is not deduced from reality, but from the basic rules of natural number
arithmetic based on the permanence principle.

Hefendehl-Hebeker (1991) argues that the “separation of the construction of number systems from
content considerations did not mean that the extended number systems were detached from content
meanings” (p. 31) and provides some examples were negative numbers were successfully applied to
real phenomena. The difference is that in these cases the concept of magnitude is subordinated to that
of number and numbers are used as modelling tools for real-life situations.

In summary, I argued that the development of the negative number concept and the development of
algebra are mutually related. The cognitive achievements, which have been emphasized as being
crucial for the development of algebra, also underlie the development of the negative number concept.
In particular, these are the possibility of carrying out fictive operations with indeterminate quantities
in analytic ways, the “reification” (Sfard, 1994, 1995) and “objectification” (Radford, 2010) of
mathematical processes, and the detachment of mathematical objects from content meanings and
related formalization. According to Schubring (2005, p. 149), negative numbers “challenged the
traditional first understanding of mathematics, its first ‘paradigm’ in Kuhn’s terms, its understanding
of being a science of quantities: of quantities that, while being abstracted to attain some autonomy
from objects of the real world, continued at the same time to be epistemologically legitimized by the
latter” until a formal algebraic introduction and justification of these numbers and their operations
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was achieved. Therefore, from the epistemological perspective, negative numbers seem to play a
crucial role in the development of number systems aligned with the development of algebraic
thinking. This is the reason, why I focus on the case of negative numbers in my analysis of the relation
between the extension of number systems and the transition from arithmetic to algebra.

Psychological perspective

Although negative magnitudes are nowadays a natural part of our daily life as relative magnitudes on
thermometers and other scales, research has shown that students struggle with the same obstacles that
characterize the epistemology of negative numbers. Gallardo (2002) observes the same levels of
acceptance of negative numbers that she found in the historical development in students
understanding of the concept. However, she points out that the levels of acceptance do not follow a
strict chronological order in the students and that the same student might show different levels of
understanding dependent on the context of the task. In line with the historical development of negative
numbers, Pierson Bishop et al. (2014) identify the magnitude-based perspective on numbers together
with their understanding as cardinal numbers as an obstacle, because then negative numbers are
perceived in a non-tangible way as less than nothing. This is also an obstacle for the understanding
of operations with negative numbers.

Different studies show that students have difficulties with the order of integers. Students exhibit more
difficulties in tasks that involve only negative numbers than in tasks with positive and negative
numbers (Bofferding & Farmer, 2018). The main problem is that the size of a negative number is
determined based on the absolute value or the opposite magnitude respectively. For example, students
regard —10 as ‘bigger’ than —5, because —10 is colder than —5. This mirrors the understanding of
negative numbers as opposite magnitudes, which was persistent throughout the historical
development of the negative number concept. The extent to which these difficulties are shown also
depends on the language used in comparison tasks (hottest/most hot/least cold vs. coldest/most cold/
least hot) (Bofferding & Farmer, 2018). Schindler, HuBmann, Nilsson, and Bakker (2017) and Yilmaz
and Isiksal-Bostan (2017) argue that it is important to consider students reasoning related to their
answers. Their studies show that even correct answers might be based on faulty reasoning, which
builds on prior experiences from the natural numbers.

Students also have difficulties with the different meanings of the minus sign. While in the set of
natural numbers the minus sign only denotes subtraction, it additionally obtains a unary function as a
structural signifier to denote a relative number and a symmetrical function as an operational signifier
to denote the inverse in the set of integers. Vlassis (2004) shows that students do not assign any other
meaning to the minus sign than that of subtraction in polynomial expressions. Their procedures of
simplifying polynomials can be understood as strategies of making sense of the expressions and being
able to carry out simplifications by adhering to this one meaning of the minus sign that originates
from the natural numbers. When solving equations students have difficulties to find negative solutions
in particular in situations with two successive signs, such as —6 - x = 24 (Vlassis, 2008).

In summary, as in the case of the transition from natural numbers to fractions, a natural number bias
is also apparent at the transition from natural numbers to integers. The empirical findings of students’
difficulties in understanding the negative number concept mirror the obstacles that characterize the
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epistemological development of the negative number concept. However, the studies aiming at
identifying students’ obstacles vary in the degree, in which they consider students’ prior experiences
when learning negative numbers. The participants of many studies already learned integer arithmetic.
Consequently, how they were introduced to negative numbers might have an effect on their
understanding of them. In order to unveil continuities and discontinuities in the learning of the number
concept, it would be important to understand how the obstacles that students experience in the
learning of the negative number concept relate to the way they have been introduced to the concept
and to their prior experiences in the set of natural numbers. Referring to the results from the
epistemological analysis, the effects of early algebra on the learning of the negative number concept
would be a matter of particular interest. However, studies analyzing students’ understanding of
negative numbers usually do not control for prior experiences.

Pedagogical perspective

In the epistemological analysis I have shown that there are parallels in the development of algebraic
thinking and the negative number concept. Therefore, it seems natural to align the teaching and
learning of the extension from natural numbers to integers with ideas of algebraic thinking. From the
psychological perspective, it is not yet clear, if the teaching and learning of the negative number
concept aligned with ideas of algebraic thinking has positive effects on students’ understanding of
the concept.

Algebraic thinking is promoted in mathematics curricula for the elementary grades across the world
and thus has become an important goal in the teaching and learning of natural number arithmetic (Cai,
Ng, & Moyer, 2011; Venkat et al., 2018). The vast majority of tasks, learning trajectories and studies
related to algebraic thinking is carried out in the domain of natural numbers. Only rarely are integers
and other number systems considered related to algebraic thinking. As already mentioned in the
introduction, the scientific discourses on the extension of number systems and on algebraic thinking
only rarely seem to be related to each other.

Approaching the transition from natural numbers to integers from a pedagogical perspective, I seek
to answer the question how the teaching of the transition from natural numbers to integers could be
aligned with the teaching of algebraic thinking. In my presentation, I focus on two aspects: 1) didactic
models, which align the extension of number systems and algebraic thinking; and 2) number sense as
an important goal related to natural number arithmetic and algebraic thinking.

Didactic models for integers and algebraic thinking

Within the scope of this article, I can only briefly sketch my understanding of didactic models. Space
does not allow to elaborate on the rich theory behind it. I refer to an understanding of didactic models
as representations of abstract mathematical concepts or structures. Thus, they reflect essential aspects
of the mathematical concepts or structures. By allowing students to act upon the tangible or
symbolically represented mathematical objects, they are used as tools in the meaning of cultural
artifacts (Wartofsky, 1979; Wertsch, 1998) to foster students’ conceptual development. I adopt the
broad notion of models in Realistic Mathematics Education, in which models have different
manifestations. From this perspective hands-on-materials, sketches, paradigmatic situations,
schemes, or diagrams can serve as models (Van den Heuvel-Panhuizen, 2003). An important aspect
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with regard to transitions is that didactic models need to be flexible in order to be applied to more
advanced, sophisticated or abstract levels and thus support vertical mathematization (Van den
Heuvel-Panhuizen, 2003).

Different categorizations of didactic models for integers have been suggested. Janvier (1983)
distinguishes number-line-models and equilibrium models. While number-line models depict
negative numbers and related operations on one continuous number line, equilibrium models
introduce two separate (magnitude) representations for positive and negative numbers, e.g. black and
red stones. These equilibrium models refer to the meaning of negative numbers as opposite quantities.
Operations in equilibrium models are based on the principle of compensation between positive and
negative numbers, i.e. the neutralization of equal amounts of opposites, e.g. of black and red stones.
Another categorization of didactic models for integers has been suggested by Steinbring (1994). He
distinguishes three categories: 1) real-life context as modelling structures; 2) models based on
geometric or arithmetic permanence; 3) models providing autonomous representations of negative
numbers. Temperatures, assets and depths, elevation, and the elevator model are typical examples of
the first category. Freudenthal (1983) was a proponent of models of the second category, which aim
to provide plausible reasons for the expansion of rules from the natural numbers to integers. The two
categories distinguished by Janvier (1983) both belong to Steinbring’s (1994) third category.

As Fischbein (2002) points out, there is no didactic model of negative numbers, which at the same
time is intuitive and consistently represents all the algebraic properties of negative numbers. A model,
which consistently represents the algebraic properties of negative numbers always needs to build on
artificial conventions. Therefore, research has tried to identify the affordances and constraints of
particular models in learning integer arithmetic (Hativa & Cohen, 1995; Linchevski & Williams,
1999; Stephan & Akyuz, 2012). Many researchers prefer the number line model for representing
operations with integers (Altiparmak & Ozdogan, 2010; Bruno & Martinon, 1999; Hativa & Cohen,
1995). Other research highlights the power and importance of contextual knowledge from real-life
situations for the understanding of negative numbers (e.g. Linchevski & Williams, 1999; Stephan &
Akyuz, 2012). However, in real-life situations the understanding of negative numbers as opposite
magnitudes is also identified as an obstacle (Schindler & HufBmann, 2013). Students need well
developed mental networks that relate the opposite magnitudes and their order (Schindler &
HuBBmann, 2013; Yilmaz & Isiksal-Bostan, 2017).

Due to the artificial conventions that are necessary to develop didactic models for negative numbers
(Fischbein, 2002), there is a tendency to develop games (e.g. Hattermann & vom Hofe, 2015;
Linchevski & Williams, 1999) and artificial contexts (Altiparmak & Ozdogan, 2010; Streefland,
1996) as didactic models. As opposed to real-life contexts, artificial contexts and games facilitate the
implementation of formal rules. On the contrary, most recent textbooks introduce negative numbers
in real-life contexts such as temperature, assets and depts, or elevation in order to support the
understanding of the negative number concept (Whitacre et al., 2015). Whitacre et al. (2015) show
that students solve problems in the context of assets and depts without using negative numbers, but
most of them were capable to relate negative numbers to the context if asked to do so.
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Only rarely are didactical models for integers discussed in terms of their affordances to foster
algebraic thinking. A few examples are Chiappini (2011); Gallardo (2002); Peled and Carraher
(2008); Rezat (2014); and Schumacher and Rezat (in press). These authors exploit the potential of
particular didactic models for the learning of integers aligned with algebraic thinking. Linchevski and
Williams (1999) do not explicitly relate to algebraic thinking, but address reification as a main
problem of learning integers, which was shown as being equally important for both, algebraic
thinking and understanding the negative number concept. Therefore, their approach is also relevant
in the present context. I will exemplify the different approaches by providing an example of each.

Gallardo (2002) builds on the historical-critical method as described by Filloy, Puig, and Rojano
(2008). This approach is characterized by recurrent movements between the analysis of historical
texts and empirical work in the classroom. Learning sequences are developed based on the historical
analysis of the development of concepts. In her study, Gallardo (2002) uses word problems from
historical sources, e.g. D’ Alembert’s problem.

Peled and Carraher (2008) criticize that most word problems, which involve negative numbers do not
require the formal rules for manipulating negative numbers and consequently can be solved correctly
while circumventing operations with negative numbers. Their main approach may be characterized
by generalizing arithmetic problems in the realm of real-life contexts as modeling structures. They
adjust problems using real-life contexts in order to foster algebraic thinking when learning integers
and illustrate how these algebraic problems are more suited than arithmetic problems to promote
meaningful learning of negative numbers.

An example from Peled and Carraher (2008, p. 309f) may illustrate their approach. The example
juxtaposes to formulations of the same problem: an arithmetical formulation and an algebraic
formulation.

An arithmetical trip: Anne drove 40 kilometers north from her home to an out of town meeting. She
then drove back going 60 kilometers out to another meeting. After both meetings were over, she
called home asking her husband, Ben to join her.

a) How far will Ben have to go and in what direction?
b) Write an expression for writing the length of Bens’ trip.

An algebraic trip: Anne drove a certain number of kilometers north from her home to an out of town
meeting. She then drove back going 60 kilometers out to another meeting. After both meetings were
over, she called home asking her husband, Ben to join her.

a) Write an expression for writing the length of Bens’ trip.
b) Could Anne have driven less than 60 kilometers north on her first trip? If not, explain why. If she
could have, give an example and explain its meaning.

The example shows that the main idea is to formulate real-life problems in a generalized way in order
to foster algebraic solutions which comprise negative numbers. Referring back to my epistemological
analysis, their algebraic didactical model seems to be closer to the epistemological roots of negative
numbers than the arithmetical counterpart. There, I pointed out that negative numbers became
meaningful in the context involving subtractions with variables such as x — 60.
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Chiappini (2011) exemplifies how the number line model can be used in a digital environment to
foster algebraic thinking. He presents the algebraic line in the digital tool AINuSet as a didactic model,
which is supposed to mediate reification (Sfard, 1994) or objectification (Radford, 2010) of negative
numbers in the context of the operation a — b. Different values of a and b can be chosen by dragging
the corresponding points on the number line. The corresponding value of the expression a — b is
shown by the system as a point on the number line (Fig. 2).

Dominio | EEEEEGEE

Fig 2: Algebraic line from AlNuSet (Chiappini, 2011, p. 433)

This didactical model focuses on the core operation, which led to the introduction of negative
numbers in the history of mathematics and offers a representation for the result. However, it is not
clear how this model is to be extended to other operations with integers.

Linchevski and Williams (1999) use the double abacus related to a real-life problem and a dice game.
They conclude that by recording scores of a dice game on the double abacus and by operating on
them ,integers are encountered as objects in social activity, before they are symbolized
mathematically, thus intuitively filling the gap formerly considered a major obstacle to reification*
(Linchevski & Williams, 1999, p. 144).

Rezat (2014) exploits the potential of a model building on the permanence principle. In an ongoing
design research project, Rezat (2014) and Schumacher & Rezat (in press) developed a learning
trajectory for the learning of integers and the operations with them. In the learning trajectory, they
aim to implement a didactical model based on the permanence principle building on pattern
generalization tasks. In this learning trajectory, negative numbers are introduced through the idea of
counting backwards beyond zero. Based on this idea and the representation of negative numbers on
the number line, the order of integers and the operations with integers are consecutively introduced
in the following order:

Introduction of negative numbers

Order of negative numbers

Subtraction of positive numbers from negative numbers
Addition

Subtraction of negative numbers from negative numbers

AU S e

Multiplication
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Each section has an analogous structure. It begins with pattern generalization tasks followed by
analyzing and exploring task relations within and among operations.Finally, the rules of calculating
with integers are abstracted from these explorations. I will provide a more detailed account of this
structure using the example of subtracting negative numbers.

Each chapter starts with pattern generalization tasks such as represented in Fig. 3.

a) 3 - 2 =_ e) 3 - (1) =__
3 - 1 =__ 2 - (1) = _
3 - 0 =_ 1 -(¢1) = _
3 - = )=
3 - = - ty=
3 - = - (1) =

Fig. 3: Pattern generalization tasks for the subtraction of integers

Pattern generalization tasks are widely incorporated in German textbooks for primary level. The aim
of these tasks is to foster students’ recognition of patterns and their understanding of number relations.
By generalizing the patterns, students can discover basic rules of arithmetic, e.g. that a difference
remains constant when both, minuend and subtrahend are lowered or increased by the same number.
Pattern generalization tasks are widely acknowledged to foster algebraic thinking (Radford, 2008;
Rivera, 2013). Freudenthal (1983) also proposed to use them for learning the operations with integers.
Although they are already used in this context, their full potential has only rarely been exploited. In
their learning trajectory, Rezat (2014) and Schumacher & Rezat (in press) make intensive use of these
tasks in order to support the learning of integer arithmetic aligned with algebraic thinking.

Students are supposed to analyze the relation of the tasks, complete the empty fields in the tasks,
solve the tasks, and describe the structure of the pattern. The first three tasks in Fig. 3 a) should be
easily solvable for students since they ask students to perform a simple natural number subtraction.
Whereas in the fourth task, students encounter the subtraction of a negative number from another
number for the first time. It is expected that students draw on their prior knowledge of this task type
and derive the solution of this unfamiliar task from the pattern that the minuend remains constant, the
subtrahend is lowered by one, and consequently, the result increases by one. In these patterns, students
encounter the difficult situations, which incorporate two successive signs (Vlassis, 2008). Drawing
on the structure of the pattern, they should be able to conjecture that 3 — (—1) equals 4. In that, the
prior knowledge of the task type provides a tool for solving tasks involving the subtraction of negative
numbers. After more exploration and related reflection, a conjecture about the rule for the subtraction
of negative numbers that is consistent with their prior knowledge should be possible. Deeper
reflection reveals also new insights, such as that subtraction does not always lower the result. In other
structures of task sequences students can encounter the different cases of the subtraction of negative
numbers, such as the subtraction of a negative number from a negative number as shown in Fig. 3 e).

In our empirical investigation of students’ behavior when working on these tasks we find both,
students who solve the tasks correctly based on the pattern (Fig. 4, left) and students, who solve each
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task separately and show a natural number bias, which relates to the lowering effect of subtraction
(Fig. 4, middle and right):

3. 2 =4_ 3. 2 = N 3- 2 =A_
3 - 1 =79 3 - 1 =9 3 - 1 =3
3- 0 =13 3 - 0 =~ 3- 0 =3
PPy T & s o ig
A 3 - 2= R 3--2 =-@
A 3 -2 =10 3.3 =26

Fig. 4. Three exemplary student solutions of the task in Fig. 3.

After completing these pattern generalization tasks students are supposed to transfer these tasks into
a table such as depicted in Fig. 5.

Fig. 5: Subtraction table for negative numbers

The table shown in Fig. 5 is an extension of the rotated diagram shown in Fig. 6 to the negative case.
Tables such as the one shown in Fig. 6 are recommended by German mathematics educators in order
to display the relations between all the tasks with summands up to 10 and to support effective
memorization of the basic tasks in the early primary grades (Schipper, Ebeling, & Droge, 2015;
Wittmann & Miiller, 1997). The structure of the table is supposed to foster students® understanding
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of task relations. Based on their understanding of this structure, students should be able to derive the
result of a task from a task, which is memorized as a basic fact. For example, the solution of the task
5 + 4 might be derived from the (memorized) doubling task 5 + 5 by diminishing the result by one,
since one of the summands is also diminished by one.

Einspluseins-Tafel

Fig. 6: Basic addition-table (Wittmann & Miiller, 2012)

Similarly, students are supposed to complete the table in Fig. 5 by drawing on number relations and
thus deriving the contents of the empty fields from adjacent fields. Again, the tasks relate to familiar
tasks from the set of natural numbers and students can relate the “new” numbers to their prior
knowledge by relying on number relations.

In order to explicate the rules for subtracting negative numbers, students explore number relations in
excerpts from different tables as shown in Fig. 7.

5—(-5) 5-(-4) 5-(-3) 5+3 5+4 5+5
=10 =G =8 =8 =9 =10
4—(-5) 4—(-4) 4—(-3) 4+3 4+4 4+5
= = = =7 =8 =9
3-(-5) 3—(-4) 3-(-3) 3+3 3+4 3+5
= = = =6 =7 =8

Fig. 7: Comparison of subtraction and addition table excerpts

By comparing tasks and results, they can find, for example, that the two tasks 5 — (—5) and 5 + 5 both
equal ten. By exploring and analyzing adjacent tasks they can identify the same phenomenon.
Therefore, they can conjecture that 5 — (=5) = 5 + 5. After confirming this relation with more tasks,
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they are asked to generalize their findings and formulate a rule for the subtraction of negative
numbers.

The learning trajectory by Rezat (2014) and Schumacher and Rezat (in press) was evaluated in a
comparative study with a learning trajectory based on real-life contexts as modelling structures.
Results are going to be published elsewhere.

Comparing the presented didactical models that introduce negative numbers aligned with algebraic
thinking reveals that all of them relate to important cognitive achievements in the epistemology of
negative numbers. Chiappini (2011) directly relates to the generalization of the expression @ — b and
its representation on the number line, which played a crucial role in the epistemological development
of negative numbers. Gallardo (2002) uses historical problems and Peled and Carraher (2008) argue
for generalizations of word problems. As was shown in the epistemological analysis, problems of this
type and their solution played an important role in the historical development of negative numbers.
Rezat (2014) and Schumacher and Rezat (in press) relate to the permanence principle, which was the
cognitive achievement that led to the formal understanding of negative numbers and their final
acceptance as numbers.

While Chiappini (2011) and Peled and Carraher (2008) only present some isolated examples, which
might be incorporated in a learning trajectory for negative numbers, Gallardo (2002) as well as
Schumacher and Rezat (in press) present didactic models, which consistently make use of one core
idea to foster the learning of negative numbers aligned with algebraic thinking.

The epistemological analysis has shown that it was crucial in the development of the negative number
concept to overcome the understanding of negative numbers as magnitudes. The understanding of
negative numbers as opposite magnitudes was persistent whenever negative numbers appeared in the
solution of real-life-problems. It was not until the formalization of the number concept in the 19
century that negative numbers were accepted as autonomous quantities. Therefore, it is questionable
if the teaching of the negative number concept solely based on real-life contexts as modelling
structures is an appropriate approach to develop an algebraic understanding of negative numbers.
According to genetic epistemology it might be appropriate to introduce negative numbers in such
contexts, but it equally seems important to proceed towards an algebraic understanding of negative
numbers and their operations based on the permanence principle as Rezat (2014) and Schumacher
and Rezat (in press) suggest. However, learning trajectories that coherently align the development of
the negative number concept and algebraic thinking are still missing in the research literature.

Number sense

So far, I have analyzed the epistemological relation between the negative number concept and algebra
as well as didactic models for negative numbers that explicitly relate to algebraic thinking. I will now
turn to number sense, a construct that is of interest for the scope of this article for two reasons: 1.
Like early algebra, number sense usually relates to children’s abilities with natural numbers and is
rarely used in the context of other number systems; 2. Number sense and algebraic thinking share
some commonalities, which are rarely related. In order to unveil continuities and discontinuities in
the learning of the number concept, I will firstly elaborate on the question, whether it makes sense to
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consider number sense in other number domains. Secondly, I will briefly analyze the relation between
number sense and algebraic thinking.

The development of number sense is a commonly shared goal for the learning of natural numbers. It
is mentioned about 50 times in the publication of the 23™ ICMI Study on whole numbers in the
primary grades (Bartolini Bussi & Hua Sun, 2018). Many papers in TWGO02 “Arithmetic and number
systems” at CERME stress that the presented research is devoted to the development of number sense.

The very number sense is used to denote different concepts (Rezat & Rye Ejersbo, 2018). Number
sense in the meaning that is commonly shared in the psychological community refers to a persons’
foundational innate core systems to process quantities. Verschaffel elaborated on the facets of this
psychological notion of number sense in his plenary talk at CERME 10 (Verschaftel, Torbeyns, &
De Smedt, 2017). In mathematics education, number sense broadly refers to “the well-organized
conceptual network that enables one to relate number and operation properties and to solve number
problems in flexible and creative ways” (Sowder, 1992, p. 381).

There is a fundamental difference between the two perspectives. While the psychological perspective
considers children’s innate abilities, which are not subject to learning, the perspective on number
sense in mathematics education relates to abilities that children can develop through learning. Sayers
and Andrews (2015) integrate three different perspectives on number sense and offer a model that
comprises different conceptualizations of number sense at different stages in children’s learning
history. In this paper, I refer tothe didactical perspective on number sense.

An aspect that has been discussed repeatedly in TWG02 at CERME related to number sense is flexible
and adaptive use of strategies in mental calculation (Carvalho & da Ponte, 2013; Morais & Serrazina,
2013; Rezat & Rye Ejersbo, 2018). Flexibility and adaptiveness in mental calculation require a deep
understanding of number and operation relationships and knowledge of basic facts. These are core
aspects of number sense (Threlfall, 2002; Rathgeb-Schnierer & Green, 2013). Therefore, number
sense is regarded as both, a prerequisite and a goal for flexible and adaptive strategy use in mental
calculation (Rezat & Rye Ejersbo, 2018).

Number sense and flexible and adaptive mental calculation usually relate to children’s abilities related
to natural numbers. According to the definition by McIntosh, Reys, and Reys (1992) it seems
desirable to develop number sense in other number domains. In their framework of number sense,
Mclntosh et al. (1992) include the understanding of the effect of operations with fractions and
decimals. However, flexible mental calculation and number sense have been rarely investigated in
other number domains. A slightly increasing interest in these issues related to fractions is noticeable
(Markovits & Pang, 2007), which was also discussed in TWG02 at CERME (e.g. Carvalho & da
Ponte, 2013). In terms of mental calculation related to number sense these studies differentiate
between rule-based or instrumental / procedural strategies and number-sense or conceptual strategies,
which are based on equivalence, numerical relationships and properties of operations (Lemonidis,
Tsakiridou, & Meliopoulou, 2018; Yang, Hsu, & Huang, 2004). Reys, Reys, Nohda, & Emori (1995)
and Carvalho & da Ponte (2013) find that students tend to apply rule based strategies, where students
perform the formal rule mentally. On the contrary, Yang et al. (2004) show in an intervention study
how students are able to develop number-sense mental calculation strategies, which are based on
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equivalence, numerical relationships and properties of operations. Rezat (2011) also explored
students’ strategies in mental calculation tasks with integers. He also finds that students transform the
problem with integers into a problem with natural numbers and determine the sign of the result
separately applying a procedural and rule-based strategy for calculation with integers. Consequently,
all mental calculation tasks including integers were solved referring to mental calculation strategies
from the set of natural numbers.

These findings give rise to the question of the relevance of mental calculation in other number sets
than the natural numbers. If mental calculation in other number sets is reduced to the mental
application of the rules for calculating in these domains and by transformation to problems with
natural numbers the relevance for fostering number sense has to be questioned. However, Yang et
al.’s findings indicate that it is possible to foster students’ number-sense based mental calculation
strategies related to fractions. Further investigation of mental calculation strategies, which are
associated with number sense is needed. In general, the meaning and conceptualization of number
sense related to fractions and integers requires further clarification and differentiation.

[ will now turn to the relation of algebraic thinking and number sense. These two constructs are rarely
related. While number sense is situated in the discourse of the development of the number concept,
algebraic thinking is situated in the discourse of the development of algebra. However, in the latter
context, constructs such as structure sense (Hoch & Dreyfus, 2004, 2006) and symbol sense (Arcavi,
1994, 2005), which seem to relate to number sense, have been suggested. Within the scope of this
article, I am not able to analyze the relationship between number sense, structure sense, and symbol
sense. | can only briefly outline some similarities between number sense and algebraic thinking.

Mclntosh et al. (1992) have provided a framework of generally agreed components of basic number
sense, which gives an account of the richness of the construct. This framework distinguishes between
three major areas of number sense: 1. Knowledge of and facility with numbers; 2. Knowledge of and
facility with operations; and 3. Applying knowledge of and facility with numbers and operations to
computational settings. Each of these areas is divided into several categories.

Among the categories that characterize basic number sense we find several aspects that are repeatedly
used to characterize algebraic thinking. In particular, these are related to knowledge of and facility
with operations. A number of studies on early algebra focuses on students understanding of operations
in terms of relational thinking (Bastable & Schifter, 2008; Carpenter, Colm, & Franke, 2003; Empson,
Levi, & Carpenter, 2011; Russell, Schifter, & Bastable, 2011), i.e. “using fundamental properties of
number and operations to transform mathematical expressions rather than simply calculating an
answer following a prescribed sequence of procedures” (Carpenter, Levi, Franke, & Zeringue, 2005).
An example, Carpenter et al. (2003, p. 4) provide to illustrate relational thinking is Robin’s solution
of the open number sentence 18 + 27 =[ ]+ 29: “29 is two more than twenty 27, so the number in
the box has to be two less than 18 to make the two sides equal. So it’s 16”. This way of applying
associativity in this context is exactly what would be expected from a child, who exhibits number
sense.

Due to the similarities of number sense and algebraic thinking in terms of relational thinking, Pittalis,
Pitta-Pantazi, and Christou (2016, 2018) argue that number sense has an innate algebraic dimension.
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They have empirically validated a model of the structure and development of basic number sense by
incorporating an algebraic dimension, which refers to algebraic arithmetic and quantitative relations.
In their study, they validate their model, in which number sense is conceptualized as a second order
theoretical construct made up of three first order latent factors, namely (a) elementary number sense,
(b) conventional arithmetic, and (c) algebraic arithmetic.

This is a first and important step in understanding the relationship between number sense and
algebraic thinking. Further research needs to deepen this understanding by also taking constructs like
structure sense and symbol sense and their relation to number sense into consideration.

Conclusions

I have focused on the relationship between the extension from natural numbers to integers and the
transition from arithmetic to algebra. From an epistemological perspective on this transition, I have
shown that the development of the negative number concept is closely linked to core algebraic ideas,
such as indeterminate objects and their analytic treatment, reification and objectification, and a
detachment from content meanings in order to proceed to a formalized view.

The psychological analysis showed that the same obstacles characterize students‘ learning of the
negative number concept regardless of their prior knowledge and their prior experiences in the set of
natural numbers. So far, the effects of early algebra on students’ understanding of negative numbers
has not been investigated.

The analysis from the pedagogical perspective has shown that two important goals related to the
learning of natural numbers, namely the development of algebraic thinking and the development of
number sense, are rarely considered in the domain of integers. I presented a few didactical models
that have been suggested in the research literature in order to align the learning of integers and the
development of algebraic thinking. However, the alignment seems to be quite loose so far and is
rarely developed into coherent learning trajectories for the learning of integers. An analysis of didactic
models of negative numbers and their potential to foster algebraic thinking in textbooks might
complement the analysis and draw a more comprehensive picture.

In the introduction, I mentioned that the extension of number systems and the transition from
arithmetic to algebra are two long-term developments that require a careful construction of the
curriculum and related learning-trajectories. Many scholars stress the importance of curricular
coherence in the construction and implementation of curricula in general (Confrey, Gianopulos,
McGowan, Shah, & Belcher, 2017) and in particular related to goals of the number curriculum (Bruno
& Martinon, 1999; Van den Heuvel-Panhuizen, 2008). Curricular coherence is defined differently
according to the principles that are used in order to provide it (Confrey et al., 2017). While, for
example, Bruner (1960) and Schmidt, Wang, and McKnight (2005) refer to the structure of the
discipline as the means to provide curricular coherence, Confrey et al. (2017) argue for learner-
centered curricular coherence, which they define as

an organizational means to promote a high likelihood that each learner traverses one of many
possible paths to understanding target disciplinary ideas. The goal is that students achieve
demonstrable and justifiable proficiency in the meanings, relationships, and utility of those target
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ideas by building on and continuously broadening and modifying their ideas and experiences. (p.
719)

Looking at the curriculum in terms of the extension of number systems and the transition from
arithmetic to algebra yields that there is a close relation of arithmetic and algebraic thinking in the set
of natural numbers. However, this close alignment does not seem to be coherently continued in the
extension of number systems. Further development of algebraic thinking in the domain of integers
(and also in the domain of fractions) seems to be almost suspended. In terms of curricular coherence,
it could be important for the learning of the negative number concept and for the learning of algebra
to continuously foster algebraic thinking throughout the extension of number systems. Continuously
unfolding number sense aligned with algebraic thinking throughout the extension of number systems
might also be a means to provide continuity in a content domain where students® experience of
discontinuity has been substantiated by a large body of research.
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'University of Klagenfurt, Austria, konrad.krainer@aau.at; *Linnaeus University & Dalarna
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dortmund.de; *Universita di Genova, Italy, boero@dima.unige.it; *Université de Montpellier,
France, simon.modeste@umontpellier.fr; “Tel Aviv University, Israel, tommyd@tauex.tau.ac.il;
8Charles University in Prague, Czech Republic, zalska@hotmail.com

The general aim of the panel was to offer a reflection on the genesis and the contribution of the
European Society for Research in Mathematics Education (ERME) to research in mathematics
education, regarding its past, present and future. After a short introduction, the panel focused on three
topics: The ERME society, presenting a historical and present view; YERME and YESS, highlighting
history and current developments related to supporting young researchers; the ERME book, focusing
on its evolution, spirit and results. Each topic started with an input by two panel members who also
answered questions by participants of CERME 11 sent in advance or raised during the panel. The
panel was concluded by the president and the two co-chairs of the panel.

Keywords.: Europe, mathematics education, collaboration, cooperation, communication, quality,
inclusion, promoting young researchers

1 Introduction (Hanna Palmer and Konrad Krainer)

An important step for establishing a European Society for Research in Mathematics Education
(ERME) was done in a meeting in Osnabriick (Germany) from 2 to 4 May 1997. Representatives
from 16 European countries met in Haus Ohrbeck (Figures 1 and 2). The aim was to establish a new
society, ERME, that promotes communication, cooperation and collaboration in mathematics
education research in Europe. It was also decided that ERME will launch periodical conferences
(CERME). At CERME 1, again held in Osnabriick, from 27-30 August 1998 (coordinated by Elmar
Cohors-Fresenborg and Inge Schwank), the foundation of ERME took place. In 1999, the three
volumes of the first CERME proceedings were published (Schwank 1999a,b; Krainer, Goffree &
Berger, 1999). In 2018, the ERME book (Dreyfus, Artigue, Potari, Prediger & Ruthven, 2018)
appeared on the occasion of the 20" birthday of ERME. The ERME anniversary panel was held during
CERME 11 in Utrecht (The Netherlands) in the Dom Church (Figure 3) on February 2019.

Figure 1 (E. Thoma): Figure 2 (private photo): Figure 3 (free photo):
Haus Ohrbeck, Osnabriick Elmar Cohors-Fresenborg, Host Dom Church, Utrecht
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ERME anniversary panel

In preparation for the panel, the community was asked to send questions about ERME research,
questions about ERME itself (its role, its possible activities ...) and to share memories on ERME
(anecdotes, narratives, pictures ...) by using twitter or mail (Figure 4). The aim with this was to make
the panel as dynamic as possible with discussions between speakers, high-level scientific content
mixed with narratives and anecdotes about CERME experiences.

Best of luck to all attending
#CERMET1 this week. | first
attended #CERME in Prague during
my PhD. Presenting my research at
this conference was a very positive
experience & contributed to my
findings. It also later led to two
international collaborations!

#cermellpanel

Figure 4 (H. Palmér): Examples of pre-sent tweets

Some of the anecdotes included memories from those who had participated at almost every CERME.
During the introduction of the panel, those who had participated at the first CERME in Osnabriick,
1998, were asked to stand up and there were actually about 12 people. In many anecdotes, CERME
was described as a conference where people met others and became friends and research colleagues.
Through the years there has been a substantial number of research collaborations initiated at CERME.
Many people first visited CERME during their PhD and valued the welcoming atmosphere with its
dynamic mix of experienced researchers and newcomers.

After a short introduction, the panel focused on three topics: The ERME society, presenting a
historical and present view; YERME and YESS, highlighting history and current developments
related to supporting young researchers; the ERME book, focusing on its evolution, spirit and results.
Answers to present questions were addressed in the pre-prepared presentations of the panel speakers
and further questions were provided by the audience at the conference.

In the following, we elaborate on these three topics (for a summary of relevant data about ERME see
also Section 10).

:i* w e o " = : ; ‘Au i . Tl
Figure 5 (personal photos): The first board members of ERME - Paolo Boero, Marianna Bosch, Elmar

Cohors-Fresenborg, Jean-Philippe Drouhard, Konrad Krainer, Jarmila Novotna, Jodo Pedro da
Ponte, Leo Rogers and Julianna Szendrei (see details in Section 10)
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2 The ERME society: A historical view (Barbara Jaworski)

Probably the first thing to say in the history of ERME is that ERME is an AMAZING success story!
From early times to the present it has proved attractive to researchers throughout Europe and beyond
and it has blossomed and grown.

The very first meeting in Osnabriick, in 1997, set the scene for what has followed, and the
conceptualizations emerging from that meeting have been established and faithfully preserved while
simultaneously developing in scale and extent.

In response to an open invitation by German colleagues, representatives from 16 European countries
discussed what a European society might involve. We saw here democracy in action as the delegates
from across Europe presented their ideas and debated possibilities. Clearly, we were focusing on
research in Mathematics Education — our name would be ERME — European Society for Research in
Mathematics Education. We wanted there to be a conference, every two years, and we wanted very
strongly to support new researchers who should be the future of our society.

There was much debate about the nature of the conference. We already had a range of conferences in
our community — particularly PME and ICME — the ERME conference should be different with a
more European identity. We wanted a research conference, to be called CERME — Conference of
ERME - to enable the sharing, understanding and working together of/on research in mathematics
education: three principles emerged

e Communication with our colleagues throughout Europe
e (Cooperation in and around research topics
e Collaboration in designing and doing research together

These principles quickly became known as “The Three Cs” and “The CERME Spirit”: they were the
foundation on which our community was based and on which our conference developed. The
conference should enable participants really to work on areas of research, forming research groups,
with a significant amount of time to communicate their research and develop cooperative and
collaborative relationships. Also, ERME should provide a means of educating and supporting young
researchers and research students — bringing young researchers centrally into the community.

In the early years of ERME, an ERME board was initiated to guide developments in ERME, and the
conference, CERME, was introduced to take place every two years. For young researchers in ERME,
the YERME group was initiated.

The first CERME took place appropriately in the same location as our founding meeting, in Haus
Ohrbeck in Osnabriick (Germany). There were around 50 participants and just seven working groups
— the groups would have 12 hours for their work over the days of the conference. It was a time of
getting used to this new kind of conference environment.

At the beginning of this first conference, a well-known researcher asked “what are we going to do
with 12 hours? How are we going to use all this time?” At the end of the conference, she said “I am
amazed. The time just disappeared as we discussed our work and debated issues in research.” It was
clear that we were learning in practice about possibilities and ways of working; trying out ideas and
developing (or rejecting) them in practice.
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Thus, CERME was planned as a different kind of conference (from PME, ICME and others). It
became a working conference with small working groups in research areas led by ‘experts’ in the
field (at least 12 hours). It should be open and inclusive to all researchers in the field. It should have
published proceedings of high scientific quality. There should be quality support for, and education
of research students, with a dedicated day before each conference.

The importance placed on educating research students led to the provision of summer schools in years
alternating with CERME. These were led by ‘experts’ in key research areas (The YESS — YERME
Summer Schools) and should be open, inclusive and encouraging full participation.

Key words in planning and development were Quality and Inclusion. Principles of openness and
inclusion permeated principles and practice. ALL researchers in mathematics education (from
anywhere in the world) should be welcome participants — no barriers to inclusion. The working
language would be English — but sincere attempts should be made to include other languages where
necessary. There should be principles of high quality in scientific exchange and publication. Group
leaders should ensure the highest quality of academic engagement and publication.

These principles led to issues and questions relating to practices in the working groups regarding
quality and inclusion,

e Should ALL papers submitted to a group be accepted? Do principles of inclusion require this?

e What if papers are not of a sufficiently high standard? How can group leaders ensure that what
is published is of the high quality we seek?

By the time of CERME 6 in Lyon, France, these issues had become central and potent. Thus, a small
group from within the initiating team were tasked by the ERME board to do some research to establish
the views of CERME participants. A survey was designed and conducted, and interviews were held
with CERME participants. The results of this analysis exposed a wide range of views and highlighted
the main issues (see Jaworski, da Ponte & Mariotti, 2011). Clearly the majority wanted to maintain
both quality and inclusion, but practical suggestions were made as to how this could be possible. It
became practice that most papers submitted for presentation would be accepted to include as many
researchers as possible, but there would be additional reviews after the conference through which
only papers of high quality would be selected for published proceedings. As CERME has grown in
size beyond these early conferences, it has become necessary to review how quality and inclusion can
continue to be maintained in practice.

Figure 6 (personal photos): The presidents of ERME - Jean-Philippe Drouhard, Paolo Boero,

Barbara Jaworski, Ferdinando Arzarello, Viviane Durand Guerrier and Susanne Prediger
(see details in Section 10)
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3 The ERME society: A present view (Susanne Prediger)

20 years after the founding of ERME, we can be very happy that ERME has succeeded in establishing
the three C’s:

e Communication is consequently established in the Thematic Working Groups due to the great
work of the TWG leaders and co-leaders. Even in a conference with 26 TWGs (and 8
subgroups), communication was guaranteed by the rule of “30 minutes per contribution”.
Additionally, we extended the opportunities for communication by ERME Topic Conferences
(ETC, see Section 10), six of them have already taken place.

e Collaboration was initiated and is evidenced by many joint publications among ERME
members (see overview in Dreyfus et al., 2018). However, we feel that collaboration can still
be fostered more.

e also Cooperation takes place in more stable contexts, for example in joint research and PD
projects (funded by EU Horizon 2020 or Erasmus or bilateral foundations such as the German-
Israeli foundation). For further deepening also the institutionalized cooperation across
European countries, initiating collaboration and following it up is crucial, for the future.

Within the last twenty years, the ERME policy of inclusion and quality has successfully been
installed, especially the TWG leaders and co-leaders do an enormous job in enhancing quality. During
these years, inclusion has been interpreted as allowing all interested people to participate. However,
ERME has not yet achieved to include all European countries, as we still have regional unbalances
and emerging communities which are not yet present at the conference.

At the same time, CERME has experienced a massive growth, from 550 participants in 2013 to more
than 900 in 2019 (see Figure 7). This success shows that the founders’ choice to design CERME as
a ,,thematic working space" (with the possibility of improving submitted texts before and after the
conference) is very appreciated, not only in Europe, but also within the world community of
mathematics educators. Among the 900 participants at CERME 11, 150 came from other continents.
Thus, the founders’ idea of offering CCC opportunities to researchers has been successfully spread
to other continents, with the possibility of enriching exchanges. On the one hand, we can celebrate
this as a huge success that more and more researchers from all over the world are interested in
participating in the conference. However, CERME'’s success is ERME’s challenge, as the growth of
the conferences endangers both, quality and inclusion. That is why the ERME board has taken the
decision that eternal growth is not desirable, and 900 participants is the maximum we can take. For
the next conference, the ERME board and the IPC will develop new review procedures for selecting
papers.
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900
780
672
550

CERME 8 CERME 9 CERME 10 CERME 11
(2013) (2015) (2017) (2019)

Figure 7: Increasing number of participants for the last conferences

This new situation requires a new interpretation of inclusion in the ERME policy: We must overcome
a mainly quantitative interpretation of inclusion (as allowing every interested person to participate).
Instead, the future inclusion strategies will focus on the heterogeneity of participants and develop
approaches for supporting underrepresented groups for finding new balances

e between novices and experts
e Dbetween countries
e between well-established communities and newly emerging communities.

At the same time, we will enhance the interpretation of quality: In the future we will not only work
on quality of individual contributions, but also on enhancing the three C’s. Especially, we will search
for new ways of supporting collaboration and cooperation across countries and research groups.

4 YERME and YESS: A historical view (Paolo Boero)

YESS 1 at Klagenfurt in 2002 was my first international
experience in math education, | have visited it as postdoc and
immediately found my international family.

Figure 8 (H. Palmér): Example of pre-sent tweet

This spontaneous contribution to our panel from an ERME member well represents the “YESS spirit”
and its aims, and more generally the orientation of all the ERME initiatives (YESS, YERME, the
YERME day) addressed to people who enter the domain of research in mathematics education.

From the very beginning, one of the main ERME goals was to create a community of young
researchers, who might grow up as EUROPEAN researchers in the WORLD context, each of them
bringing the richness of her cultural, educational and research traditions, to be acknowledged as
relevant contributions by the colleagues, each of them being willing (and able!) to Communicate,
Collaborate and Cooperate with the other EUROPEAN and WORLD researchers. This goal was
coherent with the general perspective, according to which ERME was founded (the “CCC spirit”). At
CERME 2 in Maridnské Lézné€, a meeting of young researchers was initiated where 22 of them
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(mostly PhD students) and six senior researchers met in order to discuss young researchers’ recent
situation and to allocate suggestions to improve the situation. Finally, the young researchers were
invited to meet as a group during the conference and to formulate their ideas and needs. A subgroup
(Michele Cerulli, Petra Frantova and Jukka Térnroos, supported by Konrad Krainer) met, negotiated
essential basic points and finally presented them at a plenary discussion at the end of the conference.
For example, it was fixed that the group of young researchers was named YERME, that it will have
three contact persons and will produce a contact list. It was recommended that, in the future, CERMEs
could have a young researchers’ day; in addition, a summer school (with workshops and feedback
sessions) was proposed. In both cases, young researchers offered to be active in programme
committees. Based on these suggestions, the ERME board started to design a summer school for
young researchers (later named YESS) to be held every two years (starting 2002) and to start each
CERME with a YERME day (starting 2005, formally decided 2003 at CERME 3).

YESS 1 and its design

The first summer school was planned in a meeting held in Klagenfurt in June, 2001 (see reports by
Borromeo Ferri, Roth & Reinhold, 2002; Krainer, 2003). Two representatives of YERME were there,
together with three members of the ERME board and three members of the University of Klagenfurt
(which offered to host the first summer school). The design of the summer school was based on the
following guidelines:

e The Working Group (WG) structure as the main feature of the summer school, and the request
to all WG participants to prepare a written contribution related to the advancement of their
research projects. These choices were coherent with the original planning of CERME, based
on thematic WGs. A common theme would have allowed WG participants to better share
experiences, readings, method and content choices. The request of a 4-6 pages summary on
the personal stage of PhD studies (be it initial, or near to the conclusion, or even post-doc)
was conceived with three aims: To favor a personal balance of the acquisitions and the needs,
in the perspective of sharing them with the other participants; to let participants know in
advance the interests and research orientations of the other WG members; to let the expert in
charge of the WG prepare suggestions, references, etc. for each member, and plan the WG
sessions, in order to tackle common or near problems/topics in each session.

e The role of the “expert” in each WG: Strong expertise in research and in the supervising of
newcomers in the field was necessary. But it was not sufficient. An expert had not to be
conceived as PhD super-supervisor! She had to play another, complex role: To provide the
newcomers in the field with the opportunity of communicating their projects, preliminary
results, needs in a CCC climate; to favor productive exchanges between participants; to
provide them with “method” and “content” helps and suggestions (according to her research
experience); to ensure a pluralistic vision on theoretical and method choices.

YESS, YERME and the YERME day

The interactions between experts, organizers and students in YESS 1 (2002) allowed the ERME board
to better focus (and take precise decisions) on two kinds of needs, that had already been considered
in more generic terms in the previous years:

Proceedings of CERME11 87



ERME anniversary panel

e There was a challenge to create and prepare discussion spaces, within YESS and in the
occasion of ERME conferences, where participants with interests in different areas of
mathematics education could meet together and with experts to deal with topics related to the
level of advancement of their PhD studies (e.g. how to choose and read a research paper? How
to choose and formulate a research problem and the related research questions? What about
the theoretical framework? How to choose a research methodology to deal with the research
questions? How to write a research paper? Etc). This need brought to plan in advance
Discussion Group sessions within YESS (in order to share the task of better coordinating and
supporting them among the experts and the more experienced members of the programme
committee); and to implement the idea of the YERME day (it was finally decided that it should
consist of two half days of work for young participants in CERME, before the starting of
CERME). The first official initiative involving young researchers took place in CERME 3
(2003) as a YERME meeting within the conference; the name YERME day was adopted for
the two half days that preceded CERME 4 (2005) and all the subsequent CERMEs. In the two
cases (YESS Discussion Groups and YERME day before CERME), the aim is to provide
participants with occasions for dealing in depth, with the support of experts, on subjects (like
those listed above, gradually made more precise and specific in the programme of subsequent
summer schools) of common interest in each stage of the development of PhD studies and
research projects. New formats will be found for the future, for example, the ERME Topic
Conferences (ETC) can be opened with a YERME day, for discussing individual projects or
a survey of the topic at stake, available before an ETC, as an introduction to the conference.

e There was a constant work on further developing YERME, with its autonomy, its tasks related
to YESS and the YERME day, and also to CCC specificity for young researchers and to career
needs (e.g. information on research jobs opportunities). During YESS, two time slots are
dedicated to special Discussion Groups organized and led by the YERME representatives
within the programme committee. The discussions concern the participants’ challenges as
PhD students, as participants in YESS, and their perspectives as regards the post-doc
employments. During the YERME day, a special event is the plenary speech of a young
researcher who recently entered a research career. She presents an account of the problems
met by her during her PhD studies, of how she tackled them, and of how she succeeded in
finding an employment opportunity after her PhD.

e At CERME 7 (2011), the ERME general assembly decided to strengthen the YERME voice
in the ERME policy making. The ERME byelaws were modified to include two YERME
representatives for four years, each from CERME 8 (2013) on.

Conclusion

The increased number of applicants to YESS (from 47, almost all from Europe, in the case of YESS
1, to more than 110, including those from America, Africa and Asia in the case of YESS 5, to 136 in
the case of YESS 9 — always with candidates from other continents) encouraged the organizers to
maintain and strengthen the original features of YESS. The number of WGs was increased from five
in YESS 1 to six; the accepted participants have been 72 in the last editions, and will be 84 in YESS
10. In particular, participation of students from other continents is considered as an added value for
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YESS (the same as for ERME!). Indeed the participation of young researchers from other research
traditions, and with different cultural needs, was, is and will be an occasion for putting into practice
the original reason for the existence of ERME (and YESS as well): A community of researchers,
based on the positive evaluation of the rich European diversity, and coherently open to the
constructive dialogue with other diversities in the CCC spirit.

Figure 9 (personal photos): Some mentors of YERME - Paolo Boero, Konrad Krainer,
Dina Tirosh, Joao Pedro da Ponte and Viviane Durand-Guerrier

5 YERME and YESS: A young researcher’s view (Simon Modeste)

As a young researcher and a participant in CERME, YERME and YESS events, I would like to
describe my trajectory, as a testimony for this panel and illustrating the previous section.

My first contact with ERME and the YERME group was in CERME 7 in 2011. I was in the topic
group on “Proof and argumentation”. Looking at the “famous” names in the participants of the group
(Paolo Boero was one of them), I was quite intimidated. I think this is the case for many young
researchers before their first CERME. Fortunately, I had the opportunity to participate in the YERME
day. This day, before the conference, is very important for newcomers. It allows young researchers
to meet together, as a small group, to discuss, start knowing each other, share experiences and benefit
from experts’ workshops. Paolo Boero was one of the experts (for many generations of young
researchers, Paolo is associated to YERME activities) and I attended his “famous” workshop on
writing articles, where he makes you analyse and criticize one of his first articles. This is YERME
spirit, and contributes to make you more comfortable as a young researcher in the community.
Another important thing is that YERME day is oriented towards stimulating communication (in
particular regarding the language issue for non-native English speakers). After the YERME day, you
can join the conference and the working groups with much less stress. You meet known faces from
the YERME day during the conference and can share experiences from the various groups. You have
the feeling that you are part of the group of the European young researchers in mathematics education.

In 2012, I participated in YESS 6 in Faro (Portugal). It was six months before my PhD defence, and
my dissertation was not written yet. I was very stressed, and meeting with other young researchers,
benefiting from the pieces of advice from the expert of my workgroup, sharing experiences during
the Discussion Groups have been very comforting and motivating. And I went back to work on my
PhD with more energy.

Participating in YESS is sharing a week with young researchers and experts from ERME, where you
feel like cut off from the rest of the world, focused on scientific activities. This is very pleasant and
it is a luxury in a young researcher’s life. The truth is that I don’t know any event for young
researchers which would be equivalent to YESS.
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I also want to write briefly about the network of YERME. It is through this network that I was aware
of post-doc positions and got the opportunity to be a post-doc researcher in another country. This
permitted me to discover another school system, and another research culture. It brought me an
international experience. I think that this is exactly the kind of opportunities that YERME wants to
foster, by promoting international collaborations.

In 2018, I had the possibility to contribute to YERME activities, by organizing YESS 9. I was very
proud to organize it after my rich experience from YESS 6. In collaboration with the ERME board
and the scientific committee, I tried to base on this experience as a young researcher in the ERME
community, to implement an organization that stimulates the interactions between young researchers.
During the summer school, I have seen the group bonded, and the YERME community has
strengthened during the week.

At YESS 9 in Montpellier, we had 136 applications for 72 places (6 working groups of 12), experts
from different parts of Europe. The participants came from many countries in the world, representing
all continents (of course, the majority from Europe). Figure 10 shows the whole group of participants
at YESS 9.

Figure 10 (S. Modeste): Participants of YESS 9, Montpellier

Finally, I would like to summarize some important aspects of YESS, YERME and YERME day, and
to add some new information (http://www.mathematik.uni-dortmund.de/~erme/). Essentially,

YERME activities comprise two main events, each recurring every two years: The YERME day, and
the YERME summer school (YESS). Each YESS has a programme committee, which consists of a
scientific coordinator, two ERME Board representatives, three YERME representatives, two
representatives from local organizers. Up to now, ERME has organized 9 YESS, the tenth is already
fixed (see Section 10). Other YERME activities comprise participation in the ERME board and
communication about YERME and relevant activities for young researchers. Two young researchers
have seats in the board of ERME to represent the interest of YERME. Recently, these members are
Dorota Lembrér, Norway (term ends in 2023) and Andrea Maffia, Italy (term ends in 2021). YERME
is active on social media, in particular Facebook and Twitter. The official Facebook page for YERME
1s: https://www.facebook.com/YoungResearchersERME, a Twitter account with the same infor-
mation can be found at https://twitter.com/Y ERMEeurope.
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6 ERME book: Evolution, spirit and results (Tommy Dreyfus)

Upon the initiative of Jodo Pedro da Ponte, the ERME board and its president Viviane Durand-
Guerrier (Figure 11) decided that ERME should, on the occasion of its 20" anniversary, publish a
book presenting ERME to mathematics educators world-wide.

Figure 11 (personal photos): The initiators - Jodo Pedro da Ponte,
Viviane Durand-Guerrier and the 2015 Board

The board named Tommy Dreyfus, Michéle Artigue, Despina Potari, Susanne Prediger and Kenneth
Ruthven as editors (Figure 12), with Tommy as coordinating editor and Susanne as liaison person to
the ERME board.
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Figure 12 (personal photos): The editors - Tommy Dreyfus, Michéle Artigue,
Despina Potari, Susanne Prediger and Kenneth Ruthven

W

The editors met in September 2015, and decided that the aim of the book shall be to present the most
important directions, developments and trends of European Research in Mathematics Education in a
highly readable text. Hence the book shall report on the main lines of development in ERME in the
course of the past 20 years, showing the spirit of communication, cooperation, collaboration in the
process;

e showcase past and current European research for audiences inside and outside Europe;

e and establish shared understandings in which to ground future European research in
mathematics education.

Since the scientific interaction in ERME happens in the TWGs, a book structure was designed with
an introduction by the presidents of ERME, 18 core chapters reflecting the work of the TWGs, and
commentaries by two eminent scholars from outside Europe, Marcelo Borba and Norma Presmeg
(Figure 13).
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Figure 13 (personal photos): The commentary chapter authors - Marcelo Borba and Norma Presmeg

The editors chose a writing team for each chapter from among the leaders of the relevant TWGs —
overall more than 60 authors contributed. It is notable that every single person who was asked
accepted to contribute, and that the writing teams were very responsive to our editorial suggestions.
They were also exemplary in keeping the schedule; this was especially crucial toward CERME 10,
where the chapters were discussed in the relevant TWGs, so that the process of writing the book was
a paradigmatic case of CCC.

The work on the book, and the commentary chapters in particular, raised some general comments and
questions about ERME and research within ERME. A few of them will be raised here.

Borba, in his commentary, describes the dynamics of the creation, life and, in some cases
disappearance of TWGs in ERME as a response to crises, for example crises in algebra learning and
teaching, the integration of technology in classroom, or the low presence of modeling in school
mathematics. He observed that some themes like the philosophy of mathematics education, distance
education, and assessment were not or under-represented at CERMEs. While in the case of distance
education, this may be due to the geographical nature of Europe, and in the case of assessment a TWG
has recently been created, there does not seem to be an obvious reason for the absence of the
philosophy of mathematics education.

A striking and possibly typically European phenomenon is that all 18 core chapters relate to theories
or models. This begs the question whether the theoretical work of each TWG feeds back to the crisis
Borba sees at the origin of the TWG? And it has led Presmeg to ask, in her commentary, whether
ERME makes an effort to link the work of different TWGs, and whether theories can possibly serve
to link the work of different TWGs, for example if one TWG attempts to understand what other TWGs
mean by theory.

Presmeg also noted that the CCC spirit may support such links: Theories are designed in a specific
context; they express particular world-views. A common research agenda, on the other hand, implies
spelling out research paradigms, theories and methodologies, and therefore requires one to suspend
or step outside of one’s “natural” attitude (or habits). Work in ERME thus led researchers to use
different theories as complementary lenses that provide alternative views of the same phenomenon.
But it led far beyond this: A paradigmatic case of CCC with respect to theories was realized within
ERME: The theory TWG was initiated at CERME 5; at a serendipitous meeting on the last day of the
conference, a group of members of this TWG decided to further explore the issue of connections
between theories — a case of communication. That group has then cooperated over 8§ years, at CERME
conferences and elsewhere; they developed collaboration on four case studies of links between
theories, links of different kinds and strengths; and a book resulted from their efforts (Bikner-Ahsbahs
& Prediger, 2015). This book would have fit very well into a book series under ERME’s auspices.
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Finally, is ERME international? And in what ways does ERME offer a distinctly “European”
perspective on research in mathematics education? While there is no definitive answer to this,
international participation at CERME grows from conference to conference; on the other hand, some
specifically European aspects of work within ERME have been pointed out in the previous
paragraphs; in particular, research traditions that have grown nationally have undergone a process of
networking. ERME presents a healthy tension between national, European and international
contributions.

The ERME book titled Developing Research in Mathematics Education: Twenty Years of
Communication, Cooperation and Collaboration in Europe (Figure 14) appeared with Routledge (a
division of Taylor and Francis) in 2018, on ERME’s 20th anniversary. In parallel to the creation of
the book, the ERME board has decided to launch an ERME book series (e.g. including volumes
initiated by researchers at ERME topic conferences). Hence, the “ERME book™ has become the
inaugural volume of the ERME book series.
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| really like the new ERME-book. As
a PhD it is interesting and
educational to read about the
development in the WG-groups.
The book makes it possible also for
newcomers to be part of the history
of the conference. #cermellpane
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Figure 14: The ERME book Figure 15 (H. Palmér): Example of pre-sent tweet

The editors hope that the book shows readers from Europe and beyond how research in ERME has
developed, that book chapters are useful to introduce young researchers to areas active in ERME, that
the ways in which ERME promotes research through CCC emerge, and that the book will serve as a
close companion to each ERME member in their research. The tweet in Figure 15 is a small indication
that these hopes are at least to some extent realistic.

7 ERME book: A young researcher’s view (Jana Zalska)

The ERME book “Developing research in mathematics education® will serve as an enriching volume
to any researcher in the field of mathematics education. As a young researcher and a participant in
CERME, YERME and YESS events, [ appreciated especially its value in providing the valuable sense
of context (historical, geographical and cultural), and of the organic and dynamic aspects of the field’s
epistemic development.

Making sense of the context

The introductory chapter of the book helps to situate ERME’s endeavors in research, introducing the
roots and development of ERME, and explaining not only its guiding values and principles but also
the rationale behind them.
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Secondly, the core chapters provide overviews on specific areas of research, so they might establish
a context for a research question we may pursue. The texts often refer to the geographical (national)
context of particular research developments in specific areas of mathematics education, use and
developments of concepts and theoretical frameworks etc.

Thirdly, reading about comparable contexts gives us a notion of our own local (e.g., national) context,
even when not specifically mentioned through the chapters. It may be an essential contribution to
understanding, identifying and describing our own local educational and research context in a similar
way.

All of the above contextual notions are vital in determining the direction we envision in participating
in the research endeavors within ERME. At the same time, the two commentary chapters bring the
activities and principles of ERME under a broader lens, that is to say, zooming out on the bigger
picture and reminding us of its current limits and shape.

Organic growth and inclusiveness

The sense of organic growth of the body of knowledge in the community permeates each of the book’s
content chapters. Finally, Chapter 20 reassures us that striving for "unity in diversity" (Dreyfus et al.,
2018, p. 285) is attainable through such an endeavor. For me as a young researcher, this means
encouragement in the belief that my own research matters, and the confidence that I, too, am part of
this process.

Finally, this book has succeeded in making a significant step toward molding further an identity of a
unique community. The book’s strong emphasis on reflection and the process of convergent thinking
is a tremendous effort of this community to understand itself as much as to understand its subject of
research.

8 Conclusion and further directions (Susanne Prediger)

The discussion was insightful and provided hints to promising future activities of ERME in all areas
of work, initiating communication, collaboration and cooperation, promoting young researchers,
strengthening the visibility of European mathematics education research and increasing inclusion by
supporting underrepresented countries. We will think about

e how to keep all the good tradtions that were praise by so many members

e how to enhance the CERME programme structure for initiating collaboration
e how to strengthen the three C’s between conferences

e how to engage young researchers in the work of the TWGs and to

e claborate our contacts to mathematicians

e especially, we will explore how to support mathematicians to enter the field of mathematics
education research.

Future directions might be as listed in Figure 16.
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Figure 16: Future directions for ERME work (S. Prediger’s final slide from the panel)

9 Resume (Hanna Palmér and Konrad Krainer)

The panel was ended as it started, by concluding that ERME, CERME and YERME are AMAZING
success stories. Through these events the community share, work on and develop research in
mathematics education. Thus, the initial three C’s have been kept,

e Communication with our colleagues throughout Europe, but also beyond
e Cooperation in and around research topics
e Collaboration in designing and doing research together

This fantastic history is presented in all CERME proceedings and also in the ERME book. During the
panel a new C was introduced — Challenge. The challenges raised were connected to inclusion,
quality, regional unbalances, emerging communities and, maybe also the initiative to use twitter to
increase the dynamics of the panel. However, it was concluded that challenges only become obstacles
if we bow to them.

The success of ERME, YERME, CERME and its publications has many fathers, mothers, sisters,
brothers, friends, etc. A whole network of engaged people and organizations is needed.

The most important people are the participants, YOU! In addition, we need people who take
responsibility for working groups, thematic conferences or a CERME itself. Without group leaders,
subgroup leaders, IPCs and LOCs, a society cannot live. The young people will shape the future, all
others need to take actions that they can do that! Without a strong YERME, we don’t will have a good
future. A society needs relevant others, like our home institutions like universities, and sponsors etc.;
but we need institutional friends like ICMI, PME and other organizations. This means to enact the
CCC spirit not only on the individual level, but also on an organizational level.

And of course, we need people who take responsibility for the whole, for ERME as a scientific
society. The board has both, the task to live our goals, but also to further develop it, in continuous
negotiation with its members.
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Having observed the development of ERME from the very beginning, we feel that we can hopefully
look into the future! All of you have contributed to the success!

10 Some relevant data about the ERME society (Konrad Krainer and Susanne Prediger)

A variety of background information about ERME can be found at http://www.mathematik.uni-
dortmund.de/~erme/ (ERME, 2019). In the following, some relevant data are presented:

ERME conferences (for proceedings see ERME website)

CERME 1 in Osnabriick, Germany (1998)
CERME 2 in Marianské Lazné, Czech Republic (2001)
CERME 3 in Bellaria, Italy (2003)

CERME 4 in Sant Feliu de Guixols, Spain (2005)
CERME 5 in Larnaca, Cyprus (2007)

CERME 6 in Lyon, France (2009)

CERME 7 in Rzeszow, Poland (2011)

CERME 8 in Antalya, Turkey (2013)

CERME 9 in Prague, Czech Republic (2015)
CERME 10 in Dublin, Ireland (2017)

CERME 11 in Utrecht, The Netherlands (2019)
CERME 12 will take place in Bolzano, Italy (2021)

0O 0O 0O 0O 0o 0O O o O O O o©

YERME summer schools

YESS 1 in Klagenfurt, Austria (2002)

YESS 2 in Podébrady, Czech Republic (2004)
YESS 3 in Jyviskyld, Finland (2006)

YESS 4 in Trabzon, Turkey (2008)

YESS 5 in Palermo, Italy (2010)

YESS 6 in Faro, Portugal (2012)

YESS 7 in Kassel, Germany (2014)

YESS 8 in Podébrady, Czech Republic (2016)
YESS 9 in Montpellier, France (2018)

YESS 10 on Rhodos, Greece (2020)

0O O O O 0O O O 0 O O

ERME topic conferences

ETC 1 on Anthropological Theory of the Didactic in Castro-Urdiales, Spain (2016)
ETC 2 on University Mathematics Education in Montpellier, France (2016)

ETC 3 on Mathematics Teacher Education in Berlin, Germany (2016)

ETC 4 on Mathematics and Language in Dresden, Germany (2018)

ETC 5 on Mathematics Education in the Digital Age in Copenhagen, Denmark (2018)
ETC 6 on University Mathematics Education in Kristiansand, Norway (2018)

ETC 7 on Language in the Mathematics Classroom in Montpellier, France (2020)
ETC 8 on University Mathematics in Bizerte, Tunisia (2020)

ETC 9 on Arithmetic and Number systems in Leeds, United Kingdom (2020)

ETC 10 on Mathematics Education in the Digital Age in Linz, Austria (2020)

0O O O O 0O O o0 0 O O
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ERME book series

o Volume 1: Dreyfus, Tommy, Artigue, Michéle, Potari, Despina, Prediger, Susanne &
Ruthven, Kenneth (Eds.). (2018). Developing Research in Mathematics Education: Twenty
Years of Communication, Cooperation and Collaboration in Europe. London: Routledge.

o Volume 2: Bosch, Marianna, Chevallard, Yves, Garcia, Francisco Javier & Monaghan, John
(Eds.). (2020). Working with the Anthropological Theory of the Didactic in Mathematics
Education: A Comprehensive Casebook. London: Routledge.

o Volume 3: Zehetmeier, Stefan, Ribeiro, Miguel & Potari, Despina (Eds., in prep.).
Mathematics Teaching, Resources and Teacher Professional Development. London:
Routledge.

o Volume 4: Durand-Guerrier, Viviane, Hochmuth, Reinhard, Nardi, Elena & Winslgw, Carl
(Eds., in prep.): Research and Development on University Mathematics Education
(preliminary title). London: Routledge.

o Volume 5: Planas, Nuria, Schiitte, Marcus & Morgan, Candia (Eds., in prep.): Classroom
Research on Mathematics and Language. London: Routledge.

o Volume 6: Clark-Wilson, Alison, Donevska-Todorova, Ana, Fagiano, Eleonora, Trgalova,
Jana & Weigand, Hans-Georg (Eds., in prep.): Mathematics Education in the Digital Age:
Learning, Practice and Theory. London: Routledge.

The ERME book series editors are Viviane Durand Guerrier, Konrad Krainer, Susanne Prediger and
Nad’a Vondrova.

The first ERME board members

1998-2005 Paolo Boero (Italy)

1998-2005 Marianna Bosch (Spain)

1998-2005 Elmar Cohors-Fresenborg (Germany)
1998-2001 Jean-Philippe Drouhard (France)
1998-2003 Konrad Krainer (Austria)

1998-2003 Jarmila Novotna (Czech Republic)
1998-2001 Jodo Pedro da Ponte (Portugal)
1998-2001 Leo Rogers (United Kingdom)
1998-2003 Julianna Szendrei (Hungary)

O 0 0O O 0 0O 0O 0 O

ERME presidents

1997-2001 Jean-Philippe Drouhard (France)
2001-2005 Paolo Boero (Italy)

2005-2009 Barbara Jaworski (United Kingdom)
2009-2013 Ferdinando Arzarello (Italy)
2013-2017 Viviane Durand Guerrier (France)
since 2017 Susanne Prediger (Germany)

o O O O O O

References

Bikner-Ahsbahs, A., & Prediger, S. (Eds.) (2015). Networking of theories as a research practice.
Advances in Mathematics Education series. Cham: Springer.

Borromeo Ferri, R., Roth, J., & Reinhold, S. (2002). Wissenschaftlicher Nachwuchs im Bereich der
Mathematikdidaktik: YERME-Summer School 2002 — Vernetzung auf internationaler Ebene.
(Young researchers in mathematics education: YERME-Summer School 2002 — “Networking”

Proceedings of CERME11 97



ERME anniversary panel

on an international level; see included in Krainer, 2003). Mitteilungen der Gesellschaft fiir
Didaktik der Mathematik (Society of mathematics education in German speaking countries), 75,
114-116.

Dreyfus, T., Artigue, M., Potari, D., Prediger, S., & Ruthven, K. (Eds.). (2018). Developing
Research in Mathematics Education: Twenty Years of Communication, Cooperation and
Collaboration in Europe. ERME series, Volume 1. London: Routledge.

ERME (2019). ERME — European Society for Research in Mathematics Education.
http://www.mathematik.uni-dortmund.de/~erme — retrieved 2019-04-13.

Jaworski, B., da Ponte, J. P., & Mariotti, M. A. (2011). The CERME Spirit: Issues of quality and
inclusion in an innovative conference style. In B. Atweh, M. Graven, W. Secada, & P. Valero
(Eds.), Mapping equity and quality in mathematics education. London: Springer.

Krainer, K. (2003). YERME-Summer School 2002. Report to the ERME Board (Email from
February 4, 2003). (The report includes an English translation of a report by participants; see
Borromeo Ferri, Roth, & Reinhold, 2002)

Krainer, K., Goffree, F., & Berger, P. (Eds.). (1999). European Research in Mathematics Education
LIII, From a Study of Teaching Practices to Issues in Teacher Education. Proceedings of the
First Conference of the European Society for Research in Mathematics Education (CERME 1,
August 1998). Osnabriick: Forschungsinstitut fiir Mathematikdidaktik and ERME.

Schwank, I. (Ed.). (1999a and b). European Research in Mathematics Education 1.1 and LII:
Proceedings of the First Conference of the European Society for Research in Mathematics
Education (CERME 1, August 1998). Osnabriick: Forschungsinstitut fiir Mathematikdidaktik
and ERME.

Proceedings of CERME11 98


http://www.mathematik.uni-dortmund.de/~erme/index.php?slab=visions-of-erme

Thematic Working Group 01

TWGOI1: Argumentation and proof

Proceedings of CERME11

99



Thematic Working Group 01

Introduction to the papers of TWGO01: Argumentation and Proof

Gabriel J. Stylianides?, Orly Buchbinder?, Jenny Cramer®, Viviane Durand-Guerrier*, Andreas
Moutsios-Rentzos®, and Anita Valenta®

tUniversity of Oxford, UK; gabriel.stylianides@education.ox.ac.uk

2University of New Hampshire, USA; orlybuchbinder@gmail.com

3University of Bremen, Germany; cramerj@math.uni-bremen.de

“University of Montpellier, France; viviane.durand-guerrier@umontpellier.fr

SUniversity of the Aegean, Greece; amoutsiosrentzos@aegean.gr

®Norwegian University of Science and Technology, Norway; anita.valenta@ntnu.no
Introduction

The role and importance assigned to argumentation and proof in the last decades internationally has
led to a variety of approaches to research in this area, which is reflected in the growing number of
submissions to Thematic Working Group 1 (TWG1) on “argumentation and proof”. The 30 papers
and 11 posters presented in TWG1 come from 16 countries and offer a wide spectrum of
perspectives. These contributions intertwine educational issues with explicit references to
mathematical, logical, historical, philosophical, epistemological, psychological, curricular,
anthropological, and sociological viewpoints.

Taking into account this diversity, the paper contributions were presented and discussed in working
sessions (some of which were parallel) organized under the following themes: (1) argumentation
and proof at the school level, (2) argumentation and proof in teacher education, (3) tools for
analysing argumentation and proof, (4) task design in argumentation and proof, (5) theoretical and
philosophical issues of argumentation and proof, (6) assessment issues of argumentation and proof,
and (7) intervention studies on argumentation and proof. Since the themes are intertwined, a paper
could be assigned to multiple themes. Therefore, the assignment of papers to themes was guided by
a “best fit” approach, as well as practical considerations.

In this introductory chapter, we organize our subsequent discussion across three broad topics that
emerged from the discussions we had in our TWG and cut across the aforementioned themes. These
topics are the following: (1) argumentation and proof in the society, (2) argumentation and proof in
school, and (3) argumentation and proof in research. We will briefly discuss each topic separately.
In our discussion, we will refer to a few papers that help illustrate broader points, but it was not our
intention here to refer to or discuss all the papers. Rather, we hope that this discussion will spark the
readers’ interest to explore all the papers in the Proceedings under TWGL1.

Discussion of Papers
Argumentation and proof in the society

Argumentation and proof can be considered within a purely mathematical realm, but such a view
might be limited when one considers a larger purpose for the role of argumentation, reasoning, and
proof in the society. These considerations would ultimately affect the teaching and learning of proof
as a way to achieve certain societal goals. However, a first step in this direction is clarifying what
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we mean by argumentation and proof. This critical question has been historically addressed by
TWG1 members since the group was established back in 1998, however the focus of the discussion
has shifted from trying to reach a consensus towards identifying key features and factors that affect
our understanding of the concepts of argumentation and proof. Specifically, the group discussed the
cultural origins of our perception of proof, including cultural differences in what types of arguments
are considered as proof. In this regard, the role of proof by contradiction has been a focus of several
group discussions fostered by the papers of Turiano and Boero, and of Hamanaka and Otaki.

Another key feature of argumentation and proof addressed by the group participants was the
relationship between logic and proof with connection to socio-cultural linguistic structures. The
different grammar and/or syntax of different (natural) languages may affect the transition between
oral and written communication, influence how students understand statements, their proofs, as well
as the relationships between definitions and proofs. These issues were reflected in the works of
Hein, of Kempen, Tebaartz and Krieger, and of Dilberoglu, Haser, and Cakiroglu. Furthermore, the
influence of culture and language on the perception of proof was considered broadly in the TWG1
discussions, as initiated by various papers, including those of Stubbemann and Knipping, of
Asenova, and of Shinno, Miyakawa, Mizoguchi, Hamanaka, and Kunimune. Reference was made
not only to the differences between countries and languages, but also to the differences between
formal and informal uses of argumentation and proof, as well as to the use of natural logic in
everyday life contrasted with academic settings that require greater formalism. Further distinctions
were made with regard to its use in pure mathematical courses and in teacher preparation courses.

It is important to consider the relationships of argumentation and proof with society, in particular,
when considering the goals of teaching proof to pre-university students who are the citizens of the
future societies. Why foster proof? Is our goal mainly technical or do we, as a society, seek to
influence students’ thinking about how (mathematical) truths are established and, hence, do we
mean to foster critical reasoning (for example, when making inferences about statistical data as
illustrated in the study of Krummenauer and Kuntze)? Though the group seemed to agree that
logical reasoning, argumentation, and proof might provide students with valuable tools for active
citizenship, the question of appropriately developing those reasoning competencies to foster a
harmonious transfer within and outside of mathematics remains open.

Argumentation and proof in school

The second broad topic, argumentation and proof in school, was a common theme in many of the
papers and posters presented in the group, but from different perspectives. In particular, the
following four perspectives were raised in the discussions across the presentations.

Why foster proof? Besides the above-mentioned societal considerations and the fact that proof is
central to modern mathematics, the explanatory role of proof, as discussed in the paper of Miller-
Hill, is also prominent in school mathematics. The reasoning behind teaching mathematical proof to
all students, however, needs to be more clearly conceptualized and justified.

What is proof? There are different understandings of what proof is or can be, depending on personal
experience, but also on factors such as specific area of mathematics considered and/or the
educational level — primary school students’ reasoning (see for example Jablonski and Ludwig’s
contribution) is very different from secondary school students” work on geometry. Proof requires
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mathematical meta-knowledge (see, for example, Stubbemann and Knipping’s paper), and our
group discussed that it would be valuable to develop instructional approaches that promote learners’
meta-mathematical knowledge in proving.

Role of the teacher. It is the teacher who, implicitly or explicitly, implements different socio-
mathematical norms in a classroom, highlights key ideas in work with proof and can assign value to
certain perspectives in mathematics. The studies of Lee, of Bersch and of Lekaus take up different
aspects of teachers’ views on the role of argumentation and proof in, respectively, Hong Kong,
Germany and Norway, while Larsen and @stergaard discuss how teachers’ questioning influences
students’ opportunities to reason. Moreover, the role of the teacher with respect to both the official
and shadow education systems was considered in the study by Moutsios-Rentzos and Plyta. Despite
the teachers’ efforts, proving is difficult for students to learn and master, and, as a result, students
often struggle with it and may not value work on proof in mathematics classrooms. Studies in
TWG1, such as the one by Yan and Hanna, provide an insight into students’ views about proofs.

Task design — how can it foster proof? There are several critical questions to be considered in
designing of proof tasks: For whom? For what purpose? In what culture? Tasks need to be designed
in order to foster the need for arguments, as discussed for example in the study presented by
Cramer. Kempen, Tebaartz, and Krieger examine in their study how the phrasing of a proving task
influences students’ proof productions, while Komatsu, G. Stylianides, and A. Stylianides propose
principles for the design of tasks that promote assumptions in mathematical activity. However,
promoting reasoning and proving in school demands more than good tasks, as for example shown in
the study of Buchbinder and McCrone. To support teachers’ practices, there is a need for
appropriately designed material that help teachers to enact the tasks in classroom.

Argumentation and proof in research

During the conference, there were many discussions on argumentation and proof in mathematics
education research. A main issue concerns methodological challenges and the choice of theoretical
models in approaching the proof and proving phenomena, including theorising and analysing.
Toulmin’s model has been used widely in mathematics education research projects on proof and
proving (see paper by Jablonski and Ludwig). Due to its frequent application, the reasons for using
this model in a given research are not often discussed. We collectively agreed on the importance of
justifying methodological decisions for several reasons. First, the epistemic dimension of the
mathematical subject area involved in the research and the role of data in the model are depending on
the subject area (e.g. statistical versus geometrical reasoning). Finally, Toulmin’s model has not been
developed to be applied specifically for mathematics. While an advantage of this model lies in its
opportunities to connect everyday argumentation to mathematical argumentation, in some cases (e.g.
for looking at logical relations) other models more mathematically-oriented might be more suitable.
These questions have been discussed in this TWG in previous CERMEs, as presented in Chapter 6 of
the ERME anniversary book, Developing research in mathematics education, were the authors recall
the proposal by Boero and his colleagues to articulate Toulmin’s model with Habermas’s rationality
model (for the latter see Boero and Turiano’s paper). Considering proof at the interface between
mathematics and computer sciences raised also the need for appropriate methodological tools such as
that developed in the paper by Modeste, Beauvoir, Chappelon, Durand-Guerrierl, Ledn, and Meyer.
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When we move to proof at elementary school level, new questions arise, necessitating to reconsider
the definition of proof and the possibility to identify students’ practices that can be qualified as proof
and proving. Epistemological considerations motivate the consideration of proof at the elementary
school level: looking for what is invariant is at the core of doing mathematics and, thus, proof is
important at all grades. Nevertheless, we need to conceptualize proof in a broader meaning to discuss
its role and possibilities in elementary school mathematics. In this respect, the work by Balacheff on
the Theory of Didactical Situations and Lakatos’ work on Proofs and Refutations may offer an
appropriate proof development from the empirical to the intellectual through the generic. There seem
to be few studies recognizing and investigating opportunities for proof and proving in the elementary
school (see, for example, the works of Arnesen, Enge, Rg, and Valenta, and of Datsogianni, Ufer,
and Sodian).

Conclusions and Future Directions for TWG1

We believe that the TWG on argumentation and proof has offered the participants the richness of
diversity in this research domain and the opportunity for fruitful discussions. In the last session of
the TWG, the participants engaged in a discussion to identify areas in which they would like, and
hope, to see more research in future CERMEs. The following areas were identified:

The teaching of proof and argumentation in both school and university settings, including in teacher
education with particular emphasis on argumentation and proof at the elementary school level. This
area covered also developmental perspectives and learning trajectories, the study of the classroom
implementation of tasks rich in argumentation and proof, and how teachers can be prepared to
scaffold students’ learning and to respond to unexpected student responses to help develop all
students’ learning of argumentation and proof.

Issues of language in argumentation and proof, including: the role of representations, structure, oral
and written language, the relationship between mathematical language and natural language, as well
as the relationship between the grammatical aspects of language and logic. Due to the complexity of
this question, this could be studied in an international group emerging from CERME, in collaboration
with colleagues involved on this topic in the TWG9 -Mathematics and Language, and with linguists.

Argumentation and proof in policy documents and curriculum frameworks, including the place and
role of argumentation and proof in them, expectations and recommendations, and whether these are
research-informed, etc.

The identification of these broad areas is aimed at describing the state of the art of the field, without
suggesting prioritizing certain areas of research. The TWGL1 is committed to representing the
diversity of perspectives and research areas on argumentation and proof in future CERMEs.

Proceedings of CERME11 103



Thematic Working Group 01

Understanding geometric proofs: scaffolding pre-service mathematics
teacher students through dynamic geometry system (dgs) and flow-
chart proof

Lathiful Anwar®? and Martin Goedhart!

University of Groningen, Faculty of Science and Engineering, Groningen, Netherlands

2Universitas Negeri Malang, Malang, Indonesia; l.anwar@rug.nl

The objective of this paper is to discuss the pedagogic potential that is offered by the use of a flow-
chart proof with open problems and a Dynamic Geometry System in understanding geometric proofs
by pre-service mathematics student teachers at an Indonesian university. Based on a literature
review, we discuss aspects and levels of understanding of geometric proof and how to assess students’
understanding of the structure of deductive proofs, and how the use of a Digital Geometry System
may support students’ understanding of geometric terms and statements, including definitions,
postulates, and theorems. The pedagogic focus consists of exploiting the semiotic potential of a DGS,
especially the use of GeoGebra tools that may function as tools of semiotic mediation to understand
the geometry statements and the scaffolding potential of flow-chart proof with open problems in
identifying the structure of deductive geometry proofs.

Keywords: Understanding, geometry, proof.
Introduction

Proof plays essential roles in mathematics and mathematics education. Proofs help mathematicians
understand the meaning of statements or theorems and their validity within a framework. Through
the process of proving, mathematicians discover or create new results or meanings (Samkoff &
Weber, 2015; Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-Landman, 2012). In the context
of mathematics learning, understanding proof is an essential component of mathematics competence
as it offers powerful ways of developing and expressing mathematical understanding (NCTM, 2000).
However, research has demonstrated that students at all levels have difficulties to deal with
understanding and constructing proofs (Doruk & Kaplan, 2015; Giler, 2016; Knapp, 2005; Weber,
2002).

This paper presents some findings of the literature review we conducted aiming at developing a
theoretical framework, which will underpin the design of a learning intervention. This intervention
will foster understanding of Euclidean geometry proof by mathematics preservice teacher students.
The students are first year students at an Indonesian university and will become teachers for secondary
school. In this stage, students start to learn formal mathematical proof for the first time. This paper
describes the aspects and levels of understanding of geometric proof and elaborate the use of a digital
geometry system (DGS) and flow-chart proof representation as scaffolds in order to understand the
structure of proof based on our literature review findings. We focus on these issues because they are
relevant for our research project regarding the topic (geometric proof in undergraduate level), context
and characteristics of participants, Indonesian university students, who have a little mathematical
proof background.
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Method

This paper presents some parts of the outcomes of our literature study which focuses on the
understanding of proof and the use of DGS and flow-chart proof to support students’ understanding
of proof. The methodological process of the literature study is anasynthesis (coined from the words
analysis and synthesis) adapted from Legendre’s method (as cited in Jeannotte & Kieran, 2017). First,
we create a corpus from a search in three databases of research, namely ERIC, MathEduc, and Web
of Science, and select articles/papers having mathematical proof as keywords or associated keywords
by entering ‘mathematic* proof’ or ‘mathematical prov*’ and ‘geometric* proof’ or geometrical
prov*’ as keywords. It is followed by selection and un-doubling. To assure the quality of the sources,
we characterized the papers regarding their relevance of method and findings for education, quality
of author (the number of citations) and quality of journal (impact factor). By the end of the process,
32 English texts (books, chapters, articles, and research reports in proceedings) constituted the corpus
(modified corpus).

Secondly, the resulting corpus is analyzed for relevant information, namely definitions of
mathematical proof, structure of proof, learning difficulties, interventions, role of teacher, successful
approaches. In order to analyze, we created a matrix of the resulting corpus consisting of four main
aspects: source, research context, method, outcomes/conclusions. Thirdly, the information is then
synthesized to check convergences, divergences, and to identify the theoretical gaps. Underpinned by
this research, we developed a framework and prototype for a teaching intervention to foster
prospective teacher’s geometrical proof competence. We present this process of analysis and
synthesis as linear, but the reader should consider that it is a cyclical process, see Figure 1.

ef:;@#_:@

Figure 1: Cyclic process of an Anasynthesis (adapted from Jeannotte & Kieran, 2017)
Framework underpinning understanding of geometrical proof

While the ability to understand, construct and validate proofs is central to mathematics, student
difficulties with understanding of proof are well-recognized internationally. In order to help students
to understand, teachers need to know levels of understanding to be achieved by their students, and
also potential tools and tasks scaffolding their thinking. This information is helpful for the
teachers/researchers in designing their learning goals and a sequence of learning activities fostering
students’ understanding of proofs. As a result of our literature review, we present, in this part, our
framework regarding aspects and levels of understanding as frameworks to develop an assessment
model to capture students’ understanding of geometrical proof, and, next to that, potential tools and
methods which can be implemented in the classroom intervention to scaffold students’ thinking in
constructing geometric figure, emerging the meaning of geometric concepts, axioms and theorems.

Understanding of geometrical proof

Based on literature on reading comprehension of geometry proofs (Yang & Lin, 2008), the assessment
model of proof comprehension for undergraduate students (Mejia-Ramaos, Fuller, Weber, Rhoads, &
Samkoff, 2012), and students’ understanding of the structure of deductive proof (Miyazaki, Fujita, &
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Jones, 2017), we distinguish three essential aspects in understanding proofs, namely a functional
aspect, a structural aspect, and a communicative aspect. These three aspects are inspired by three
main aspects of proof and proving proposed by Miyazaki et al. (2017): “understanding a proof as a
structural object, seeing proof as intellectual activity and the role, functions, and meaning of proof
and proving” (Miyazaki, Fujita, & Jones, 2017, page 225).

First of all, the functional aspect regards roles or functions of proofs. The ‘function’ of proof means
the meaning, purpose and usefulness of a proof. In the context of learning, students should regard
proof as a meaningful activity, experiencing the functionality (usefulness) of the activities, they are
involved in. Second, the structural aspect refers to the deductive structure of proofs. Miyazaki et al.
(2017) see the structure of a proof as a network of singular and universal propositions between
premises and conclusions, connected by universal instantiation and hypothetical syllogism, see
Figure 2. That means that the singular propositions are universally instantiated from universal
proposition and then these singular propositions are connected by a hypothetical syllogism. Students
need to know the meaning of these terms and statements (e.g. axioms, theorems) involved in a proof,
recognize the status of the statements (e.g. premises, conclusions), to be able to justify the claim.
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Figure 2: An example of flow-chart of proof visualizing the structure of proof
(adapted from Miyazaki, Fujita, & Jones, 2015)

The last aspect, the communicative aspect regards to students’ intellectual activity to read and
comprehend proofs, and to justify and persuade others about the validity of a proof. Through a
validating process, students determine the truth of a proof by line-by-line checking or step-by-step
checking of multi-step proofs using their understanding of the structure of deductive proofs. We
interpret that this level of understanding relates to a holistic comprehension of proof where the proof
is understood in terms of main ideas, methods and applications in other contexts.

Related to the level of understanding, we elaborate two models of understanding of proofs by Mejia-
Ramos and colleagues (2012) and by Miyazaki and colleagues (2017). In their model of levels of
structural proof understanding, Miyazaki and colleagues distinguish three levels of understanding of
proof structure, namely ‘Pre-structural’ level, *Partial-structural’ level, and ‘Holistic-structural’
level. Then, they break down the second level into two sub-levels, ‘Elemental” and ‘Relational sub-
level’. At the first level (Pre-structural), students see a proof as a collection of meaningless symbolic
objects. When students start to consider the components, they are at the second level, particularly the
Partial-structural Elemental sub-level. At the Partial-Structural Relational sub-level, students
understand hypothetical syllogisms and universal instantiations and are able to use theorems, axioms
and definitions as supporting their reasoning. At the third level of understanding (holistic-structural),
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students understand the components, inter-relationships between those components and how to
connect them. Then, they are able to reconstruct the proof and become aware of the hierarchical
relationship between theorems and will be able to construct their own proofs.

Mejia-Ramos et al.(2012) have developed a model of assessment for proof comprehension in
undergraduate mathematics. They distinguish two levels of understanding of proof, namely a local
and a holistic understanding. The local understanding refers to knowing of basic terms and statements
in the proof, knowing the logical status of statements in proof and the logical interrelationship
between them and the statement which will be proved, and able to justify oh how the claims in the
proof follows from the previous statements. Meanwhile, the holistic understanding regards being able
to summarize the main idea of the proof, to identify the sub-proofs and the logical relationship
between them, to adapt the idea and procedures of proof to solve other proving tasks, and to illustrate
the proof regarding its relationship to specific examples.

A semiotic potential of the use of dynamic geometry system (dgs)

In terms of the structural aspects of understanding proof, several studies confirmed that the use of a
Dynamic Geometry System (DGS) may help students not only solve construction problems but also
helped them to understand geometrical postulates, definitions and theorems of Euclidean geometry,
which are elements of the structure of proof (Jiang, 2002; Mariotti, 2012, 2013). Mariotti (2013)
summarized that the semiotic potential of the features of DGS relates to specific mathematical
meanings, namely “(1) the dragging test can be related to the theoretical validation of a geometric
construction, (2) specific tools can be related to specific elements of the corresponding geometry
theory: postulates, theorems; (3) actions concerning the management of the DGS’s menu can be
related to fundamental meta-theoretical actions concerning the construction of a theory, such as the
introduction of a new theorem or a definition.” (Mariotti, 2013, pp. 444-445). In the following
paragraph, we elaborate two studies about the use of DGS in supporting students’ ability in proving.

A study by Jiang (2002) investigates learning processes of two pre-service teachers, Lisa and Fred,
in exploring geometry problems using the dynamic geometry software Geometer’s Sketchpad (GSP)
to develop mathematical reasoning and proof abilities. They use a constant comparison approach in
order to analyze participants’ pre-tests, post-tests, and teaching interviews indicating that the
geometer’s Sketchpad can not only encourage students to make conjectures but also enhances
students’ mathematical reasoning and proof abilities. Particularly, the use of a Dynamic Geometry
System (DGS) improves students’ level of geometric thinking in terms of van Hiele levels (e.g. Lisa’s
level increased from level 3 to level 4) and positively changes students’ conceptions of mathematics
and mathematics teaching. Jiang argues that pre-service teachers’ experience in using DGS to foster
their mathematical reasoning and proof abilities helps them to recognize the need to improve students’
knowledge of geometry, to develop their own mathematical power and their ability to develop
teaching innovations.

A theoretical study by Mariotti (2012) discusses the potential offered by the use of DGS in supporting
and fostering 9" and 10™ grade student’s proof competence in geometry. The theoretical framework
used to support the use of DGS, Cabri Geometer, is her own Theory of Semiotic Mediation (TSM).
In this context, students’ personal meanings emerge and then evolve from personal meanings towards

Proceedings of CERME11 107



Thematic Working Group 01

mathematical meanings, when students use an artefact for accomplishing a task through social
interaction. Particularly, the specific DGS tools can also be related to geometrical axioms and
theorems. Meanings emerging from the use of virtual drawing tools for solving geometry tasks can
be related not only to the theoretical meaning of geometry construction but also the meaning of
theorems.

Mariotti (2012) argues that the DGS could support not only the conjecturing process, but also mediate
the mathematical meaning of conjectures, particularly premises/singular propositions in the context
of geometry proofs. Particularly, the dragging feature provided by DGS (Cabri software) supports the
emergence of different meanings related to the notion of conjecture as a conditional statement relating
a premise and a conclusion. Mariotti also discusses findings by Baccaglini-Frank (2010) focused on
the analysis of the process of exploration that can be expected by using Maintaining Dragging (MD).
Baccaglini-Frank’s teaching experiment involves students from three high schools (aged 15-18),
which used Cabri in the classroom. Mariotti concludes that this teaching experiment indicates that
the DGS tools and dragging activities help students to solve construction tasks and to understand the
notion of theorems; particularly the mathematical meaning of conditional statements such as
expressing the logical dependency between premises and conclusions.

GeoGebra as another DGS is an open-source well-developed tool with a stable interface familiar to
many users and works in any operating system. The software has a number of features such as
dynamic geometry which can help students in steps of problem solving towards a proof (Botana et
al., 2015). Botana et al. (2015) conclude that GeoGebra tools provide some useful features. Firstly,
GeoGebra could not only give yes/no answers but could also show step-by-step explanations.
Secondly, GeoGebra could identify properties on the construction of geometric figures. Thirdly,
GeoGebra could give a counterexample to check the truth of a statement. However, research findings
by Doruk, Aktumen, and Aytekin (2013) show that some preservice teachers highlighted some
limitations, such as difficulties in translating mathematical expressions into GeoGebra. Preservice
teachers thought that GeoGebra is a complicated program and that it would take a long time and needs
a big effort to become competent in GeoGebra.

A scaffolding potential of the use of flow-chart proof form with open problems

A flow-chart proof form is a means to visualize the deductive connections from premises to
conclusion by identifying singular and universal propositions in the chart, see Figure 2. Flow-chart
proofs show a storyline of the proof starting with premises from which the conclusion is deduced and
includes the theorems or/and axioms being used, how the premises/hypotheses and conclusion are
connected, and so on (Miyazaki et al., 2015). Gardiner (2004, cited in Miyazaki, Fujita, & Jones,
2017) claims that this format is a good starting point to learn other formats of proofs such as narrative
proofs and two-column proofs.

Miyazaki, Fujita, and Jones (2012) developed a learning progression based on flow-chart proving
aimed at providing a basis for introducing the structure of proof in Grade 8 school geometry. Based
on the theoretical underpinning of the design, researchers proposed three phases of learning
progression: (1) constructing flow-chart proofs in an open problem, (2) constructing a formal proof
by reference to a flow-chart proof in a closed situation, (3) refining formal proofs by placing them
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into a flow-chart proof format in a closed situation. The term ‘open’ refers to a situation where
students can construct more than one suitable proof. In the open problem task, students are given a
conclusion of the proof in the form of flow-chart proof format, and they are asked to determine the
suitable statements to fill in the blank boxes of the flow-chart so the proof is complete. Based on three
phases of learning progression, the authors designed nine lessons considering open/closed situations,
varying steps of deductive reasoning, and different problems and contexts. The results from a Math
test of Japanese Survey Item shows that students who followed the nine lessons are more likely to
plan and construct a proof in accordance with their plan. This is due to (a) their experience with open
problems that encourage them to think backward and forward to identify assumptions and conclusions
in proof, (b) they could grasp the structure of proofs better through using flow-chart proofs.

Another research by Miyazaki et al. (2015), as follow-up of their previous study (Miyazaki, Fujita, &
Jones, 2012), showed the role of flow-chart with open problem as scaffolding to support Grade 8
students’ learning about geometrical proofs. The results of data analysis of students’ activities during
a classroom intervention indicates that flow-chart proof with open problems as scaffolding enhances
students to understand the structure of proof by providing a visualization of both the connection
between singular propositions (via hypothetical syllogism) and the connections between a singular
proposition and the necessary universal proposition in the form of universal instantiation.

Concluding Remarks

We distinguish two levels of proof understanding which are proposed by Mejia-Ramos et al.: a local
understanding related to knowing the definition of basic concepts/terms, knowing the logical status
of statements in proof, knowing how and why each statement connects to previous statements. and a
holistic understanding when students are able to summarize the main idea of the proof, to identify
the sub-proofs and how these relate to the proof structure, to transfer the idea of proof to others, and
instantiate the proof with examples (Mejia-Ramos et al., 2012; Miyazaki et al., 2017). Classroom
interventions, supporting students’ activities in understanding the structure of proofs including the
elements of proofs such as singular propositions (premises/geometric statements), universal
proposition (geometric definition, axioms, theorems) and hypothetical syllogism (the inter-
relationship of these elements), are needed to help students reach both levels of proof understanding.

Several studies confirmed that the use of a Dynamic Geometry System (DGS), such as Geometer’s
Sketchpad, Cabri and Geogebra, may help students not only solve construction problems but also
may help them identify properties on the construction of geometric figures, understand geometrical
axioms, definitions and theorems of Euclidean geometry, which are elements of the structure of proof,
and universal propositions (Botana et al., 2015; Jiang, 2002; Mariotti, 2012, 2013).

The use of the flow-chart proof form may provide opportunities for students to understand the
structure of proof and may help students identify the components of proofs and the inter-relationship
among the components (Miyazaki et al., 2015; Miyazaki et al., 2017). The use of open problems
provides an opportunity for students to construct multiple solutions by deciding about the given
statements and intermediate propositions necessary to deduce a given conclusion. This ability
promotes student thinking forward and backward interactively when constructing a proof under the
flow-chart proof format (Cheng & Lin, 2007; Heinze et al., 2008).
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A study by Miyazaki et al. (2017) suggests that the level of understanding of the structure of proof as
a part of local understanding should be taken into consideration in designing an effective learning
intervention. Mariotti (2012) also recommends future research to better describe how the complex
web of meanings emerging from activities with the DGS may be transformed into mathematical
meanings such as geometric definitions, axioms and theorems. Hence, the findings presented in this
paper indicate our future promising research direction for the study on designing a learning
intervention which implements the use of DGS, GeoGebra, as semiotic tools and flow-chart proof
format as a scaffolding tool to support a local and holistic understanding of prospective mathematics
teachers who have little mathematical proof background.
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Initial participation in a reasoning-and-proving discourse in
elementary school teacher education

Kristin Krogh Arnesen, Ole Enge, Kirsti Rg and Anita Valenta
Norwegian University of Science and Technology; anita.valenta@ntnu.no

Based on a commognitive framework, we analyse the reasoning-and-proving processes of two
teachers, and we identify the actions and routines that are visible when working on a given task. The
data consist of video recordings of the teachers’ attempts to validate a stated hypothesis involving
multiplicative reasoning. Six categories of what characterises the teachers’ initiation into a
reasoning-and-proving discourse are identified. The findings reveal that some actions related to
substantiation routines seem to be applicable for novice teachers. Examples of this include
questioning validity and the use of words related to deductive reasoning. However, the teachers’
participation in the discourse is characterised by ritualised actions, as in their use of visual
mediators. Furthermore, the analysis discloses the teachers’ tendency to use construction-related
actions in what was designed to be a validating activity.

Keywords: mathematical discourse, reasoning and proving, elementary school teacher education
Introduction

Reasoning and proving are central aspects of mathematics as a discipline, and many researchers have
argued that they should be a central part of school mathematics at all grades and in all topics. In this
paper, we use a broad definition of the word proof (Reid, 2010), to denote mathematical reasoning
involved in the process of making sense of and establishing mathematical knowledge. Hence, we
follow Stylianides (2008), who used the term °‘reasoning-and-proving’ to denote the activities
involved in this process: identifying patterns, making conjectures and providing arguments.

The reasoning-and-proving process is difficult to learn and difficult to teach. In exploring ways to
teach proof, a number of studies have shown the crucial role that a teacher plays in helping students
identifying the structure of a proof, presenting arguments and distinguishing between correct and
incorrect arguments (see e.g. Stylianides, 2007). Researchers have found that elementary school
teachers tend to rely on external authorities, such as textbooks, college instructors or more capable
peers, as the basis of their conviction. They also believe it is possible to affirm the validity of a
mathematical generalisation using a few examples (see Martin & Harel, 1989). Similarly, Stylianides,
Stylianides, and Philippou (2007) revealed that pre-service teachers had two main types of difficulties
with proof: the lack of understanding of the logic mathematical underpinnings of different modes of
argumentation and the inability to use different modes of representations appropriately.

As exemplified above, research in mathematics education has shed light on different aspects of pre-
service teachers’ work on reasoning-and-proving, such as their beliefs related to proofs and proving,
the challenges they face when deducing proofs and their use of modes of reasoning. However, more
knowledge is needed about how pre-service teachers learn to teach reasoning-and-proving, as well as
how teacher education can support their learning. A vital part of teachers’ learning how to teach
reasoning-and-proving is learning how to reason and prove in school-relevant mathematical areas
(e.g. multiplicative reasoning). That learning is the topic of our study.
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We examine two elementary school teachers’ work on a reasoning-and-proving task during a
professional development course. Like Remillard (2014), we consider mathematics to be a specific
type of discourse where reasoning-and-proving is essential. Thus, mathematics learning is seen as
participation in the discourse (Sfard, 2008). The two teachers whose work we analyse have limited
experience of reasoning-and-proving in mathematics, and we are interested in their initiation into that
discourse. Our research question is: What characterises two in-service teachers’ initial participation
in a mathematical discourse on reasoning-and-proving in elementary school teacher education?

Theoretical framework

Within a commognitive framework®, Sfard (2008) take the position that learning mathematics is
learning to participate in a specific discourse. Here, discourse is a special type of communication
within a specific community that is made mathematical by that community’s use of words, visual
mediators, narratives and routines. The use of words in mathematics includes the use of ordinary
words that have a special meaning in mathematics, like function and proof, and mathematical words,
like fraction and axiom. Furthermore, people participating in mathematical communication use visual
mediators to identify the object about which they are talking. These visual mediators are often
symbolic, but they also include graphs, illustrations and physical artefacts. Within a discourse, any
sequence of utterances, spoken or written, that describes the properties of objects or the relationships
between objects is called a narrative. Mathematical narratives can be numerical, e.g. “Y%2 is equivalent
to 2/4”, or more general, e.g. “addition is commutative”. Narratives are subject to endorsement or
rejection, that is, being labelled as true or false, based on specific rules defined by the community.
Endorsement of narratives is the main goal of the mathematics discourse; this includes the processes
of constructing new endorsable narratives, substantiating them and recalling them in new situations.

Routines are well-defined practices that a given community regularly employs in a discourse. Sfard
(2008) describe routines as patterns that are guided by two sets of rules: those telling the participants
how to act, and those indicating when to do the given action. In contrast to rules on the object-level,
which describe regularities on actions on and relations of objects, routines describe the participants’
patterns of actions in a given discourse, and they can be considered to be rules on a meta-level. Lavie,
Steiner, and Sfard (2019) emphasise the role of routines when participating in a specific discourse,
and they suggest that learning routines can be seen as the routinisation of actions in a given discourse.
Thus, on their way to new routines, learners must pass, if only briefly, through the stage of ritualised
performance or imitation (Sfard, 2008). Here, rituals are understood to be socially oriented; they are
acts of solidarity with co-performers. At this transitory stage, learners may become very familiar with
the how of the new routine, but they will be much less aware of when it is used.

Our research question focuses on participation in a mathematical discourse on reasoning-and-proving,
involving the processes of identifying patterns, making conjectures and providing arguments for
whether or not conjectures are true. Hence, from a discursive stance, we are primarily interested in
the routines associated with the construction and substantiation of narratives. New narratives are
constructed mainly through operations on previously endorsed narratives. To substantiate a
constructed mathematical narrative, one produces a proof—a sequence of endorsed narratives, each

! The term “commognition” is a combination of the words “communication” and “cognitive”, and it stresses that thinking
is a way of communicating with oneself and others.
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of which is deductively inferred from previous ones, the last of which is the narrative that is being
endorsed. Thus, learning to reason and prove in mathematics is about individualising both the when
and the how of the construction and substantiation routines. In this paper, we focus on substantiation
routines as framed by a task in which a hypothesis is already given.

To obtain insight into how individuals learn about reasoning-and-proving, it is useful to delineate the
possible patterns of the processes and actions involved in constructing and substantiating narratives.
Applying a commognitive perspective, Jeannotte and Kieran (2017) have developed a conceptual
model of mathematical reasoning based on exhaustive analyses of mathematics education research.
They propose the following definition of mathematical reasoning through commognition lenses:
“Mathematical reasoning processes are commognitive processes that are meta-discursive, that is, that
derive narratives about objects or relations by exploring the relations between objects” (Jeannotte &
Kieran 2017, p. 9). Because their notion of mathematical reasoning involves proving, it coincides
with our use of reasoning-and-proving. However, we use the latter to indicate that we look at a special
kind of reasoning that is used when validating mathematical hypotheses, as mathematical reasoning
per se does not necessarily include proving. Furthermore, Jeannotte and Kieran (2017)
distinguishbetween processes related to the search for similarities and differences and processes
related to validating. Searching for similarities and differences includes generalising, conjecturing,
identifying a pattern, comparing and classifying. All these processes infer narratives about
mathematical objects or relations (although on a partly different basis); thus, they are related to the
routine of constructing narratives (Sfard, 2008). The processes related to validating include
validating, justifying, proving and formal proving (defined inclusively, with an increasing degree of
deductive structure and stringency). These processes aim to change the epistemic value (e.g. true,
false) of a given narrative; therefore, they are related to substantiation routines (Sfard, 2008).

This study investigated two teachers’ initial participation based on their utterances and actions in a
mathematical discourse on reasoning-and-proving in elementary school teacher education. We aim
to illustrate how key concepts from the commognitive framework proposed by Sfard (2008) can
provide insight into how mathematics teachers learn about the process of reasoning-and-proving.

Method

The two elementary school teachers, Sandra and Nora (pseudonyms), who participated in the research
study, were part of a professional developmental course in mathematics for teachers in grades 1-7 in
Norway that was held by two of the authors of this paper. Both teachers are 45-50-year-old females,
and both completed general teacher education with less than 15 ECST credits in mathematics
education. Sandra and Nora represent typical teachers attending the course, due to their age,
educational background, gender and having more than 10 years of experience as general teachers.

The course contained materials on mathematics and mathematics education, and it was organised as
six, three-day seminars distributed over one year, in addition to the teachers’ individual work on
literature and assignments. The topics were sense-making in mathematics, pattern seeking and
exploration, use of different representations (e.g. the array model for multiplication) and reasoning-
and-proving (in particular, representation-based proofs). The participants noted that the coursework
invited them to use new ways of thinking about and working with mathematics. This paper presents
an analysis of the data collected through video recordings (in total 24 minutes) of Sandra and Nora
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working on a task (Teddy’s hypothesis, see Figure 1) on the second day of the fourth seminar of the
course. The day before data collection, the topic was multiplication: different properties, strategies,
models and reasoning-and-proving.

The task was chosen for the purpose of reasoning-and-proving, starting with a hypothesis proposed
by Teddy, an imaginary student (Figure 1). The first step of the task (part a) involves validation of
the hypothesis; the second step of the task (part b) entails both stating and validating the new
hypotheses. In our analysis, we study validation processes, as exemplified by Sandra and Nora’s work
on the first step of the task (part a).

Teddy is a grade 5 student. He and his classmates are working on square and cubic numbers. After completing some
tasks, Teddy says to the teacher: “Look here, if you multiply ... take two numbers and multiply... and both numbers
end with 5... then the result also will end with 5”.

a) Give a proof that shows that Teddy’s observation is correct for all such numbers.
b) The situation can be used to propose and solve other problems, for instance:
1. Isitonly when both numbers end with 5 that the result ends with 5?
2. Does the result hold only for 5, or when two numbers ending with the same digit are multiplied, does the
product also end with that same digit?
3. Which digits can square numbers end with?

Figure 1. Teddy’s hypothesis task (adapted from Skott, Jess, & Hansen, 2008, pp. 223-224)

Teddy’s hypothesis can be proved by using a generic example and array model of multiplication.
Given any two numbers, both ending with 5, say 125 and 35, one can use the array model for
multiplication to represent the multiplication 125x35, as shown in Figure 2.
100 20 5
30 100=30 | 20= 30 | 5 =30

5 100 x5 | 205 o X

4y

Figure 2. The array model for multiplication used in a representation-based proof of the hypothesis

Every cell in this array, except the cell with 5x5, is a multiple of 10. Thus, these cells do not contribute
to the ones in the product. Only the cell with 5x5 does, and since 5x5 equals 25, we find that the
product ends with 5. There is nothing special about the two numbers (35 and 125) in the example.
The product of any two numbers both ending with 5 will have the same structure; thus, the number
resulting from such a multiplication will end with 5.

Data analysis

The video recordings of Sandra and Nora’s work on the task were transcribed, and then coded. The
coding was guided by the research question. The aim was to describe the actions and utterances in
the teachers’ work, rather than to evaluate the mathematical and logical correctness of their
arguments. Four researchers made a descriptive coding of the collected data, individually (Miles &
Huberman, 1994). Next, the researchers compared and contrasted their coding and grouped the codes
into six categories describing the two teachers’ reasoning-and-proving efforts. The following
categories were agreed upon: confirming; proposing hypotheses; questioning validity; warranting;
searching for patterns; and making drawings.

To illustrate the categories and our findings, we present the teachers’ work from part a of the
hypothesis task. However, the above-mentioned categories apply to the teachers’ discussions on all
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the given tasks. The teachers’ utterances are sometimes imprecise and difficult to interpret, and we
tried to preserve this in the translation. In the analysis presented below, we use italics to emphasise
the categories.

Sandra and Nora start their work by reading the hypothesis proposed by Teddy.

1 N: It is true, what he says.

2 S: Yeah.

3 N: So, the argument is correct.

4 S: Yes, itis, eh; but it’s more. It works for all odd numbers; so, the answer is 5.

5 N: Yes, exactly.

6 S: As long as one is a 5, one of ...

7 N: Yes, in the 5 times table, no matter what you multiply with something with a
5in, then you’ll get a 5 at the end of the answer.

8 S: Yes, ehm ...

9 N: But, that’s also because 5 is an odd number.

10 S Yeah, but do you have an argument that shows that Teddy is correct? Yes, it

is, but is it ... is it enough? Now, we have actually, sort of gone further.

The category confirming in our analysis is a social act of support. Examples of this are seen in turns
[2] and [5]. Furthermore, two new hypotheses are proposed in this excerpt of the discussion, one in
turn [4] and another in [7]. Both hypotheses are related to Teddy’s, but they are partly different, as
[4] is more general than Teddy’s hypothesis and [7] concerns properties of the 5 times table. In turn
[9], the teachers warrant the hypothesis stated in turn [7]; in turn [10], they question the validity of
Teddy’s hypothesis. A few turns later, the discussion continues, as follows:

17 N Because, eh, when you, right, in the 5 times table [S: Yeah], when you

multiply with an odd number, you’ll always end with 5, [S: Yeah] the answer
will, the sum will always end, the answer will always be 5, thus ...

18 N: And, anything that ends with 5 is an odd number, so if you multiply... 35 is
an odd number, right.

19 S Yes, yes, because of the 5.

20 N: Yes, so because of the 5 there it will be an odd number.

21 S Yeah.

22 N: And, therefore, it will end with 5.

23 S Yeah.

24 S Yeah, but, but, if one should have made such a, representation-based proof

for it, is that what they want? Or is it enough that we ... it is probably not

enough that we say this. [N: [laughs]] Believe me [in English].
In the utterance in turn [17] a new hypothesis is proposed (stating that when multiplying any odd
number by 5, the product always ends with 5), which can be seen as a generalisation of the hypothesis
proposed in turn [7]. At the same time, the purpose of the utterance in turn [17], and also several other
utterances in this excerpt ([18, 19, 20, 22]), is warranting, as recognised by their use of the words
“because” and “therefore”. The utterance in turn [24] questions the validity of the argument given
(“is it enough”). Following her own request for a representation-based proof, Sandra is making
drawings of arrays on a sheet of graph paper (Figure 3).

Proceedings of CERME11 116



Thematic Working Group 01

26 S Yeah, but if you have a, 1-2-3-4-5, [N: Yes] (draws a 1x5 array on the sheet),
that’s there. How do | draw this here, then? Eh ... So, you have ... (draws a
2x5 array)

27 N: So, each 5 you’ll get... Now, there it is an even number. [S: Yeah (draws a

3x5 array)] Then, there is an odd number.

28 S Yeah, do we get a ... pattern? (draws a 4x5 array)

29 N Yes... even number.

30 S Yeah (draws a 5x5 array).

Figure 3. Sandra’s drawings for part a of the hypothesis task

31 N: Odd number.

32 S Yeah. But it’s a ... eh, even number (writes e below the 1x5 array). No,
(corrects to the letter o below the 1x5 array) odd number. Odd number plus
odd number is always ... even number [N: even number, yeah] (writes o+o=e
below the 2x5 array. And here it’s [N: odd number] odd number plus odd
number plus odd number, equals odd number (writes 0+0+0=0 below the 3x5
array, then o+o+o+o=e below the 4x5 array)

33 N And five is an odd number.

34 S Yeah, ... Shall we drop this now, and try the next question?

While drawing the arrays, the teachers are searching for patterns. The patterns they discuss concern
even and odd numbers in the 5 times table [32]. After turn [34], the teachers leave the task in step a,
and proceed to step b. It is not clear if they are dissatisfied with the pattern discovered or if they are
finding it difficult to identify a way to use the pattern to prove the hypothesis in turn [17] or Teddy’s
hypothesis, when they choose to leave the task.

Results and discussion

Our analysis shows that Sandra and Nora use several actions related to construction and substantiation
routines. According to Sfard (2008), one of the distinct characteristics of discourses is the keywords
that are used. In a mathematical reasoning-and-proving discourse, these keywords relate to deductive
reasoning, which is “the only form of reasoning that can change the epistemic value of mathematical
knowledge from likely to true” (Jeannotte & Kieran, 2017, p. 8). Sandra and Nora use words that are
distinctive of a reasoning-and-proving discourse, namely their warranting of statements by their use
of the word “because” followed by “then” or “therefore”, as seen in excerpts [18-23]. Moreover, the
teachers question the validity of the arguments they provide, and they make drawings and search for
patterns. In general, the use of drawings as visual mediators is one of the main aspects of mathematical
discourse, and its role in reasoning-and-proving was emphasised in the professional development
course. Sandra and Nora’s drawings and their search for patterns is initiated by their act of questioning
the validity of the arguments, which is part of the process of convincing (oneself or another) and is
fundamental to mathematical reasoning (Jeannotte & Kieran, 2017).

At the same time, Sandra and Nora’s explicit reference to representation-based proving (as seen in
statement [24]), within the framework of Sfard (2008) and Lavie, Steiner, and Sfard (2019), indicate
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that the teachers’ participation is ritualised. As previously explained, rituals are understood to be
socially oriented; they are acts of solidarity with co-performers or authorities. With their questioning
of validity, Sandra and Nora express what they assume to be expected by the community, i.e. the
teacher educators, regarding substantiation routines (*“is that what they want?” [24]). The making of
drawings and the search for patterns emerge in the teachers’ work as a result of stating this question.
This stands in contrast to questioning validity on the basis of the given hypothesis and a discussion
of what narratives can be considered to already be endorsed by the community. Apart from the
question referring to the teacher educators, Sandra and Nora also frequently confirm each other’s
contributions. Because their questioning of the validity and confirming each other’s statements
appears to be an attempt to gain social acceptance rather than their need to support and strengthen
their substantiation of Teddy’s hypothesis, their initial participation in the reasoning-and-proving
discourse appears to be ritualised.

Our analysis also reveals ritualised participation in terms of how to act, in particular, how to use
drawings. As shown in Figure 3, Sandra has made a drawing based on her own request for a
representation-based proof of Teddy’s hypothesis. The drawing and the following search for a pattern
are related to the teachers’ hypothesis (as seen in [17]), and not Teddy’s hypothesis. Nevertheless,
the chosen drawing does not advance the teachers ‘reasoning-and-proving process.

Sandra and Nora’s actions related to construction and substantiation of narratives also indicate
ritualised participation in terms of when to do a given action. As previously discussed, meta-
discursive processes of reasoning-and-proving can be divided into processes of searching for
similarities and differences (constructing narratives) and validating processes (substantiation of
narratives). Throughout Sandra and Nora’s conversation, these processes seem to intersect: several
actions that they use, e.g. proposing hypotheses and searching for patterns, are mainly related to the
processes of construction of narratives, and they are not appropriate for modifying the epistemic value
of a narrative from likely to true. In a substantiation routine, a sequence of endorsed narratives is
used, each of which is deductively inferred from previous narratives. Sandra and Nora propose several
new hypotheses during their work (e.g. in [17]), and they are not explicit about whether the new
narratives are (or can be seen to be) endorsed by the community and how they connect to Teddy’s
hypothesis. Moreover, Sandra and Nora search for patterns related to even and odd numbers, and it
seems that the aim of this action is proving a hypothesis given in [17]. However, their search for
patterns does not help them validate the hypothesis, and they leave the task. It is worth noting that the
teachers’ use of actions related to the construction of narratives happens, even though the Teddy’s
hypothesis task was designed to direct the teachers to participate in the validating process.

Conclusions and implications

Ritualised participation and challenges in knowing how and when a given action can be used are not
surprising results when studying novices’ initial participation in a given discourse (Sfard, 2008). Yet,
within the frames of commognition, we have highlighted that some reasoning-and-proving actions
seem to be more visible and applicable for novice participants than other actions; thus, they are easier
to imitate. The teachers in this study employed several actions that are not directly related to
substantiation but are regularly applied in a mathematical discourse. They search for patterns, propose
a hypothesis and make drawings. They also perform actions related to substantiation routines, such
as warranting and questioning validity. Yet, other actions related to substantiation of narratives seem
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to be more hidden. For example, being critical is central to substantiation routines; however, Sandra
and Nora continuously confirmed each other’s contributions.

Moreover, the analysis discloses the two teachers’ tendency to use construction-related actions
(searching for patterns, proposing hypotheses) in what was designed to be a validating activity. Thus,
the findings imply a need in teacher education to be more explicit about what actions are specific for
reasoning-and-proving, and also, to be explicit about changes in actions when moving from
construction to substantiation of narratives.

In this paper, we have reported on the characteristics of two in-service teachers’ learning of reasoning-
and-proving in a professional development context in the field of elementary education. Nevertheless,
our study is limited by the number of participants, and further research from a commognitive
standpoint is needed to shed more light on elementary education teachers’ learning of reasoning-and-
proving. For example, longitudinal studies are needed to learn more about teachers’ evolving routines.
Another topic for further research is the role of visual mediators in a reasoning-and-proving context,
and how participants can routinise the use of visual mediators in the discourse.
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Introduction

Bachelard (1938) identifies in the act of knowing the causes of stagnation of the evolution of scientific
thought; he calls the psychological causes of inertia in this evolution epistemological obstacles.
According to the author (Bachelard, 1938), the epistemologist must endeavor to grasp the scientific
concepts in an actual, i.e. in a progressive, psychological syntheses, establishing, concerning every
notion, a scale of concepts, which shows how one concept has produced another; moreover, the
epistemologist must necessarily take a normative point of view, while the historian usually has to
avoid it, and what must attract his attention and guide his research is the search for rationality and
construction in the evolution of scientific thought. “The epistemologist must take the facts as ideas,
inserting them into a system of thoughts. A fact misinterpreted in an era remains a fact for the
historian. It is, at the discretion of the epistemologist, an obstacle, it is a counter-thought” (Bachelard,
1938, p. 17). It is clear that in the construction of the epistemological trajectory it will not be possible
to provide (nor would it make sense to ask for) a proof of uniqueness; what such a reconstruction can
produce is an argument, effective because of its coherence and its explanatory capacity, which
testifies in favour of its one existence.

Brousseau (1989) gives to the concept of epistemological obstacle the meaning of knowledge (not a
lack of knowledge) that has been effective previously, in a given context, which at a certain point
begins to generate answers judged to be false or inadequate and produces contradictions. Moreover,
an epistemological obstacle has the characteristic of being resistant and of presenting itself
sporadically even after having been overcome; its overcoming requires the passage to a deeper
knowledge, which generalizes the known context and requires that the student becomes explicitly
aware of it (Brousseau, 1989). According to Brousseau (1989), this reasoning can be applied to
analyse either the historical genesis of knowledge or its teaching or the spontaneous cognitive
evolution of student’s conception. The search for epistemological obstacles can occur using two
approaches: the first is, according to Bachelard, based on historical research by adopting an
epistemological lens; the second one is based on the search for recurring errors in the learning process
of a mathematical concept; the two research lines are intertwined: the historical-epistemological
evolution can help in the identification of possible hidden models and can provide suggestions on the
construction of appropriate learning situations to overcome a given obstacle; on the other hand,
students’ errors and recurring difficulties can suggest the presence of epistemological obstacles.
Given students' enormous difficulty in understanding proof, it seems to us that the identification of
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possible epistemological obstacles can be useful in teaching and learning practice and, even before,
in teachers’ training, providing awareness of teachers’ own epistemology and of the possible gap
between their own and students’ conceptions.

The historical-epistemological investigations on the concept of proof are not new in Mathematics
Education. Barbin (1994) traces briefly a history of proof, highlighting its different meanings in
different eras. The author identifies two fractures, one relative to the convincing-explaining contrast
and one relative to the role of contradiction, but does not clearly highlight the origins of proof as a
conviction from an epistemological point of view; moreover, in the identification of the second
fracture, she assumes that modern axiomatization is the result of a need for greater proof rigor, while
we intend to show that it arises from the very nature of mathematics. Barbin concludes that deduction
constitutes an obstacle and that its overcoming can be achieved through the revaluation of proof as a
method. Another historical analysis that takes at times interesting epistemological aspects is that of
Grabiner (2012), in which the author mainly aims to highlight the non-absoluteness of the concept of
rigor and proof, without however proposing an evolutionary trajectory in which, as Bachelard states,
it should become clear how one conception follows from the other (Bachelard, 1938). A last
contribution that we take briefly into consideration is that of Longo (2012), in which the author
emphasizes the pre-eminence of two fundamental principles for mathematical proof, which have
cultural and historical roots: symmetry and order, and highlights the need for an approach in
opposition to Hilbert’s formalism, which should avoid recourse to actual infinity. Longo’s approach
IS interesting but it is posed in a perspective of synthetic philosophy, which is not however the one
on which the current foundation of mathematics is based.

None of the contributions examined searches explicitly for epistemological obstacles, taking at the
same time a position in line with the current foundational aspects of mathematics, which are those on
which teachers’ training is based on and which are transposed in textbooks. Our aim is to understand
if there is a path in the epistemological evolution of the object proof in the ancient Greek (and then
the Western) tradition that could show changes in the modes proof was considered able to provide
knowledge and about the characteristics of that knowledge.

The epistemological evolution of the concept of proof
Ancient Greek tradition

One of the most interesting aspects of proof in the path of ancient Greek tradition is related to its
origin in an axiomatic system. Even when analyzing various other aspects, Grabiner (2012) identifies
at least the reason of what she calls “a logical proof”, in Greek mathematicians’ need to be able to
prove things that are not evident: “[...] visual demonstration did not suffice for the Greeks. [...]. Such
proofs are necessary when what is being proved is not apparent.” (Grabiner, 2012, p. 148). We believe
that from an epistemological point of view the answer of the question is a bit more complex and
should be searched upstream, in Eleatics’ rejection of the epistemological validity of the experience
of the senses, which led them to assume logical indicators of clarity and necessity as criteria of truth.
We will explain our point of view in the next paragraph, following the original sources.

According to Parmenides, the Being is the only reality and the convincement, in the sense of
persuasion through thought, is the only way that allows us to acquire reliable knowledge. Parmenides’
conception of thought is that of reasoning, of logos, of what can be called “logical reasoning”, which
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produces necessary true conclusions, because when investigating truth (i.e. the Being), we start
always from the Being which is not only an unchanging, indestructible whole, but is also connected:
“observe how what is far away is reliably approached by your mind because it [the mind] will not
separate the Being from the context of Being, nor in such a way that it [the Being] loosen anywhere
in its structure nor in such a way that it masses together. Then Being is indeed connected, regardless
of where | start [the research] that's where I'll be back again.” (Diels, 1906, p. 116). The last sentence
shows exactly the conception of knowledge acquirement in Parmenides: logical reasoning, starting
from necessary true premises is convincing and this kind of convincement is the only way that leads
to knowledge of truth. Instead the way of investigating the Not-Being, which is not necessary, is the
way of opinion linked to the senses: “the only thinkable ways of research are the following: the way
of Being, which is and which is impossible but be, is the way of conviction (since it follows the truth);
but the other one, that it [the Being] isn’t and that this Not-Being is necessary, is a completely
inscrutable path since the Not-Being cannot be neither recognized (it is in fact unfeasible) nor
pronounced” (Diels, 1906, p. 116). The fundamental Eleatic dialectic is then the dialectic between
certain knowledge (and the way of convincement which allows to acquire it) on the one part, and
opinion (and the way of the senses which allows to acquire it) on the other part.

Eleatics used different modes of conviction to carry out Parmenides’ “way of truth”: Zeno of Elea
used the proof by reductio ad absurdum (or proof by contradiction) as method to destroy the
arguments of the opponents showing that their premises led to contradictions, while other Eleatics,
like Melissus, tended to prove arguments also starting from undoubtedly certain premises.
(Cambiano, 2004). Zeno’s way of reductio ad absurdum is coherent with the Eleatic philosophy
because there is not only a distinction of Being (real, true) and Not-Being (not real, false), that
excludes the possibility of a third value, but also the fact that for the Being not be is impossible, that
represents the double negation. Like outlined by Antonini and Mariotti (2008), in the past, starting
from 16" and 17" centuries and up to the 20™ century, there was a debate about the fact that proof by
contradiction collides with the Aristotelian position that causality should be the base of scientific
knowledge and that such a proof cannot reveal the causes since it is not based on true premises. We
state that in the perspective of Eleatic philosophy, proof by contradiction fits perfectly with the role
it has in this philosophy: the role to get knowledge of the truth of a statement by following a
convincing logical thought that shows that it is necessarily so and it cannot be in another way. This
is just what Zeno probably wanted to do, using such proofs, because they are not suitable to explain,
but they are suitable to convince.

The Eleatic dialectic was of great importance for the subsequent development of philosophy and
science. Plato’s thinking was strongly influenced by Parmenides (Cambiano, 2004) and so all the
Western philosophy.

Other important aspects in the epistemological evolution of proof are the roles played by the Megarian
school and by the Sophists. The Megarian philosophical school flourished in the 4™ century BCE and
some of the successors of Euclid of Megara, its founder, developed logic to such an extent,
maintaining the Eleatic epistemological assumptions about the importance of conviction in
knowledge acquirement, that they became a school in its own (Cambiano, 2004).

In the 5™ century BCE the Greek society experienced a period of rapid socio-cultural transformation
that led to a new politic system based on democratic principles; in this new society the need to provide
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education for the children of the emerging classes arose and Sophists satisfied it (Cambiano, 2004).
The ability to convince was considered one of the most important abilities for the citizen who wanted
to participate in the political life of the polis. Sophists wanted to show that with the art of rhetoric and
dialectic, even “weak” speeches could be made “strong”, since it would have been possible to reject
even the most evident statements. This was a turning point to relativism with respect to Eleatic
doctrine because Sophists negates the existence of absolute truth: truth is a form of knowledge always
related to the subject and its experience; they are as multitude of truths as subjects. The dialectic
methods used by the Sophists for their argumentations were the same used by the Eleatics:
confirmation by proof conduced in rigorous logic steps and refusal by proof of the falsity of the
antithesis, but Sophists perfected them; dialectic influenced deeply rhetoric, shifting attention to the
persuasive force of speeches.

The Sophists’ relativism pushed many philosophers, e.g. Plato, to look for a transcendent objective
basis on which to base behavior and moral conduct but also influenced the way of exposing scientific
knowledge, particularly the mathematical one. It becomes clear that the Euclidean axiomatic system
was developed at a time when it was necessary to place mathematical knowledge on unquestionable
bases. This point of view is clearly expressed for instance by Clairaut: “this geometrician [Euclid]
had to convince obstinate Sophists who were proud to reject the most obvious truths” (Clairaut, 1741,
pp. 10-11). Holel remarks furthermore that Euclid’s frequent recourse to indirect proofs is also
motivated by the need to prevent critics due to Sophists’ relativism: “[...] hence his [Euclid's] habit
of always proving that a thing cannot be, instead of showing that it is” (Hotel, 1867, p. 7).

The need to avoid any critic as the tread in organizing the mathematical knowledge can also be
detected in the attention placed by Euclid on avoiding arguments which involve concepts that might
leave some room for criticism, instead of using direct proofs which involve only subjects conceptually
close to the statement to be proved. An example in this sense is the proof of proposition CXVII of
book X of the Elements which states that in a square the diagonal and the site are incommensurable.
In order to prove the statement Euclid uses an indirect proof that involves not only geometrical but
also arithmetical arguments (e.g. concepts of odd and even number, of divisibility etc.) instead of
using the proposition Il of book X, introduced just before, which applies to segments the arithmetical
method used in book V11 to establish if two numbers are coprime (Barbin, 1994). A proof conducted
using the latter method would be direct and would refer only to geometric concepts, but the problem
is that it would involve an infinite procedure and might be exposed to the criticism of who asked what
is, for example, the limit of the succession of squares that is built.

According to Barbin (1994) we can state that Euclid’s main concern is to be able to persuade and to
avoid considerations that might leave room for critiques; an axiomatic system is a good solution to
do this. Of course, the methods that could be applied to isolate the axioms might have already been
highlighted by Hippocrates of Chios, “who wrote the best logically structured Elements of Geometry
until Euclid wrote his own Elements 150 years afterwards” (Grabiner, 2012, p. 150), but the real
motivation to do this should be detected in the philosophical and cultural environment of the time.

In our analysis we cannot avoid to mention Aristotle because of his influence in shaping medieval
scholarship, not only in the Western but also in the Islamic world. Aristotle, starting initially from a
Platonist position, reversed later in a certain sense the ontological question advocated by the Eleatics
and then by his master Plato. Aristotelian ontology, like the Platonic one, distinguishes between
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Universal and Particular, but while for Plato universal forms are separate from particular
manifestations, for Aristotle the Universal is in the Particular and the only way to access the Universal
is through the Particular, using the perception of the senses, in particular the eye, because in
perceiving the world we prefer the sight to all the other senses (Aristotle, 1973). One might wonder
why the Aristotelian doctrines have not changed the idea of proof and why there is no trace of them
in the Elements and why the concept of proof contained in the Elements remained the prototype of
(not only) mathematical proof for a lot of time. We can say that while the ontological aspect is
reversed, Aristotle’s epistemology remains similar to the Platonic one. Indeed, both, Plato and
Aristotle, are interested in the knowledge of Universals though the way to reach them is different:
Avristotle’s empirical approach is linked to exploration, which can also refer to induction or abduction,
but its aim is to arrive at “true” knowledge; this last way is nonetheless deductive and proof is the
final step of the process of knowledge acquirement (Cambiano, 2004).

Enlightenment and the *“small steps”: the first crisis

Until the 17" century the concept of proof in mathematics remained linked to the idea of proof in an
axiomatic system such as that of geometry presented in Euclid’s Elements, even if, due to the lack of
adequate mathematical tools, attempts to axiomatize other fields of mathematics remained sporadic
and ineffective for a long time (Lolli, 2004). The 17" century was a particular historical and cultural
period during which there were a lot of important discoveries and innovative and courageous stances
in science. Alongside of Galileo’s scientific method, new general mathematical methods were
developed in order to satisfy the need to describe the physical phenomena, like Cavalieri’s principle
of indivisibles, the Cartesian method, Newton’s method, Monge’s projective method etc. In these
rapid innovations the ancient Greek writings, first of all Euclid’s Elements, were exposed to a hard
criticism by the mathematicians. They accused ancient Greek geometer to be more interested in
persuasion and in validation than in explanation and discovery. What is criticized is not the content
but the form, the setting and the role attributed to proof. In Arnauld’s and Nicole’s La logique ou I’art
de penser the authors expose the widespread feeling among their contemporaries summarizing as
follow the errors attributed to Greek geometers: (1) to pay more attention to certainty than to evidence
and to the conviction of the mind than to its enlightenment; (2) to prove things that have no need of
proof; (3) to demonstrate by impossibility; (4) to conduce far-tetched demonstrations; (5) to pay no
attention to the true order of nature; (6) to employ no divisions and partitions (Arnauld & Nicole,
1850). The critiques are basically two. The first, which contains the first four errors, concerns the
single results and can be summarized in the question: “Is it more important to convince or to
enlighten?”. The second, which involves the whole structure of the text, is the accusation of a lack of
method (the sixth error can be regarded as the consequence of the fifth one).

With regard to the new methods elaborated by mathematicians during the 17 century there was an
important epistemological aspect that mathematicians of the time were already asking themselves:
the problem of the validity of the new methods. Barbin summarizes as follows the doubt in this regard:
"these methods illuminate, clarify the spirit, as they show the way to which we have passed and lead
to evidence [...] but what is made evident can be considered as demonstrated?” (Barbin, 1994, p. 223).
Thus, for example, Cavalieri’s method of indivisibles, which already carried the idea of the integral,
aroused some suspicion because of its resort to actual infinity, despite its operational superiority
compared to Archimedes” method of exhaustion.
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One method that initially does not raise suspicion was instead the Cartesian method which essentially
led to a general algebraic conception of proof. The method described by Descartes in his Discours de
la Méthode (1966), his small steps, his long chains of reasons, all simple and easy, were the attempt
to provide a method of discovery to mathematics which quickly imposed itself on a large scale even
though it posed some practical difficulties and mathematicians found it difficult to resort to it in
practice (Lolli, 1988). We should however keep in mind that there are two different layers of evidence
in Descartes’ conception: the one is related to the physical evidence of the axioms in Euclidean
geometry, which is the basis of mathematics and that remains undisputed; the other is related to the
evidence of the starting point and of the “small steps” of reasoning that should be so simple and
evident to be intuitively accepted by anybody without any doubt about their correctness. Both these
evidences will be questioned by the subsequent development of mathematics.

Mathematical proofs, physical reasons and the second crisis

At the end of 17" and beginning of 18" centuries, with the growing of Analysis, it becomes more and
more clear that the algebraic conception of proof was insufficient for the type of investigation
mathematics was going to face [see for instance the need to deal with functions and infinitesimals
and in general with infinite entities (Lolli, 1988)] and that requires a purely mathematical definition
of the involved objects. Furthermore, the development of abstract algebra allowed a new, structural
organization of mathematical knowledge. All these reasons allow the take-off of pure mathematics
which does not (should not and could not) refer to physical evidence. On the other hand, the birth of
non-Euclidean geometries led to a subsequent loss of authority of geometry as foundation of
mathematics, based before on the physical evidence of its axioms. The birth of general theories with
multiple interpretations and the need to give a unitary organization of mathematics led to increasing
awareness of the importance of the definition of mathematical objects trough interrelations of formal
axioms, which allows multiple interpretations; all this finally led to the modern axiomatic model.

Axiomatization implies an important change of perspective: a change in concept and role of
contradiction: in ancient Greek mathematics the contradiction intervened in a social act and was used
to convince: to prove means to convince; the modern conception of contradiction is very different:
contradiction intervenes in a system of mathematical propositions and it is used for producing
mathematical results: to prove means to make evident the non-contradictoriness of a statement within
an axiomatic system. The concept of evidence makes no sense in this formalistic conception of
mathematics: the objects are real inasmuch they are defined by the relations between them; there is
no need for physical or metaphysical reality to refer to. The only way to deal with such abstract formal
objects is formal reasoning: implicit definition and formal logical principles are needed for the new
conception of proof, based on non-contradictoriness; the new axiomatic model is not due to a perverse
and arbitrary will of formalization but to the formal character of mathematics (Lolli, 2015).

Modern axiomatization and the need for interpretation

Modern axiomatization underpins and highlights the special ontological condition of mathematical
objects to which an ostensive cross-reference is impossible and shows clearly the essentially semiotic
nature of mathematical activity; but it poses an important problem: in a formal axiomatic conception
of mathematics asking for meaning of mathematical objects makes no sense. The only way to give
meaning to them is dealing with them in an interpretation of the formal theory. An interpretation
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needs a language that allows to express the relations of the objects occurring in it. Bourbakism
rendered clear that set theory is a formal language which is most similar to natural language and that
allows to construct mathematical discourses, giving a meaning to mathematical activity. Experts in
mathematics are able to give a meaning to a discourse in set-theoretical language (they are able to use
it, enriching its expressivity by natural language without losing its mathematical meaning) and so
they are usually convinced of the unity between mathematical and natural languages; but this
competence is only the confirmation of the fact that the metalanguage (natural language) has
successfully fulfilled its role as constructing tool for the object language (mathematical language).

Conclusions

Our analysis shows three epistemological obstacles which forcefully impose themselves in the
examined path: (1) the belief that the proof concept in Euclidean Geometry may be used to explain
mathematical reasoning; (2) the belief that contradiction in mathematics has the role of convincing
and that to prove means to convince somebody of the truth of an utterance and not the role to establish
the consistency in an axiomatic system, i.e. to establish its validity; (3) the supposition that
mathematics is not a discourse in itself but one that is telling something about something that really
exists and that to prove means to prove the truth of a statement and not it’s validity in a metalanguage
as well the subsequent supposition of the unity between natural language and mathematical language
and the consequent lack of awareness of the complex relation between them.

All three obstacles represent important topics related to the teacher’s epistemological believes and
the way in which teachers implement the didactic transposition of the mathematical object "proof".
Moreover, we stress that against the third obstacle, the whole teaching of modern mathematics
collides. Without the awareness of the latter, at school we will continue to teach only Euclidean
mathematics and the concept of proof present in it, believing that the modern axiomatic method is
only a generalization of the Euclidean one.

Furthermore, while the first two obstacles can be considered as obstacles already crystallized in
Western culture, the third is an obstacle of very recent formation and it is still little perceived and not
recognized. This obstacle also places the cultural aspect in the foreground as it can have very different
cultural declensions. Indeed, while the general semiotic aspects might have a general characterization,
semiotic aspects related to the natural language can be specific (Lolli, 2015). While the overcoming
of the first two obstacles requires the entry into a certain culture of mathematical thought (which has
its roots in ancient Greek tradition), the overcoming of the third obstacle requires a specific
transposition, dependent on the peculiarities of the natural language of reference.

Concerned to the usefulness of the epistemological obstacles in Mathematics Education, we can say
that within Brousseau’s (constructivist) theory of didactic situations, acquiring knowledge means
adapting to a specially designed situation that has that given knowledge as optimal solution
(Brousseau, 1989); it is therefore worth to identify the epistemological obstacles in order to help
teachers to construct situations in which the student is forced to use a type of knowledge that leads
her/him to overcome the obstacles, supported by teacher’s mediation choices. In a socio-cultural
perspective, instead, the interpretation of the notion of epistemological obstacle could present some
difficulty because of the specificity of mathematical cultural production (D'Amore, Radford, &
Bagni, 2006). Nevertheless, also in a socio-cultural perspective, the institutional meaning of
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mathematical objects refers to a certain cultural tradition which could hide eventual epistemological
obstacles.
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Teachers’ perspectives on mathematical argumentation, reasoning and
justifying in calculus classrooms
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An interview study on mathematical argumentation (in a broad sense) was conducted with teachers
of upper-secondary calculus classrooms. This paper describes the study’s methods and its results. By
using qualitative text analysis, four major categories were created to depict the current state of
mathematical argumentation in calculus classrooms. Two dominant problem areas were revealed:
Students’ language difficulties and the heterogeneity of students. To address these problems, a
learning environment was designed and evaluated in a follow-up study.

Keywords: Argumentation/Reasoning/Justifying, calculus, secondary school teachers, semi-
structured interviews, learning environment.

Introduction and theoretical background

Mathematical argumentation, reasoning, justifying and proof indisputably constitute an important
field of mathematical competencies. Nevertheless, the 1995 and 1999 TIMMS Video Studies found
that reasoning did not occur frequently in mathematics classes of the examined countries (Hiebert et
al 2003, p. 73-75). Since 2003, the Bildungsstandards set by the KMK?! have functioned as an
important framework for teaching mathematics in Germany. One of the process-related competences
they specify is Mathematisch Argumentieren (approximately corresponding to mathematical
argumentation). This term is used as an umbrella term for working with mathematical conjectures
and statements by employing a range of argumentations, from arguments of plausibility through
justifications to formal proofs (KMK 2012, p. 14). In the United States, the Principles and Standards
for School Mathematics were published by the National Council of Teachers of Mathematics
(NCTM) in 2000 as one of the first sets of standards for mathematics teaching. One of the Process
Standards set by the NCTM is Reasoning and Proof, which also comprises reasoning, proving, using
conjectures, argumentation and justification (NCTM, 2000). In this paper, mathematical
argumentation is used in a broad sense, including all aspects used by the KMK and the NCTM. In
addition, pre-formal or semi-formal mathematical activities of argumentation, reasoning and
justifying are considered suitable for mathematics in school and useful, necessary steps to formal,
deductive proving as an essential mathematical activity. The term formal is “referring to the standard
language used to talk about mathematics, which encodes the meanings of mathematics” (Barwell
2016, p. 333). Mastering this standard language is considered its own learning item for students.
Pericleous similarly states that “explanation, justification and argumentation [...] provide a
foundation for [...] developing deductive reasoning” (2015, p. 226). However, the level of formality
and deductive reasoning that should be acquired in school is open to debate.

! The Bildungsstandards are Educational Standards set by the Conference of Ministers of Education and Cultural Affairs
in Germany (KMK)
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Teachers’ perspectives on argumentation in class are of great importance, because teachers are
responsible for providing learning environments and tasks for students (Buchbinder, 2017, p. 107).
They have gained significant experience with students’ processes of acquiring competencies. Yet,
there is little research on argumentation from a teachers’ perspective to date. The discussed study
investigates the role and importance of mathematical argumentation in calculus classrooms, explores
teachers’ attitudes and ideas about mathematical argumentation and reveals problems and difficulties
teachers face when training students’ mathematical argumentation competencies. Interviews with 14
teachers of different schools teaching upper-secondary students in calculus were conducted and
analysed using qualitative text analysis?. In a follow-up study, a learning environment was developed
and evaluated based on the results of the interview study. In this paper, the interview study is
described in detail including its methods and findings. The paper concludes with a short outlook on
the follow-up study.

Methods

There were two main research questions: (1) Which role does mathematical argumentation play in
current calculus classrooms? (2) Which problems and difficulties do teachers face with regard to
mathematical argumentation in calculus classrooms? To answer these questions, semi-structured
interviews were conducted with 14 upper-secondary school teachers. The interview manual had four
parts with different thematic foci. The participants had been informed that the topic would be calculus
teaching. However, the emphasis on mathematical argumentation was not mentioned before the
second part of the interview, because the first part was about calculus teaching in general and
argumentation was only focused on in the other three parts.

14 upper-secondary school teachers, 5 female and 9 male, were chosen from 7 different schools (6 in
Bavaria, Germany; 1 in Hesse, Germany), teaching different subjects in addition to mathematics.
Their age ranged from 30 to 64 years with teaching experience from 4 to 36 years.

The analysis of the interviews used a combination of methods of qualitative content analysis
(Mayring, 2015) and thematic qualitative text analysis (Kuckartz, 2014). First, a selection criterion
was applied to detect all passages of the interviews concerning the topic of mathematical
argumentation. Then, major categories were created deductively according to the interview guidelines
and the research questions. After applying them to the data, they were further differentiated into
subcategories inductively using the codes of each major category. Processes of subsumption and
clustering were used to establish the final category system with various levels for the analysis.

Results

Figure 1 presents an overview of the category system. The major categories are Understanding
Concepts, Current Implementation in Class, Positive Aspects and Problems and Difficulties. The
numbers in brackets state the numbers of respondents (out of 14) whose statements contained
segments for the respective subcategories. Each category is described separately in the following.

2 A rough overview of the interview study is being published in (Scheffler, 2018) and parts of the results have been
published in (Scheffler, 2017).
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Figure 1: Major categories of the qualitative text analysis of the interviews
Understanding Concepts

The major category Understanding Concepts comprises segments from which it can be concluded
what teachers mean when speaking of argumentation, reasoning, justifying or proving®. Segments
within this category were categorized throughout all parts of the interviews, because the participants
were not directly asked about their understanding of the terms. Various ideas could be found and
subdivided into two subcategories: Ideas about the Content of Argumentation and ideas about the
Form/Type of Argumentation. The teachers’ statements do not only contain ideas about their actual
teaching but also about their general understandings of argumentation. Both subcategories
demonstrated a wide range of understandings. The most frequent opportunities for mathematical
argumentation mentioned were situations in which students needed to justify their approaches when
dealing with any mathematical exercise or task or justify certain mathematical theorems, rules or
formulas. In addition, it was described that students reason when working with properties of various
functions or when modelling mathematically. More generally, the teachers stated that mathematical
relations or issues can be used for mathematical argumentation in class.

In the subcategory Form/Type of Argumentation, it is striking that most teachers talked about formal
proving but mostly commented on the lacking feasibility of using proofs in class. Other ways of
mathematical argumentation mentioned by several teachers were justifying using calculation,
explaining or elucidating, verbal justification and justification supplemented by sketches. This results
in a varied field of teachers’ understandings of how argumentative competencies can play a role in
calculus classrooms and what mathematical content can be used for these purposes. These findings

3 In the interviews, | used the German terms Argumentieren and Begriinden (approximately corresponding to
argumentation and justification in English) as synonyms and avoided the term Beweis (proof) as it has negative
connotations for some teachers. For the category Understanding Concepts, all segments of the interviews were used which
showed understandings of any of the terms Argumentieren, Begriinden or Beweisen.
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correspond to the broad understanding of the term used in the German KMK Bildungsstandards and
in the NCTM standards.

Current Implementation in Class

Descriptions of what the teachers actually do in class concerning mathematical argumentation are
collected in the subcategory Current Implementation in Class. Each case was analysed separately by
summarising and abstracting the main ideas. The following overall tendencies about the current state
of mathematical argumentation and proof in calculus classrooms could be found:

- Tasks in which students are asked to give reasons play a significant role.

- Formal proving, theoretical justifying and systematic derivations only occur occasionally,
with most argumentations and justifications being informal, oral and not written.

- Teachers reason and justify more than their students.

- Argumentation and reasoning seem to be opposed to standard techniques which are trained
mainly for the final examinations.

These practical tendencies are based on teachers’ attitudes towards argumentation and reasoning in
calculus classrooms. These attitudes are connected to the reasons teachers have to train their students’
argumentative competencies. These reasons can be deduced from positive remarks about
argumentation collected in the major category Positive Aspects. On the other hand, Problems and
Difficulties with argumentation in calculus classrooms concern reasons why teachers use fewer
opportunities for mathematical argumentation in their classes than they ideally should.

Positive Aspects

The positive statements about mathematical argumentation in calculus classrooms can be divided into
5 subcategories: Segments showing that mathematical argumentation is important for the teachers
themselves (1) or for the students (2), segments explaining that mathematical argumentation is a good
way for diagnosing students’ skills (3), segments in which teachers state mathematical argumentation
to be an essential part of mathematics (4) and segments in which teachers express that employing
mathematical argumentation results in good discussions in class (5). The most interesting results can
be found in the subcategory Importance for Students (2) which includes segments in which teachers
explain how mathematical argumentation in class has positive effects for the students. In their
opinion, mathematical argumentation is crucial for the students’ content-related competence. It is also
considered important for the students’” future in mathematics and beyond. Teachers point to students
who really like reasoning and to more proficient students who can demonstrate their skills with
justification tasks.

Problems and Difficulties

Nevertheless, there are many problems and difficulties with mathematical argumentation in calculus
classrooms. As it has been explained above, there is a reluctance to use formal proofs for different
reasons which are not focused on in the study. For this reason, remarks stating difficulties and
problems specifically with formal proofs were not coded in the major category Problems and
Difficulties. Emphasis was put on argumentation in general. As Figure 1 and Figure 2 show, 4
subcategories could be created inductively in the major category Problems and Difficulties. All
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teachers mentioned problems and difficulties concerning the Students and nearly all teachers have
problems with the External Conditions they face. In addition, there are problems and difficulties in
the area of Teaching and difficulties for the Teachers themselves. Notably, difficulties for the
Teachers themselves all deal with grading mathematical argumentation tasks. Problems with
Teaching arise because teachers do not consider reasoning and justifying tasks suitable for
examinations, and training standard calculation techniques has priority in their teaching. External
Conditions that cause most problems for teachers are the restricted time available for teaching and
the requirements of the centrally organised final examinations.

Problems and

Difficulties
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Figure 2: Part of the category system with a focus on Problems and Difficulties

The subcategory Students contains by far the most difficulties and problems that were mentioned by
the teachers. It is further subdivided into Problems Concerning Students and Difficulties of Students.
Due to their size, these subcategories were further subdivided:

Firstly, by far the largest subcategory of the subcategory Problems Concerning Students is
Heterogeneity. Segments in this subcategory are about problems that arise because of students’
different performance levels. While teachers are of the opinion that low achieving students have
serious problems with mathematical argumentation tasks, such tasks are seen as a particular challenge
for high achieving students. Consequently, teachers do not know how to cope with the great span and
often decide not to use justification tasks in class. An example segment within the subcategory
Heterogeneity is the following:

First of all, I often think that these justification tasks are only accessible for a part of the students
so that another part of the students is left behind by these justification tasks. And for them, it is
important to do tasks in which they can use their learnt strategies. So, | would not use 45 minutes
just for training argumentation, because after some time | would sit there just talking to five
students and the other 20 are looking into the air (Interview 8, paragraph 58, own translation).

Other Problems Concerning Students result from students’ aversion to argumentation amongst others.

Secondly, within the other subcategory, Difficulties of Students, a dominant subcategory evolved as
well: Language. This subcategory contains segments dealing with problems students have with, for
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example, terminology, formulations, and especially writing down argumentations and justifications.
An example segment within the subcategory Language is the following:

And of course language, that’s an important point, whether mathematical language or German
language, stringing two sentences together. What is given? So, what can be concluded? That is
what causes most problems (Interview 9, paragraph 56, own translation).

Apart from language problems, there are other issues students have problems with when working on
argumentation tasks: the general validity of mathematical statements, mathematical precision and
accuracy, recognizing the expectations and technical contents amongst others.

The interview study showed that teachers have a wide range of ideas about which aspects of
mathematical argumentation exist and their attitude towards argumentation in calculus classrooms is
positive to a large extent. However, teachers state that there is little formal argumentation and proof
in their classrooms. Training standard techniques is far more important than training argumentation
competencies. In addition, many varied problems and difficulties concerning the training of
argumentation competencies could be gathered. As Heterogeneity and Language could be found as
being dominant problem areas, developing a proposal for facing these problems was the aim of a
follow-up study.

Follow-up study: Development and evaluation of a learning environment

To address the dominant problem areas found in the interview study, students’ Language
difficulties and the Heterogeneity of students, a calculus learning environment* with justification
tasks was designed and given to 15 teachers for application and subsequent evaluation.® Language
support is provided by a toolbox in two versions, based on ideas of Meyer and Prediger (2012),
among others. To cope with the students’ heterogeneity, potential for differentiation is given by a
task structure orientated towards Bruder and Reibold’s concept of Bliitenaufgaben® (2011). To
support students who have problems with argumentation in general on the one hand and students
with problems concerning language on the other hand, there is a prepended worked-out example. A
study of Reiss et al indicates that “self-explaining heuristic worked-out examples are a qualified
instrument for improving students’ achievement on reasoning and proof in the mathematics
classroom” (2008, p. 463).

The learning environment was evaluated using written interviews. The analysis of these interviews
showed that the learning environment is suitable for differentiation and the language support works

4 The term learning environment is used for a large task with several subtasks embedded in a lesson plan together with
instructions and additional material bound together by one central idea. This is based mainly on (Hirt & Walti, 2008).

5 The design principles of the learning environment and first results of study 2 have been published in (Scheffler, 2018).

& Bliitenaufgaben (literal translation: blossom tasks) open like flower heads, which means their subtasks have different
requirement levels and vary from closed to open-ended tasks. The subtasks are independent, though (Bruder & Reibold,
2011).

Proceedings of CERME11 133



Thematic Working Group 01

if a suitable version of the learning environment is chosen. As a result, it is important that teachers
have distinct diagnostic competencies to be able to support their students.

Discussion and Conclusions

This paper presented an interview study with teachers about mathematical argumentation in upper-
secondary calculus classrooms. The qualitative and explorative character of the study provided an
insight into current practices of argumentation in calculus teaching. The results might be used to
generate possible hypotheses which could be examined quantitatively to learn more from the teachers’
perspective. Whether the results can be transferred to other sections of mathematics teaching in upper-
secondary school, is debatable. The complexity of calculus in comparison to stochastics and analytic
geometry indicate that automatic transfer is not possible. What could be shown is that the interviewed
teachers have a wide understanding of mathematical argumentation. They include different aspects
of argumentation and reasoning in their calculus classrooms, but they hesitate to incorporate
justifications in a written way or let students do so. They are also reluctant to use formal
argumentations such as proofs, which is a bit surprising because teachers spoke of the upper-
secondary level. This, however, can be justified as long as pre- or semi-formal mathematical
argumentation is seen as pre-stage to proving, interested students are able to encounter formal
arguments as well, and a realistic and representative view of mathematics is conveyed. Although the
KMK Bildungsstandards have set a framework for teaching mathematics on an upper-secondary level
in Germany, argumentation does not seem to play a role in mathematics teaching as much as it ideally
should. Teachers basically have a positive attitude towards training argumentative competencies in
their calculus teaching, but they also face a wide range of problems and difficulties. Two dominant
problem areas could be found: Students have difficulties with language, especially when writing
down their justifications, and teachers have problems dealing with the heterogeneity of their students.
To work on these problems, a learning environment with differentiating character and language
support has been developed and evaluated in a follow-up study. It could be shown that taking action
is possible and that it is important for teachers to choose suitable teaching material for their students.
More material should be developed to assist teachers and hence to help students develop
argumentative competencies. It is a good basis that the interview study suggests that teachers consider
argumentation in calculus classrooms important.
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During a long-term teaching experiment aimed at developing 10" grade students’ culture of theorems
through a pathway in Euclidean plane geometry, some students’ autonomous reasoning moved
towards non-Euclidean proofs based on continuity of transformation of geometric figures. Based on
the use of existing analytical tools to analyze such episodes, the aim of this paper is to outline a wider
scope for synthetic geometry in order to make it more suitable for students’ approach to the culture
of theorems. Through the introduction of a continuity principle to legitimate such extension, the paper
suggests how to exploit students’ potential in transformational reasoning, and to bridge the gap
between synthetic geometry and analytic geometry rationalities in classroom work.

Keywords: Euclidean geometry, transformational reasoning, continuity principle, rationality.
Introduction

Since 2016 we are engaged in designing and implementing in 10"-grade classes a teaching and
learning pathway in Euclidean geometry aimed at promoting students’ approach to the culture of
theorems (Bartolini Bussi, Boero, Ferri, Garuti, & Mariotti, 2007) — i.e. at developing not only the
knowledge of statements, proofs and their applications, but also autonomous proving and the
awareness of crucial meta-knowledge about theorems (the role of hypotheses and thesis, the
requirements of proof, etc.). Such aim is not easy to attain; the question that originated the study
reported in this paper was: is it possible to lessen the students’ difficulties with proving by
legitimating some spontaneous ways of solving geometry problems and validating statements? Let us
consider an episode, a single case of a wider phenomenon observed in the three classes where the
experiments on our pathway have been performed. Its role is to put into evidence the potential
inherent in students’ dynamic approach to solving theoretical problems in geometry. Students have
already learnt to construct a circle tangent to both sides of an angle, and to justify the construction.
In interaction among them and with the teacher, students have learned to build up the circle with
center chosen on the bisector and ray derived from the following construction: to draw the
perpendicular line from the chosen center to one side of the angle; to consider its intersection with
that side, and the segment joining it with the center as the ray of the circle. They have proved (with
the help of the teacher) that the drawn circle is tangent to both sides of the angle through the steps of
Euclid’ validation of the same construction. Some weeks later they are asked to construct a circle
tangent to the three sides of a given triangle. They have at their disposal a worksheet with a drawn
triangle, the ruler and the compass.

One student (Ale) draws the bisector of the angle ABC, then he tries to
& choose a point on the bisector as the center of a circle by taking different
points on the bisector and adapting the width of the compass to the sides of
the triangle. Finally, he draws the circle S (the arrow and S are added to the
original figure). Ale is not satisfied with his drawing. After a while he makes
a free-hand drawing of a circle near to B, then other circles more and more
near to AC. Finally, he stops and observes the worksheet for several seconds.
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i Then he starts writing: “The solution of the problem is when the circle, which
Figure 1 is tangent to the sides of the angle B, meets the third side”. The participant
observer (PO: the first author of this paper) starts an interaction with Ale:

PO: May you explain your reasoning to me?

Ale: The tangent circle becomes bigger and bigger, and a certain moment a circle will meet the
third side. It will be the solution!

PO: Why? Are you sure that it is tangent to the three sides of the triangle?

Ale: Yes, when | move the center on the bisector the circle is (pause) the circle becomes bigger
and bigger, and remains tangent to the two sides of the bisector (pause)

PO: Are you sure that it becomes tangent to the third side?

Ale: Because the circle (pause) if I continue moving the point on the bisector, one part of the circle
will go outside the triangle (pause) Therefore there will be ONE (emphasis) point
to get the contact, (pause) the tangency with the third side.

PO: And if the circle becomes bigger and bigger?

Ale: It will be no more tangent to the sides of the triangle, but... No, if I come back, the two
intersections finally join in the tangency point.

Given that the circle exists (by such continuity considerations) it is easy to prove that its center
belongs to the three bisectors - provided that students already know that if a point is equidistant from
the sides of an angle, it belongs to the bisector of the angle, and that the tangent straight line is
perpendicular to the ray in the point of tangency. Hence the ruler and compass construction may be
easily made by using the intersection point of two bisectors and the perpendicular straight line from
it to one side of the circle. In this case the method of construction derives from the reasoning used to
prove the existence of the tangent circle and the knowledge of its properties. Note that performed
exploration might result in the construction of a theoretical justification (cognitive unity of theorems:
see later), once Ale’s reasoning by continuity would be legitimated.

In Book IV of the Elements (prop.4) Euclid describes how to construct a circle tangent to the three
sides of a given triangle and provides a theoretical justification for it.

PROPOSITION 4 (book 4, Heath’s translation)

In a given triangle to inscribe a circle.

Let ABC be the given triangle; thus it is required to inscribe a
circle in the triangle ABC.

Let the angles ABC, ACBbhe bisected by the straight
lines BD, CD [I. 9], and let these meet one another at the point D;
from D let DE, DF, DG be drawn perpendicular to the
straight lines AB, BC, CA.

Now, since the angle ABD is equal to the angle CBD, and the
right angle BED is also equal to the right
angle BFD, EBD, FBD are two triangles having two angles equal
to two angles and one side equal to one side, namely that
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subtending one of the equal angles, which is BD common to the
triangles; therefore they will also have the remaining sides equal
to the remaining sides;

Figure 2

[I. 26], therefore DE is equal to DF. For the same reason DG is also equal to DF. Therefore the three
straight lines DE, DF, DG are equal to one another; therefore the circle described with centre D and
distance one of the straight lines DE, DF, DG will pass also through the remaining points, and will
touch the straight lines AB, BC, CA, because the angles at the points E, F, G are right.
For, if it cuts them, the straight line drawn at right angles to the diameter of the circle from its
extremity will be found to fall within the circle : which was proved absurd; [I11. 16] therefore the
circle described with centre D and distance one of the straight lines DE, DF, DG will not cut the
straight lines AB, BC, CA, therefore it will touch them, and will be the circle inscribed in the
triangle ABC. [IV. Def. 5]. Let it be inscribed, as FGE.

Euclid’s line of thinking is different from Ale’s. Euclid describes how to solve the problem of the
circle inscribed in a triangle by finding candidates to be the center of the circle and three of its rays,
then a theoretical justification for the chosen solution follows, which relies on definitions and
previously proved theorems, and results in a proof of the existence of the inscribed circle. No
continuity or transformational considerations are made.

Based on the above episode and other episodes that will be shortly presented later, and with reference
to some constructs in mathematics education literature, integrated with a principle of continuity to
legitimate the widening of the scope of synthetic geometry, we will present and discuss the potential
inherent in students’ transformational reasoning (Simon, 2006) in the approach to the culture of
theorems, once that principle is assumed.

Theoretical background

Transformational reasoning, and the continuity principle

Transformational reasoning was defined by Simon (1996) as:

The mental or physical enactment of an operation or set of operations on an object or set of objects
that allows one to envision the transformations that these objects undergo and the set of results of
these operations. Central to transformational reasoning is the ability to consider, not a static state,
but a dynamic process by which a new state or a continuum of states are generated (p. 201).

In past research of our group this construct was already used, in particular, to characterize one of the
types of generation of conditionality of statements (Boero, Garuti, & Lemut, 1999). In this paper it
will be used to describe processes of discovery of the reason why a statement is true, or strategies to
solve a construction problem in Euclidean geometry.

In our toolkit we will integrate the construct of transformational reasoning with a principle of
continuity. Continuity provides students not only with hints for the solution of a construction problem
or a proving problem, but also, in some cases, substantial elements for the validity of the construction
and the proof. For instance, in the episode presented in the Introduction, Ale “by continuity” proves
the existence of the tangent circle. Thus a principle of continuity as a criterion for the epistemic
validity of a conclusion derived through transformational reasoning might widen the scope of
acceptable proofs, with positive consequences for the approach to the culture of theorems (see
Discussion). How to formulate the continuity principle within the perspective of synthetic geometry
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(i.e. geometry theory based on constructions performed with ruler and compass)? Continuity axioms
(including Archimedes’ axiom) were among the axioms added by Hilbert to Euclid’s axioms
(Trudeau, 1987), but it is not easy to formulate a consequence of them which in simple operational
terms accounts for the truth of the “existence theorem” proved by Ale. However, it is possible to
provide a formulation of the continuity principle in operational terms by making reference to analytic
geometry:

The continuity principle guarantees the solution of a synthetic geometry problem through

transformational reasoning provided that the translation of the problem and the related

transformational strategy into analytic terms (by using algebraic expressions) allows a treatment
which brings to the solution thanks to the continuity of the set of real numbers.

As an example, consider the episode presented in the Introduction. As a generic example (Mason &
Pimm, 1984) of the situation, we may assume B=(0,0), a represented by x=0, b represented by y=0,
and the side AC represented by y=-2x+3. Then the system y=-2x+3 & (Xx-K)?+(y-K)>=K? , will
represent the circle centered in the point (K, K) of the bisector, which is tangent to a and b. By varying
K we represent the situations of no intersection with the straight line y=-2x+3, of tangency (two
possibilities, including tangency from the exterior), and of intersection in two points.

We will use the above criterion as a provisional solution for the characterization of the continuity
principle; further research (and the analysis of more episodes!) is needed to formulate it in more
precise and effective terms.

Theorems

Mariotti (2001) defined a Theorem as a statement and its proof with reference to a theory (and related
inference rules). With reference to Guala & Boero (2017), Mariotti’s definition

encompasses theorems related to various kinds of theories throughout history (e.g., Euclid’s, as
well as Hilbert’s, geometry; graph theory, with its crucial reference to visual objects; 19th-century
classical probability theory as well as Kolmogorov’s axiomatic theory, etc.), together with the
different ways of considering proof since the Greeks (Grabiner, 2012) along with the cultures these
ways came from (Siu, 2012) (p. 210).

In this paper we use the construct of Theorem to consider different, possible ways of proving the
same theorem with reference to different theories and different inference rules.

Cognitive unity of theorems

After having found some cases of theorems (in geometry, and in elementary arithmetic) for which
students behaved in a similar way, Garuti, Boero and Lemut (1998) defined “cognitive unity of
theorem” what happens for some theorems when:

during the production of the conjecture, the student progressively works out his/her statement
through an intensive argumentative activity functionally intermingled with the justification of the
plausibility of his/her choices. During the subsequent statement-proving stage, the student links
up with this process in a coherent way, organizing some of the previously produced arguments
according to a logical chain (p. 345).

The cognitive unity construct was also extended to the case of the relationships between the
exploratory phase of proving a theorem, and the subsequent construction of a proof for that theorem
(Garuti et al., 1998): indeed, the exploratory phase of proving shares some common aspects with
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conjecturing (as re-construction of the meaning, and appropriation, of a statement; and identification
of elements for its validity).

The cognitive unity construct may be used to account for what happens when students produce, thanks
to transformational reasoning, arguments that may be re-arranged in a proof (be it Euclidean, or based
on a continuity principle: see the episode in the Introduction).

Rationality

Many cultural activities (including mathematical ones) may be described as discursive activities
sharing some common features: First, criteria to establish truth and falsity of propositions, and
validity of reasoning. Second, strategies to attain the goal of the activity, which can be evaluated.
Third, a specific language for social interaction and self- dialogue.

The rationality construct elaborated by Habermas (1998) may be exploited to move from such a
superficial description to a deeper treatment of discursive activities. According to Habermas’
construct, rational behavior is characterized by: conscious taking in charge of truth and validity
criteria (epistemic rationality), of strategies to attain the goal (teleological rationality), and of
communication means (communicative rationality); and by dynamic links between knowing, doing
and communicating in the rationality perspective (for a discussion of potential and limitations of
Habermas’ construct as it was adapted to mathematics education, see Boero & Planas, 2014).

Where the episodes come from

We think that it is important to put into evidence some salient features of the long term teaching
experiment that provided us with the elements for the theoretical elaboration of this paper (in
particular, Ale’s and other episodes like those presented here); in particular we agree with Simon
(1996) when he says that transformational reasoning is a natural way of thinking, which needs to be
“nurtured” - thus suitable cultural and educational choices must be performed in order to allow
students to develop it.

A teaching-learning pathway to the culture of theorems

We have chosen to base the approach to the culture of theorems in grade X of high school on the
Euclid’s plane geometry for the following reasons: First, in Italy, since the end of the XIX century
and for several decades Euclidean geometry was the main subject intended to allow secondary
students to meet theorems, proofs, proving. Second, Euclidean geometry offers the possibility to
approach different kinds of proof (including proof by contradiction — the preferred indirect proof in
Euclid’s Elements). Third, through the alternation of “theorems” and “constructions to be validated”
in Euclidean geometry the teacher is offered the opportunity of stressing the relevance of theoretical
thinking in mathematics — in particular the distinction between a drawing and a geometric figure, and
the need of moving from visual truth to theoretical truth (even if in Euclid’s elements the goal of
going beyond visual evidence to validate statements is not completely accomplished: see Trudeau,
1987. However, in our design we have not followed any path taken as such from Euclid’s Elements;
we have chosen only some constructions and some theorems. In the case of theorems with a thesis
consisting of more than one claim we have chosen only one claim (this is in the case of the theorem
considered in the second and third episodes below).
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The educational context of the episodes

The episodes presented in this paper happened within a pathway to the culture of theorems in the
domain of Euclidean geometry that had been experimented for the first time in the year 2016-17 in a
10"-grade class of a scientific oriented high school, and in the year 2017-18 in two 10"-grade classes
of the same school, with two 50’ lessons per week from October to May (out of 5 hours devoted also
to other mathematics subjects: algebra, probability and statistics). Classroom activities were based on
an alternation of individual activities, in some cases preceded by a constructive interaction with the
teacher, and collective activities. Individual activities concerned six kinds of tasks: solution of
construction problems, conjecturing, proving, analyzing, evaluating and improving some
schoolfellow’s productions, close activities regarding proof texts. Collective discussions were
orchestrated by the teacher and in most cases concerned the comparison and the critical analysis of a
few students’ individual productions selected by the teacher. According to the aim of developing
competencies related to the culture of theorems, the assessment method consisted of: the individual
revision of individual work at the end of each of the three parts in which the pathway was divided,
with careful identification and remediation of “what does not work” in each individual production,
and an overall synthesis on the individual itinerary concerning difficulties met, still obscure points,
reasons for mistakes, emotional problems, etc. This evaluation method was derived and adapted from
a similar method currently adopted in several Genoa University courses for pre-service teacher
education aimed at developing professional competencies of cultural analysis of the content to be
taught (see Guala & Boero, 2017, for more information on the assessment method and its
motivations).

Further episodes

We have chosen three further episodes. Like that presented in the Introduction, they concern relations
among circles and straight lines. They show different roles that may be plaid by transformational
reasoning and continuity in the field of plane geometry, and how to legitimate them within the
proposed theoretical framework, in particular through the continuity principle.

The rolling circle

Students are requested to find if it exists a position of a given circle, such that the circle is tangent to
two sides of an angle, and to justify the answer. Some students imagine to roll the circle on one line
towards the second line and they discover that “Yes, it exists, because there is a moment in which the
rolling circle starts to touch the second line; in that moment it is tangent to both lines”. This intuition
of the rolling circle facilitates also the discovery that, in the found position of the circle, the center of
the circle is the point of intersection of the two straight lines that are parallel to the sides of the angle
at the distance of the ray of the circle. Students “see” the movement of the center of the circle in
parallel with the first line, and (after the tangency position) with the second line.

By considering the generic case of the straight lines y=0 and y=x and of the rolling circle (x-K)?+y?=1,
the continuity principle may be applied to legitimate the solution find by the students.

All this suggests a way both to find the center of the circle when it is tangent to both lines (a heuristic
function for the solution of a construction problem), and to explain why in that position it is tangent
to both lines (a proving function, once the continuity principle is adopted) — in a perspective of
cognitive unity of theorems.
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Comparing the length of the chords of a circle

The diameter of a circle is its longest chord, and the length of the chord increases when its middle
point approaches the center of the circle.

This is part of proposition 15 of Book 3 of the Elements:

Of straight lines in a circle the diameter is greatest, and of the rest the nearer to the centre is always
greater than the more remote.

Euclid proof is rather complex- it needs the proof of 6 intermediate statements.
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Figure 3

A student produces a reasoning that may be reported this way: he fixes a point on the circle and
considers a chord on that side of the circle “which is opposite to it”, with corresponding angles at the
center of the circle. He imagines to move the chord towards the center and he observes that the nearer
the chord is to the center, the bigger is the corresponding angle —till when the chord becomes the
diameter by collapsing on the two aligned rays. This is not yet a proof of the theorem, but the student’s
line of reasoning might be integrated with elements that allow to prove that the length of the chord
increases when the chord approaches the diameter. Indeed, the triangles obtained by joining the
extremities of the chord with the center of the circle have two sides of equal length (the ray of the
circle) and the width of the angle between them increases, thus also the length of the side opposite to
the center increases. This may suggest to exploit the triangular inequality —the chord is shorter than
the sum of the rays— to prove that the diameter (two rays long) is the longest chord; and it may
suggests also to use Pythagoras’ theorem in order to prove that the length of the chords increases
when the distance between the chord and the center of the circle decreases, or to find the length
2V1-K? of the chord intersected by y=K on the generic circle x?+y?=1: the length of the chord attains
its maximum value 2 when K=0, i.e. when the chord becomes a diameter.

Tangency between a straight line and a circle.
By composing two statements of Euclid’s Elements, we get the following statement:

Given a circle centered in C and a straight line a intersecting the circle in the point T, the straight
line a is tangent to the circle (i.e. T is their only common point) if and only if the straight line is
perpendicular to CT.

While trying to prove the “if” part of the statement, students were suggested by the teacher to reason
by contradiction; they were also invited to consider a second point of intersection T°. Some students
reacted to the discovery of a contradiction (an isosceles triangle with two rectangular angles) by
imagining to make CT’ collapse on CT by rotating it around C. This movement might be exploited
to expand their reasoning through the consideration of the isosceles triangle TCT’ and its height CH.
The identity CH = \(CT?-TH?) (Pythagoras theorem) allows to prove (by continuity) that TT” is 0
(i.e. there is only one point of intersection — which means tangency) if and only if the height CH of
the triangle collapse on CT, i.e. if and only if CT is perpendicular to the straight line a.
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In this case transformational reasoning produced by some students might play a double heuristic role:
first, to suggest the necessity of the condition of perpendicularity for the tangency while proving its
sufficiency; second, to suggest the way to get a proof (by the continuity principle) of the “if and only
if” statement — still, cognitive unity might allow to arrange a valid, simple proof.

Discussion

Transformational reasoning combined with the continuity principle may play three roles for the
approach to the culture of theorems and, more generally, for the development of students’
mathematical rationalities: first, it may help solving a construction problem and simplifying its proof,
in comparison with the Euclid’s proof (like in the episode presented in the introduction). Second, it
may play a heuristic function by suggesting a method of proving in Euclidean geometry, or eventually
a method of proving by relying on the continuity principle (like in the last two episodes). Third, it
may allow to compare different ways of proving the same theorem in synthetic geometry, thus
contributing to the development of the culture of theorems and at the same time to an initial
understanding of the fact that a theorem may be tackled with different strategies and according to
different criteria of truth and of validity of proving methods. Concerning the second and the third
role, we may observe how the adoption of a principle of continuity would imply changes in the
rationality of the discursive activity of proving, in comparison with Euclidean rationality. On the
epistemic side: a new criterion of truth is introduced. On the teleological side: for a construction
problem, the existence of the solution may be got through transformational reasoning; for the proof
of a theorem, transformational reasoning in several cases (see our episodes) guarantees the possibility
of the cognitive unity between the exploration phase and the proving phase. On the communicative
side, new verbs and expressions are necessary to account for the specificities of transformational
reasoning, in comparison with the language of Euclidean geometry. In the perspective of rationality,
the principle of continuity might allow to compare (for some theorems) methods of proof
corresponding to Euclid’s ones with methods of proof which depend not only on Euclids’ axioms and
theorems, but also on the additional principle, thus contributing to the culture of theorems and prepare
students to move to other theories — in particular, Analytic geometry — and help to “cross the borders”
between the two domains (and the inherent rationalities: see Boero, Guala, & Morselli, 2013). We
observe how, in the problem situations of our episodes, the principle of continuity may be easily
related to the algebraic modelization of the situations at stake. For instance, in the case of the last
episode we may consider the circle of center (0,0) and ray 1, whose equation is x?+y?=1, and its
intersections with the straight line of equation y=kx+1, which meets the circle in the point (0,1). The
algebraic treatment of the system of the two equations offers an immediate answer to the problem of
tangency by discussing the solutions of the second degree equation: (1+k?)x?+2kx=0 derived from
the system. The equation has the solutions (x-coordinates of the intersection points) x=0, x=k/(1+k?).
They are coincident (i.e. tangency, in terms of analytic geometry) for k=0, i.e., when the straight line
of equation y=kx+1 becomes perpendicular to the ray of the circle with extremities (0,0) and (0,1).
Conversely, including the principle of continuity in synthetic geometry might allow to give sense to
the algebraic expressions that are used in the algebraic modeling process of geometry problems,
particularly as regards the role of the variable(s) — which not only are signs to be dealt with according
to the syntactic rules of the algebraic language, but also represent dynamic phenomena (in our case,
geometric transformations).
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In this section we have used the expressions “may”, “might allow” several times to outline possible
directions for studies, intended to develop the culture of theorems in the classroom on the reflective
and on the operational sides, once the continuity principle (possibly, after further elaboration) is
assumed to legitimate an extension of the scope of synthetic geometry and the inherent rationality.
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Motivation

It is a desideratum that mathematical argumentation should be integrated into today’s mathematics
teaching. In reality, opportunities for learning mathematical argumentation are infrequent.
Algebraic language is often understood only as a series of signs that can be transformed according
to certain rules and the same applies to algebraic argumentation (Pedemonte, 2008). Such
argumentations present an epistemological challenge for students because they are detached from
concrete examples. The integration of mathematical argumentation into teaching and the
appreciation of different types of arguments is therefore of crucial relevance. The role of the teacher
in this needs to be clarified.

The aim of my PhD project is to investigate the role of the teacher in the development of structure-
based argumentations in classroom practice. What kind of support can teachers in mathematics
education give their students in order to guide their argumentation from concrete examples to
general structures? How does this support influence the students’ argumentation and their
conception of algebraic language? For this purpose, a learning environment at the transition from
arithmetic to algebra was designed and implemented in three eighth-grade classes in Germany. The
main ideas of my teaching design and learning environment will be presented in this poster.

Theoretical framework

Sfard (1991) distinguishes between an operational and a structural conception of mathematical
objects. In an operational conception, mathematical objects are perceived as a process. In a
structural conception mathematical objects are conceived as static constructs, objects. Reification is
necessary to conceive mathematical objects structurally. There are different types of mathematical
arguments. Structure-based arguments use properties of the involved objects instead of only
calculation-oriented transformations of algebraic expressions without relation to the content. Mason
(1996) describes that, as a first step, learners should investigate examples and their structure in
order to be able to develop general arguments using symbolic language. This idea guided the
construction of the learning environment in my project. Connections between the conception of
algebraic language and the development of structure-based argumentations are examined as well.

All in all, the teacher has an important role in mathematical argumentation. Conner, Singletary,
Smith, Wagner and Francisco (2014) describe three different types of support for collective
argumentation by teachers: “Direct contributions to arguments”, “Asking questions” and *“Other
supportive actions” (e.g., evaluating, repeating). In addition to that, it is interesting how teachers
enact written tasks in classrooms. This can lead students to an interpretation of tasks that can
provide rich opportunities for argumentation or create obstacles. Whether and how this support can
affect the arguments of pupils has been researched little so far and is a focus of this study.
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Research project and methodology

First, tasks for eighth-grade classes and teacher prompts are theoretically constructed, which are
supposed to stimulate a structure orientation and provide opportunities for mathematical
argumentation. Then, a learning environment is designed and empirically enacted. Two interviews
with teachers are conducted to get insights into the teachers’ understanding of mathematical
argumentation and into their experiences with the designed learning environment. Then, from
transcripts of the lessons, argumentation processes and students’ conceptions are reconstructed and
analysed with a focus on the prompts of the teacher that promote a structure orientation. All this
will inform a revision of the learning environment. The following research questions guide my
study: How can teachers constructively support their students in developing structure-based
argumentations? How do a teaching design and a learning environment for the development of
structure-based argumentations in mathematics lessons look?

Structure of the learning environment

An intervention of four lessons (90 min each) was designed and performed. All tasks provide
opportunities for mathematical argumentation. The teaching environment and tasks are designed in
a way that allows students to build on concrete examples, examine the structure of these examples,
and finally develop structure-based arguments. All tasks support this strategic approach to
argumentation: 1. Observe; 2. Assume; 3. Analyse and check; 4. Justify. Learners are not simply
asked to do calculations in the tasks, but to observe and reflect the mathematical structures of the
numbers to support structure orientation (see Wittmann, 1985; Mason, 1996). In the first two
lessons, the students get to know four different types of arguments (explanatory arguments in form
of a dot pattern; generic examples; algebraic and narrative arguments) and have to solve conjecture-
and-proving tasks. In the third and fourth lesson, the students learn to argue in a new format and
more sophisticated arguments are demanded in context of “arithmogons”: the sum of two corners is
a side (Wittmann, 1985).

All in all, this learning environment should provide students opportunities to learn mathematical
argumentation and to establish a structure orientation. How teachers enact this learning
environment, support their students and which impact this support has will be analysed in my study.
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We use a curriculum design framework to analyze how prospective secondary teachers (PSTs)
designed and implemented in local schools, lessons that integrate ongoing mathematical topics with
one of the four proof themes addressed in the capstone course Mathematical Reasoning and Proving
for Secondary Teachers. In this paper we focus on lessons developed around the conditional
statements proof theme. We examine the ways in which PSTs integrated conditional statements in
their lesson plans, how these lessons were implemented in classrooms, and the challenges PSTs
encountered in these processes. Our results suggest that even when PSTs designed rich lesson plans,
they often struggled to adjust their language to the students’ level and to maintain the cognitive
demand of the tasks. We conclude by discussing possible supports for PSTs’ learning in these areas.

Keywords: Reasoning and Proving, Preservice Secondary Teachers, Lesson Plans, Task Design

Integrating reasoning and proving in secondary schools has been an elusive goal of the mathematics
education community. Despite agreement of the importance of reasoning and proving in school
mathematics among scholars and policy makers, proof has been shown to be a “hard-to-teach and
hard-to-learn” concept (Stylianides & Stylianides, 2017, p. 119). Areas that have been identified as
being persistently difficult for students, but also critically important for proof production and
comprehension, are the following: (1) understanding the role of examples in proving including
recognition of the limitation of supportive examples as proofs and the role of a single counterexample
as refuting evidence, (2) conditional statements, (3) argument evaluation, and (4) indirect reasoning
(e.g., Antonini & Mariotti, 2008; Durand-Guerrier, 2003). We term these areas “proof themes”. Our
choice of these four proof themes stems from the literature and our own experience as instructors
observing prospective secondary teachers’ (PSTs”) challenges in university coursework. Our study
rests on the assumption that these proof themes can be integrated into secondary school mathematics
in “intellectually honest” ways that are true to the discipline of mathematics and honor students as
learners (Bruner, 1960; Stylianides, 2007). Towards this end we developed and systematically studied
a capstone course Mathematical Reasoning and Proving for Secondary Teachers, which intended to
support PSTs in developing robust knowledge and pedagogical skills for integrating proof in their
classroom practices.

The course aimed to increase PSTs’ awareness of the logical aspects of proof and the place of proof
in secondary curricula, expose PSTs to common student difficulties with proof, and provide PSTs
with pedagogical tools to create or modify tasks that integrate reasoning and proving. In the practical
component of the course, PSTs developed lessons on each of the four proof themes and taught them
in local schools. In this paper, we focus on two PSTs’ lessons plans that successfully integrated the
conditional statements proof theme and analyze how these lessons were enacted in classrooms. Our
analysis reveals the aspects of lesson enactment that were successful and those that posed challenges
to PSTs. In the discussion, we contemplate potential reasons for these challenges and how we, as
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teacher educators, can further support PSTs in the process of integrating proof in their teaching
practices.

Theoretical Perspectives

We adopt Stylianides and Stylianides’ (2017) definition of proof as “a mathematical argument for or
against a mathematical claim that is both mathematically sound and conceptually accessible to the
members of the local community where the argument is offered” (p. 212). By “proving” we mean
processes such as conjecturing, generalizing and making valid arguments grounded in mathematical
deductions rather than authority or empirical evidence (Ellis, Bieda, & Knuth, 2012). Implicit in this
definition is that students must develop understanding of what a deductive argument is, and that
teachers must provide opportunities for students to develop such understanding through instructional
activities. Teachers, on their part, rely on curriculum materials to facilitate student learning of proof.

Stein, Remillard and Smith (2007) distinguish between the written curriculum, which includes written
artifacts that teachers and students use, the intended curriculum, which is the teacher’s lesson plan,
and the enacted curriculum that is the lesson as it unfolds in the classroom (Fig. 1).

Written Intended .| Enacted »~ Student
curriculum curriculum "| curriculum / Learning

Figure 1: Phases of curriculum. Adapted from Stein, Remillard, & Smith, 2007, p.322

From the perspective of a secondary teacher aiming to integrate reasoning and proof into the
mathematics curriculum, we find that each element of this model (Fig. 1) presents unique challenges.
First, written curricula in the United States, such as textbooks, offer limited proof-related tasks outside
high-school geometry (e.g., Thompson, Senk, & Johnson, 2012). Thus, it becomes the work of the
teacher to design tasks and develop an intended curriculum. Next, as the teacher enacts the lesson in
the classroom, he/she must use appropriate language and conceptual tools that are within the reach of
secondary students to highlight mathematical ideas. Here, again, curriculum materials offer little
guidance to teachers on how to enact proof tasks in classrooms (Stylianides, 2008) in ways that
support development of students’ conceptions which are in line with conventional mathematics. Thus,
much of the curriculum design and implementation around proof rests on teachers’ own knowledge
and beliefs about the importance of proof for their students’ mathematical learning.

Supporting PSTs in developing such knowledge and productive dispositions towards proof were the
goals of the capstone course. In Buchbinder and McCrone (2018) we describe the course structure
and its theoretical underpinnings. Here, we illustrate the design features of the course that were
intended to support PSTs in development and enactment of a lesson on conditional statements. We
use conditional statements as an example, but our analyses apply to all four proof themes mentioned.

Setting

The course Mathematical Reasoning and Proving for Secondary Teachers contains four modules,
each addressing one of the proof themes. In the Conditional Statements module, PSTs first engaged
in activities designed to strengthen their knowledge of conditional statements. This knowledge
includes understanding that a conditional statement has the form: If P then Q (P = Q), where P is
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a hypothesis and Q is a conclusion; how to determine truth-value of such a statement; its equivalent
forms such as a contrapositive (~Q = ~P) and non-equivalent forms, such as a converse (Q = P).

PSTs then examined excerpts of hypothetical student work related to conditional statements, analyzed
students’ conceptions, and contemplated ways to address students’ difficulties. Next, the PSTs
reviewed a sample of mathematics textbooks to examine where conditional statements appear in the
school curriculum. These activities aimed to equip PSTs with the background for creating their own
lessons integrating conditional statements with mathematical topics taught in local schools.

During the lesson development stage, PSTs shared ideas and received feedback on their lesson plans
from their peers and the course instructor. The lessons were 50-minutes in length, and were intended
for small groups of 5-8 students rather than the whole class. All lessons were videotaped with 360°
cameras to capture both the PSTs’ actions and the students’ participation. PSTs then watched their
videos and wrote a reflective report. Sharing lesson plans with peers was intended to support PSTs’
enactment of their lesson, while reflection reports and instructor’s feedback on it aimed to serve as a
mechanism for future improvement. Despite multiple means of support embedded in the course
design, PSTs experienced challenges in developing and enacting lessons on conditional statements,
as we will show in the results section.

Methods: Participants, Data Sources and Analysis

Fifteen PSTs in their last year of university studies took part in the research. Prior to the capstone
course the PSTs completed most of the required courses in mathematics and pedagogy.

The data sources for the analysis reported in this paper comprise the PST-developed lesson plans on
conditional statements, the video recordings of the enacted lessons, and PSTs’ reflective reports. The
lesson plans were analyzed in terms of their focus on the conditional statements proof theme, and
assigned a rating of high, medium or low. The low focused lesson plans included no more than 3
conditional statements and the activity only required students to determine their truth value. For
example, Chuck’s (all names in the paper are pseudonyms) 8™ grade lesson on exponents had three
true or false questions, such as: “If a negative number is raised to an even power, the result will be a
positive number.” This question offers opportunities to discuss what is needed to prove or disprove
such a statement and use the rules of exponents to produce a generic proof accessible to 8" graders.
Yet, Chuck’s plan merely expected students to produce a “proof” by example, such as (-2)% = (-2)(-
2) =4, missing the opportunity to attend to a misconception about the limitations of empirical evidence
as proof and even enforcing it. Lesson plans with high focus on the proof theme contained more than
three conditional statements along with a clear plan on how they would be used to advance students’
knowledge of conditional statements (as examples in the results section will show). A lesson plan
with medium focus would be located between these two extremes, for example, Rebecca’s lesson on
logic riddles dealt with reasoning and justifying, but the place of conditional statements was unclear.

The classroom videos were analyzed using Schoenfeld’s (2013) Teaching for Robust Understanding
(TRU) rubric which was slightly modified to reflect aspects of teacher work and student interaction
that are specific to proving. The revised rubric had five dimensions, four related to teacher actions:
(a) Accuracy, language, and connections, (b) Explicating reasoning and proof theme, (c) Actions to
promote student engagement, (d) Maintaining cognitive demand; and one dimension related to (e)
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Student engagement. Each video was divided into thematic episodes, no more than 5 minutes long,
and each episode was assigned a score of 3 (high), 2 (medium), 1 (low) on each dimension. In the
results section we illustrate the different dimensions of the rubric and the scoring system.

Results
The intended curriculum: Lesson plans

The analysis of the lesson plans in terms of prevalence of the conditional statements revealed 3 plans
with low focus on the proof theme, 1 medium and 11 high. Below are examples of two lesson plans
with a high focus on the conditional statements theme, developed by Bill and Dylan for students in
grade 10. We chose these lessons to illustrate creative integration of conditional statements with
regular content in algebra and geometry; as well as the challenges that PSTs encountered while
enacting the lessons in classrooms.

Bill’s lesson plan integrated conditional statements with triangle geometry. Each pair of students had
two sets of notecards: yellow cards had hypotheses written on them (e.g., a triangle is equilateral),
and green cards had conclusions (e.g., a triangle is isosceles). Students had to create conditional
statements by matching hypotheses to conclusions. Bill intended to use student-produced statements
in awhole class discussion to introduce such concepts as domain of a statement and a counterexample.
Bill also planned to have students physically switch between hypothesis and conclusion cards as a
way to introduce a converse. The lesson plan did not contain any exposition about what a conditional
statement is, how it is structured, and what is needed to prove or disprove it. Bill hoped that these
ideas would come out naturally as the students engaged in and discussed the card-matching activity.

Dylan’s lesson integrated conditional statements with evaluating expressions and solving simple
algebraic equations. First, the concept of conditional statements and key vocabulary such as truth
value, domain and proposition (in lieu of hypothesis and conclusion) was introduced through non-
mathematical examples such as “If a motor vehicle has four wheels then it’s a car.” Next, students
practiced identifying domain, proposition and determining the truth-value of four statements: (1) If a
number is divisible by 10, then it is divisible by 5; (2) If a number is not divisible by 10, then the
number is not divisible by 5; (3) If a number is not divisible by 5, then it is not divisible by 10; and
(4) If a number is divisible by 5, then it is divisible by 10. Notating the first one as P = Q, the other
statements have the forms: ~P = ~Q, ~Q = ~P, and Q = P, respectively, which allows making
interesting connections. The third task had students identify domain and proposition in statements
related to evaluating expressions, such as: “If we have the equation 11x — 12 = 1, then the solution of
x is a whole number”, or “If the side length of a cube is a whole number, then the volume is also a
whole number.” The students worked on these tasks in pairs and then discussed as a group.

Both lesson plans meaningfully integrated conditional statements with the mathematical topics Bill
and Dylan planned to teach. The tasks in the lessons were of high cognitive demand (Silver et al.,
2009) as they required formulating statements, exploring and justifying claims. In the next section
we examine the transition from the intended to enacted curriculum in Bill’s and Dylan’s lessons.
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The enacted curriculum: Classroom implementation

Both Bill’s and Dylan’s lessons were enacted in 10" grade classrooms with a group of 4 students.
The description of the enactment below follows the five dimensions of the modified TRU rubric.

Bill’s enacted lesson. Within the dimension of Accuracy, language and communication we
distinguish between accuracy related to geometry, in which Bill’s performance was impeccable,
versus accuracy related to the proof theme. Bill’s lesson plan suggested that he intended to build on
students’ contributions to elicit ideas about conditional statements. Thus, throughout the lesson Bill
tried to avoid unfamiliar vocabulary and only used informal language. For example, when introducing
the card matching activity Bill instructed students to match “if-cards” with “then-cards” to create “if-
then” statements. He never introduced the concept of conditional statement and referred to hypothesis
and conclusion as the “if-part” and “then-part” of the statement throughout the entire lesson. The lack
of proper mathematical language complicated the classroom communication. Towards the end of the
lesson Bill wrote a statement and its converse next to each other on the board and asked the students:
“what changed?” One student responded by saying “the ‘then’ became the “if’.” This is a correct
observation on behalf of the student, which signals the lack of language to describe it. While intending
to build on student knowledge, Bill missed the opportunity to introduce vocabulary that could help to
streamline the communication around conditional statements.

In terms of explicating the conditional statements proof theme, Bill seemed to follow a similar
strategy of minimizing his input. The mathematical task lent itself naturally to discussing such
important ideas as generality of a conditional statement and how to determine if it is true or false.
Yet, the only concept Bill introduced in the lesson was a counterexample, which he informally defined
as an example that “does not fit the statement and disproves it.” Bill initiated a discussion on how to
distinguish between examples that support, disprove or are irrelevant to the statement. For the latter
point he used the statement: “If an angle in a triangle is 45°, then the measure of the third angle is
45°” and drew a triangle with no 45° angles. Students were initially confused whether this triangle
constitutes a counterexample to the statement, so Bill explained that a counterexample must satisfy
the “if-part” but not the “then-part”. Overall, Bill explicated multiple aspects related to conditional
statements, but his insistence on using only informal language kept the discussion at a basic level.

In terms of actions to promote student engagement, Bill’s lesson was rated very high. He encouraged
participation by asking multiple questions, pushing students to provide explanations and justify their
thinking. He was attentive to student body language and when he sensed that some students did not
follow the discussion, he asked a student to repeat what was said in their own words. Bill made sure
that each student contributed something to the conversation, however the level of student engagement
was rather moderate. Although all students were listening attentively, they appeared uncomfortable
when pushed to speak in full sentences, only responding in a few words. As a result, Bill often had to
break down his questions to a set of simpler ones, lowering the cognitive demand of the tasks. The
aggregate scores for Bill along the five dimensions are shown in Figure 2a.

Dylan’s enacted lesson. Similar to Bill, Dylan’s Accuracy, language and communication was
different when talking about solving equations versus aspects related to conditional statements. The
latter was often imprecise or not properly adjusted to the students’ level. For example, Dylan said that
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“when we prove the statement is false, we are providing a counterexample - something that does not
fulfill the statement.” But since he did not provide a clear explanation of what it means to “not fulfill
the statement” students occasionally confused an irrelevant example for a counterexample.

Dylan explicated the conditional statement proof theme much stronger than Bill. Dylan introduced
some key concepts related to conditional statements, and even some logical notation, e.g., P = Q,
which contributed to more seamless communication. However, Dylan missed multiple opportunities
to draw connections among the concepts. For example, each of the four conditional statements on
divisibility by 10 and by 5 was treated as a separate entity during the lesson. We are not claiming that
Dylan should have delved deeper into logical notation or introduced a contrapositive, which could
have been overwhelming for the students. However, Dylan missed the opportunity to draw students’
attention to the fact that that statements (2) and (4) are disproved by the same counterexample or that
statements (1) and (3) require a general proof that uses the same key idea of 5 being a factor of 10. In
his lesson reflection Dylan wrote how impressed he was with the students being able to identify the
domain and proposition, and correctly justify the truth-value of statements that included negations,
the converse, and the contrapositive. However, his lesson plan did not mention any of these
connections, suggesting that the missed opportunity occurred at the planning stage.

Dylan did a good job in promoting students’ engagement by ensuring that students were on task,
following up on students’ input, asking questions and pressing for explanations. For their part,
students participated in the lesson in meaningful ways such as sharing ideas, responding to prompts,
and justifying their work. As the lesson progressed, and its focus shifted to conditional statements
involving equations, Dylan payed less attention to the logical aspects, focusing almost entirely on
solving equations, possibly because students appeared to have difficulties in this area. While trying
to support student thinking, Dylan often took over the explanation, thus lowering the cognitive
demand of the tasks. The aggregate scores for Dylan along the five dimensions are shown in Figure
2b (four on teacher actions and the fifth on student engagement).

Language Language
3 3
2,5 2,5
Student Expll_ca}tmg Student Expll_ca_ltmg
enagaement Conditional enagaement Conditional
g statements g statements
Cognitive Promote Cognitive Promote
demand engagement demand engagement
Figure 2a: Bill’s enacted lesson. 2b: Dylan’s enacted lesson

Figure 2 allows us to compare the various dimensions of Bill’s and Dylan’s enacted lessons. Both
written lesson plans were rated high on explicating the conditional statements theme, however, Bill’s
insistence on using informal language resulted in lower scores in the areas of Language and
Explicating Conditional Statements. Also, as described above, Bill put more effort into promoting
student engagement, which is reflected in the high score for Promote Engagement (Fig. 2a). For the
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Cognitive Demand dimension, both Bill and Dylan scored about 2.5 on the three-point scale,
reflecting the fact that they both tried but did not completely succeeded in maintaining the cognitive
demand of their intended tasks when enacting their lessons. The Student Engagement dimension was
also about 2.5 for both Bill and Dylan. We emphasize that in our setting it is not possible to draw
direct connections between teacher actions and student engagement. Students’ active participation,
or the lack of thereof, could be in response to the change in their learning routine, by having a standard
mathematics lesson replaced by one taught by a PST. Nevertheless, we include the student
engagement dimension in the analysis to show the feasibility of having secondary students participate
meaningfully in lessons that integrate conditional statements with the ongoing mathematical topics.

Discussion

Our goal in this paper was to trace how PSTs who participate in the capstone course Mathematical
Reasoning and Proving for Secondary Teachers developed and implemented, in real classrooms,
lessons that integrate aspects of conditional statements with the regular mathematics curriculum. Our
analysis was grounded in Stein et al. (2007) curriculum framework. Overall, we were impressed with
the fact that 11 out of 15 PST-developed lesson plans rated high on the prevalence of the conditional
statements proof theme in them. This is a non-trivial outcome, especially given the limited access to
pre-existing proof-oriented tasks in traditional US mathematics textbooks (i.e., the written
curriculum). The majority of our PSTs were able to overcome this limitation, with the appropriate
instructional support, and use knowledge and skills acquired in the capstone course creatively to
develop lesson plans (i.e., the intended curriculum) that integrate logical aspects of proof with a
variety of standard mathematical topics.

Despite many of the lesson plans having high focus on the conditional statements proof theme, the
actual enactment of the lesson was often challenging for PSTs, as Bill’s and Dylan’s lessons illustrate.
The main difficulties observed were adjusting the language to the student audience and clearly
explicating the proof theme. These difficulties can be due to the fact that the PSTs did not know the
students prior to the lesson, which impeded their ability to anticipate how students would respond to
the conditional statements content. We addressed this issue in the subsequent iteration of the course,
by including a requirement that PSTs provide in their lesson plans a list of mathematical-logical
concepts they plan to use during the lesson and write a verbatim description of how they intend to
introduce these concepts to students. The intention is to have the PSTs play out these aspects of the
lesson plans more explicitly, prior to their enactment, so that their lessons are more likely to match
the intended curriculum.

Based on the structure of the course, most PSTs taught a different group of students each time; this
lack of continuity impedes our ability to make claims about student learning across time. However,
our analysis showed relatively high levels of student engagement with proving during the PSTs’
enacted lessons. Although we cannot attribute this completely to the PSTs’ pedagogical actions, we
assume that, if the content of the lessons was completely outside students’ interest or conceptual
reach, we would be seeing much lower levels of student participation.

The challenges encountered by the PSTs in our study can be partially explained by PSTs’ lack of
teaching experience. However, we assert that teaching conditional statements, or proof themes, in
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general, is inherently challenging. Identifying specific areas of challenge for PSTs can help us, as
mathematics teacher educators, to develop support structures that promote PSTs’ competence in
enacting reasoning and proof in their future classrooms. Some of these support structures were tested
in our course design. Through repeated cycles of planning lessons that integrate proof themes within
regular school curriculum, enacting these lessons in classrooms, and reflecting on them, the PSTs
gained valuable experiences and developed a sense of feasibility of engaging students in proving.
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The purpose of this paper is to examine the effects of an intervention study which aimed at improving
pre-service mathematics teachers’ pedagogical content knowledge (PCK) of proof schemes. Sowder
and Harel’s (1998) framework of proof schemes constitutes the conceptual framework of this paper.
To explore twenty-two pre-service teachers’ PCK, we designed a survey using a scenario. The
quantitative findings of the study revealed that the intervention had a meaningful and large effect on
participants’ PCK of proof schemes. The qualitative findings of the study indicated that participants
had difficulties identifying especially symbolic, example-based, transformational and axiomatic proof
schemes prior to intervention, but they had overcome these difficulties after the intervention.

Keywords: Proof, proof schemes, pedagogical content knowledge, pre-service mathematics teachers
Introduction

Teaching proof is a extremely difficult matter for teachers to overcome (Heinze & Reiss, 2004). For
teaching proof effectively, teachers should be able to determine types of justification used by their
students and help them enhance their justification types to be able to reach the axiomatic level. In
other words, they should have pedagogical content knowledge (PCK) of proof. In this paper, we are
particularly interested in proof schemes which could be described as cognitive characteristics of
proving processes (Harel & Sowder, 1998). However, there is a gap in the literature which explores
or aims to develop PCK of proof schemes which is crucial for pre-service mathematics teachers. In
order to address this problem, mathematics teacher educators should look for different ideas to teach
proof in teacher preparation courses (Stylianides & Stylianides, 2017). Lack of such courses and
instructional materials in pre-service mathematics teacher education programs call for intervention
studies that foster PCK of proof.

Conceptual Framework of the Study: PCK of Proof Schemes

The conceptual framework of this study adopts two different frameworks: pedagogical content
knowledge (Shulman, 1987) and proof schemes (Harel & Sowder, 1998; Sowder & Harel, 1998).
Shulman (1987, p. 8) describes PCK as an “amalgam of content and pedagogy that is uniquely the
province of teachers”. Various researchers describe different components of PCK. Among them,
knowledge of students’ thinking has been extensively studied in teacher education literature
(Depaepe, Verschaffel, & Kelchtermans, 2013). Knowledge of students’ thinking in a specific domain
such as proof has a topic-specific dimension in it. With this regard, Lesseig (2016) created the "MKT
for Proof" framework by adapting the Mathematical Knowledge for Teaching (MKT) framework
developed by Ball, Thames, and Phelps (2008). She defines a subdomain of PCK as the knowledge
of content and students (KCS) for proof which involves “knowledge of students’ typical conceptions
or misconceptions of proof as well as an understanding of developmental sequences” (p. 256). More
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specifically, it is the knowledge of “characteristics of external, empirical and deductive proof
schemes, students’ tendency to rely on authority or empirical examples, typical progression from
inductive to deductive proof” (p. 257). In this study, we focus on PCK of proof schemes, knowledge
of students’ proving processes and identifying students’ proof schemes in particular.

Proof schemes are cognitive characteristics of the proving process and describe one’s methods of
justification. Harel and Sowder (1998, p. 244) discovered undergraduate students’ categories of proof
schemes each of which “represents a cognitive stage and intellectual ability in students” mathematical
development”. They offered three main categories and their sub-categories:

The first category, external proof schemes, points out to an external source that convinces the student.
Also, students persuade others by referring to these external sources. When this source is an authority
(e.g. a teacher or a textbook), it is called authoritarian proof scheme. The external source might also
be the form or appearance of arguments e.g. proofs in geometry must be in two columns. In this case,
it is called ritual proof scheme. The last sub-category of an external proof scheme is symbolic proof
schemes which refer to meaningless manipulations of symbols (Harel, 2007).

The second category is empirical proof schemes. For this scheme, “conjectures are validated,
impugned, or subverted by appeals to physical facts or sensory experiences” (Harel & Sowder, 1998,
p. 252). This could be in two ways: (a) relying on evidence from one or more examples (example-
based proof schemes) or (b) relying on intuition or perception to convince or to be convinced
(perceptual proof schemes) (Harel, 2007).

The third category is analytical proof schemes which is at the highest level of justification. In this
case, conjectures are validated by means of logical deductions. It has two sub-categories:
transformational and axiomatic proof schemes. Transformational proof schemes have three
characteristics: generality, operational thought, and logical inference. (Harel, 2007). Generality is
concerned with justifying “for all”. Operational thought takes place when a student “forms goals and
subgoals and attempts to anticipate his/her outcomes during the proving process” (Harel, 2007, p.
67). Finally, logical inference requires mathematical justification based on the rules of logical
inference. In addition to these three characteristics, in the axiomatic proof scheme, proving processes
are built upon an axiomatic system, therefore must start from accepted principles (Harel, 2007).

The aim of the study and the research question

This study is part of a PhD thesis which aims to design an undergraduate course for developing pre-
service mathematics teachers’ (PSMTSs) view, content and pedagogical content knowledge of proof.
The aim of this study is to report the findings of an intervention study which aims to develop pre-
service teachers’ knowledge of proof schemes. As part of the course, a module on proof schemes,
was implemented and our research question is as follows: “How does the module affect pre-service
mathematics teachers’ pedagogical content knowledge of proof schemes?”

Methodology

This study used designed-based research (DBR) and specifically ADDIE (Analysis, Design,
Development, Implementation, and Evaluation) model (Branch, 2009). In the analysis phase, the
needs analysis was made based on the literature. Calls for the design and analysis of interventions
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that foster PCK of proof and proving, proof schemes in particular, in the context of pre-service teacher
education were considered. The objectives and learning outcomes of the course were determined.
One of them was related to proof schemes: “PMTs will be able to describe and identify students’
proof schemes”. In the design phase, a 15-week course consisting of various modules (i.e. modern
components of proof, proof methods, identifying proof schemes, student difficulties with proving,
reasons behind student difficulties, teaching strategies that can overcome student difficulties) was
prepared and expert opinion was taken. In the development phase, learning and teaching situations
were organized. For the module on proof schemes, the classification of proof schemes by Sowder and
Harel (1998) were explained to participants using two scenarios. Participants worked both
individually and in groups to identify students’ proof schemes using the scenarios. After the
intervention, the learning outcome related to proof schemes was evaluated using a different scenario.
In the evaluation phase, the effect of the module on the learning outcome related to proof schemes
was evaluated.

Participants are twenty-two PMTs who are in the second year of a teacher education program in a
state university in Istanbul, Turkey. To explore PCK of proof schemes, we designed a survey called
Pedagogical Content Knowledge of Proof Survey (PCK-P survey) using a scenario (See Appendix).
The scenario includes an excerpt of a hypothetical discussion among a mathematics teacher and ten
9th grade students (age of fifteen). Prior to the intervention the PMTs were asked to describe student
thinking; after the intervention, the PMTs were specifically asked to describe students’ proof
schemes. The topic is set theory which is a typical topic in 9" grade curriculum in Turkey and the
class discusses the truth of a proposition. Sowder and Harel’s (1998) proof schemes are illustrated by
excerpts of students (See Table 2 for which student has each scheme). For validity concerns, the
number of students was chosen to be ten which is bigger than seven (which is the number of proof
schemes) to prevent participants from matching students” work to the proof schemes. The teacher
presents a proposition and asks students whether this proposition is true or false and justify their
answers: “Let X, Y,and Z be sets. If X c Yand Y c Z then X c Z”. The survey includes the following
questions concerning the scenario: “Describe how students S1,...,S10 justify their answers to the truth
of the proposition. Is the proof correct”. To increase the validity of the findings, the scenario used as
data collection tool was chosen to be different from the scenario used during the module. The topic
was also different. PMTs filled the PCK-P survey before and after the intervention (fifteen weeks
later). In the second implementation, PMTs were directly asked to identify proof schemes of students.

We analyzed qualitative data to explore the effectiveness of the module and obtained quantitative
findings which will also be supported with written explanations of participants. Each participant
identified ten students’ proof schemes, therefore there is a total of 220 answers. 220 answers from 22
participants were coded as “correct”, “incorrect” or “no response”. We used the Wilcoxon Signed
Rank Test (Wilcoxon, 1945) to investigate whether the module significantly affected participants’
PCK. The effect size was calculated using the formula r = Z /v/n.

Findings

Table 1 below presents the frequencies and percentages for correct, incorrect and no response
categories. Percentages were calculated out of a total of 220 answers. As can be seen in Table 1,
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findings indicate a development of PCK of proof schemes. The percentage of correct answers is
61.4% before the intervention and it increases to 96.4% after the module implementation. The number
of correct answers increased by 77 which represents 35%.

Correct Incorrect No Response | Total
Pre-intervention f (%) 135 (61.4%) 82 (37.3%) 3 (1.4%) 220 (100%)
Post-intervention f (%) 212 (96.4%) 8 (3.6%) 0 (0.0%) 220 (100%)

Table 1: Frequencies and percentages for answers before and after the intervention

Mean, standard deviation, minimum and maximum points were also calculated (over 10 which is the
number of questions) considering answers to the survey before and after the intervention. The mean
value increased from 6.14 to 9.64, minimum value increased from 3.00 to 8.00 and maximum value
increased from 9.00 to 10.00. Standard deviation decreased to 0.58 from 1.49.

Student Type of Proof Scheme Correct Incorrect
no (Pre-/Post-) | (Pre-/Post-)
1 Authoritarian 19/18 2/4
2 Authoritarian 19/22 3/0
3 Perceptual 17/22 5/0
4 Ritual 18/22 4/0
5 Symbolic 0/20 22/2
6 Example-based (a single example of finite sets) 21/22 1/0
7 Example-based (a single example of infinite sets) 13/21 9/1
8 Example-based (multiple) 14/21 8/1
9 Transformational 2/22 19/0
10 Axiomatic 12/22 9/0

Table 2. Frequencies of answers for proof schemes before and after intervention

We used the Wilcoxon Signed Rank Test to decide whether differences in PCK scores is significant.
A Wilcoxon signed rank test showed that there was a significant difference (Z = —4.144, p < 0.001)
between scores obtained before and after the intervention. Outputs for mean ranks of difference scores
and sum of ranks imply that this significant effect is in favor of positive ranks, in other words, post-
intervention. In addition, all participants’ scores of PCK after intervention are higher than their scores
prior to intervention. Effect size (r) was found as —0.88. Since the absolute value of effect size is
0.88 which is greater than 0.50, it can be said that the module has a large effect size on the scores of
PCK with regard to proof schemes in favor of post-intervention (Cohen, 1988).
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As Table 2 shows, participants had difficulties to identify symbolic, example-based, transformational
and axiomatic proof schemes before the intervention. They had overcome most of these difficulties
after the intervention. Below, we present examples of these cases.

Student 5 has a symbolic proof scheme. He justified his answer considering the number of elements
(See the lines 21-22 in Appendix): “S(X) < S(Z) then X < Z”. Using this statement which is wrong,
Student 5 uses a shallow symbolic manipulation. None of the participants correctly identified that this
student has a symbolic proof scheme because participants also thought that it is a valid proof. After
the intervention, 20 out of 22 participants identified Student 5’s proof scheme correctly. They used
the terminology of proof scheme framework.

In the scenario, we prepared three different cases of an example-based proof scheme using (a) a single
example of finite sets (Student 6), (b) a single example of infinite sets (Student 7) and (c) multiple
examples (student 8). Before the intervention, 21 out of 22 participants noticed that Student 6 relied
on only one example. After the intervention, all participants identified the proof scheme of Student 6
correctly. For the cases of (b) and (c), frequencies of correct answers increased considerably after the
intervention (See Table 2). For (b), after the teacher called out for a more general example, Student
7 justified his answer using the sets N, Z, and R which are infinite (See the lines 32-34 in Appendix).
We consider this as an “example-based proof scheme using a single example” as in the case of (a)
except the fact that N, Z, and R are infinite sets. However, before the intervention, nine participants
could not identify the proof scheme in the case of (b) because they thought that this is a generalization.
Since they considered the student’s scheme as a generalization rather than example-based scheme,
we coded their responses as incorrect. However, after the intervention, they improved in identifying
this scheme (21 out of 22 participants correctly answered).

Student 8 suggested each student find one example so that there would be many examples to justify
the truth of the proposition (See the lines 36-37 in Appendix). 8 out of 22 participants could not
identify Student 8’s scheme correctly as “example-based” before the intervention. The main reason
is that they thought multiple examples are convincing for a generalization:

PMT13: He reaches a generalization by a different example for each one in the class.

PMT17: He justifies by making a generalization and uses many examples that show the truth
of the proposition so many times.

After the intervention, 21 out of 22 participants correctly identified Student 8’s justification as
“example-based”.

Student 9 has transformational proof scheme since he reached a generalization through operational
thought based on logical inference (See the lines 42-43 in Appendix). Before the intervention, only
two participants could identify the proof scheme correctly, because others did not refer to any
components of this scheme (generalization, operational thought or logical inference) in their
explanations about Student 9’s justification. After the intervention, all participants identified the proof
scheme correctly.

Student 10 has axiomatic scheme since he started the proof by using the definition of a subset and
successfully completed the proof as can be seen in the scenario in Appendix (See the lines 47-48).
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Before the intervention, 12 out of 22 students could identify this scheme. Others just mentioned that
it was a mathematical proof. After the intervention, all participants identified the proof scheme
correctly because Student 10 used the modern components of an axiomatic system.

Discussion and Conclusion

Data indicated that the course module had significantly affected participants’ scores of PCK of proof
schemes. The intervention was effective especially in overcoming difficulties with identifying
symbolic, example-based, transformational and axiomatic proof schemes. Before the intervention,
participants could not identify students’ shallow symbolic manipulation. Instead, they were probably
convinced that the proof was valid just because it included symbols. For symbolic proof scheme, the
course module included discussions of many examples of meaningless symbolic manipulation. After
the intervention, participants improved in identifying this scheme. In the scenario, we expanded the
notion of example-based proof schemes and included three cases (a single example of finite sets or
infinite sets and multiple examples) and participants performed differently in each case. Before the
intervention, participants found it more convincing compared to a proof with a single example which
includes finite sets. In sum, although they identified an example-based proof scheme, they had
difficulties in identifying proof schemes of students who used infinite sets and multiple examples.
These findings indicate the importance of teachers’ awareness of how students may view examples
and noticing aspects of example use (Tsamir, Tirosh, Barkai, & Levenson, 2017). The module which
included different cases of example-based proofs helped them overcome their difficulties.

The module was also effective for overcoming participants’ difficulties in identifying
transformational proof scheme by focusing on practices of generalizations using rules of logical
inference and operational thought. Participants were more successful with identifying axiomatic proof
schemes when compared to transformational scheme probably because they were more familiar with
the modern components of proof such as definitions and axioms. However, before the intervention,
they did not refer to these components to explain students’ proving processes.

Considering the potential of scenarios to investigate PCK of proof schemes as implied by the findings
of this study, we suggest that future studies could design scenarios focusing on proofs in different
content areas. We also suggest that scenarios could be used in transition courses in undergraduate
mathematics programs as well as teacher preparation programs. However, one should consider
potential limitations of assessing the knowledge of identifying proof schemes using scenarios which
could not reflect the complexity of a classroom. The second cycle of intervention could focus on
teaching and learning situations in real classroom settings. Using Sowder ve Harel’s (1998) notion of
proof schemes which is a psychological construct, we focused on the psychological aspects of proof.
Future studies could consider epistemological and sociological aspects of a mathematical proof.
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Appendix. The scenario used in the PCK-P survey

Teacher: Is the proposition below true or false? If true, why? If false, why? Justify your answer.
Proposition: “Let X, Y and Z be sets. f X cYandY c Zthen X c Z”

Student 1: I think, it is false. We’ve seen a lot of rules about sets. But | don’t remember this one.
Teacher: OK. We haven’t seen it in a lesson. Couldn’t it be still true?

Student 1: I’ve never heard of a rule like this. Therefore, I think it’s false.

Student 2: Teacher, it is true. Because this theorem is in our maths textbook. So, it is definitely true.
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Teacher: Do you think this is enough for a justification? You didn’t write or do anything about it.
Student 2: | think it’s enough. Why do we need another kind of justification if it’s in the textbook?
Teacher: It’s very important for us to reason about truth or falsity of a proposition.

Student 3: Teacher. May | draw a picture?
Teacher: Of course, you can.
Student 3: I think it’s obvious from the picture.

Teacher: (heading towards the class) Is it enough for a proof? Just to draw a picture?

Student 4: Well, in fact. Every element in X is also an element of set Y. Every element in set Y is
also an element of Z. | can express truth of the theorem. But we should do something mathematical.
But | can’t do it. Theorems should be proven using mathematical statements. But it shouldn’t be.
Verbal expressions, like | use, convince me much more.

Teacher: How did you come to this conclusion that proofs consist of mathematical statements only?
Student 4: Because proofs I’ve seen so far are just like that.

Teacher: Is there anyone who could use mathematical statements?

Student 5: If X c Y then S(X) < S(Y) and if Y c Z then S(Y) < S(Z). Therefore S(X) < S(Z) that
isX cZ.

Teacher: If the number of elements of a set is smaller than the number of elements of another set,
then does it mean that the first set is a subset of the second set?

Student 6: | think not. I think that there is an easier way.

Teacher: What is that?

Student6: Let X cYandY c Z. Let X ={1,2}, Y ={1,2,3}and Z = {1,2,3,4}.

Since {1,2} c {1,23} c {1,2,3,4} then X c Z.

Teacher: Well. Do you think that this example is sufficient?

Student 6: Now it is true. I think it is sufficient.

Teacher: (heading towards the class) Do you think that this is sufficient?

Student 7: Not that example. But it would be sufficient if we justify with a more general example.
Teacher: For example?

Student 7: N c Z and Z c R. Therefore N c R.

Teacher: That is a more general example. But still, it is not sufficient for generality issue of a proof.
Student 8: Teacher! If each one of us in the class finds an example to show the truth (of the
proposition), then we can reach a generalization.

Teacher: When | talk about a generalization, it means it is true for all X, Y and Z. We can reach a
generalisation through the rules of logical inference and operational thought. That is, using other rules
we should reach a judgement from a hypothesis through operational thought. Is there anyone who
could reach a generalization using what we’ve done in our previous lessons?

Student 9: Let X c Y and Y < Z. Considering the rules we mentioned in our lessons, if Y c Z then
YUZ=Z. XcYthenXUZ=Z.1fXUZ=ZthenX c Z.

Teacher: That is correct. However, it is better if we think of the modern components of proof. It is
appropriate to start a proof with definitions and axioms. Is there anyone who could prove it using the
definition of a subset?

Student 10: Let X c Yand Y c Z. In this case, from the definition of a subset, if X c Y then for Va €
Xa€eY.IfY c ZthenforVa € X a € Z. Therefore, since for Va € X a € Zthen X c Z. It’s proven.
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Games as a means of motivating more students to participate in
argumentation

Jenny Cramer
University of Bremen, Germany; cramerj@math.uni-bremen.de

Mathematical argumentation and proof require students to engage in complex thought processes in
which they explore logical connections, solve problems, and learn to trust their own assertions. While
in most mathematics classrooms there are some students who show an aptitude for trusting their own
reasoning and making logical inferences, this does not generally hold true for the majority of
students. In the context of playing games, however, many students overcome such obstacles and
become motivated to use logical reasoning and argumentation. In this paper | examine the potential
of exploiting logical structures in games as a means of fostering the motivation of students to engage
in inner-mathematical argumentation. A three-step-approach leading from a board game into
argumentation in calculus is introduced and indications towards the usefulness of the approach for
fostering students’ motivation are presented.

Argumentation, logical games, calculus, motivation.
Argumentation — a mathematical activity for the few?

Mathematics is a discipline based on logical thinking and inferences, with argumentation and proof
at its heart. Proving activities in mathematics provide opportunities to autonomously discover
mathematical knowledge and reach a deeper understanding (de Villiers, 1990) and can therefore
promote an experience of empowerment to students. They may also teach us how to reason logically
outside of mathematics (Grabiner, 2012). The mathematics classroom should thus aim at engaging
all students in “suitable mathematical activities of argumentation and proof” (Boero, 2011, p. 1). This
demand is even more pressing in the light of existing gaps in the accessibility of high level
mathematical activities for students from different backgrounds (Boaler, 2016, p.173).
Argumentation and proof threaten to act as social filters that may increase performance gaps between
students of different backgrounds if they are only accessible to few students (Knipping, 2012).

Being important mathematical activities, argumentation and proof have been receiving increasing
attention in mathematics education and in school curricula for decades. However, in spite of efforts
made to promote argumentation in class, only one in three students reported in the PISA study of
2012 that they like to engage in complex problem solving activities (OECD, 2013, p. 67f), and about
30% of students reported a feeling of helplessness when doing mathematics problems (OECD, 2013,
p. 88f). While problem solving is not synonymous to arguing and proving, such tasks almost always
rely heavily on logical reasoning, and the results may be taken as an indication for students’ attitudes
towards argumentation activities: few students appear to enjoy such activities, and a significant
number of students is reluctant to engage in them at all. This is surprising, as more than half of the
same students questioned for PISA 2012 stated that they sought explanations for things and could
easily link facts together (OECD, 2013, p. 67f), and both of these skills are crucial for argumentation.
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Mathematical argumentation is a discursive practice, into which students need to be introduced in
order to be able to participate (Boaler, 2000). Logical games and puzzles may provide a suitable way
of overcoming obstacles to participation, as they require forms of logical, deductive reasoning similar
to the reasoning used in mathematical argumentation and proof. Clear rules, balanced starting
positions for all players, and the limited scope of knowledge required for argumentation in a game
context may help to facilitate students’ participation in discourse as they provide circumstances which
may support fulfilling discourse ethical requirements (Habermas, 1990). These potential positive
aspects of games have been discussed before (Cramer, 2014).

Another positive aspect of games lies in their potential to appeal to the intrinsic motivation of
students. High motivation in games can be explained by the needs for competency, autonomy and
relatedness postulated by Deci & Ryan’s (1993) self-determination theory. The motivational potential
of games has been well documented for video games (Rigby & Ryan, 2011), and similar effects may
be expected for board games. The need for competency describes an inner desire to master challenges
and new situations. Games provide such challenges to their players. A fulfillment of the need for
autonomy is given when we perceive our actions as self-guided. While this is generally difficult to
achieve in a school setting, a playful approach may help to fulfill this need. Lastly, the need for
relatedness describes a need for meaningful social interaction. Board games are characterized by
interaction and could prove even more helpful in this area than video games.

From game to graph: A three step approach

In this paper, a three-step approach to fostering the motivation of students to engage in argumentation
is presented. It includes several rounds of the logical game Uluru, puzzles in the logical game
environment, and puzzles in the area of calculus that aim at finding the graph of a function based on
certain requirements. The research was conducted in a regular mathematics class with 15-16 year-old
students in their tenth year of education (E-Phase) at a German high school (Gymnasium) over the
course of five double lessons on four school days. Results are based on students’ responses to three
questionnaires at different points of the study. Figure 1 shows a timeline of the intervention.

day 1 -2x 90 min day 2 - 90 min

e NN
NN NN\ e
E questionnaire U!uru (game) Uluru-puzzles Egﬂu)-!nmapuzzlns f/,/‘dr;l:ur_.q:!iﬁn

Fig 1: Temporal overview of the study

day 4 - 90 min

day 3 - 90 min

Step 1: Playing Uluru

In the first step of the intervention, the game Uluru (by Lauge Luchau, published by Kosmos) was
presented to the students. In Uluru’s scenario, animals in Australia transform into dream birds of
different colors (white, yellow, orange, pink, red, green, blue and black) at night and fly towards
Uluru (Ayers Rock). There are exactly eight spots around the Uluru on which birds may be placed.
Each player receives bird tokens in the eight different colors and a game board. At the beginning of
each round, wishes are randomly generated from a set of cards to guide the placement of the dream
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birds. The wishes correspond either to positions around the Uluru (e.g. “on the short edge”) or to
positions relative to birds of other colors (e.g. “next to the green bird”). Situations can arise in which
not all wishes can be fulfilled. All players simultaneously try to place their birds according to the
wishes within a set time limit. When the time has run out, points are given to the players according
to the number of birds correctly placed. The game is played in several rounds.

The types of arguments generated in Uluru are very similar to typical argumentation patterns in
mathematics. When evaluating the positions of the birds that each player has found, it is easy to tell
whether the requirements given by the wish for a certain bird have been fulfilled or not, and the only
possible results of this evaluation are true or false. Furthermore, the game naturally leads to questions
characteristically mathematical, such as: “(Why) is this the only possible constellation?”, “Is it
possible to fulfill all wishes?”, or “Why can’t all conditions be met at the same time?”. Thus, the
game naturally provokes argumentation between players at the end of each round, especially in
situations in which no player found a solution yielding eight points or when different solutions occur.

Step 2: Solving Uluru puzzles

For the second step of the intervention, | created eight different puzzles in which different wish
constellations were depicted. Students were given the task to figure out the maximum of achievable
points for each situation. Two of the puzzles could be solved in exactly one way, two could be solved
in different ways, three puzzles had a maximum of seven possible points, and in one puzzle six points
were the maximum. The students were asked to record and justify their solutions on a protocol sheet.
They were allowed to use the game board and the bird tokens to find a solution.

w

L
WS

—

yellow

Fig 2: An example for an Uluru-puzzle (colors annotated)

In the example puzzle shown in Figure 2, three wishes (white, pink and green) refer to positions
around the Uluru and five wishes (yellow, orange, red, blue and black) refer to birds of other colors.
This puzzle has a unique solution. Due to the wishes of the red snake and the black emu, red and
yellow need to be placed on adjacent spots and the black bird must be placed opposite the red bird.
The blue bat’s wish means that black and blue need to be on adjacent spots. The orange kangaroo’s
bird must be placed opposite the blue bird and thus on the same side as yellow and red. There is only
one side of the Uluru that has three spots (cf. Figure 3). The wishes of the yellow dingo (shared corner
with pink) and the pink lizard determine the corner in which these two dream birds must be placed.
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Combined with the already discussed wishes of the other animals, there
remains only one spot of the places defined by the wish of the white
echidna. The green bird token takes the remaining spot.

The students were allowed to work on these puzzles with a partner. They
handed in their protocols at the end of the lesson. The examination of
students’ answers showed that while they were almost always capable of
= finding the best possible solution, many students had problems with
et | " justifying their answers. Before resuming work on Uluru puzzles in the next
i . lesson, a plenary phase was initiated in which proof by exhaustion of cases
Fig 3: Unique solution . . .

and proof by contradiction were discussed in the context of Uluru puzzles.

Step 3: f(u)-luru puzzles

In a third step, the concept of f(u)-luru puzzles was introduced. In these puzzles, the animals of
Australia wished for properties of the graph of a function. The puzzles followed the game design. To
develop the graph, the students received a laminated coordinate system in a design inspired by the
game board, as well as removable foil pens. Table 1 gives an example for conditions of a puzzle.

white pink yellow orange red green blue black

f(-1) =-05 | exactlyl f"(0) >0 f(=2)=0 f'(0)=0 symmetrical f(0)=1 minimum
maximum to y-axis forx=-15

Table 1 Conditions in the f(u)-luru-"lightning puzzle™ (simplified design)

For this puzzle, a maximum of 7 points can be achieved. The wish of green combined with the wishes
of orange, white and black provide additional points f(2) = 0, f(1) = —0.5 and another minimum
for x = 1.5. The blue and red wishes define the y-intercept as a local maximum or minimum. As the
black and green wishes define two minima, pink’s wish determines that the y-intercept must be a
maximum. This contradicts yellow’s wish f’"(0) > 0. Thus, not all conditions can be fulfilled
simultaneously. As seven is the second largest number of achievable points, this is an ideal solution
to this puzzle. Figure 4 shows the solution.

| |I
|| | r| The gragh i3 A Y G
| |I ke ,ﬂ' falling in x:0 == i Y Tr'.l.af'.:.'-'.?
I| /\ I| — " here
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\ / e G, Beteesn 0and 1
/ Py J Ihrgrﬂph h=>
o I I.F—L: i 1 I this secficow, the
qraph is baal Left
Fig 4: Solution to the puzzle (7 points) Fig 5: Excerpt from the “wishes”-overview for f(u)-luru

To help students determine possible solutions and formulate arguments, they received an overview
which served to clarify and simplify the possible wishes in the f(u)-luru puzzles and to make the
mathematical task more playful. Figure 5 shows an excerpt of the overview. The students also
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received protocol sheets in a design analogous to the protocol sheets for the Uluru puzzles to
document their solutions. Like in the Uluru puzzles, the students were again allowed to work in pairs.
The puzzles did not ask the students to find an algebraic solution (no functional equations were
expected from the students).

From game to graph: A three step approach

To assess motivation, the Intrinsic Motivation Inventory (IMI, McAuley et al., 1989) was used. It is
a suitable tool to measure motivation based on the needs postulated by self-determination theory. The
questionnaire consists of 18 items and covers the dimensions interest-enjoyment (int-enj), perceived
competence (perc-comp), effort-importance (eff-imp) and tension-pressure (tens-pres). For each
item, agreement or disagreement was measured on a 7-point Likert-scale. Assessments took place at
three points during the intervention. All examined tasks target solving a problem involving a variety
of conditions that require reasoning and justifying. The students answered to the questionnaires using
a pseudonym, allowing them to freely utter criticism (the researcher being their teacher).

Questionnaire 1 (Q1) was given to the students before the intervention to act as a point of comparison
for later responses (cf. Field & Hole, 2003, p. 68). It was coupled to a task from the math textbook in
which the graph of a function was to be created from certain requirements. This task had briefly been
discussed in class in a lesson before the intervention. Q1’s purpose was to facilitate capturing
students’ attitudes towards tasks in the regular mathematics classroom involving reasoning.

The second questionnaire (Q2) was given after the students had played the game Uluru and after they
had been working on Uluru-puzzles for approximately one hour. | decided to forego an assessment
of motivation after playing so as not to overstrain students with too many questionnaires.

The students responded to the third questionnaire (Q3) after approximately one hour of f(u)-luru-
puzzles. This last questionnaire also covered some free text questions and items focusing on an
evaluation of the intervention by the students, which were not statistically validated and can thus only
give an indication concerning students’ attitudes towards the intervention.

The setting of the evaluation is as a repeated measures design (Field & Hole, 2003, p. 183ff) with
interdependent data, which necessitates an analysis of variance (Rasch et al., 2010). Nineteen students
participated in all three questionnaires (n=19). Shapiro-Wilk tests allow the assumption of normally
distributed results for all dimensions except tension-pressure (p<0.05) in Q2. Levene’s test allows to
assume homogeneity of variances except in the dimension of perceived competence.

Results

The needs dimension of interest-enjoyment is a measure of perceived intrinsic motivation. Results
for this dimension are thus very interesting, as they refer directly to how students perceived the tasks.
A non-significant Mauchly-test (p = 0.53) and the clearly significant analysis of variance (F(; 3¢) =
7.80; p < 0.01) justify the use of t-tests. Bonferroni-corrected values show significant (p < 0.01)
differences between Q1 and Q2 and between Q2 and Q3. The boxplot in Figure 6 shows a positive
shift of means from the first (M; = 3.63; SD = 1.22) to the second assessment (M, = 5.51; SD =
0.83). The third mean (M; = 4.39;SD = 1.06) lies between the others. Interest and enjoyment
decreased in f(u)-luru puzzles compared to the Uluru puzzles. However, the histograms of
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questionnaires 1 and 3 (Figures 7 and 8) also show a considerable decrease of very negative
evaluations (scale range 1-2).

Fig 6: Boxplot int-enj for Q1-Q3 Fig 7: Histogram int-enj Q1  Fig 8: Histogram int-enj Q3

These results can be interpreted as a positive tendency that students preferred the f(u)-luru puzzles
over classic mathematical tasks. However, this tendency needs to be treated with care as working
arrangements were different for the mathematical task and for the f(u)-luru puzzles.

For the dimension of perceived competence, homogeneity of variances cannot be assumed. A closer
look at the data shows that this can be explained by the high mean and small standard deviation in
Q2. A comparison of means of questionnaires Q1 (M, = 3.93;SD = 1.85), Q2 (M, =5.94;SD =
0.77), and Q3 (M; = 4.4;SD = 1.75) shows an increase in perceived competence for the Uluru-
puzzles, followed by a decreased for f(u)-luru; the pairwise differences between Q1 and Q2 and Q2
and Q3 are significant (p<0.05). The means for perceived competence did not increase significantly
between Q1 and Q3. However, as in the dimension of interest-enjoyment, the distributions of students
for the lower scores are instructive. In the classic mathematical task covered in Q1, eight students
perceived themselves as scarcely competent (scale range 1-2), whereas only two students gave this
response in Q3 for the f(u)-luru puzzles. Taking into consideration that the latter were comparatively
harder, this can be taken as an indication that students who otherwise trust little in their abilities might
have benefited from the intervention.

Results for effort-importance show significant differences (p < 0.01) between Q1 (M; = 3.8;SD =
0.77) and the means of Q2 and Q3 (M, = 4.95;SD = 1.15and M; = 4.7;SD = 1.02; Mauchly-test
p = 0.38, ANOVA F(, 36) = 7.80p < 0.01). The students appear to have put greater effort into both,

solving Uluru-puzzles and f(u)-luru puzzles. These results could point to an increase in students’
readiness to get deeply involved in a given task.

Results do not allow to assume normally distributed results for the dimension of tension-pressure in
Q2. However, this dimension was rated low in all assessments (M; = 2.88; M, = 2.01; M; = 3.06).
The students apparently did not perceive themselves under pressure during the intervention.

The students were asked in Q3 to comment on whether they had liked f(u)-luru puzzles better than
classic problems in mathematics. Some notable answers:

I liked the f(u)-luru puzzles more, because is was possible to visualize and understand better.
Yes, because it was something different. Not so “dry”, but another method to do math problems.
I liked it better because for some reason | was more motivated.

The majority of students responded positively. Only one student replied: “I personally liked the Uluru
puzzles better, because you didn’t need to show mathematical understanding like in the f(u)-luru
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puzzles. The f(u)-luru puzzles were just as tiresome as normal mathematical problems.” While this
answer shows that the intervention did not manage to motivate all students equally to engage in
mathematics, it underlines the positive effects of the second step of the intervention.

In addition to the IMI-questions, Q3 also covered items aimed at a more direct evaluation of the
intervention, which were rated on the same 7-point Likert scale. The students’ answers to these
questions show a positive evaluation. Table 3 shows the items and the means.

Item mean
I had fun playing Uluru (the game) 6.65

I had fun solving Uluru puzzles 6.15

I had fun solving f(u)-luru puzzles 4.9

I was motivated by the game Uluru to make an effort in Uluru puzzles 5.55

I was motivated by Uluru puzzles to make an effort in f(u)-luru puzzles 4.53

Table 3 Evaluation items in questionnaire 3 and their means
Discussion

The three-step intervention described in this paper covered only a brief timespan of five double
lessons, so only small effects may be expected. Furthermore, different working arrangements at
different stages of the intervention must be considered when examining the results. However, the
results presented here may be taken as an indication that game-based approaches may have
motivational benefits for students. The quantitative evaluation of students’ answers yields a
significant and noticeable increase of motivation for the Uluru-puzzles. While results for the f(u)-luru
puzzles are not as unequivocally positive, the distribution of student responses compared to their
assessment of the mathematical task in the dimensions of interest-enjoyment and perceived
competence allows for the tentative assumption that the f(u)-luru puzzles are more likely to get a
larger number of students involved in mathematical thinking than classic problems. Further research
is needed, both to determine the effect of the different conditions in this study (e.g. working
arrangements, difficulty of the tasks in Q1 and Q3) and to look at potential long-term effects.

While this paper shows potential motivational benefits of game-based approaches, this study did not
include an evaluation of students’ argumentation quality in the Uluru puzzles or in the f(u)-luru
puzzles. Therefore, it is unclear whether the intervention managed to actually improve mathematical
argumentation skills. This question needs to be tackled in future research. For an evaluation in this
regard, a consideration of Hintikka logic can prove helpful (Soldano & Arzarello, 2017).

Interventions like the one presented in this paper can be first steps towards a better integration of
more students into argumentation discourse in the classroom. Observations in class and student
responses to Q3 show that students worked on all given tasks in a highly concentrated way, which
naturally included arguments and justifications. Clearly positive reactions of students to the game and
the game-based puzzles show that most students like to engage in logical thinking. Exploiting logical
games and puzzles as a stepping stone for more students to get involved in mathematical argument
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seems a promising path towards more equally distributed student participation and might provide a
means of tackling existing gaps in students’ access to argumentation discourse.
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This paper discusses theoretical and methodological considerations which have emerged from
reviewing the literature related to my PhD research project which adopts an interactional perspective
on the development of the argumentation process in primary school mathematics. This led me to
distinguish the factors involved in mathematics classroom interaction during the development of the
argumentation process, as well as to examine the possible relations and interrelations of these
factors. The outcome of this process was, first, to clarify theoretical aspects and, second, to create a
preliminary model, called the “Mathematics Classroom Interactional Model” (MCIM), positing two
levels of classroom interaction and the possible relations within each of them and between them.

Keywords: Socio-mathematical norms, participation, mathematical argumentation, mathematical
communication, mathematics classroom interaction

Introduction

In the field of Mathematics Education, according to the related literature review, the notions of
argument and of mathematical argument can be found in two different strands. The first strand relates
to socio-mathematical norms and participation in the learning environment (e.g. Yackel & Cobb,
1996; Wood, 2002), mostly based on situated learning theory in the research (e.g. Lave & Wenger,
1991; Greeno, 1997; Boaler, 2000) and the second strand relates to mathematical argumentation and
classroom interaction (e.g. Steinbring, 2005; Stylianides, 2007). However, so far, the literature does
not seem to have made any clear attempt to develop a coherent theoretical framework and
methodological tools emerging from the two strands. Thus, in my study, | focus on the development
of the argumentation process in primary mathematics classrooms, considering the norms, the
interactions and the role of the participants in learning and teaching practices. In this paper, | discuss
aspects related to mathematical argument, argumentation and participation from the two strands of
the literature to formulate the preliminary central research questions of the study, as well as to discuss
the coherence —both compatibility and complementarity— of the two strands. On this basis, | develop
a preliminary model, called the “Mathematics Classroom Interactional Model” (MCIM), of the
concepts and their possible relations that will guide the scope of the study.

Socio-mathematical norms and participation in the learning environment

Lave and Wenger (1991) describe learning as a social phenomenon that is constituted in the real world
through a process of legitimate peripheral participation in communities of practice which are in
development. This means that pupils are members of wider worlds that are socially and culturally
formed, so developing links that cross the identities of ethnicity, gender, religion, etc., acts in
classrooms, schools and communities and the practices that govern all these environments. The word
“knowledge” has been replaced by the word “knowing” that declares an action. This fundamental
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shift indicates that activities cannot be considered independent of the context. The “practice” is
mainly characterized by the terms “discourse” and ‘“communication” which implies that a pupil
should be regarded as a person interested in participation in certain types of activities not only in the
accumulation of knowledge (Sfard, 1998).

While the learning process in the current study is regarded in terms of the participation metaphor
(Sfard, 1998), what is important is the person’s participation in activities influenced by the context.
The underlying theory is that of VVygotsky’s (1978) socio-cultural approach, considering learning as
an outcome of interaction with others, while theoretical approaches in situated learning are
preeminent in contextualizing and describing classroom communities. These approaches, according
to Lave and Wenger (1991) and Bransford, Zech, Schwarz, Barron and Vye (2000), have led to
situated learning theories, in which knowledge is situated in particular forms of experience that arise
in specific situations, and are understood in a relational way as something shared between people,
activities and environments rather than as a fixed, individual characteristic (Boaler, 2000). Hence,
mathematical knowledge, as a dynamic process of mathematization, is “still being open and not fixed
in advance of the learning and acquisition processes” (Steinbring, 2005, p. 48).

According to Greeno (1997), many researchers based on situated perspectives study the development
of classroom activities which involve pupils participating “in the discourse of the subject matter,
including formulating and evaluating hypotheses, conjectures, arguments, evidence, examples, and
conclusions” (Hatano & Lambert, 1990; Inagaki, 1991; Cobb et al., 1993; Cohen et al., 1993;
Schoenfeld, 1994 as cited in Greeno, 1997, p. 99). A situated view suggests that activities of different
practices are important, for instance involving pupils in classroom discussions is a way of pupils
learning not only the content knowledge but also to participate in discourse practices (Greeno &
MMAP, 1998 as cited in Boaler, 2000). Pupils learn not only methods and processes in the
mathematics classrooms, but they are trained in mathematics, and the learning of content knowledge
cannot be separated from the classroom interaction, as they are two reciprocal components (Boaler,
2000). One question posed in the situated learning theory is whether the pupil’s pattern of
participation can be a potential obstacle to his/her membership of the classroom community.

Wood (2002) states that classroom culture consists of a set of social norms, a specific structure of
participation, as well as characteristic forms of discourse that support both social norms and the
structure of participation. A participatory structure refers to the specific characteristics of the
classroom that affect pupils’ participation in the classroom: who is involved, when and how. Wood
recognizes three types of culture that characterize a classroom of inquiry and can lead to different
patterns of participation. The first relates to the development of alternative resolution strategies, the
second relates to a culture of exploration of the strategies developed by their classmates, and the third
to a culture of argumentation where social norms require pupils to justify or defend the methods of
solution they choose. Wood, Williams and McNeal (2006) investigated primary mathematics
classroom interactions and the development of mathematical thinking. One of the most important
results was the finding that only in an inquiry/argument classroom culture were there opportunities
for all children to be involved in meaning making and shared understanding. Nevertheless, as Klein
(2001) points out, participation in cultures such as the above may be problematic for pupils who either
have not conquered the tools of defending or challenging ideas through discussion (e.g. language or
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norms such as what constitutes a different answer) or lack the self-confidence or self-image expected
by an apprentice working in a collaborative learning environment.

Many researchers attach importance to the role of classroom culture, providing cooperative learning
opportunities and, in particular, developing the intellectual autonomy of pupils. They focus on socio-
mathematical norms and argumentative skills in the constitution of mathematical meaning in the
classroom. Yackel and Cobb (1996), investigating the role of communication as a cultural tool,
concluded that social norms (e.g. explanation and justification of a solution) directly affect the
patterns of participation, a conclusion also supported by Sfard (1998), while socio-mathematical
norms (e.g. which answer is considered mathematically different) provide equal opportunities to all
pupils in that particular structure and regulate mathematical arguments. Finally, Kazemi and Stipek
(2001) recognized, defined and described four categories of social norms and socio-mathematical
norms respectively. The authors, in their discussion, emphasize the need for future research with
longitudinal data that may reveal other norms, how socio-mathematical norms are created and
sustained, and how they influence pupils’ mathematical understanding.

The discussion so far led me to consider the connection between social and socio-mathematical norms
relating to argumentation in the mathematics classroom. It seems that the mediator in this connection
is the specific structure of the patterns of participation that allows (or not) the social norms to be
transformed, created and sustained as socio-mathematical norms. Thus, the first preliminary central
research question which emerged is: “what social and socio-mathematical norms relating to
argumentation are established in the mathematics classroom, and how are these expressed in terms of
patterns of participation?”.

Mathematical argumentation and classroom interaction

In the field of Mathematics Education, Krummbheuer (2007, 2015) started off using Toulmin’s (2003)
argumentation scheme to analyse classroom-based mathematical arguments. However, Krummheuer
(2007, 2015) used a reduced version (conclusion, data, warrants and backings) of Toulmin’s full
scheme of argumentation (conclusion, data, warrants, backings, modal qualifier and rebuttal). Many
researchers (Yackel, 2001; Hoyles & Kiichemann, 2002; Evens & Houssart, 2004; Cabassut, 2005;
Pedemonte, 2005; Weber & Alcock, 2005) as cited in Inglis, Mejia-Ramos and Simpson (2007)
appear to have followed Krummheuer in using the reduced scheme. While Inglis et al. (2007)
concluded that without using Toulmin’s full scheme of argumentation it may be difficult to accurately
formulate the full range of mathematical arguments, on the other hand Mariotti, Durand-Guerrier and
Stylianides (2018) mention that difficulties of pupils to organize arguments in a deductive chain in
the form of proof cannot be fully explained by Toulmin’s model.

Despite the widespread use and proven usefulness of Toulmin’s scheme of argumentation over the
last two decades, researchers in Mathematics Education do not use this scheme in a consistent way.
Besides different emerging interpretations, limitations can be identified. Thus, | studied further the
related literature to find a model created in the field of Mathematics Education that could serve both
aspects of mathematical argumentation and classroom interaction.

Stylianides (2007) developed a theoretical framework about proof and proving in the context of K-
12 mathematics. “Proof is a mathematical argument, a connected sequence of assertions against a
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mathematical claim” (Stylianides, 2007, p. 191). Any given argument can be broken down into three
major components: the set of accepted statements, the modes of argumentation and the modes of
argument representation. The distinction between base arguments and ensuing arguments could
provide the context in which instructional analysis and instructional interventions by teachers
influence classroom interactions and vice versa. In terms of this distinction, it is worth to be
mentioned that in everyday mathematics classrooms situations, where the learning process is
considered in terms of a participation metaphor (Sfard, 1998), the participants could produce a range
of arguments, for example, “relatively sophisticated arguments” or “explications of elements of an
argument” (Krummbheuer, 2015, p. 53). Thus, the basic assumption is that mathematical
argumentation can only emerge through interaction and mathematical communication within the
classroom culture. Steinbring (2005) developed an analytic framework to examine the relation
between mathematical knowledge and mathematical communication. While, “language is the central
medium for the creation of possible connections between communication and consciousness”
(Steinbring, 2005 p. 53), proof is the communication medium of invisible mathematical objects and
the mediator between communication and consciousness (Heintz, 2000 as cited in Steinbring, 2005;
Steinbring, 2005).

Instructional school-mathematical interaction is expected to contribute to introducing individuals
into mathematical communication practice, and thus to increase these individuals’ ability to
participate in (mathematical) communication in the society. (Steinbring, 2005, p. 74)

This interaction could be understood by the term “situational”.

My perspective is situational, meaning here a concern for what one individual can be alive to at a
particular moment, this often involving a few other particular individuals and not necessarily
restricted to the mutually monitored arena of a face-to-face gathering. (Goffman, 1974, p. 8)

According to Krummheuer (2007), the term “situational” refers not only to a particular situation that
could be characterized as “situated”, but to anything that can happen in the interaction between
people. Thus, for example, if during a lesson the pupils solve an activity on their own it may be a
“situated learning” process (Lave & Wenger, 1991) which is shaped by the pre-knowledge that allows
them to face similar activities. The action changes into a “situational” process if the pupils take
initiatives to act with their classmates. Levinson (1988) extended the ideas of Goffman (1981) and
Krummheuer (2007, 2015) by adapting the concepts of participants’ (Speakers’) roles in Mathematics
Education: “author”, “relayer”, “ghostee” and “spokesman”. Although Krummheuer’s (2007, 2015)
approach to participation in argumentation offers insights on the way that participation is performed
in mathematical argumentation, the mechanism of being in one role or another is not obvious and
cannot explain the obstacles in pupils’ participation in the developing of mathematical arguments,
something also claimed by Cramer and Knipping (2018). Cramer and Knipping (2018) highlight the
importance of participation in mathematics classroom argumentation, considering the discursive and
social processes that affect argumentation. Thus, participation is not only a discourse but the practice
of constructing arguments through the social order of participants’ interactions in the classroom which
can be constructed, maintained and transformed. Cramer and Knipping (2018) mention an interesting
case of pupils’ implicit participation (pupil’s initially spoken idea developed further in the classroom
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discourse but the pupil’s voice disappeared), to describe possible obstacles for participation in
argumentation and possible interventions by a teacher.

The discussion so far led me to consider the connection between mathematical argumentation and
classroom interaction. It seems that the mediator in this connection is the specific role of the
participant that regulates the participation in mathematical argumentation. Thus, the other two
preliminary central research questions which emerged are: “how do pupils’ interactions contribute to
the development of the base arguments?” and “how do teachers’ instructional interventions influence
pupils’ activity in the developing of ensuing arguments?”.

Discussion

The ideas about socio-mathematical norms and participation in the learning environment and those
about mathematical argumentation and classroom interaction seem to be related. Socio-mathematical
norms seem to be a major factor that regulates classroom interaction in developing arguments.
Especially, pupils’ and teachers’ roles in developing base and ensuing arguments are related to socio-
mathematical norms that could foster (or not) mathematical argumentation and participation in the
classroom. Thus, | decided to create the preliminary MCIM model, of the basic concepts and their
relations as considered in the previous two sections and expressed in terms of the three preliminary
central research questions.

In this model, Figure 1, I posit two levels of classroom interaction. The first (basic) level of classroom
interaction is defined by the relations among the social norms, the socio-mathematical norms and the
classroom culture. These are the predominant factors that characterize classroom interaction and are
defined fully through the review of the first strand of the literature. The socio-mathematical norms
established in the classroom culture are affected by social norms. The second (advanced) level of
classroom interaction is defined by the relations among the participation, the mathematical
argumentation and the participants’ roles. This level includes, A: the three factors as a structural unit
(participation, mathematical argumentation, participants’ roles) and B: three sub-structures: 1) socio-
mathematical structure: participation-mathematical argumentation, 2) argumentation structure:
mathematical argumentation-participants’ roles, 3) social structure: participants’ roles-participation.
Each of these (sub)structures presupposes the connection of the factors at the basic level. Thus, the
common ground of the structures at the advanced level is the connection among the three factors at
the basic level. When a researcher or a teacher in the classroom would like to understand, investigate
and further develop the advanced level, they should firstly understand, consider, and develop the
connection of the social norms, socio-mathematical norms and the classroom culture, the factors at
the basic level.

According to the related literature, the main connection between the two levels rests on social norms
and socio-mathematical norms that regulate mathematical arguments, defining participation in the
classroom culture (e.g. Yackel & Cobb, 1996; Wood, 2002; Wood et al., 2006). Therefore, in order
to define this model with consistency, | consider theoretical and methodological frameworks to get
access to mathematical argumentation and classroom interaction.
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Figure 1: Mathematics Classroom Interactional Model (MCIM)

Stylianides (2007) framework could serve as an analytic tool in order to examine the development of
mathematical argumentation and teachers’ actions, through the processes of instructional analysis and
instructional intervention. Especially, the distinction between base and ensuing arguments and the
possible differentiation between them and in each of them could be related with the patterns of
participation which emerge through the socio-mathematical norms. Nevertheless, it seems that the
focus of the framework is from the teachers’ perspectives rather than on pupils’ and teachers’
interactions and their roles in the classroom culture. Stylianides uses the notion of classroom
community in the definition of proof with a perspective different from that usually found in the
literature, and from the one | have taken in my study. He regards the pupils as the main members of
the classroom community, giving the teacher a special membership status and distinct role, while in
my study | focus on the dynamic of the classroom interactions and the power of the relationships that
shape the participation in the classroom community. Thus, | elaborate Steinbring’s (2005) framework
of mathematical knowledge and communication where the interactions and communication among
participants are presented as predominant in the classroom. In this context, the reference to the role
of the language in mathematical communication and argumentation in the classroom is very
interesting and this leads me to consider frameworks through which | could get insights on the
utterance of the mathematical argumentation through the participants’ roles. Levinson’s (1988)
categorization of speakers’ roles seeks to offer insights on the patterns of participation. However,
Krummbheuer (2007, 2015) does not seem to undertake or investigate the limitations described by
Levinson (1988), where multiplicity and alteration of the participants’ roles in some utterance events,
as well as new roles, could be recognized, defined and re-defined. Moreover, Cramer’s and
Knipping’s (2018) evidence of implicit participation is an interesting aspect related to participants’
roles in mathematical argumentation and could be investigated further, either as forms of participation
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or non-participation. Considering the roles of the participants and interactions among pupils and
teachers in the classroom culture, it could be possible to examine pupils’ interactions in developing
base arguments and explain teachers’ actions in influencing pupils’ activity to develop ensuing
arguments.

Finally, the way that the socio-mathematical norms and the social order, related to the development
of mathematical arguments and argumentation, are created, sustained and transformed could provide
the context of an interactional perspective on argumentation in school mathematics through the
MCIM model. However, this model has still to be considered and defined fully through empirical
research to be conducted, developing the methodological context and the research protocols that fulfil
the goal of the study.
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Background and rationale

One of the main aspects of logical reasoning is conditional reasoning, i.e. reasoning with if-
then statements. Conditional reasoning tasks usually present a rule of the form “if p then q” as
a major premise, and a minor premise. Four minor premises differentiate four possible logical
forms of inference: p is true (Modus Ponens, MP), p is false (Denial of the Antecedent, DA),
q is true (Affirmation of the Consequent, AC), and q is false (Modus Tollens, MT). Definite
conclusions can be drawn for MP (“q is true”) and MT (“p is false”), while AC resp. DA do
not allow definite conclusions. Even very young children can show conditional reasoning
skills in familiar everyday contexts (Markovits & Thomson, 2008). However, a link between
conditional reasoning and mathematics has been found only in adolescents and adults in the
context of proof (Stylianides & Stylianides, 2007).

According to Mental Model Theories, inferences are drawn by constructing mental models
that encode information about specific situations in which the conditional is valid (Johnson-
Laird & Byrne, 2002). The reasoners’ ability to generate alternative models (beyond a model
representing “p and q”) for the given conditional is considered a crucial prerequisite to draw
valid inferences. Studies on conditional reasoning in the everyday context (De Chantal &
Markovits, 2017) have shown that the alternative generation skills do predict early
development of conditional reasoning. This raises the question, if the ability to generate
multiple alternative models for a given mathematical premise, has an influence on students’
conditional reasoning with these concepts.

Methods

Our study aimed at examining the relation between primary students’ skills in conditional
reasoning with mathematical concepts, and their performance on the corresponding,
alternative generation tasks. Participants were 55 elementary students (4th graders n=13:
M=9.5 years, 6th graders n=42: M=11.5 years) from a public school in Cyprus. Their
conditional reasoning skills were assessed in two conditional reasoning tasks including
mathematical concepts (Datsogianni, Ufer, & Sodian, 2018). Each task contained one item for
each logical form (MP, MT, DA, AC). For example, one conditional reasoning task focused
on the circumference of rectangles in a context of dwarf houses. It was explained that dwarf
houses always consist of several aligned rows, all with the same number of same-sized
quadratic rooms. The major rule in this task was “If a dwarf house has exactly 2 rows of 4
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rooms each, then it has 12 windows”. The alternative generation tasks asked students to
generate many examples satisfying the conclusion of the major premise (i.e. “Draw as many
dwarf houses as possible, that have 20 windows!”).

Results and discussion

Students’ solved 62.7% of the mathematics conditional reasoning items correctly, illustrating
early conditional reasoning skills under specific conditions. Regarding the first alternative
generation task 62% of students gave 4 to 6 correct alternative solutions (M= 3.42, Mdn=
4.00). The second alternative generation task seemed to be more difficult since only 20% of
students gave 4 to 5 correct solutions (M= 1.81, Mdn= 1.00). This indicates that the
alternative generation tasks are feasible, but not too easy for our target sample. The number of
generated alternatives correlated with students’ reasoning performance (task 1: p=0.358,
Sig.=0.001, task 2: p=0.343, Sig.=0.003), supporting our assumption that mathematical
conditional reasoning is based on alternatives generation. Some first insights of our main
study, which followed the above one, confirm that alternative generation in mathematics
predicts correct logical reasoning and especially with AC form.

The results showed that the applied instrument is accessible to students while they replicate
early conditional reasoning skills reported in studies from developmental psychology (e.g.
Markovits & Thompson, 2008). This study replicates also previous results (De Chantal &
Markovits, 2017) regarding the significant relation between alternative generation skills and
students’ conditional reasoning skills, extending these results to tasks that involve
mathematical concepts. The small sample size forbids taking far-reaching conclusions.
However, our future research will be based on these developed tasks to describe the role of
mathematical knowledge in conditional reasoning with mathematical concepts in more details
investigating also whether alternative generation training could be one approach to support
students’ conditional reasoning in mathematics.
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The research reported here is part of an ongoing study® in which prospective middle school
mathematics teachers’ conceptions of definition are investigated through their responses to semi-
structured interview questions about defining quadrilaterals. Here we present findings from their
responses to a subset of the interview questions, with the purpose of understanding what they mean
by the expression “definitions can be proved™- an expression commonly referenced, and considered
as erroneous in the research literature. Analysis of the responses, through using thematic coding
and Toulmin’s (1958) scheme, revealed that participants attributed two different meanings to the
phrase: (1) proving the claim that a written definition accurately designates an intended concept
and (2) proving the concept being defined (erroneous). Based on our findings, we point to a
reconsideration of the phenomenon by the research community.

Keywords: Meta-mathematical knowledge, conception of proof, conception of definition,
prospective middle school mathematics teachers

Introduction

Most teacher education programs offer college level mathematics courses to strengthen prospective
teachers’ mathematical preparation. Although these courses provide rich mathematics content and
experience of working with definitions and proofs, they do not include explicit information about
mathematics at the meta-level (Azrou, 2017). Especially, learning to prove becomes a difficult task
for university students (Stylianides & Stylianides, 2009). Previous studies highlight that students at
all grade levels experience difficulties related to proofs (e.g., Azrou, 2017; Fiallo & Gutiérrez,
2017), which is most of the time considered as a consequence of an inaccurate understanding of
what constitutes a proof (Weber, 2001). Various studies have also informed that prospective
teachers lacked an accurate understanding of mathematical definitions (Leikin & Zazkis, 2010;
Levenson, 2012). Indeed, that many teachers and students cannot differentiate between definitions
and proofs or consider definitions as provable is a robust research finding (Edwards & Ward, 2004;
Leikin & Zazkis, 2010; Levenson, 2012).

In this study, we delve deep into prospective teachers’ reasoning about if definitions need to be
proved or not. In case of occurrence, we investigate prospective teachers’ expressions and
examples, in order to find out what they mean by the expression “definitions can be/need to be
proved.” By using Toulmin’s (1958) model of arguments, we look for the existence of concrete
claims in participants’ proof-related attempts, because their responses to interview questions
provide the key information on “what is being proved” in their perspectives. By detecting the actual

3 The research is funded by Middle East Technical University Research Fund GAP-501-2018-2714.
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“proven”, we aim to find out underlying reasons of using this erroneous expression; which might be
a first step in developing proper ways of remediation in teacher education programs.

We also refer to arbitrariness aspect of mathematical definitions (not of definitions, but of concepts)
in answering our research question: What meaning do prospective mathematics teachers attribute to
“proving/proof of a definition”? Since defining in mathematics is arbitrarily naming concepts
(Vinner, 1991), concepts do not possess inherent truth-values. They are neither true nor false
(Edwards & Ward, 2008). However, by “arbitrariness” we do not mean that definitions are adopted
on a complete random base. Rather, we acknowledge that they are open to intelligent refinements
through successive work of mathematicians (Lakatos, 1976). In this study, we position that both the
concepts and definitions are “arbitrary”, in the sense we use the word. Concepts are “agreed upon
conventions” (Levenson, 2012, p. 209); that is why they are arbitrarily named. On the other hand,
definitions can arbitrarily be chosen among multiple equivalent definitions of a concept. We use the
former in the case we report here.

Background

Two theoretical foundations were employed in this study. The concept definition-concept image
distinction and Toulmin’s (1958) model of arguments are introduced in the next sections.

Concept Definition/Concept Image

Concept image is the collection of all mental representations associated with a particular concept in
one’s cognitive structure; while the concept definition is the mathematical statement that designate
that concept (Tall & Vinner, 1981). Although a concept definition is expected to connote the same
meaning to everyone, concept image is specific to the individual and may not be fully compatible
with the formal definition. In our study, the distinction between concept image and concept
definition is a theoretical keystone for understanding prospective teachers’ hidden claims
underlying their use of the erroneous expression “proving a definition”.

Toulmin’s (1958) Model of Arguments

Toulmin (1958) proposed a schema for describing an argument by identifying three main
components. The model describes the connection between the claim (C) - that is desired to be
established- and the data (D) - the fact, which can serve as a basis for establishing that claim. For
the argument to take the arguer from the data to the claim, another element is defined: The warrant.
Warrants can be rules, principles or inference-licenses entitled to “show that, taking these data as a
starting point, the step to the original claim or conclusion is an appropriate and legitimate one”
(Toulmin, 2003, p.91). The three elements constitute the simplest form of the model. The complete
model includes additional elements of backing (B), modal qualifier (Q), and the rebuttal (R).
Backing is a further evidence for the connection between data and claim, modal qualifier associates
a degree of confidence to the conclusion made; and rebuttal states the conditions under which the
conclusion is not valid. However, not all arguments have to contain these latter three elements.

Given that proof is a mathematical argument produced with the purpose of convincing oneself and
others of the truth of a mathematical statement (Fiallo & Gutiérrez, 2017), we apply Toulmin’s
model on prospective teachers’ productions of exemplary proofs, in order to identify the actual
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claims they aim to prove, while expressing it as “proving a definition”. Since our focus is on
identifying any existing claims in participants’ examples, we use the simplest form of the model,
consisting only of the three elements data (D), claim (C) and warrant (W).

Method
Basic qualitative research methods were used in this study.
Context and Participants of the Study

Participants of the study were six senior (4"-year) prospective middle school mathematics teachers
in a four-year teacher education program. The program, prepared around 40 mathematics teachers
each year to teach at the grade levels from 5 to 8, by offering college-level mathematics courses
mostly in the first two years and concentrating more on the teaching-related courses in the last two
years. Participants were selected based on their active participation in the educational courses, their
inclination to express and discuss mathematical ideas and the variation in their knowledge of
mathematics, as observed in the teaching related courses by the authors. All six participants
volunteered to participate in the study as an out-of-class activity. Since the data were collected
through the end of the academic year, they had nearly completed all the courses in the program.
Although the program included the study of undergraduate level mathematics courses (offered by
the Mathematics Department) in which definitions and proofs played important roles, students had
not been offered any specific information about meta-mathematical constructs of definitions and
proofs in these courses. Also, it may worth to highlight that a detailed chapter on the geometry
terms, especially the hierarchical way of defining quadrilaterals were covered in the mathematics
teaching methods course that participants took in their third year.

Data Collection and Analysis

In semi-structured interviews conducted by the first author in one-to-one settings, prospective
teachers responded to a broad range of verbal and task-based questions aimed at revealing their
understanding of mathematical definitions. After completing an initial open-ended task about
defining quadrilaterals (participants were asked to propose a sequence for introducing
quadrilaterals, by supplying their own definitions), they were asked questions such as “What is a
mathematical definition for you?” and “Why do we state definitions in mathematics?” One of the
questions asked participants to explain their thinking about the relationship between definitions and
proofs. They were explicitly asked to indicate if definitions need/have proofs or not, and explain
their reasoning. In case of accepting definitions as provable, they were requested to give an
example. Participants’ responses were analyzed through thematic coding procedure (Braun &
Clarke, 2006) and Toulmin’s (1958) model of arguments was used to describe their examples.

Findings

Analyses of prospective teachers’ explanations and examples resulted in two different
interpretations of the expression “proving a definition”. In particular, prospective teachers
considered “proving a definition” as (1) justifying the claim that a written definition accurately
designates an intended concept (which would be an appropriate action in the discipline of
mathematics) and (2) justifying the concept being defined (which remains ambiguous in meaning).
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Table 1 presents a summary of each participant’s thinking about the phrase, as inferred from their
verbal explanations and concrete examples, which were mostly different from what they explicitly
said. A representative quotation from each participant is given in order to reveal their use of words
in their conversations. Two separate rows are used for the participant (P5) who displayed both type

of interpretations.

Meaning Inferred from

Meaning Inferred from

PST | Sample Wording PST Used Further Explanations Example Case (through
(through thematic coding) | Toulmin’s scheme)

P1 “l am proving the triangle (definition).” | Proving the claim Proving the claim

P2 “l proved the truth of this definition.” Proving the claim Proving the claim

P3 “Definitions should be proved." Proving the claim (Did not provide)

“l could not understand what you Proving the claim (if such a

P4 mean?” thing exists) Proving the claim

P5 “By ..., we can prove definitions.” Proving the claim Proving the claim

P5 After t.r.]e shape square has been Proving the concept (Did not provide)
proved.

PG If 1 am definining a concept, it has Proving the concept (non- (Not applicable)

nothing to do with proving.” existent)

Table 1: Meaning attributed to the phrase of “proving a definition” in prospective teachers’ (PST)
explanations and examples

The two types of interpretation resulting from participants’ responses are described in the following
sections. In the reporting of quotations and examples, brackets are used for indicating the authors’
insertions, and square brackets are used either for indicating excluded parts of the interview (with
ellipsis: [...]) or for specifying the components of the participant’s arguments (i.e., [data], [claim],
and [warrant]).

Interpretation I: “Proving a definition” as “proving the claim that a written definition
designates the intended concept”

Four of the six prospective teachers (P1, P2, P3, and P5) indicated that definitions “can be proved”
(P1) or “need to be proved” (P3). Although their wording did not reflect the existence of an explicit
claim to be proved (e.g., “proving the triangle (definition)” (P1); “I will give a definition and prove
it.” (P2)), their explanations and examples revealed that what they considered provable was an
actual claim. In particular, they were talking about proving that a written definition truly reflects the
image of the intended concept in their minds. Following scripts from P1 and P2 illustrate the case.

Researcher:  The proof you thought of there... What exactly is that proof of?
P1: Of the triangle (definition), in fact.
Researcher:  How is that? Could you open this up a little?
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P1: Of the triangle (definition). It is about the shape of the triangle. | mean, in our
minds there is a shape about... the shape of the triangle and we are trying to make
this definition fit to it. With the proof, we check if it fits the shape or not.

Researcher: Is there a relationship between definition and proof?

P2: Yes. In order to prove that the definition we create is true, we do proofs. | mean |
create a definition; but to what extent is that true, when it holds? Maybe under
some conditions it does not hold. For proving this, proofs are written.

Their examples were based on proving concrete claims as well. They were basically comparing a
written definition with the corresponding concept image in their minds to evaluate their congruence.

Researcher:  Now, what exactly is that you try to prove here? [...] Can you give me an
example?

P2: I will give a definition and prove it. Hmm... Let me take the parallelogram.
Opposite sides need to be equal in length and parallel (reads the definition she
wrote in a previous task), I say. I will prove this. (Draws the figure that satisfies
the given conditions.) [data] Actually, by drawing this (points to the figure she
drew) [warrant: the figure fits into her concept image] | proved it [claim].

Researcher:  What is that you proved here?

P2: Properties of the parallelogram. I try if it does hold for the given definition. | do
some trials and then | see that it holds for this definition. And | proved the truth of
this definition, 1 mean.

Figure 1 presents P2’s example case of “proving” by using Toulmin’s (1958) model arguments.

Data: Draws a quadrilateral that ensures

the conditions stated in the definition. > S0 | Claim: “A quadrilateral wih

(P2: Opposite sides need to be equal in op1(:)_S|te s;]des eq:JIaII and parallel
length and parallel.) Since defines the parallelogram.

Warrant: The obtained figure matches with her concept image of parallelogram.

(P2: Actually, by drawing this (points to the shape she drew) I proved it.)

Figure 1: An argument schema for P2’s example

On the other hand, the idea of “proof of a definition” did not make any sense to P4 first. However,
when she thought over it by the help of an example case, she ended up with the same interpretation
as the previous participants:

P4. Let me think about this. Here, | had written something for rectangle (in a previous
task). There I have defined rectangle as the parallelogram with a right angle. Now,
am | required to prove that this definitely defines the rectangle?
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Her exemplary proof attempt provided an accurate representation of the participants’ thinking.

P4: I know what a parallelogram is (Draws a parallelogram-angles very close to 90°).
[data] Now, I should have drawn a real rectangle. It is OK, if | do not. One of the
angles is 90 degrees [data], | started here (marks one of the angles with the
perpendicularity symbol). I know that in a parallelogram opposite sides are
parallel. Then, these (two adjacent angles) add up to 180 degrees. This is also 90
(degrees). [...] Then, its all interior angles are 90 degrees. Opposite sides are
parallel, equal and so forth... It satisfies all the properties of rectangle.
[warrant][...] | mean, I can prove that this definition is rectangle. [claim]

Interpretation I1: “Proving a definition” as “proving the concept being defined”

Two of the prospective teachers perceived “proving a definition” differently. They maintained the
odd wording of “proving a concept” in their explanations (e.g., “proving the shape square” (P5)).
However, their approaches to this idea were different from each other’s. P5 thought that it was a
possible action to “prove a concept”. Although she could not elaborate much on this idea of her,
since she demonstrated two different meanings at the same time (both proving the claim and
proving the concept) it was evident that she was talking about an issue different than proving the
claim in the following dialog:

Researcher: Is there a relationship between definition and proof?

P5: I cannot say absolutely there is, but | think should be. [...] After the shape square
has been proved, it must have fit to its definition. Otherwise, if we do not know
what is the thing that we call square, without proving this, we cannot make the
definition.

Researcher:  What is it that we prove here?

P5: Which shapes we call “square”? How does the square come into existence?
Researcher: Can you give me an example of this?

P5: I do not know. Now... | can’t find.

Immediately after, when she was asked if definitions were provable or not, she demonstrated the
same understanding of “proving a claim”, similar to what the previous participants did:

P5: We draw the multiple shapes of what we do (define), | mean by looking for
counterexamples, we can prove definitions.

Her example also supported that she was proving a claim (whether a given definition of square
would actually define square or not), although she relied on empirical reasoning in her argument.

P5: Let me think with square again. More than one person draws its definition [data],
because it may not represent the same thing to everyone. We check if it does
represent the same thing to everyone. If one person draw a thing that is different
from what we try to explain [warrant], then that means the definition we have is
not correct or not clear, erroneous [claim]. In this way, | think we can prove it.
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Unlike P5, P6 seemed to be aware of the fact that “defining was arbitrarily naming concepts” and
hence definitions (concepts) needed no justification.

P6: Of course there may be (a relationship in between), but if I am trying to name
something, if it is something like a term... You see, here when | am trying to
define the trapezoid, | am not proving the properties of the trapezoid [...] Because
I am just giving it a name.

As we consider that they are the concepts which are arbitrary, rather than the defining statements (in
our case), we name this second type of interpretation with the phrase “proving the concept being
defined”. Both P5 and P6 seem to be thinking about proving “why concepts exist in mathematics as
they are”. While P6 correctly rejects this kind of thinking about definitions, P5 seem to consider it
as a necessity. Also, P5’s erroneous understanding may still be residing in other participants’ minds,
as prospective teachers may not be aware of arbitrariness aspect of definitions.

Discussion and Implications

Findings of the study provide insights into participating prospective teachers’ conceptions of proof.
Although at the first glance they seem to be trying to prove a non-claim, existence of a real claim in
their arguments reveals that they have an implicit (because they do not say so) insight about what
needs a proof in mathematics. This is an unexpected finding and a positive outcome for teacher
education programs compared to previous research findings, because no such claims were proposed
by the participants of other studies who communicated that definitions could be proved (Levenson,
2012) or who could not distinguish between a theorem and a definition (Edwards & Ward, 2004
Leikin & Zazkis, 2010). However, this finding does not necessarily mean that participants are also
sure of what cannot be proved in mathematics. P5’s explanations displayed that one of the things
she tried to prove was a claim (Interpretation 1), while the other was not (Interpretation II). The
same might be the case for all of the participants of the study, except P6; but might have remained
uncovered in our interviews, because no participants other than P6 mentioned the arbitrariness
aspect of defining concepts in their responses. They did not reveal any thinking about if concepts
were provable or not, as P5 and P6 did. This addresses that while interviewing prospective teachers,
handling the nature of proofs and definitions concurrently and from multiple aspects might provide
a more complete picture of their meta-mathematical knowledge. Otherwise we might end up with
unrealistic judgments of prospective teachers’ knowledge and understandings.

On the other hand, our observation that most of the prospective teachers attributed the same
acceptable meaning (Interpretation 1) to the principally imperfect phrase of “proving a definition,”
have important implications about the common practice of using the words “proof” and “proving”
imprecisely. Besides not questioning the misuse of the word “proving” in the question we directed
to them (P4 did only); most of the participants consistently used unclear wordings such as “proving
the triangle” (P1) in their explanations. Also, the inconsistency between what they do (or think) and
how they talk about it was striking; which would probably have a negative influence on their future
students’ learning of mathematics at the meta-level. Previous studies acknowledge the need for
discussing notions of definition and proof in teacher education programs, along with the other meta-
mathematical constructs such as assumptions and axioms, and the interrelationships among them
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(Levenson, 2012). Based on the findings of our study, we want to point out to the importance of
using the meta-mathematical terms “proof” and “definition” rigorously within such discussions.
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Introduction

Mathematical reasoning (MR) is recognized as one of the fundamental aspects of mathematics
learning (NCTM, 2000), however, in the literature, sometimes this concept is not clearly defined.
From a review of literature, Jeannotte and Kieran (2017) synthetized converging features of MR and
developed a conceptual model for MR in school mathematics. According to these researchers, MR is
a process of communication that allows to infer mathematical statements from other mathematical
statements and that encompasses five processes regarding students’ search for similarities and
differences (generalising, conjecturing, identifying a pattern, comparing, and classifying) and three
processes regarding students’ aim for validation (justifying, proving, and formal proving). In this
study, we aim to analyse 5" grade students’ justifications of a conjecture on the properties of triangles,
during a teaching intervention to promote students’ MR.

Theoretical framework

For the purpose of this study, we will use the term justification as an argument that guarantees (or
disproves) the truth of an statement and uses mathematical forms of reasoning accepted as universal
in the classroom community. This way of defining justification is similar to the one by Staples, Bartlo
and Thanheiser (2012) but to which we add the focus on the community. Therefore justification
consists in the process of searching for data and guarantees that allows the change of the epistemic
value of a narrative (Jeannotte & Kieran, 2017) and it is supported by the discourse of the community.
However, according to these authors, that change does not occur “necessarily from likely to true” but
“from likely to more likely” (p. 12) and, as such, this process does not require a deductive structure.
In order to analyze students’ justifications, we use in this study a framework based on Balacheff
(1988) and Harel and Sowder (1998), with five levels hierarchically organized. At level 1 — external
authority — the justification is based on an element considered as an authority, which can be the
teacher, a colleague or the textbook. At level 2 — empiricism naif — we consider two categories:
perceptual naif empiricism, when a justification is based on perceptual observations, showing a
drawing or gesturing; and inductive naif empiricism, when a justification is based on the verification
of some examples. At the intermediate level — crucial experience — a justification is grounded on a
carefully selected example, revealing intentionality in the choice. At level 4 — generic empiricism —
operations are used, based on the properties of objects, for justification, however, the student does
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not identify or justify the applicability of the property used in the operation. At the most sophisticated
level — mental empiricism — the justification is based on the properties and relations between objects.

Methods

The study was carried out in a 5" grade class with 30 students, during a teaching intervention on
geometry conducted by the first author. The focus of this poster are the students’ justifications of a
conjecture presented by one student (Mariana) who stated that “If two triangles have the same
perimeter, they are equal”, when they were working on the topic of congruence of triangles. Students
were asked by the teacher to validate or refute the conjecture individually and then to discuss their
ideas with whole class. The methodology of the study is qualitative with data coming from students’
written productions and the collective discussion of their work. In this poster we use the 5-level
justification framework referred above to analyse the justifications of four students, whose solutions
were selected by the teacher to be collectively discussed in order to clarify the refutation of the
conjecture and the importance of the counterexample used in this refutation.

Results

The analysis shows that students’ justifications of the conjecture are at the second and third levels
according with the adopted framework. At the second level, justifications are based on perceptual or
intuitive observations. These students perceive other possibilities of different lengths for the sides of
the triangle from which an equal perimeter can result, without the triangles being equal, however, the
counterexample they present does not take into consideration the triangular inequality. At the third
level, students use carefully selected examples, such as two triangles of different lengths and with the
same perimeter, that they draw rigorously using the compass and the ruler, and which they present as
a counterexample to refute the conjecture. Still, there is evidence that students are producing
arguments that may lead to a more general conclusion by making important connections with
triangular inequality to choose the counterexample. The analysis of this classroom episode also
emphasizes the importance of the teacher’s role in promoting the development of MR processes. The
fact that the conjecture was based on a wrong assumption was seen by the teacher as an opportunity
to trigger MR validation processes and, more generally, for promoting students” MR.
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The teaching of proof by contradiction involves a didactical paradox: students’ efficient use of this
proving method is hard to achieve in mathematics classes, although students’ argumentation using
this method can occasionally be observed in extra-mathematical contexts. To address this issue,
Antonini (2003) proposed a task of the non-example-related type that could lead students to produce
indirect proofs. The aim of this paper is to propose a new type of tasks and situations related to
counterexamples that can lead students to argument by contradiction, not by contraposition.

Keywords: Mathematical logic, proof by contradiction, indirect proof, counterexample.
Introduction

This paper reports some results of developmental research on the teaching and learning of proof by
contradiction. Despite the various studies on the subject, in general, mathematical proving seems to
remain difficult to learn for most students over the world, especially regarding proving by
contradiction. In Japan, mathematical proof is learned in lower secondary school, while more delicate
proof methods are learned in senior secondary school. Proof by contradiction, one such delicate
method, can be rather difficult to learn, as reported by several authors (Antonini & Mariotti, 2008;
Reid, 1998). In particular, from the didactical and cognitive perspective, it involves curious
conflicting aspects. On one hand, it would be far from a desirable understanding of the subject just to
learn the fact that proof by contradiction is a correct method and the manner to build such proofs,
since students could not be convinced of the conclusions in such proofs unless they understood why
this method works. On the other hand, it has been observed that students sometimes spontaneously
use the method of proof by contradiction as argumentation in extra-mathematical contexts, even
before they develop any notions regarding this method (e.g. Freudenthal, 1973, p. 629).

To manage this paradoxical issue, Antonini (2003) proposed tasks and situations that can help
students to generate the idea of indirect argumentations and proof (i.e. tasks involving non-examples,
which shall be addressed in the second section). This proposal is based on the notion of cognitive
unity, which emphasizes the similarity between processes of argumentation and proof construction
(Garuti, Boero, & Lemut, 1998). The developmental principle of cognitive unity claims the
importance of preceding argumentations to produce the conjecture, before the stage of proof
construction. In summary, Antonini (2003) conducted a task design for the teaching of indirect proof
using of the principle of cognitive unity. Our study follows this same line.

First, we clarify the notion of proof by contradiction especially confirming how it differs from proof
by contraposition. Then, we review the preceding result of Antonini (2003) and identify its focus on
proving by contraposition rather than by contradiction. Therefore, the main objective of this paper is
to propose new tasks and situations that can lead students to argumentation using the idea of proof by
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contradiction, beyond proofs by contraposition. We present the task designed for this study and
investigate some results of a teaching experiment with this task.

Preliminary analysis for the design of a new task with proving by contradiction
The authors’ position on proof by contradiction

This section confirms the definition of proof by contradiction and summarizes its relation to indirect
proof. As Chamberlain & Vidakovic (2017) point out, some studies do not distinguish proof by
contradiction from that by contraposition. While Lin, Lee, & Wu Yu (2003) attribute proof by
contradiction to the law of contraposition, Antonini & Maritotti (2008) refer to such proof methods
as ‘indirect proving’, which may also include the method of proof by contraposition. Logically
speaking, the method by contradiction to indirectly prove the statement ‘P — Q’ is to directly prove
the statement ‘PA—Q — L. This method is based on the law of excluded middle, which claims that
‘Q v —Q’ is true. In addition, the method by contraposition to indirectly prove ‘P — Q’ is to directly
prove ‘—=Q — —=P’. This method is based on the principle that ‘P - Q’ and ‘—=Q — =P’ are
equivalent. Here, we observe that (P —» Q) — (—Q — —P) is true, even in the intuitionistic logic,
although (=Q — —P) - (P — Q) requires the law of excluded middle. Moreover, it is known that
the law of excluded middle can be verified conversely using this contraposition rule with the
intuitionistic logic. Thus, from the logical perspective, we can consider these proving methods
interchangeable, in the sense that adding either the law of excluded middle or the contraposition

principle to the intuitionistic logic PA~Q— L
results in the same classical logic. 0 , —an{—u L)L Po(-Q— L)
In fact, we can show proof e S Q2R 1) P~

. . . P . (PA-Q) = (PA-P) =) = === ==} = =P
diagrams in which the two proving (PA=0) > 1 05 P
methods, support each other P50 P—=0Q
(Figure 1). Figure 1: Two proving methods mutually supported

However, from the cognitive or epistemological perspective, we can point out certain differences.
How should the argumentation by contraposition against the statement ‘P — Q’ begin? It would be
natural to begin the generation of argumentation by contraposition with the question ‘what if Q is not
true?’, while it is desirable to begin argumentation by contradiction with the question “is there any
situation where “P” and “not Q" is possible?’. In addition, the middle processes of both types of
argumentations have differences. In the case of contraposition, the argumentation starting from the
assumption ‘not Q” would not result in any contradiction but in the conclusion ‘not P’. Thus, the
instances in this argumentation are possible and real under this assumption ‘not Q. On the other hand,
the argumentation starting from the assumption ‘if “P” and also “not Q” are possible’ would lead to
a contradiction. Therefore, the argumentation in the middle process deals with impossible cases.
Moreover, we can see differences in the goal of the argumentations. In the case of contraposition, the
conclusion to be reached can be specified as ‘not P’ from the beginning, while, in the case of
contradiction, the conclusion can be any type of contradiction. Therefore, the goal of this type of

! The symbol L means the contradiction, which is unconditionally false.
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argumentation is not specified in the beginning and proof by contradiction seems to be more difficult
than that by contraposition.

Despite these differences, both proving methods tend to be integrated as indirect proofs. We believe
this to stem from a didactical reason, instead of a reason based on compatibility in logic. The principle
of contraposition in the school mathematical context is not an axiom, but a meta-theorem that can be
verified somehow. In fact, faced the question of why ‘P — Q’ can be implied from *not Q — not P’,
they can possibly use the method by contradiction: “if Q is not true under P...” Thus, it is didactically
natural to verify the method of proof by contraposition based on contradiction, although the inverse
is verifiable by logic. Therefore, from the didactic and cognitive perspectives, we consider that proof
by contradiction is more fundamental and supports the method of proof by contraposition, which can
be acknowledged as an application of proof by contradiction.

From investigation of non-example to non-existence of counterexample

As mentioned in the first section, Antonini (2003) proposed tasks involving non-examples against
almost the same research question. Given a property A, non-example is an instance that negates A4,
while an ordinary example is one that verifies A. Antonini (2003) argues that, faced with a question
such as ‘given a hypothesis A, what can you deduce?’, students tend to generate examples and (or)
non-examples and, through the observation of non-examples that verifies B but does not satisfy A,
students can assume that “if B is true, A is not true’. From this argumentation, students may be led to
obtain “if A is true, B cannot be true’, which is an indirect argumentation. Although such tasks and
processes are reasonable enough, we would like to indicate room for further improvements: the
argumentations that would be observed in these processes are proofs by contraposition, not by
contradiction. Such argumentations certainly include ways of thinking such as *... if it were not so, it
would happen that...”. However, because this argumentation starts from the observation of a non-
example (not satisfying A), such thinking necessarily has the form “if B is true, A cannot be true’,
which certainly corresponds to an argumentation by contraposition.

In contrast, our hypothesis is that the principle of non-existence of counterexample yields
argumentation by contradiction. Generally speaking, the intension to disprove some statement may
lead to the pursuit of its counterexample. However, it is difficult to prompt disproving activities in
mathematics classes, which are usually filled by the requirement for proof. In the following
subsection, we discuss a favourable condition involving counterexample towards argumentation by
contradiction.

Judgement of truth and proof by contradiction

In the former part of this section, we defined the method of proof by contradiction. However, it is
written in propositional logic, while there are many propositions of predicative logic that will be
addressed in mathematics in upper secondary school or higher. In fact, in Japan, many common
propositions to be proved in mathematics are universal propositions. Let S be a proposition such as
“for any x, if P(x) is true, Q(x) is true’, and consider a task such as ‘is this proposition S true?’, that
is, the judgement of the proposition S. Facing this type of task, what types of argumentations occur
naturally? As a form of naive argumentation, one may try to verify S in an empirical way: each
instance x verifying P(x) is examined to verify whether it satisfies Q(x) or not. Then, the more
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instances one checks, the more plausible S would be. In addition, this operative work might prompt
students to understand what the negation of the statement S is. If the above examination of each
instance x fails even once, in other words, if one finds an instance x satisfying P(x) but not Q(x), S
turns out to be false. In class, the task of proving S makes it ungquestionable, because such a task
implicitly means that S is true. However, against the task of judgement, one may suspect its negation
quite naturally. Moreover, in this type of task, which will be proposed in the following section, this
suspicion is important and can lead students to the idea of proof by contradiction, as this suspicion is
the initial point of the proving method by contradiction: if one doubts the truth of S, he or she can
start argumentation from the assumption of the counterexample’s existence, that is, an instance x
satisfying P(x) but not Q(x). If this argumentation comes to a contradiction, the non-existence of a
counterexample can be deduced; furthermore, it claims the truth of S, which is an argumentation by
contradiction.

Regarding the proving by contradiction, Antonini & Mariotti (2010) point out two difficulties: the
treatment of impossible mathematical objects and the link between the contradiction and the statement
to be proved. In fact, when proving by contradiction, one should think of impossible and absurd cases
and deduce a contradiction. One may not make sense of a contradiction from an absurd assumption
that looks trivial and from which nothing is likely to be deduced. This is similar to the low assessment
by students of proof of a trivial theorem, such as ‘the base angles of an isosceles triangle are equal’.
Likewise, in proof by contradiction, if the provisional assumption is apparently absurd, the deduced
contradiction would make no persuasive argument. Thus, to promote students’ argumentation by
contradiction, it is important that the provisional situation, where the hypothesis is true but the
conclusion is false, is unknown to be possible or impossible, and its possibility should be the focus
of the discussion. This is exactly the case in the proposed tasks of judgement.

Proposal of the task and situations

First, it is necessary to recall the characterisations of a parallelogram (i.e. sufficient conditions for a
quadrilateral to be a parallelogram). Although Japanese lower secondary schools do not use the word
‘sufficient’, they adopt the following five conditions in classes as ‘conditions for a parallelogram’:

— Two pairs of opposite sides are parallel. (Definition) A D
— Two pairs of opposite sides are equal in length. M

— Two pairs of opposite angles are equal in measure.

— One pair of opposite sides are parallel and equal in length. ¢

. . Figure 2: Parallelogram with Labels
— The diagonals bisect each other. g J

Each of these five conditions consists of two conditions out of the following:

— a pair of opposite sides is parallel — a pair of opposite sides is equal in length

—a diagonal bisects the other — a pair of opposite angles is equal in measure

Apart from the previous five sufficient conditions, various combinations of two out of the conditions
specified above are possible. In particular, we adopt the following combination and the task in
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connection with it: for a quadrilateral ABCD with its diagonals crossing at M, does the condition of
£A=,C and BM=MD make this quadrilateral a parallelogram? (See Figure 2.)

Since this condition is actually a necessary condition to make the quadrilateral a parallelogram, the
figure of a parallelogram may give an impression that this condition is also sufficient. Thus, one may
try to prove its sufficiency directly. In such an attempt to prove it, it would be natural to focus on a
congruence of triangles, namelyAAMB and ACMD. Verifiable facts concerning these triangles from
the given condition are BM=DM and ZAMB=2CMD. If one could claim that AM=MC, it is easy to
conclude that this quadrilateral is a parallelogram using the congruence of triangles, although no more
properties concerning AAMB and ACMD can be obtained directly from the assumption.

If this was against the task of proving a statement
suggested by a teacher, which would be considered
correct previously, then this proving attempt would end
here and no further argumentation would hardly
continue. However, in the task of judgement, one can
proceed this argumentation as such a stagnation of
verifying argumentation implies the possibility of a
counterexample. A student can suspect the congruence
of AAMB and ACMD. In particular, if AM=MC is true, they are congruent and the quadrilateral
ABCD turns out to be a parallelogram. Thus, one can imagine an instance satisfying ZA=2C and
BM=MD, but AM+MC, or AM<MC. If one tries to draw a figure of an instance satisfying BM=BD,
AM<MC and also £A=2C, the impossibility of such an instance comes apparent. This might be seen
by intuition (See Figure 3) and can also be verified as follows: if one take C’ on MC with AM=MC”,
we can see £A=£BC’D > «C and obtain contradiction. This is proof by contradiction.

Figure 1: Impossibility of a counterexample

Teaching experiment

In this section, we report a teaching experiment in a typical upper secondary school in Japan. This
experiment was mainly designed to investigate the learning about wide logical concepts through
inquiries, not limited to the idea of proof by contradiction. The 40 students in our study are first years
at a typical upper secondary school in Japan (15-16 years old) and, in general, students in this school
are not highly competent in mathematics. The students were about to study logical notions in the
small unit of ‘sets’ and had never studied proof by contradiction, not even the concepts of
counterexample, sufficient condition, or necessary condition. They were divided into 12 groups of
three or four students each. A main element of this experiment is the inquiry against the following
task (Figure 4) given to the groups (cf. Hamanaka & Otaki, to appear).

There is a quadrilateral ABCD with its diagonals crossing at M. A D
Find combinations of two out of the following eight conditions as
many as you can, each of which makes this quadrilateral ABCD a
parallelogram: (a) AB = CD, (b) AD =BC, (c) PA=DC, (d) BB =
PD, (e) AM = MC, (f) BM = MD, (g) AB // DC, (h) AD // BC. B C

Figure 2: Task given in the teaching experiment
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Among the 28 possible combinations of conditions, 16 are sufficient to make a quadrilateral a
parallelogram, whilel2 are not. Among the sufficient combinations, {(c), (f)} and {(d), (e)} are
relatively difficult to be justified, and their proofs could involve proof by contradiction. The teaching
experiment was carried through two teaching terms. While the first term was dedicated to students to
do their own inquiries around the task, the second term was devoted to their reflection.

In fact, because of its difficulty, we did not expect the generation of the idea of proof by contradiction
at the beginning. However, we could observe the generation of argumentation using that method in
their inquiries as we report below. The following is a part of the conversation during the inquiries by
a group of three students (A, B, and C) in the first term, which was mainly recorded by a voice
recorder and partly by a video recorder. We were not able to identify their voices clearly and the
speaker of the speech below was partly unspecified (Indicated as Student X). They were considering
the case where ZA=2C and BM=MD.

Student X:  As these lengths [BM and MD] are specified from the beginning and if we set that
these angles [£A and «C] are the same, | think it must be a parallelogram, right?

Student A:  If we change these lengths [AM and MC], these angles [£A and £C] must also
change...

Student A:  So, if we change these lengths [AM and MC] and also fix these angles [£A and
£C], these edges cannot meet.

Student A:  Wait, yes. If the angles [£A and £C] are specified and the lengths [AM and MC]
are different, it cannot be. Under these conditions [£A=2C and BM=MD], it is
impossible.

Student B:  Well, why is it impossible? (A short silence follows.)

Student A:  Well, listen. If we change the lengths [AM and MC], they [the edges CD and AD]
cannot meet, can they? Let’s see, if we keep these angles [2A and £C] having the
same measure, and also if we make this part [MC] longer...

Student C:  Oh, they [CD and AD] will not meet... it [CD] cannot reach [D].

The final worksheet did not retain the figures
used at the time of the above argumentation. It .
is assumed that Figure 4 illustrates the "

situation described by Student A. At that time,
she was looking for a counterexample, that is, By
an instance that satisfies the given condition
but is not a parallelogram. This idea led her to
the argumentation “if MC is longer than AM”.
Their argumentation continued as follows:

4

&,

Figure 3: The situation in Student A’s description

Student B:  Then, let’s draw the figure (of the considered situation).

Student A:  No way. We cannot draw it because it is impossible.
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Student B: ~ Oh, right. I see.
Student C: Oh, we cannot draw it...

These protocols clearly show that their argumentation involves contradiction: a situation that can be
considered but cannot be possible. Then, she organized her idea, draw a new figure (see Figure 6),
and spoke as follows:

Student A:  The answer is yes [sufficient] for this case. Because ... Let us use this line [set AC
on this line], [under the assumption BM=MD] then look at these lengths [AM and
MC]. If these lengths are differentand ifoneis .+t 1ot o b1
even one block longer, then these angles [2A Il LIl
and «C] cannot be the same in measure. Thus,
if we assume that these angles [2A and 2C] ] | LL Lo
are same, these lengths [AM and MC] are ; ;
definitely the same, too!

This shows how confident Student A finally was at the
correctness of her argumentation and illustrates the possibility of
generating the idea of proof by contradiction through this type of
argumentation that judges the truth of a universal proposition.

Figure 4: The final diagram
Discussion and conclusion in their work sheet

Although we admit the weakness of our empirical evidence as our teaching experiment was not
limited to proof by contradiction, we could observe small but specific data of successful
argumentation in the teaching experiment. We would like to discuss how this proposed task relates
to the generation of such argumentation. Moreover, this research is highly inspired by the research
by Antonini (2003), which also describes that the non-example argumentation is not the only process
for the generation of indirect proving. There is also a request for further research that develop other
processes and related tasks. Since this paper is one of possible responses to such request, we also
compare and discuss the differences between the argumentations by contradiction observed above
and the indirect argumentations involving non-examples proposed by Antonini (2003).

As mentioned by Antonini (2003), in the students’ argumentations, non-examples may work as
generic examples; their observation, which indicates ‘if B is true, it cannot be an example’, can be
generalized or expanded to the universal proposition of “for any case, if A is true, B cannot be true’.
This generalization is possible because the instances in consideration are real. On the other hand,
although the proposed argumentation in this paper is also related to a universal proposition, nothing
in the argumentation works as a generic example. The principle of this argumentation is the assertion
of the non-existence of counterexamples, and it does not involve the effects of generalization or
expansion. In fact, they deal with an impossible instance which can hardly be generalized or expanded.
Thus, these two types of argumentations are entirely different. This difference comes from the fact
that the proposed argumentation is directly based on proof by contradiction, not by contraposition.

In addition, the proposed argumentation essentially requires predicate logic: it is necessary to consider
the negation of the predicate statement “for any x, P(x) implies Q(x)’, that is, ‘for some x, P(x) and
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not Q(x) are true’, while, in the non-example argumentation, the phrase ‘for any x” is hidden or
always prepositional. Although it seems rather complex at first glance, such an argumentation is
supported by the features of the related task: first, this is not a proving task but a judgement task;
second, this task may prompt the empirical verification activity that can stimulate the understanding
of the negation of a universal proposition. This fact seems to be a reason of the didactic paradox of
proof by contradiction mentioned in the introduction: between spontaneous proving by contradiction
in extra-mathematical situations and the difficulty of understanding it in school mathematical
situations. In the classroom, both the judgement task (or disproving task) and the empirical
verification usually live in a narrower space than the proving task with theoretical ways.
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Argumentation in mathematics education

In recent years, there has been increased interest in the nature and role of argumentation in
mathematics education. Engaging in argumentation can lead to a deeper understanding of
mathematics. In the context of mathematics education, argumentation can be defined as:

a term which is generally used to describe the discourse or rhetorical means (not necessarily
mathematical) used by an individual or a group to convince others that a statement is true or false.
(Stylianides, Bieda, & Morselli, 2016, p. 316)

The teacher plays a key role in establishing mathematical quality of the classroom environment
(Yackel & Cobb, 1996). The teachers are representing the mathematical community in the classroom,
and their personal mathematical beliefs, values, mathematical knowledge and understanding are
important. Research on teachers’ knowledge about mathematical argumentation has focused on
identifying problems and challenges (for example teachers’ lack of mathematical knowledge) rather
than finding solutions to these problems (Stylianides et al., 2016).

The Norwegian curriculum is currently under review and in the latest draft reasoning and
argumentation is one of six core areas in mathematics (Utdanningsdirektoratet, 2018).

The aim of my PhD research is to investigate preservice primary school teachers’ views on, and use
of, argumentation in mathematics education. I have three research questions:

1. How do preservice primary teachers argue when evaluating mathematical arguments?

2. How do preservice primary school teachers argue when teaching mathematics in primary
school?

3. How do preservice primary school teachers engage primary school students in argumentation
when teaching mathematics?

Method

My study focuses on students enrolled in the Norwegian teacher education for Grades 1 — 7, age 6-
12. It is a five-year program with an integrated master’s degree. After graduation, these students will
be qualified to teach mathematics, Norwegian and one subject of their own choice. The education
comprises 30 mandatory credits in mathematics, which equals half a year of full-time study. The
mandatory mathematics courses are taught in the second and third semester of the education. Later,
the students can choose to do 30 more credits of mathematics, and to do their master’s thesis in
mathematics education. | will collect data when the students are in their third and fourth semester of
their education, i.e. | will follow them in their last semester of mandatory mathematics course and
following semester.
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The research has a qualitative approach. | will do video observation of student teachers when teaching
mathematics during practice training and audio-recorded interviews with both student teachers and
their practice training supervisor. The students will be interviewed in their practice training groups.
The interview will focus on their mathematical argumentation, and on their argumentation when
teaching mathematics. | will give the students a statement and several ways of defending this
statement. Through a discussion about what is the best way of convincing others that the statement is
true, I will get the data to answer research question 1. I will also interview the students about situations
from their practice teaching using video clips. Together with the observations, these data will be
valuable when answering research question 2 and 3.

The interviews with the practice training supervisors will aim at finding out what development the
supervisor observes, encourages and disapproves with the student teachers. This will give me
information about the background for the students’ choices, to what extent they are students’ own
independent choices or a result of the supervisors’ guidance.

The recordings will be transcribed and analysed. | will identify the discourse by which the student
teachers construct mathematical arguments for themselves and for school students; and what
discursive space, including gestures and use of artifacts, they provide for their school students
engagement with mathematical argumentation. Processes of argumentation will be analysed with
methods that are based on Toulmin’s theory of argumentation (Toulmin, 1958), as described by
Krummheuer (2015).

Research result and implications

The research will contribute to a deeper understanding of student teachers’ ability to teach
argumentation in primary school classrooms. This can form the basis of future research on how to
support student teachers to teach argumentation in primary school classrooms.

The poster will present the design of the study and some preliminary results. | find this poster
particularly relevant for the Theme Working Group 1 (Argumentation and Proof).
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The interplay of logical relations and their linguistic forms in proofs
written in natural language

Kerstin Hein
TU Dortmund University, Germany; kerstin.hein@math.tu-dortmund.de

The Toulmin model and the systemic functional grammar are combined to analyse logical relations
and their linguistic forms in students” written proofs for identifying obstacles and possibilities to
foster the understanding of proofs. The qualitative analysis of 63 students’ products reveals a
parallelism between syntactical and content-related explications and condensations. In particular,
the use of conjunctions seems to support more options 1.) to make explicit logical relations between
premise and warrant or conclusion, 2.) to combine several steps of a proof, and 3.) to recycle
conclusions as new premises. The logical relation from the warrant to the conclusion is often only
made explicit using causal prepositions as linguistic condensed forms of relations.

Keywords: Formal proof, logical relations, Toulmin model, linguistic analysis
Introduction

There is still a lack of knowledge about the concrete language demands for specific topics, although
the importance of identifying academic language and the epistemic role of language has been
explored (e.g. Schleppegrell, 2004). For these reasons, a linguistic analysis of the classroom discourse
to support teaching-learning processes should be pursued for several subjects and topics, in particular
mathematics (Schleppegrell, 2007). Especially, for the challenging topic of proof and proofing an
analysis of students reasoning is important (e.g. Mariotti, Durand-Guerrier, & Stylianides, 2018, p.
80), in particular, the analysis of logical rules and their linguistic forms, which cannot be translated
from formal language directly (Durand-Guerrier, 2004, p. 2). Within the logical structures, the
“implicit logical relationships” (Schleppegrell, 2007, p. 141) in their linguistic forms are one of the
major challenges in proof. Because of the high density of academic language, it is demanding for the
students to be aware of and to understand the academic language. Therefore, it is important to unpack
the meanings in more explicit language (O’Halloran, 1998). The suggestion for teachers is to be
explicit and to hold syntactic control within their own language during teaching logic (Durand-
Guerrier, Boero, Douek, Epp, & Tanguay, 2011).

As a first step, a linguistic analysis is needed for analysing the language demands of logical relations.
The structural and linguistic analysis of students’ products in this study follows the above mentioned,
general suggestions to identify language demands in logical structures, here for logical relations. It
pursues three research questions: 1) How can logical relations and their linguistic forms be analysed?
2) Which pattern can be seen in the interplay between the logical relations and their linguistic forms?
3) Which linguistic forms of logical relations can be used to make logical relations explicit? The first
two sections present the theoretical background and methodology of the analysis. The outcome of the
qualitative analysis of the written proofs is presented afterwards illustrated by case studies of two
texts.
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Theoretical background: Logical relations and their linguistic forms

In line with Mesnil (2013), the interaction between logic and language and the importance of
explicitness of the language in teaching and learning proof is assumed. This study focuses on the
logical relations as one challenging part of the language of proof (Schleppegrell, 2007). For this
reason, the study aims at identifying the linguistic forms of logical relations.

Logical elements

For the analysis of proofs, the Toulmin model (1958) is often applied, although it was developed to
describe everyday argumentations. Within mathematics education the structural analysis with the
Toulmin model was also applied to analyse mathematical classrooms (Krummheuer, 1995), the
structure gap between argumentation and proofs (Pedemonte, 2007), and for proofs with several steps
(e.g. Knipping & Reid, 2015), even if there are limits for the analysis of proofs and proofing (also
discussed in Mariotti et al., 2018, p. 78). In the structure model of Toulmin, the function of the logical
elements as premise etc., not their relations, is crucial. This becomes more important when it is
applied for the logical structure analysis of proof. This article refers to the short versions of Toulmin’s
model and considers premise, warrant and conclusion as the relevant logical elements within
deductive steps. These logical elements are connected more or less implicitly by logical relations,
which need to be unpacked, here.

Logical relations

In this article, logical relations are understood as relations between logical elements. In deductive
proofs, the relations between premise, warrant and conclusion are crucial (as described by Duval
1991, p. 235), but also within a warrant with the logical form of implication or equivalence (Selden
& Selden, 1995). In particular, the logical relation from premise to warrant is crucial for the
verification of the premises (Duval, 1991). These logical relations are often implicit in the language,
creating an obstacle for students (Schleppegrell, 2007) as they have to be unpacked in order to
understand them (Selden & Selden, 1995).

Different linguistic forms

Logical relations are often expressed in natural language by logical connectives such as “because”,
“due to” or “if..., then....” (Clarkson, 2004). These logical connectives can be classified as causal-
conditional principal markers by the systemic functional grammar of Halliday (1985), describing
language from a functional perspective. They have different linguistic forms such as causal
conjunctions (“because”), conditional conjunctions (“if... then....”) or causal prepositions (“due to”).
However, there is still a research lack of the analysis of the combination of logical relations and their
linguistic forms (e.g. Durand-Guerrier et al., 2011; Schleppegrell, 2007).

Methodology for the analysis of written proofs
Data collection

The students’ texts of written proofs have been generated within a teaching-learning arrangement on
deductive reasoning in grade 8-12 all with angle sets (Hein & Prediger, 2017; Prediger & Hein, 2017).
In the teaching-learning arrangement conjunctions were used to express logical relations. The
students were also asked to reason why a theorem can be applied (premises are met). In this paper,
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the learning process and the effects of the teaching-learning arrangement are not analysed. Instead, it
focuses only on the written products of the teaching-learning arrangement in order to investigate the
interplay between logical relations and their linguistic forms. The data corpus consists of 63 written
texts from 48 students (20 in grade 8, 6 in grade 9, 4 in grade 10, 18 in grade 12). The result section
presents the results of two cases with texts of the twelfth graders Linus and Petra.

Methods for qualitative data analysis

The qualitative analysis of logical relations and their linguistic forms in the written products combines
two analysis models: (1) Toulmin model: The Toulmin model in its short version (1958) is applied
for the logical structure analysis to identify the addressed logical elements (premise, warrant,
conclusion) (Pedemonte, 2007) and to disentangle the several steps of the proof (Knipping & Reid,
2015). (2) Systemic functional grammar: The linguistic analysis of the logical connectors as language
means for logical relations draws upon systemic functional grammar (Halliday, 1985), which can also
be used to identify linguistic challenges in mathematics education (Schleppegrell, 2007). The analysis
approach systematically identifies lexis used for logically connecting sentences or elements within
sentences and classifies their syntactical forms as conjunction (con) respectively prepositions (pre).
For these, the English functional grammar (in which the products are presented here) and the German
functional grammar (the original language of the products) resonate with each other. For example,
causal conjunctions can be described in English and German with conjunctions and prepositions and
function in a similar way. Here, first the existence of a logical relation as links between logical
elements and then their grammatical form (conjunctions such as “therefore” or preposition such as
*according to”) are identified.

- con / - - con/ -
premise ] pre =+ conclusion/ new premise pre target conclusion
| t | 1
conjunction or preposition | | conjunction or preposition | conjunction or preposition
’ | i I
warrant warrant

Figure 1: Analysis tool with Toulmin for several steps and both linguistic forms for logical relations

Empirical insights into the cases of Petra’s and Linus’ written proofs

Petra’s and Linus’ texts were chosen for illustrating the results because their texts contain typical
linguistic forms for the logical relations — condensed and non-condensed — which were also found in
many other written proofs about angle sets. The students work on the proof for the sum of angles in
a triangle (Figure 2). Before starting to write individually, they discuss the proof, identify which
theorems have to be applied and draw the sketch printed in Figure 3 to which both texts refer.

If there is a triangle, then these three Sketch of Petra & Linus
angles in total measure 180 degree™ s —— within their pair work
(Line k which is parallel to the “/?' o

side ACcanbeusedasan  « = s

auxiliary line). e LA

Figure 2: Mathematical statement to be proven by Petra and Linus  Figure 3: Students’ joint sketch

Proceedings of CERME11 203



Thematic Working Group 01

Analysis of activated mathematical statements: Both students refer to the same mathematical
statements, the alternate interior theorem (Step 1 and 2), supplementary angle theorem (Step 3),
calculating with angles theorem (Step 4), but both texts show substantial differences with respect to
making the logical relations and their linguistic forms explicit. Presentation of the structural and
linguistic analysis: The logical elements are illustrated with colours (green: premises (P); blue:
warrant (W), orange: conclusion (C)), both in the text and the graphical representations. Only partly
explicated logical elements are illustrated with * in the text and with dashed boxes in the graphics.
The logical relations (R) (conjunctions (con), prepositions (pre)) are illustrated in black and by arrows
in the graphical presentations (continuous arrow for conjunctions, dashed arrow for prepositions).

Linus’ text with causal prepositions for the logical relations

Step | Translated (and original) text Structural and linguistic analysis
1+2 | The triangle ABC has the angles a:= 4CAB; B:i= & | rmrmimimimimuy
ABC, y:= % BCA. — _pr_erl_life_ o conclusion
Additionally, a line passes through point B. ?
Additionally, the angle 7 is located at line k and at | warrant l
AB and 9§ is located at line k and the side BC. (p*:
Parallelism of k to BC is missing.) The detailed explicated premises (without
According to (R/pre) the alternate interior angle | parallelism) are not verbally connected with the
theorem (W), warrant.
- . . . With “According to”” the warrant (alternate interior
(German Original: Das Dreieck ABC hat die Winkel ; - .
0:=4 CAB, B:= & ABC, v:= 4 BCA. Zusitzlich geht angle theorem) is connected with the conclusion.
durch den Punkt B eine Gerade. Zusatzlich liegt der | “According to” is a preposition within one sentence.
Winkel © an der Geraden k und an AB und & liegt an
der Geraden k und an der Seite BC. GemaR des
Wechselwinkelarguments sind die Winkel a und =
gleich groB und & und vy gleichgroB.)
3 According to (R/pre) the supplementary angle theorem conchasian
(W), !
(German Original: GeméaR des Nebenwinkelarguments warrant
sind die Winkel B, = und 5 zusammen gleich 180 Grad | ) . )
groR.) According to”: analysis analogue to Step 1+2
4 7 can be substituted by o and & can be substituted by y | Fr=r=r=:=-=-=- 1
. . K L. - premise conclusion
(P*: Conclusion of step 3 as new premises is missing.). T '
According to (R/pre) the calculating argument (W),
Linguistically, it is not marked as previous
o ) ) conclusion of Step 1+2 (implicit recycling).
(Qerman Orlglna.l: Fur = kann o eingesetzt We__rden und | Conclusion from Step 3 is not explicitly used.
fir 8 y eingesetzt ~werden. Gemal des | «according to” connects the theorem with the
Reghenarguments sind die Innenwinkel o, B und v | sonclusion with a preposition.
gleich 180 Grad grof3.)

Table 1: Analysis of Linus’ text

In Linus’ first sentences, the
premises for the Steps 1, 2 and
3 are almost explicated. In
further sentences, the warrants

warrant

conclusion premise target conclusion

" E.- i .
: Step 4 !
]

conclusion

and the conclusions for Step 1,
2, 3 and 4 are explicated. The
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Figure 4: Summary of the analysis of Linus’ text
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recycling of the conclusions from Step 1, 2 and 3 to new premises in Step 4 is not made explicit.
However, logical relations between these elements are only explicated from the warrant to the
conclusions, whereas the logical relations from the premises to the warrants or to the conclusions are
not explicated. In each occurrence of logical connectives, Linus activates prepositions such as
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*according to”.

Petra’s text with more causal conjunctions for the logical relations

Step Translated (and original) text

Structural and linguistic analysis

1

A triangle with o, f and vy is given. The line k is

(German Original: Wenn also f+n+é= 180 Grad
und o=n und y=5, dann sind nach dem
Rechenargument f+y+a= 180 Grad.)

X . X X | premise | conclusion
parallel to line k and crosses point B. To identify
the measures of the angles a.and y (crossed out), at
the point B to the angle B the angles = and & are | warrant |
defined (P). Because (R/con) the line k and the . L
side AC are parallel and are crossed by the side AB ,,Because... can be ap_plled“ connects_the premise w_|th the
(P), the angle theorem (W) can be applied. theorem. “Because” is a causal conjunction (within one
Therefore, (R/con) sentence).
(German Original: Es ist ein Dreieck mit a, p und | “Therefore” connect the warrant (here angle theorem)
v gegeben. Die Gerade k ist parallel zu der | with the conclusion.
Geraden k und schneidet den Punkt B. Um die | “Therefore” is a causal conjunction and connects two
Grofle der Winkel o und y (durchgestrichen) zu | sentences.
erfahren, definiert man an dem Punkt B zu dem
Winkel B die Winkel & und 8. Da die Gerade k und
die Seite AC parallel sind und durch die Seite AB
geschnitten wird, kann man das Winkelargument
anwenden. Daraus folgt, dass o = m.)
2 | Additionally, the side BC crosses the parallel line | premise - concusion
k to the side AC (P), therefore (R/con) ¥
reasoned by (R/prep) the alternate interior angles E
theorem (W). | warrant |
(German Original: AuBerdem schneidet die Seite
BC die parallele Gerade k zu der Seite AC, deshalb | With ,,therefore** (causal conjunction), the conclusion is
ist y = & begriindet durch das Wechselwinkel- | drawn. “Reasoned by” is used at the end of the sentence
argument.) to add the logical relation from the warrant to the
conclusion.
3 | By the fact that (R/prep) Q and & are | premise - conclusion
supplementary angles (Q = p+n) (P), ¢
, according to  (R/prep) the i
supplementary angle argument (W). | warrant |
(German Original: Dadurch dass Q wund & | with,,By the fact that...”, the conclusion from the premise
Nebenwinkel sind Q = B+n, sind B, 7 und 5 =180°, | is drawn. “By” is a preposition. The premises are
laut dem Nebenwinkelargument.) condensed to an object with ““as a fact”” which is explained
in a sub-clause. “According to” (preposition) is used at
the end of the sentences to add the logical relation from
the warrant to the conclusion.
4 | So, if (R/ con) B+n+d= 180 degree and o=n and | premise - condusion
v=6 (P), then (R/ con), according to (R/ prep) the 3
calculating argument (W), i
| warrant |

With ,,If..., then” (conditional conjunction) the warrant is
applied to the case. With ““so” there is a reference to the
previous conclusion, which is used as new premise
(recycling). For “According to...“, see Step 3.

Table 2: Analysis of Petra’s text
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In her text, Petra

addresses the premises,

the warrant with the name | premise | conclusion —=  target conclusion
| t 1

of the t_heorems_and the Step 1 | warrant | premise Step 4 i

conclusions as Linus. For ,

. . | premise I_" conclusion i
making  the  logical 4 !
relations explicit, she SIENES | warrant | warrant
connects the premises | pe—— - conclusion
with the warrants or the t
conclusions with causal step3 | warrant _|
conjunctions such as
“because” and “there- Figure 5: Summary of the analysis of Petra’s text

fore”. In one case, Petra

connects the premise with the conclusion by a preposition (Step 3). Petra also uses prepositions such
as “due to” by adding the expression “due to the ...-argument” as last part of the sentences after
connecting the premise to the conclusion (Step 3 and 4).

Comparison of the case studies of Linus and Petra

In both texts, almost all contents of the elements of the short Toulmin Model are explicated, even
Linus only mentions the premises partly at the beginning, respectively not completely in Step 4. The
conclusions as new premises in Linus’ example are not explicated in their function, in particular, the
logical relations from the premises to the warrant or conclusion. The linguistic analysis shows that
causal conjunctions such as “because” and “therefore” of logical relations are only used in Petra’s
text, where also the logical relations from the premises to the warrant respectively conclusions and
the recycling of previous conclusions are expressed. These findings are in line with those of other
written products (see Prediger & Hein, 2017). According to Halliday (1985) conjunctions are non-
condensed forms for relations as in everyday language (called by him as coherent). In this case, these
conjunctions were also used to make explicit the logical relations from the premises to the warrant or
from the premises to the conclusion. With causal prepositions such as “according to”, “due to“ or
“by”, virtually nothing but the logical relations between the warrant and the conclusion are made
explicit. This was also found in other texts (Prediger & Hein, 2017). Only in Step 3 of Petra’s text,
the relation from the premises to the conclusion is made explicit with a preposition (“by the fact
that...”). Here, the content of the premises is expressed by a sub-clause. One reason for virtually
explicating nothing but the logical relation from the warrant to the conclusion (exception: Step 3 in
Petra’s text) may be that prepositions need nominalizations and here only the warrant is condensed
to a nominalization by its name and can be easily integrated by a preposition (“due to the ...-
theorem”). By adding the phrase with the preposition (“.... according to the ...-argument.”) at the
end of the sentences (such as in Step 3 and Step 4 of Petra’s text), the logical relations from the
premises are also made explicit in the same sentence. In all other cases, in sentences with prepositions
only the logical relation from the warrant to the conclusion is expressed. Prepositions are
linguistically condensed forms of logical relations (called metaphorical by Halliday, 1985). This kind
of linguistic phenomena is one of the most important characteristics of academic language to increase
lexical density. However, these condensed forms (e.g. prepositions for logical relations) are
challenging for students (Martin, 1999) and have to be unpacked first into non-condensed forms
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before students can understand their meaning (O’Halloran, 1998, p. 382). In the context of this case
study, mainly the logical relations between warrant and conclusion are articulated by condensed
forms of prepositions instead of conjunctions. The qualitative analysis shows that the prepositions
provide not only challenges to understand the logical relations, they also seem to hinder the
explication of logical relations, from the premises to the warrant or to the conclusion or within a
theorem. Prepositions also seem to be obstacles for combining several logical elements and steps.

Conclusion

The analysis of students’ products reveals three main findings: 1) The Toulmin model has not only
limits for analysing proofs in general (Mariotti et al., 2018, p. 78), but in particular, for capturing the
logical relations. 2) The linguistic analysis here suggests that in non-condensed forms some aspects
are more often expressed than in condensed forms. This finding can be used to be more explicit on
language while teaching proof as Mesnil (2013) has recommended. 3.) For these reasons, it might be
useful to first offer non-condensed linguistic forms (conjunctions), before condensed forms
(prepositions) are used in the classroom. This approach resonates with Martin’s (1999) observations
regarding the challenging condensed forms in academic language.

Of course, this case study has significant methodological limits as only 63 texts were analysed, that
were produced within the specific setting and content. It has not yet been taken into account how the
setting and the content influence the students’ articulations. Future research is required to overcome
these limits. Furthermore, the texts are written in German and not in English, so every interpretation
can only be made in the original.

Acknowledgment

I would like to thank my supervisor Susanne Prediger for the great support and intense cooperation.
The doctoral thesis on which the article is based was carried out with the financial support of the
Foundation of German Business.

References

Clarkson, P. C. (2004). Researching the language for explanations in mathematics teaching and
learning. In P. Jeffrey (Ed.), Proceedings of the Australian Association of Research in Education.
Melbourne: AARE.

Durand-Guerrier, V. (2004). Logic and mathematical reasoning from a didactical point of view. A
model-theoretic approach. In M. A. Mariotti (Ed.), Proceedings of the Third Conference of the
European Society for Research in Mathematics Education (CERME 3). Bellaria, Italy: University
of Piss/ERME.

Durand-Guerrier, V., Boero, P., Douek, N., Epp, S. S., & Tanguay, D. (2011). Examining the Role
of Logic in Teaching Proof. In G. Hanna & M. de Villiers (Eds.), Proof and Proving in
Mathematics Education: The 19th ICMI Study (pp. 369-389). Dordrecht: Springer.

Duval, R. (1991). Structure du Raisonnement Deductif et Apprentissage de la Demonstration.
Educational Studies in Mathematics, 22(3), 233-261.

Halliday, M. A. K. (1985). Introduction to functional grammar. London: Arnold.

Proceedings of CERME11 207



Thematic Working Group 01

Hein, K., & Prediger, S. (2017). Fostering and investigating students’ pathways to formal reasoning:
A design research project on structural scaffolding for 9th graders. In T. Dooley & G. Gueudet
(Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics
Education (pp. 163-170). Dublin, Ireland: DCU/ERME.

Knipping, C., & Reid, D. (2015). Reconstructing Argumentation Structures. In A. Bikner-Ahsbahs,
C. Knipping, & N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics
Education: Examples of Methodology and Methods (pp. 75-101). Dordrecht: Springer.

Krummheuer, G. (1995). The Ethnography of Argumentation. In P. Cobb & H. Bauersfeld (Eds.),
The Emergence of Mathematical Meaning: Interaction in Classroom Cultures. Hillsdale, New
Jersey: Lawrence Erlbaum.

Mariotti, M. A., Durand-Guerrier, V., & Stylianides, G. J. (2018). Argumentation and proof. In T.
Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing Research in
Mathematics Education - Twenty Years of Communication, Cooperation and Collaboration in
Europe (pp. 75-89). Oxon: Routledge.

Martin, J. R. (1999). Mentoring semogenesis: ‘genre-based’ literacy pedagogy. In F. Christie (Ed.),
Pedagogy and the shaping of consciousness (pp. 123-155). London: New York: Continuum.

Mesnil, Z. (2013). A reference for studying the teaching of logic teaching in high school in France:
A complex request for teachers. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of
the Eighth Congress of the European Society for Research in Mathematics Education (pp. 166—
175). Ankara, Turkey: Middle East Technical University/ERME.

O’Halloran, K. L. (1998). Classroom Discourse in Mathematics: A Multisemiotic Analysis.
Linguistics and Education, 10(3), 359-388.

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed?
Educational Studies in Mathematics, 66(1), 23-41.

Prediger, S., & Hein, K. (2017). Learning to meet language demands in multi-step mathematical
argumentations: Design research on a subject-specific genre. European Journal of Applied
Linguistics, 5(2), 309-335.

Schleppegrell, M. J. (2004). The language of schooling: a functional linguistics perspective. Mahwah,
N.J: Lawrence Erlbaum Associates.

Schleppegrell, M. J. (2007). The Linguistic Challenges of Mathematics Teaching and Learning: A
Research Review. Reading & Writing Quarterly, 23(2), 139-159.

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies
in Mathematics, 29(2), 123-151.

Toulmin, S. E. (1958). The Uses of Arguments. Cambridge: Cambridge University Press.

Proceedings of CERME11 208



Thematic Working Group 01
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Being defined as a main learning goal of mathematical education, arguments and argumentative
skills are of high relevance. The development of these skills in the context of a deeper understanding
is an important aspect for mathematical teaching and the support of mathematically gifted students,
whose interest in mathematics should be increased. To focus more in detail on arguments in the
context of mathematical giftedness, the paper poses the question whether it exists a relation between
mathematical giftedness on the one hand, and mathematical argumentations on the other hand. For
this purpose, the arguments of primary students from an enrichment program for mathematically
gifted and interested students are gathered in an interview setting and analyzed by means of the
Toulmin scheme. The results show that giftedness might influence the content and quality of
arguments, but not the need for argumentations.

Keywords: argumentation, giftedness, Toulmin
Introduction

For curricular, societal and mathematical reasons, argumentative skills are claimed as central learning
goals in mathematical education. Especially the view on mathematics as a deductive organized system
with theorems and proofs forces fundamental skills in argumentation (e.g. Hanna, 2000).
Nevertheless, former research shows that (German) students have deficits in formulating arguments
in written and oral form (Cramer, 2011). It is therefore an important aim to support the development
of argumentative competences, not solely, but also with regards to mathematical giftedness. The idea
that gifted students perform better in the formulation of mathematical arguments seems legitimate,
even though the relation is not clear (Fritzlar, 2011). In this context, the study focuses on this relation
through analyzing gifted students’ oral arguments.

Theoretical Framework
Arguments in Mathematical Education

Not only in every day’s communication, but also in mathematical education, arguments are of high
relevance. The aim of an argumentation is to convince the communication partner with the help of
shared respected statements (Cramer, 2011). Nevertheless, real disputes in mathematical education
are rare, so that argumentations are best described in the context of a problem solving process as “a
type of dialogical or dialectical game [...] that is associated with collaborative meaning-making.”
(Baker, 2003, p. 48). In mathematical education, the process of an argumentation involves activities
such as to formulate assumptions on mathematical characteristics, to reason on relations, as well as
to question assumptions (Bezold, 2009). The paper defines the term ‘argument’ as a product which
results from the processes of former described activities. With this product-oriented focus, it is
possible to analyze arguments among different categories, e.g. structure and content.
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According to Toulmin (1958/2003), every argument can be structured through different functional
elements. Toulmin describes Data (D) as “facts we appeal to as a foundation for the claim” and
Conclusion (C) as claim “whose merits we are seeking to establish” (Toulmin, 2003, p. 90). The step
from D to C often requires further considerations, asking for “general, hypothetical statements, which
can act as bridges, and authorize the sort of step to which our particular argument commits us”
(Toulmin, 2003, p. 91). These kind of statements are called Warrant (W). Figure 1 presents the core
of the Toulmin scheme.

Figure 1: Core of the Toulmin Scheme (Toulmin, 1958/2003)

Data (D) %a Conclusion (C)

since

Warrant (W)

Apart from a structural analysis, it is furthermore necessary to analyze arguments according to their
content as the analysis by means of the Toulmin scheme does not state anything on the argument’s
quality, e.g. whether a warrant is based on authority or a mathematical rule (Koleza, Metaxas & Poli,
2017). Following Toulmin’s definition, an argument is called analytic if W includes all relevant
information for the step from D to C (Toulmin, 2003), e.g. mathematical rules or laws that are
adequate in the specific context. Arguments that do not fulfil this condition are claimed as substantial
(Toulmin, 2003). These arguments leave open or fail to answer (further critical) questions (Koleza,
Metaxas, & Poli, 2017), e.g. “My calculation is correct, because Anna has the same result” could be
rebutted by the question “But what if both of you did a wrong calculation?” (Fetzer, 2012).

Mathematical Giftedness

Mathematical giftedness is a complex construct that lacks a standardized definition and diagnosis as
it is not directly observable (Bardy, 2013). It is more a potential that might develop into an outstanding
mathematical performance by means of an advantageous interplay of genetic and environmental
factors (Kapnick, 1998). Therefore, the construct is approximated by means of lists of characteristics,
including special skills such as the memorizing and transferring of mathematical structures, creativity
and problem solving competences (Kéapnick, 1998).

State of the Art

A main interest of studies on argumentations in the educational context is on the analysis of arguments
with help of frameworks and models in order to make characteristics observable (e.g. Nussbaum,
2011). Mostly, studies observe arguments in classroom interactions and collaborative argumentations
(e.g. Forman, Mccormick, & Donato, 1997). For this purpose, the Toulmin scheme, and especially
its core, is often used (e.g. Koleza, Metaxas, & Poli, 2017). Further studies focus on the evaluation
of argumentative skills by means of models and methods to improve them (e.g. Bezold, 2009). The
studies show quite consistently that arguments in primary school have a low significance and real
disputes are rare, so that the teacher has to initiate arguments and show the need for arguments
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(Schwarzkopf, 2000). With regards to Toulmin, arguments by primary school children are typically
characterized by the missing of a warrant and by substantial arguments (Fetzer, 2012). Koleza,
Metaxas & Poli (2017) assume that primary students are able to formulate arguments which can be
analyzed using the Toulmin scheme, even though basic elements are not mentioned through a lack of
need for argumentation. Focusing on argumentative skills of mathematically gifted students, the
relation is not explicitly clarified (Fritzlar, 2011). On the one hand, Fritzlar (2011) assumes that
mainly other factors apart from giftedness influence argumentative skills and the need for
argumentations. Other models see the potential of gifted students (inter alia through supportive
characteristics, such as creativity) to develop outstanding argumentative skills, which can be forced
through training (Bardy, 2013).

Research Questions and Methodology

Based on this theoretical outline and former research findings, the research questions of this paper is
formulated as follows: What are the characteristics of mathematically gifted and interested primary
students’ arguments? In how far do they differ from general research findings on the arguments of
primary students with special regards to the Toulmin scheme and the need for arguments?

The research question is answered in a qualitative study. The sample is taken from the participants of
the extra-curricular enrichment program “Young Math Eagles Frankfurt”. The aim of the program is
to support mathematical interested and gifted students and to increase their mathematical interest and
joy on a regular and long-term level. In the school term 2017/2018, about 50 students between 8 and
10 years from 14 schools participate in the program after nomination of their teachers.

To focus on the characteristics of the oral arguments of the participants, task-based and problem-
orientated interviews are created (Goldin, 2000). This interview form is characterized by the openness
of answers while focusing on a special problem. The interview material includes tasks that emphasize
arguments and ask primary students to formulate warrants through irritation or the task itself (Bezold,
2009). The task formats focus on number pyramids and numerical lattices with regard to special
number relations. The formats can be expected to be known by the primary students and do not ask
for difficult calculations. Therefore, the task formats’ focus is basically on argumentation and it can
be expected that the students are able to use their findings on number relations as basis for warrants
that can be analyzed by means of the Toulmin scheme. In each interview, different components of
the formulation of arguments are included. In particular, the students are asked to comment on a
wrong assumption e.g. through giving a counter example, to argue on different mathematical relations
and to generalize their detections.

Figure 2: Task formats number pyramid (left) and numerical lattices (right)
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One task is to answer the question how the basic stones of the number pyramid/the arrow numbers of
the numerical lattices have to be arranged in order to maximize the top of the pyramid/the result of
the numerical lattices (see Figure 2). Every interview is done individually and includes four tasks
which are done within 15 minutes. To make the interviews comparable, they are directed with help
of a guideline. The interviews are transcribed on the basis of an audio recording and an observational
protocol.

The task formats, as well as the guideline were tested during the pilot phase regarding their
appropriateness in terms of the students’ age, needed time and mathematical content. Further, they
were analyzed according to the need for argumentations. The results show that the formats are
adequate in the named categories. Most students were able to identify relevant mathematical
characteristics and some were even able to generalize them to some extent. In all interviews, the
students formulated arguments which could be reconstructed with the Toulmin scheme. Therefore,
the piloting could confirm that the tasks emphasize arguments, which shows the suitability of the
tasks for the research question. Nevertheless, many arguments were initiated by the interviewer.
Through these initiation processes in the interview, it is therefore possible to analyze the
independence of and need for arguments.

On the basis of the results in the piloting and the theoretical framework, a scheme for the analysis of
the arguments within the interviews is created. The analyzed categories within this paper are

(1) Structure of Arguments: Within this part, it is analyzed which of the elements Data, Conclusion
and Warrant could be observed during the focus on the specific task.

(2) Independency of Arguments: Here the focus is led to whether a warrant is initiated by the
interviewer through questions/given after mediation, or given on an independent level.

(3) Content of Arguments: This part involves a categorization of the warrant in terms of its
mathematical content (inacceptable/wrong, substantial, analytic).

The use of the Toulmin scheme as a basis for the analysis can be legitimated as the results are to be
compared to former research findings on arguments in the primary age and the Toulmin layout is
frequently used in these studies. Through adapting the independency and the content, its limitations
apart from a structural analysis for this setting are recognized.

During May and June 2018, 32 participants (all students with parental consent form and presence
during the interview dates) were interviewed. Within the interviews, 128 argumentation tasks are
analyzed. Beforehand, no special training in the formulation and awareness of arguments or an
education on the formulation of analytic warrants took place. Argumentation and reasoning tasks
were part of some lessons, but not to a greater extent than the focus on other competences, such as
problem solving. First observations within the enrichment program did not seem to show obvious
differences in the need for argumentations. Nevertheless, the detection of mathematical findings,
might be an important influence on the arguments of gifted children. The following results from the
analysis should specify the relation of argument and giftedness on a systematic level.
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Results

Table 1 shows an example of an interview extract with a functional analysis according to the elements
of the core of the Toulmin scheme. At the date of the interview, the student (S) was in ten years old.
His interview bases on the task format numerical lattices. The sample analysis focuses on the task
within the interview, in which the participant has to argue in which case the result is the highest. In
advance, he does calculations with changed orders of the arrow numbers and concludes that the results
change. Through initiation of the interviewer, he gives a substantial warrant for the relation of the
basic elements and result. His argumentation bases on the order of the boxes of the numerical lattices
and the switch of numbers comparing both tasks.

On the basis of this observation (which is coded as Data for the following task), he is able to identify
the case in which the result is the highest, namely when the arrow with the higher number shows
downwards (see Figure 2). Without initiation, he uses a substantial warrant and through initiation he
supports a conclusion through an analytic warrant by transforming it to a general case.

Table 1: Extract from the transcript (translated from German by the author)

I: [...] In which case do you receive the highest result? You can use your Introduction of
former calculation. Task

S: When the higher number is taken plus here (shows on arrow downwards of | Conclusion
numerical lattices).

Because here, there are three and here there are solely two (shows on boxes of | Warrant

numerical lattices). [...] (substantial)
I: Do you think this is always the case or solely in our example? Initiation

S: Well, I think this is in every example like this. Conclusion
I: Can you tell me why this is the case or/? Initiation

S: (shows on arrows of numerical lattices) Because when you calculate here the | Warrant
higher number plus at the arrow downwards, then there is one box more, where | (analytic)
you can calculate plus and here on top, there is no more

and therefore 1 think, this is always like that. Conclusion

With the former task as data, a conclusion is drawn and supported through a warrant. The task is
therefore coded as Data — Conclusion — Warrant. For the warrant, the highest observable category
before initiation is substantial, and after initiation analytic. The development of the warrant after
initiation can be observed frequently, so correspondingly, two phases within each interview task are
distinguished for the following analysis: Phase 1 describing the argument respectively the warrant on
an independent level, and Phase 2 after an initiation of a warrant.

Table 2 shows the results from the structural analysis of all interview tasks through categorization
according to the included elements on an independent level, namely without a question as initiation
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of reasoning (Phase 1). Without initiation processes, only 24.2% of all analyzed tasks include a
warrant on an independent level. In the majority of the tasks, a conclusion is drawn, but ungrounded.
Taking those tasks that are coded within the category Conclusion or Data — Conclusion on an
independent level and in which a warrant was initiated afterwards, in 87%, a warrant could be
formulated after being initiated. By combining the independently formulated and initiated arguments,
within 98 of all 128 tasks the complete core according to the Toulmin scheme (Data — Conclusion —
Warrant) could be reconstructed. Nevertheless, within 67 of these 98 tasks, the warrant was only
formulated after being initiated.

Table 2: Structural categorization according to the Toulmin scheme on independent level

N=128 No Conclusion Conclusion or Data — Conclusion —

Data — Conclusion Warrant

Argument on an 6 (4.7%) 91 (71.1%) 31 (24.2%)
independent level

To focus more in detail on the mathematical content of the arguments, the tasks including a warrant
are categorized as not acceptable/wrong, substantial and analytic. Again, the highest observable
category is coded, e.g. a task including a substantial and an analytic warrant before initiation is coded
as analytic. In Table 3, the independently given warrants from Table 2 are categorized (N=31). In
addition to the former finding that in about 75% of all tasks no warrant is coded on an independent
level, one can observe that two thirds of the independently given warrants are substantial.

Table 3: Content-related analysis of the tasks with an independently formulated warrant

N=31 Not acceptable Substantial Analytic
Independent Warrants | 3 (9.7%) 21 (67.7%) 7 (22.6%)

In Table 4, a further categorization is made before and after initiation (Phase 1 and 2) for those tasks
in which an initiation of a warrant is coded (N=95). Even though in 10.5% of initiated tasks still no
warrant is coded, this number decreases significantly after initiation. In addition, it becomes obvious
that the proportion of analytic warrants increases after a question on (further) reasoning is posed.

Table 4: Content-related analysis of the tasks with initiation

N=95 No warrant Not acceptable Substantial Analytic
Before initiation | 77 (81.0%) 2 (2.1%) 15 (15.8%) 1(1.1%)
After initiation 10 (10.5%) 7 (7.4%) 42 (44.2%) 36 (37.9%)

Discussion and Conclusion

A comparison of the results with former research findings gives different insights into the arguments
of mathematically gifted and interested primary students. On the one hand, the results can confirm
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the general conclusion by Schwarzkopf (2000) that arguments have to be initiated at least partly. In
two thirds of all tasks including a warrant, the warrant was only mentioned after initiation of the
interviewer. Therefore, one can assume that gifted primary students do not seem to have an
exceptionally sensible need for reasoning and arguing. Without initiation processes, the research
findings by Fetzer (2012) on the lack of a warrant in primary students’ arguments seem to be accurate
for this sample. Also the independently formulated warrants are mostly substantial what fits the
findings by Fetzer (2012). On the other hand, it is nevertheless noticeable that nearly 40% of the
analyzed tasks with initiation involve an analytic warrant after an initiation process took place.
Further, only in 10.5%, still no warrant is mentioned after initiation. The focus on initiation
emphasizes the hypothesis that a large group of the students is able to formulate (analytic) warrants
after being forced to. Nevertheless, only the minority of the students formulates (analytic) warrants
on an independent level.

With special regard to the research questions, one can formulate the hypothesis that mathematical
giftedness might not influence the need for argumentations. Nevertheless, most of the gifted students
are able to formulate warrants after initiation, some of them even analytic. Mathematical giftedness
therefore might have an impact on the mathematical basis for the formulation of analytic warrants in
order to support (creative) detections and findings. So, incomplete arguments without initiation do
not seem to be caused by a lack of ability, but by the low significance of arguments’ needs or the
missing of structural knowledge of arguments. This finding is further supported by the fact that the
students were not taught on arguments in advance. Hereby, former studies of mathematically gifted
students’ intuition (e.g. Képnick, 2010) might be relevant in order to explain the low need of giving
warrants. In the interpretation of these findings, one has to take some limitations of the study into
consideration. The interviews were analyzed on a qualitative level without a control group as it was
not possible to exclude many different influencing factors (e.g. differences in school, teacher,
language skills and mother tongue). Therefore, the comparison was built on former research findings
and studies by different researchers, which mostly show consent in the analyzed categories and
therefore allow a certain generalization of the findings for different settings. The comparison
nevertheless has to be seen under varying task formats and different settings.

We take up the findings as a basis for a longitudinal study on the changes of the arguments of the
students in terms of the structure and content, as well as the need for arguments. During this, the focus
will be laid on the individual changes in arguments of the children with special regards to their
environmental background in terms of language and family. Moreover, the study focuses on the
question whether mathematical giftedness as a potential for outstanding mathematical performance
can further be a potential for arguments.
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“Using geometry, justify (...)”. Readiness of 14-year-old students to
show formal operational thinking
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The article contains information about the preliminary results of pilot studies carried out by the
author on 127 students aged 14 years in the period 2017-2018. The aim of the research was to
check students' readiness to use formal operations while solving mathematical problems, as well as
to check the correctness of the tool construction by means of which the author attempted to search
for answers to the questions posed.

Keywords: Piaget's theory, Formal operations, Argumentation, Geometry, Geometric reasoning.
Introduction and theoretical framework

The development of mathematical concepts in school students is inseparable from their intellectual
development. The order and methodology of their learning by a young person is organized in
advance because learners at school work in accordance with curriculum programs planned by the
authors of the textbooks which set the basis for development and cognition in each of the school
subjects.

Development is a constant struggle with what we know and with new information on the path
of adaptation, by balancing two processes of assimilation and accommodation. The first one is
adapting new information of external origin to what the person already knows and is acquainted
with, the second is adapting his knowledge to new information. Man builds new patterns, his
intelligence develops. There is a kind of competition between accommodation and assimilation
based on comparison, a process which is an important basis for the development of mental
operations. According to Piaget, the child's development depends primarily on itself, on the actions
it undertakes, which underlie thinking, or the continuous cognitive process. It consists of intellectual
operations, mental operations as an action which is interiorized and, therefore, runs in the mind
(Piaget, 1952; Piaget, 1973, 2005a, 2005b).

As claimed by Piaget, this internalization takes place in four separate stages of the development
of intelligence, linearly following one after another: sensorimotor stage, preoperative stage,
concrete operations and formal operations. Everyone, regardless of their place of residence and the
environment in which they grow up, goes through all the above-mentioned stages of development,
in which reasoning changes from simple forms, strongly related to perception and performed
activities, to forms implemented in the mind, abstract and hypothetical. These are qualitative
changes, not quantitative changes, new behaviors are built on previous ones without eliminating the
old forms but complementing and correcting them.

Piaget's research shows that not all people, regardless of where they live and what they do, reach the
level of formal operations; it is also true that many of us do not use formal operations for many
aspects of their lives (Przetacznik-Gierowska& Tyszkowa, 2000).

A person who thinks at the level of formal operations is characterized by:
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- abstract thinking, i.e. the ability to logically use symbols in relation to abstract concepts
(without the need to link them with reality), hypothetical-deductive reasoning, and
the development of thinking about abstract objects,

- metacognition, or the skill of parallel reasoning and its monitoring; it is the ability
to constantly reflect on one's own cognitive process,

- the ability to logically and methodically solve problems, in particular those of mathematics.

In summary, the process of changing the way of solving problems, starting from specific-
operational thinking and ending with formal-operational thinking, is long and tedious, begins at the
age of 12 and lasts until 16-17. The manifestations of these changes are connected with the students
using a different method of tackling tasks and problems (not only mathematical ones), adopting a
different, new attitude open to hypothetical-deductive thinking. A student who solves a
mathematical task becomes open to correct inference based on mathematical facts and theories with
detachment from the specifics, is able to put forward hypotheses and tries to verify them, attempts
to generalize his judgments. In his statements, he uses phrases such as "maybe" and "if", he is
characterized by the ability to think logically and critically, displays the tendency to conduct
discussions and disputes and to make inquiries.

The pace of changes in the process of cognitive maturation as well as the final effect of these
changes are closely related to the natural and school environment in which the student was matured.
The moment, the type and the strength of the stimulus which becomes provocation and motivation
for development is important. Geometry is a perfect area for the observation of changes in the
cognitive development process of a student. Being one of the oldest disciplines of mathematics, due
to which the concept of proof and formal thinking developed, it is the foundation of many activities
characteristic for mathematical formal thinking. Freudenthal wrote: "Greek geometry was the first
proper embodiment of the idea of mathematics. Although mathematical activity, both in algebra and
geometry, began two or three thousand years before Euclid, words such as theorem, assumption,
proof, analysis, theory, axiom postulate, definition, and concepts that they signify are an invention
of Greek mathematics™ (Freudenthal, 1966, p. 83).

Today geometry still plays a secondary role in Poland, especially in the process of mathematics
education. Its presence is more frequent than in 1964 but is still insufficient in the programs of
mathematical studies and studies for teachers and corresponds with merely 120 hours during the
whole 5 years of study (https://cutt.ly/MITprog). In elementary schools the geometry issues account
for 30% of the content of textbooks. It is mentioned in the comments to the current curriculum that:
“The second branch of mathematics which supports learner’s mathematical development is
geometry. Although it was indispensable to limit the teaching content in geometry (due to time
constraints) the main its part, namely mathematical proofs, was kept in the elementary school
curriculum” (Brodzik & Pruszynska, n.d.).

Geometry requires many competences: imagination, ability to draw logical and rational inference,
to reason, to form hypotheses, and to read the content of mathematical tasks with comprehension, as
well as being acquainted with all representations of mathematical language - words, symbols and
graphics. There is always a fear that illustrations will overshadow the awareness of rational, logical
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and deductive reasoning, based on the consciously used definition of the concept under
examination, and not on the perception of its features based on a picture — ready-made or drawn on
one’s own.

In every mathematical discipline, but here in particular, each of three types of mathematical
reasoning can be used when solving a mathematical problem. Full formal-operational reasoning is
characteristic only for the formal reasoning, but the formal operations also occur in the intuitive
reasoning, and their manifestations - in the empirical reasoning. Krygowska defines these types of
reasoning as follows: empirical inference at the level of school education is the formulation of a
mathematical hypothesis based on observation and experience in a specific physical space or on
inductive tests already in the field of mathematics itself; student's reasoning is treated as intuitive in
the field of mathematics if in the course of solving acertain problem he uses, above all,
imagination, i.e. images of concepts which he considers, regardless of their formal definitions and
carries out brief reasoning based on obvious premises, regardless of their correspondence within the
given system; finally, we consider a student's reasoning as formal if in the course of solving the
problem he realizes the accepted basis of deduction and tries to consciously derive any subsequent
conclusions as precisely as possible from previously made claims and given definitions within a
given system; uses definitions and theorems properly (Krygowska, 1977, pp. 441-45).

In his theory of intellectual development, Piaget determined that most students over the age
of 12 apply formal operational thinking in a form specific for its early stage. However, research
carried out in the 1970s in a sample of 10,000 British 14-year-old children revealed that the
overwhelming majority of them, namely 80%, do not reach this stage (Shayer, Kichemann,
& Wylam, 1976).

It is necessary to check the present situation and determine the level at which Polish 14-year-old
students currently reason, particularly now when we are in the curse of implementing curriculum
and organizational reforms which aim at strengthening the development of application of reasoning
and critical thinking. Professor Edyta Gruszczyk-Kolczynska, who has been observing children
demonstrating exceptional mathematical abilities and those who struggle with difficulties when
learning mathematics for many years, writes in her books that one of the possible impediments in
creative development of mathematics in case of Polish children can be a delay in developing formal
thinking. The author has not come across any research containing discussion on these matters in
Poland inrecent years (Gruszczyk-Kolczynska, 1992; Gruszczyk-Kolczynska, 2012). She
undertook to study the manifestations of formal thinking characteristic of Polish students.

Some research and articles in world literature attach crucial importance to the choice of concepts
of teaching geometrical terms at every educational level which aim at the activation of reasoning
and, later, providing correct and formal justification. Proofs and formal reasoning applied on the
grounds of geometry are treated as a tool supporting the assessment of students’ knowledge
(Swoboda & Vighi, 2016; Koleza, Metaxas, & Poli, 2017; Pericleous & Pratt, 2017; Soldano &
Arzarello, 2017; Maczka, 2016). Training in teaching geometry is also emphasized as teachers,
applying particular teaching techniques and organizational skills used to create active educational
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environment, are responsible for provoking appropriate attitudes of students (Mata-Pereira & Ponte,
2017).

Goals, organization, methodology and tools

The article will present the results of some pilot studies. They were conducted in two rounds: in
2017 on a group of 100 students from one junior high school in Poznan (these studies were part of
the research carried out for the diploma thesis of Mrs. Monika Drgas, prepared under the
supervision of the author of the article). The second part of the research was carried out in 2018 on
a group of 27 pupils at the 7th grade from one primary school in Poznan.

Both pupils from elementary schools and students from junior high schools were surveyed at the
same age, being 14 years old, and in the same period of the school year, i.e. in the second part of
summer semester. In Poland an educational reform is currently implemented and it influences both
the organization of the teaching process and the content of the curriculum. The foregoing 6-grade
elementary school was transformed into 8-grade elementary school and existing junior high schools
are being phased out. In 2017 14-year-old children were in the first year of junior high schools and,
one year later, in the seventh year of elementary schools. The main criterion for the sample groups
selection was age, then it was the textbook ensuring knowledge required to tackle the tasks and,
obviously, the agreement of school directors, teachers and parents or legal guardians for children’s
participation in the survey. The research tool in the first round of tests consisted of three tasks, all of
them come from a textbook for class 1, Gdansk Educational Publishing. The goal of each of these
tasks was to provoke students' reasoning to check or justify a certain mathematical regularity or
fact.

The aim of the study, apart from checking the correctness of the tool's construction in order to
develop a proper research tool, was to check the readiness of Polish students at the age of 14 to use
formal operations during their mathematical reasoning provoked by geometry tasks requiring
students to justify some statements. The tool used in the second stage of the study consisted of 6
tasks, all geometrical ones, two of the tasks from the first stage were used in the second study and
one of them will be analyzed in this article. In each of the stages participants had exactly 45 minutes
to solve the problems.
Task
Check what is the ratio of the area of shaded ..
figures to the area of the rectangle. ,,

¥

This task checked the ability to carry out a full and correct analysis of the conditions of the task
where all data was provided in the figure attached thereto, and then the way of following the
instruction through the adopted reasoning and with the use of acquired knowledge. None of the
variables needed to carry out the reasoning was given or named. Viewing the figure suggests the
same length of certain segments but this fact is not stated in an obvious way (i.e. by using the same
color, describing the length with the same variable). Therefore, the task enforces applying the
formal operational thinking with reference to known facts, definitions and theorems, dependencies
regarding the areas of flat figures, and test it.
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As one can see in the task, the use of symbolic language of mathematics as well as of prior
knowledge, and applying hypothetical-deductive reasoning, were indispensable to achieve a full,
correct and formal solution. But was the formal-operational reasoning applied by the students?

Here there is a proposition (there are obviously more possibilities; they will not be all presented due
to article length constraints) of a correct task solution reflecting capabilities of students
at the 7" grade (at the age of 14) and containing some manifestations of formal operations, such as
logical usage of symbols, deductive reasoning, reflection and usage of abstract objects. This
solution has been proposed by a student - future teacher of mathematics.

I y ' ;
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Figure 1: The example of the correct solution

The article presents brief description of the results and more detailed analysis of the selected
students' solutions which represent different types of reasoning used by students. Due to the aim of
the research, attention will be focused on the description of manifestations of formal operations.

Stage 1

Junior high school students mostly provided correct answers. More than half of the students wrote
that the area of the shaded figure is half of the area of the rectangle, but they could not justify it.

Among 100 students participating in the survey, only 12 described the course of their reasoning in
the answer sheet; hence only 12 cases were included in the table.

Feature

logically use reason hypothetically | think about abstract objects / perceive / perform

symbols and deductively activities
Number of |5 - yes 4-no 3 — abstraction
students 7-n0 6 - manifestations 9 - perceive

2 —yes
Number of |9 - yes 7-n0 1 — abstraction
pupils 2-nN0 4 - manifestations 1 - perceive
10 - perform activities

Table 1: Features of formal reasoning - junior high school students and pupils of grade 7
Stage 2

Out of 27 participating in the study, only 11 pupils attempted to solve the task, not every one of
them answered the question posed in the task, and those who did it, answered correctly. Most of the
pupils did not carry out correct and full reasoning, certainly it was not the formal reasoning,
students were not able to use symbolic language, the conclusions were based on intuition - often
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infallible but not supported by knowledge - and on specific activities, i.e. measuring the length of
segments and indicating certain facts or approximate values.

Analysis of selected student works

Example 1

Figure 2: Student’s solution — example 1

The student introduces his own indications corresponding to the areas; however, it is unclear why it
is done. The student makes certain assumptions and does not explain this step. In addition, his
observations are completely false, do not justify the equality of areas which do not look similar. The
student combines a symbolic record with the text, equating them. He puts forward a hypothesis or a
thesis on the basis of false premises. He does not attempt to prove the observed regularities and uses
phrases - "when combined”. In the process of reasoning one can notice some manifestations of
formal operations and unsuccessful attempts to use them.

Example 2

b e LK . E B8 4 a7 {27 B
WS N 39§ ] 1 ST d = 427 Ty
i

Figure 3: Student’s solution — example 2

Reasoning fully based on the perception of the figure treated as a specific object to be measured and
explored. The student calculated the areas of shaded triangles, calculated the area of the rectangle
and subtracted from it the sum of the areas of previously calculated triangles. The calculations do
not confirm the fact which was to be proved. There is no reflection or comment, no other attempt to
solve the task that could confirm or refute the results.

Exemplar solutions, the correct ones proposed by students and those provided by pupils, are
available at https://drive.google.com/drive/folders/IHF022kdJeGOSnhkwM7eM_IMCIlqtOwDrZ
Due to article length constraints they could not have all been included in the paper.

Conclusions

The conclusions presented below are related to manifestations of formal operations in the process of
solving the problem selected by two groups of children participating in two stages of pilot studies.
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The author refers to the type of reasoning applied by students and to manifestations of formal
operations, i.e. logical usage of mathematical symbols, deductions, reflection and the types of
actions performed in order to find a solution of the problem.

After the analysis of given responses, it appears that students:

- mostly gave the correct answer,

- sometimes worked out solutions based on formal operations, but nevertheless

- answers in the vast majority were not a result of formal / abstract reasoning,

- answers were due to the perception of certain regularities which students perceived in the
figure,

- answers were often a consequence of specific actions performed with the use of a ruler, the
segments were measured and although the results were often different, the correct answer
was given,

- pupils apparently saw no need to justify their statements,

- students applied faulty reasoning,

- students did not apply the rules of deductive reasoning,

- pupils could not separate their reasoning from the specifics given in the figure,

- pupils’ intuition was often infallible but they were not able to give it up and apply formal
reasoning.

Summary

The article presents the results of the pilot studies and conclusions drawn on their basis. It describes
the readiness of students at the age of 14 to go through the process of solving a selected geometrical
problem applying reasoning with the use of formal operations. To make it possible, students must
know the properties of the figures as well as be sufficiently mature to conduct theoretical research
and reflect upon it. Students should be able to use logical arguments, definitions and statements.
Initial conclusions are unambiguous, the vast majority of students are not ready to reason
deductively detaching from specifics, imaginary operations and specific activities, although
according to Jean Piaget's theory of intellectual development after the age of 12 it should take place
in mathematical thinking of students.

The analysis of the material collected during the proper research and an answer to the question
whether the hypothesis formulated here will be strengthened or refuted is still ahead of the author.
The proper tests were carried out on a sample of 1200 students.
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The research presented in this paper is about the question, if and how the phrasing of a proving task
influences students’ proof productions. In our study, 381 first-year preservice teachers were asked to
work on a proof questionnaire involving two proving tasks, where the phrasings ““prove that”, “show
that, “reason”’, and “explain” were used alternatively. Students’ proof productions were analyzed
concerning the kind of reasoning, the use of algebraic variables and the number of words used. While
we found statistically significant differences in the proof productions for the easier first task, there

were no remarkable differences in the case of the harder second task.

Keywords: Proof, argumentation, socio-mathematical norms, semiotic norms.

Introduction

The learning about proof and proving is considered to be a main hurdle for beginning university
students. Several studies have been conducted to describe and to analyze the low proving compe-
tences of freshmen (see Gueudet (2008) for a good overview). Despite these results, only little effort
has been made to investigate the relationship between research results, the teaching of proving and
the proving tasks used in research. Dreyfus (1999) gives a description of several aspects that have to
be considered in the teaching of proving. Dreyfus concludes (p. 103):

The examples in Section 2 provide ample room for questioning what is expected by the different
formulations used, including ‘explain’ [..], ‘justify’ [..], ‘prove’ [..], and ‘show that’ [..]. Does
‘show that” mean “formally prove’ or ‘use an example to demonstrate that” (or something interme-
diate between these two)? Does ‘explain’ mean explain to a fellow student or explain in such a
way as to convince the teacher that you understand the reasoning behind the claim?

It was this idea of Dreyfus that made us conduct a study on how students’ proof constructions vary
due to the phrasing of the proving tasks. We chose the four phrasings “prove that”, “show that”,
“reason” and “explain® to investigate possible systematic differences concerning students proof pro-
ductions. While “prove that” and *“show that” are genuine phrasings in proving tasks, “reason” and
“explain” are also phrasings that are used in studies to investigate students’ proof competencies. In
this paper, we will describe our research project and outline the main results of this study.

Theoretical background

There are various phrasings that can be used to formulate a mathematical proving task. In the German
school system for example, the concrete phrasings are meant as follows (KMK, 2012; our translation;
the added words in quotation marks are the German translation of the former phrasing):
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to prove [“beweisen”]: to verify statements mathematically by using known facts and deduc-
tion, starting from the assumptions given

to show [“zeigen”]: to verify statements by using valid forms of reasoning, calculations, deri-
vations or logical connections

to reason [“begriinden®]: to trace data back to principles or to causal connections by using rules
and mathematical relationships

to explain [“erklaren”]: to clarify and to make comprehensible data by using personal
knowledge and to arrange it reasonably into mathematical relationships

So, there are some definitions or specific requirements combined with these phrasings. Following this
differentiation, the mathematical solutions could vary in some detail due to the phrasing used to for-
mulate a mathematical task.

In the mathematical classroom, the meaning of the different phrasing of a mathematical proving task
can be considered to be an aspect of sociomathematical norms in the sense of Yackel and Cobb
(1996). In the concrete learning contexts, the teacher and the students negotiate what is accepted,
when a reasoning, an explanation, or a proof is asked for. Accordingly, the students learn in their
daily mathematical class, what they have to do, when dealing with a task starting with “prove”,
“show”, “reason”, and “explain”. In this sense, the way students are responding to a specific mathe-
matical (proving) task is a result of a socialization process. This perspective offers the very possibility
of existing effects concerning students’ proof productions when using different phrasings in proving
tasks and also makes it possible to give an explanation for them.

In line with the theory of sociomathematical norms, semiotic norms have to be considered. The con-
cept of semiotic norms covers the idea that people may develop preferences concerning communi-
cating ideas (e.g. with mathematical symbols, using representations or giving concrete examples)
when being confronted with a given and known formulation of a task. Kempen and Biehler (2015)
transferred the idea of Dimmel and Herbst (2014) to explain students’ preference of using algebraic
variables when being asked “to prove” a mathematical statement. There are some suggestions in the
literature that the phrasing of a mathematical task influences students’ solutions. Schupp (1986) dis-
cusses the “problem of points’ and gives several examples how students’ solutions may vary in refer-
ence to a specific phrasing of the task. Knipping et al. (2015) adopt this idea and compare several
phrasings of the same task to discuss different solutions obtained in different studies. The authors
also consider the influence of sociological factors: students’ solutions in different school contexts
(grammar school class and comprehensive or mixed school [“Oberschule”]) differed clearly from
each other. Finally, it seems reasonable to link the phrasing of a mathematical task with emotions on
students’ side. Hemmi (2006, p. 145) showed that while most of the students felt positive when being
asked to solve a task starting with “Show that...”, about 40% of them stated a negative feeling. One
might conclude that a negative feeling concerning a given task may lead to the result that a student
might not seriously try to answer the task.
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Research questions

The theoretical considerations above led us to consider several hypotheses. Students may link differ-
ent phrasings of proving tasks with different mathematical activities. According to the meaning of
the phrasing “show that” in common speech (in German it is “Zeigen Sie”), this phrasing may lead
to an answer of a proving task, where a student is justifying a given claim by only testing one or more
examples. Whereas this phrasing might lead to an empirical-inductive answer, a phrasing like “rea-
son” is considered to evoke the formulation of arguments (compare research question 1). In line with
the idea of semiotic norms, the different phrasings of proving tasks may lead to the use of different
notational systems. One might assume that “prove that” may lead to the use of algebraic variables,
whereas “explain” might be combined with the use of (verbal) language (compare research questions
2 and 3). For a deeper analysis of the data we also considered social factors (like gender, age, former
math courses at school, ...) and also investigated the data concerning the use of word variables, the
use of representations, the use of concrete examples, quality of deductive approach and the structure
of the proof. But due to the length of this paper, we will only report on the aspects “kind of reasoning”,
“use of algebraic variables” and “number of words used”.

We finally came up with the following research questions:

1. In how far do students’ proof attempts vary significantly concerning the kind of reasoning used
(empirical-inductive or deductive) with respect to the phrasing of the task?

2. In how far does the occurrence of (algebraic) variables vary significantly with respect to the
phrasing of the task?

3. In how far does the number of words students used vary significantly with respect to the phras-
ing of the task?

Methodology

Following the winter term in October 2015 in Germany, 381 mathematical freshmen, who took part
in a degree program leading to different teacher accreditations at the Universities of Giel3en, Miinster
and Paderborn, participated in this study. These students were asked to work voluntarily on an anon-
ymous entrance test. All students were told, that their results would not affect their marks in any ways.

The mathematical statements used in this survey arise from the field of elementary number theory.
Both tasks were chosen due to their manageable amount of mathematic operations as well as their
contiguousness to topics dealt with in German grammar schools and are as follows: (1) The sum of
an odd natural number and its double is always odd and (2) The product of three consecutive natural
numbers is always divisible by 6. Each proving task allows for different approaches, e.g. generic or
formal solutions. The first statement can easily be proven by making use of generic examples, by
using figurate numbers, or by using algebraic variables (see for example Kempen and Biehler (2015)).
We felt the need to include a task that is as easy to understand as the first one, but harder to prove,
because in the case of the second task, the mere use of algebraic variables and respective computations
does not automatically lead to a proof of the statement (n- (n+ 1) - (n + 2) = n3 + 3n? + 2n).
Here, some additional arguments are necessary to prove the given claim. In this case, a narrative
justification seems to be the simplest way of proof. One possible narrative proof for this task might
be: If you have three consecutive numbers, one will be a multiple of 3 as every third number is in the

Proceedings of CERME11 227



Thematic Working Group 01

three times table. Furthermore, at least one number will be even and all even numbers are multiples
of 2. If you multiply the three consecutive numbers together, the answer must have at least one factor
of 3 and one factor of 2. Accordingly, the result will always be divisible be 6 (compare with Healy &
Hoyles, 2000). Each statement was introduced with one of the phrasings “Proof”, “Show”, “Justify”,
and “Explain”. This allowed for twelve different questionnaire versions in total, as identical operators
were excluded. Furthermore, in order to prevent cheating, different colored sheets of paper were as-
signed to the twelve versions of the questionnaire. Having developed an initial questionnaire, this
prototype was piloted in mathematical courses for teacher education at the Justus Liebig University
Giessen and the Westphalian Wilhelms-University Munster in May 2015 (N=48). We used the fol-
lowing set of categories to identify the kind of reasoning (see research question 1). Here, the category
“empirical-inductive” comprises two aspects. Any mere testing of one or more concrete examples
without further arguments or ideas is located in this category. Furthermore, inductive approaches,
where the truth of the given statement is asserted on the basis of purely empirical considerations,
belong to this category. We combined these two aspects to one category to stress the overall difference
to deductive approaches. It has to be mentioned that this distinction of empirical-inductive and de-
ductive reasoning is independent from the correctness respectively the completeness of the argument
given; an incorrect deductive argument still counts as deductive.

name explanation example (taken from students’ answers)

empirical- | The answer is just a verification _
inductive | by one or more examples. No
more arguments or ideas are
mentioned.

(Example:3+2-3=3-3
3+6 =9)

deductive | The student mentions ideas or | # -
further arguments that could be
used to prove the statement.

Moreover, the mere use of alge-
braic symbols is considered to be
a kind of deductive reasoning. odd + even equals odd

(two times odd equals even

accordingly, the claim is proved)

Table 1: Set of categories to investigate the "'kind of reasoning"'

Concerning the use of algebraic variables, we applied this code if any algebraic variable had been
presented in the answer to a proving task or not. While the use of algebraic variables is measured as
a category to code its appearance, we also counted the number of words used in students’ proving
attempts. In this case, we were not only interested in the appearance of words, because more or less
any proof attempt will make use of some words somehow. Accordingly, we had to count the words
to investigate a special kind of shift in students’ proof attempts leading to more narrative approaches.
When counting the number of words used in an answer of the proving tasks, we did not count the

words for structuring the proof production (like “example:”, “proof:” or “q.e.d”) or symbols (like “+”
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or “...”). Following this categorization, the first example given above in table 1 is considered to be
an empirical-deductive answer, with no use of variables and zero words. The second example is a
deductive answer without variables containing 14 words.

Results

The following results are based on the answers of 381 first-year preservice teachers at the University
of GieRen, Miinster and Paderborn. The results concerning the kind of reasoning in accordance to the
given phrasings are shown in Figure 1.

kind of reasoning

task (1) task (2)
[n=381] [n=379]
explain T axplain
(ri06) [17% 8% 9] __43%
regson T 1 regsan
(n=104) | 19% B1% (=27} 54%
show that T | show that
(n=s7) | 26% Ta% (n=58) 40%
prove that - 1 prove that ———
[n=Bd) 20% B0% [R=95) 46% 54%

O empirical-inductive MW deductive

Figure 1: Results concerning the “kind of reasoning”

Concerning proving task (1), the percentage of empirical-inductive answers is the highest for the
phrasing “show that” (26%) and the lowest for “explain” (17%). This difference is statistically sig-
nificant with small effect size [Chi?-test, p=.021 with Cramer’s VV=.167]. In the second task, the re-
sults are quite different. Around half of the students give empirical-inductive answers. In this case,
there is no statistically significant difference between the kind of reasoning in accordance to the dif-
ferent phrasings of the task. This might be due to the fact that the second task is harder to prove (see
above). Accordingly, students might have only given examples because they did not know how to
proceed otherwise.

When analyzing the data concerning the use of variables and the number of words used, we only
referred to the answers making use of a deductive approach, as the ‘empirical-inductive’ proof at-
tempts will obviously include no variables and contain fewer words. The results concerning the use
of algebraic variables with regard to the deductive attempts in accordance to the given phrasings are
shown in figure 2. Having a look at the answers to the first proving task, the phrasing “prove that”
leads to the highest percentage of the use of algebraic variables (76%), followed by “show that” with
62%. Concerning students’ proof productions for task (1), there are several statistically significant
differences considering the use of algebraic variables with small and medium effect size (see table
2). One might assume that something like an implicit semiotic norm would lead to these differences.
In task (2), the minor differences concerning the use of algebraic variables in accordance to the given
phrasings are not statistically significant (Chi?-test). Here again, the students’ problem in dealing with
the second proving task can be considered as an explanation why no differences concerning the use
of algebraic variables in accordance to the given phrasings could be observed. However, the results
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concerning task (1) hint that a construct like semiotic norms should be considered, because there, the
use of algebraic variables differs in accordance to the given phrasings.

use of algebraic variables

task (1) task (2)

[n=304] (n=213]
explaln | explaln
[n=00] 73% I 27% (n=50] 4% I 46% I
reason regson
(n=86) | 73% | 21% (n=65) a0% | 60% |
show that | show that
[n=61] 8% | 62% | a3 37% | 63% |
prove that prove that
n=57) | 20% | 76% | (ness) ao% | 60% |

O without variables B with variables

Figure 2: Results concerning the “use of algebraic variables”

P value (Chi?-test) effect size (Cramer’s V)
“prove that” vs. “show that” 021 .158
“prove that” vs. “reason” <.001 391
“prove that” vs. “explain” <.001 376
“show that” vs. “reason” <.001 241
“show that” vs. “explain” .003 225

Table 2: Statistical data concerning the differences about the “use of algebraic variables” in accord-
ance to the given phrasings. P value (Chi?-test) and effect size (Cramer’s V)

Students used 25.68 words on average to answer task (1) and 18.83 to answer task (2) (see table 3).
Having a look at the arithmetic means of number of words used in accordance to the given phrasings
in task (1), there are remarkable and statistically significant differences (see table 4). Whereas the
phrasings “reason” and “explain” lead to an increased use of words (27.35 respectively 27.52 on
average), “prove that” and “show that” lead to a minor use of words (14.83 respectively 13.11 on
average). In this case, we consider the phenomenon of an increased use of words due to the phrasing
of a proving task as a matter of semiotic norms.

task (1) [arithmetic mean] task (2) [arithmetic mean]
“prove that” 17.91 16.46
“show that” 17.11 21.93
“reason” 32.63 17.16
“explain” 31.60 20.91
overall arithmetic mean 25.68 18.83

Table 3: Arithmetic means concerning the number of words used in students proof productions in ac-
cordance to the given phrasings
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P value (t-test) effect size (Cohen’s d)
“prove that” vs. “reason” <.001 1.02
“prove that” vs. “explain” <.001 .83
“show that” vs. “reason” <.001 1.05
“show that” vs. “explain” <.001 .85

Table 4: Statistical data concerning the differences about the “number of words used” in proving task
(1) in accordance to the given phrasings. P value (t-test) and effect size (Cohen’s d)

Summary and final remarks

The focus of this paper is on if and how the phrasing of a proving task might influence students’ proof
productions. In the case of the easier proving task (1) about the claim that the sum of an odd number
and its double is always odd, remarkable differences could be observed. Here, the phrasing “show
that” led to statistically significant more answers consisting only of empirical evidence compared to
the phrasing “explain”. While “show that” and “prove that” evoked the use of algebraic variables,
“reason” and “explain” led to an increased use of words. While these differences could be observed
in the case of the first task, there were no such results in the case of the second task. One explanation
might be that the second task (about the divisibility by six of the product of three consecutive natural
numbers) was too hard for the students. If the students do not know how to solve a problem in any
way, they cannot vary concerning the way they prove the claim. This possible explanation is sup-
ported by the fact that much more students only gave empirical-inductive arguments to answer the
second proving task (44% vs. 18% in the case of the first task).

Following our theoretical considerations, the differences in students’ proof attempts in the context of
task (1) can be explained by the framework of sociomathematical norms (in the sense of Yackel and
Cobb, 1996). Students had acquired throughout their daily (school) life and their mathematics classes
what they are expected to do when being asked “to prove” a statement, “to show” that something is
true, “to reason” or “to explain” a given fact. The emergence of respective sociomathematical norms
evolves from the (implicit and explicit) discourse taking part in the classroom, where students and
teachers negotiate their expectations and requirements. In the case of task (1), the phrasing “show
that” led to statistically significant more empirical-inductive approaches than the phrasing “explain”.
As a result of sociomathematical norms, semiotic norms can be developed. Students might link a task
or the phrasing of a task with the use of certain semiotic resources. In this study, the phrasings “prove
that” and “show that” led to an increased use of algebraic variables, whereas “explain that” led to an
increased use of words. While we claim, that certain sociomathematical norms have been developed
concerning the area of proof and reasoning, we can only guess, which experiences have led to respec-
tive phenomena. Here, classmates and (mathematics) teachers will have played a decisive role when
negotiating norms. However, other influences from real life might also have affected students’ atti-
tude and behavior.

To sum up, the phrasing of a proving task can influence students’ proof productions. In this study we
could identify differences concerning the kind of reasoning, the use of algebraic variables and the
number of words used. This result should be considered in the teaching of proof and in the research
in this domain. The teachers at school and at university should be aware of the fact that students seem
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to combine different (implicit) norms for phrasings of a proving task when designing tasks for their
students. Researcher should consider the fact that the phrasing of a proving task might affect their
research results when analyzing the data. But more research has to be done to get deeper into the
effects different phrasings may evoke. Beside the formulation of task, also other aspects have to be
considered, like social and sociological factors, individual preferences or mathematical thinking
styles. These considerations have to be investigated by future research. Finally, as was shown above,
the findings of this study seem to be closely related to the two tasks used in this study. More research
is needed to confirm or to specify the results obtained in the context of different proving tasks in
different domains.
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Mathematics education researchers have highlighted the importance of assumptions in school
mathematics given their vital roles in mathematical practice. However, there is scarcity of research
aiming at enhancing students’ recognition of different roles that assumptions play in mathematical
activity. In this paper, we begin to address this issue by formulating two task design principles and
reporting on the implementation of a classroom intervention where lower secondary school students
in two classes worked, with the same teacher, on a task designed following the proposed principles.
Our analysis shows how the task, together with the purposeful teacher’s actions in implementing it,
led to students’ developing appreciation of two roles that assumptions play in mathematical activity.

Keywords: Assumptions, Task design principles, Classroom intervention, Teacher’s role.
Introduction

Assumptions refer to statements that doers of mathematics use or accept (often implicitly) and on
which their claims are based (Stylianides & Stylianides, 2017). Several researchers in mathematics
education have highlighted the importance of helping students be more aware of the roles that
assumptions play in mathematics, especially in relation to the notion of proof. For example, Fawcett
(1938), who treated proof as a key notion in school mathematics, listed four criteria for checking
students’ understanding of the nature of proof, among which two are closely related to assumptions:
students understand “[t]he necessity for assumptions or unproved propositions” and “[t]hat no
demonstration proves anything that is not implied by assumptions” (p. 10).

Despite the importance of assumptions in school mathematics, assumptions have received little
research and pedagogic attention in school mathematics. Furthermore, existing studies (e.g., Fawcett,
1938; Jahnke & Wambach, 2013; Komatsu, 2017) have mainly focused on geometry at the secondary
school level. Research in other mathematical domains is needed that will build on and widen the
scope of application of prior research in geometry, given also the recent calls for curriculum reform
(see, e.g., NGA & CCSSO, 2010, in the United States) to introduce proof-related mathematical
activity across content areas as well as in primary school (e.g., Stylianides, 2016).

To develop students’ recognition of the roles of assumptions in mathematical activity, we focus on
the design of mathematical tasks, which have potential to affect significantly students’ experiences
with and understanding of the subject. Specifically, in this paper we propose two principles that can
be used to support task design in the area of assumptions, we report on an intervention implemented
in two classes where lower secondary school students worked on a task designed following the
proposed principles, and we discuss the influence on students’ understanding of the roles of
assumptions in mathematical activity.
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Task design principles for the roles of assumptions
Types of assumptions

Assumptions often refer to statements that are accepted as true without proofs, and their typical
examples are axioms like the fifth postulate in Euclidean geometry whose modification led to the
formation of non-Euclidean geometries. To expand the opportunity for students to experience the
relativity of truth in mathematics, we extend the mainstream notion of assumptions to include two
additional types of assumptions, both related to mathematical tasks and their formulation: (1)
conditions of tasks (including premises of statements mentioned in tasks), and (2) definitions of terms
mentioned in tasks. This paper reports on an intervention concerning the former type in the context of
a function task. We are in the process of designing another intervention addressing the latter type.

Roles of assumptions

Assumptions play multiple roles in the discipline of mathematics. Their primary role has been to
introduce the relativity of truth, i.e., whether a proposition is true or false cannot be absolutely
determined, but hinges on assumptions (Fawcett, 1938). For example, Euclidean geometry was
originally accepted as the standard form of geometry that was deemed to be true in an absolute sense.
However, following mathematicians’ unsuccessful attempts to deduce the fifth postulate from other
postulates, mathematicians created new geometries, the non-Euclidean geometries, by adopting
axioms different from the fifth postulate. It was thus recognised that some propositions in Euclidean
geometry are true only under the set of Euclidean axioms, and that the conclusions are different under
different sets of axioms.

A second role is to mediate disputes that occur concerning the truth of conjectures; mathematicians
have managed to resolve such disputes and reach consensus by delving into the assumptions
underlying the conjectures. Consider, for example, the conjecture that the limit of any convergent
series of continuous functions is itself continuous. According to Lakatos (1976), while Cauchy
provided a proof for this conjecture in the 19th century, a counterexample to the conjecture was found
in Fourier’s work. Mathematicians attempted various explanations for this puzzling situation where
the proof for and counterexamples against the conjecture coexisted. Eventually, Seidel analysed
Cauchy’s proof and discovered a hidden lemma, which once incorporated into the conjecture as a
condition (related to the concept of uniform convergence), validated the conjecture.

Learning goals

Considering the importance of promoting authentic mathematical practice in school mathematics
(Lampert, 1992), our study aims to help cultivate students’ sense of the two roles of assumptions we
discussed earlier. Specifically, we set up the following two learning goals for the intervention in our
study (similar to the goals discussed in Stylianides & Stylianides, 2017, for prospective teachers):

Learning Goal 1: To recognise that a conclusion is dependent on the assumptions on which the
argument that led to it was based.

Learning Goal 2: To recognise that making the underlying assumptions explicit is crucial for
reaching a consensus on the conclusion.
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Task design principles

Based on our previous studies (Komatsu, 2017; Komatsu & Jones, 2019; Stylianides, 2016, chapter 4;
Stylianides & Stylianides, 2017), we formulated the task design principles below in order to address
the above learning goals:

Principle 1: Designing tasks that are subject to different legitimate assumptions by leaving
purposefully some of the assumptions of tasks implicit or unspecified.

Principle 2: Allowing tasks to have different legitimate answers based on different legitimate
assumptions about the tasks.

At the centre of these principles is the deliberate act of keeping some of the assumptions of the tasks
implicit or unspecified. The typical way of showing a task to students and promptly clarifying its
assumptions eliminates the possibility of multiple interpretations of these assumptions and reinforces
the intuitive connection between the clarified assumptions and the expected answer. In our on going
research (part of which we report here), we intend to break this norm by creating a situation where an
assumption of a task is purposefully unstated by the teacher so that the students can work on the task
under their own (implicit and potentially varied) assumptions. We anticipate that the disagreement in
the proposed answers likely to emerge in the whole-class discussion will prompt the students to
explore the reasons for the inconsistency. This discussion, purposefully orchestrated by the classroom
teacher, is expected to help students realise that their answers depend on their respective assumptions
and that an explicit assumption is needed to justify each answer.

Method
Task design

Based on the principles stated above, we designed a task shown in Figure 1, which we adapted from a
task implemented in the 2016 National Assessment of Academic Ability in Japan (NIEPR, 2016).
With respect to Principle 1, the functional relationship between x and y is not specified in the task so
that students can work on the task under different assumptions about functional relationships. With
respect to Principle 2, the answer to the task is, for example, y = 6 if y is inversely proportional to X,
andy =—6 ify is a linear function of x. Despite the divergence between these answers (as well as an
infinite number of other legitimate answers not discussed here), both of them are, or can be, correct as
long as the respective functional relationship is assumed.

The table below represents y-values corresponding to the given x-values. Find the y-value when x = 6.

X 2 3 6

y 18 12

Figure 1: The designed task, which we adapted from a task derived from NIEPR (2016)
Participants

We conducted an intervention study using the task in Figure 1 in two ninth-grade classes
(approximately 40 students in each class, aged 14-15 years) in a Japanese lower secondary school
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affiliated with a national university. The intervention consisted of one lesson (50 minutes) and was
implemented in the two classes by the same teacher who had five years of teaching experience.

We worked together with the teacher in planning the intervention. Specifically, the first author
showed to the teacher the task in its original form from the national assessment, and also discussed the
intended learning goals and task design principles we presented in the previous section. The teacher
then created a lesson plan and discussed it with the first author. Based on the discussion, we decided
to use the task as in Figure 1 that was modified from the original form. The teacher then implemented
the task following closely the lesson plan as outlined below. The participating students were not
introduced to the notion of assumptions before, but they were familiar with the definition of functions
and several kinds of functions: proportion (y = ax), inverse proportion (y = a/x), linear function (y = ax
+ b), a special case of quadratic function (y = ax?), and step function.

Data collection and analysis

The data include the transcripts of the videotaped lessons, the students’ worksheets, and the field
notes taken by the first author during the lessons. The data analysis aimed to determine whether the
learning goals described earlier were achieved in each class. We focused our analysis on the
whole-class discussions to examine the learning trajectory of each class as a whole, rather than
attempting to trace individual students’ thinking. Due to space limitations, results from analysis of
students’ worksheets are referred to only for triangulation, complementing the results pertaining to
the whole-class activity. Because the two classes followed nearly identical paths, we report only the
results from one class (38 students) in this paper. All student names are pseudonyms.

Classroom intervention
The relative correctness of answers

The teacher began the lesson by presenting the task in Figure 1; the students individually worked on it
for about five minutes. During this work, some students provided the answer y = 6, while others the
answer y = — 6. This disagreement surfaced during the subsequent whole-class discussion. Misaki
first said, “I think y is 6, but a student objected to her answer, “That’s wrong”. Aoi then said, “[y =]
— 67, but Shun questioned her answer saying “What?”” After that, the teacher posed to the students the
pre-planned question of which answer, y =6 or y = — 6, was actually correct:

31 Teacher: Well, now there are two answers. Which is a correct answer?

32  Students: Both are correct answers.

33  Teacher: Really? Are both correct answers? Please think everyone. [...] [The students
start to discuss with their neighbours.]

34 Nanami: What? What is the conclusion?

35  Takumi: | don’t know.

As seen in this interaction, an anticipated sense of confusion emerged among students. While some of
them considered both answers to be correct (line 32), others had no idea about which the correct
answer was (lines 34, 35). To address this confusion, the teacher then asked students to think more
about whether both answers were correct and to write their thoughts on their worksheets. The students
then shared their thoughts in the whole-class discussion:
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39 Ren: Um, I think both [answers] are correct. These two. Since we don’t know what
the function of this graph is, since we can interpret it as both an inverse
proportion and a linear function, I think both are correct.

40  Teacher: You’ve described your opinion that both are correct. Well, let’s listen to
another student. Riko, can you share [your opinion]? What do you think?
41  Riko: Um, | also think both are correct. If we change how we read the table, it

becomes an inverse proportion and also a linear function.

Ren and Riko’s responses (lines 39, 41) are representative of students’ responses and are relevant to
Learning Goal 1: recognising that a conclusion is dependent on the assumptions on which the
respective argument that led to it was based. That is, these students understood that the correctness of
their answers was relative to their assumptions, implying that y is 6 if y is inversely proportional to x,
and y is — 6 if y is a linear function of x. All students in the class agreed that both answers could be
correct and most students shared or wrote similar thoughts. For example, Mizuki wrote on her
worksheet, “the answer is 6 if we interpret it as an inverse proportion, but — 6 if it is a linear function”.
Similarly, Nanami wrote, “The graph becomes a curve where the y-value becomes 6, and also
becomes a line where the y-value becomes — 6, so | think both values are correct depending on how
we think about it”. These students’ responses show that the task has afforded them the opportunity to
recognise the connection between different answers and respective assumptions.

Two ways for pinning down the answer

While the students recognised the relativity of their answers, they started to feel dissatisfied with the
task they worked on: Nanami said, “That’s not good. | don’t know what | am solving”. The teacher
responded to the students’ feeling of dissatisfaction by posing two pre-planned questions (written on
the blackboard): “(1) What are the reasons for the answer to be ambiguous? (2) What can we do to
address the ambiguity?” The students were given approximately ten minutes to tackle these
questions, before sharing their thoughts in the whole-class discussion. The students’ responses can be
divided into two groups, of which Kenta’s and Shun’s contributions are representative:

75 Kenta: Um, um, [regarding question] number 1, [this] is because there is no
explanation about whether y is proportional to x or inversely proportional.
Um, if there are only points (2, 18) and (3, 12), equations are possible both for
y =6 and — 6. Um, if we interpret it as the graph of the inverse proportion of y
= 36/x, um, we have 6. If we interpret it as the graph of the proportion of — 6x
+ 30, we have — 6, | think. Well, [regarding question] number 2, I think, we
should add an explanation, like when y is proportional to x or when y is
inversely proportional to x. [Kenta misspoke here. He meant linear functions
when he talked about proportions.]

88  Shun: Um, because there are only two given points, the answer changes depending
on whether we connect two points with a line or connect [them] with a curve.
[Regarding question] Number 2, I think, if we determine the values of more

than two points, the answer will be [uniquely] determined.
According to first group of students (illustrated by Kenta’s comment), the reason for the answer to the
task to be ambiguous was the absence from the task description a specification of the functional
relationship between x and y; the way this group suggested to address the ambiguity was to clarify the
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relationship in the task. According to the second group of students (illustrated by Shun’s comment),
the ambiguity was because only two pairs of values were given in the task; the way this group
suggested to address the ambiguity was to provide in the task more points with given values.

Recognition of the necessity of assumptions

The teacher had anticipated these two kinds of student responses and made a planned move to address
them, beginning with the second group’s suggestion to increase the number of points with given x-
and y-values. He plotted the points (2, 18) and (3, 12) on the coordinate plane on the blackboard and
said: “Suppose that in the case of [...] 4, we have 6 [meaning y = 6 for x = 4]. Is this a linear function?
We know three points.” Here the teacher selected (4, 6), because the y-value is 6 when x = 4, if the
function is assumed to be linear.

The alternative possibility of step functions was then proposed by Shota. Shota’s suggestion greatly
surprised other students, who later began to agree with him and acknowledged that, even if three pairs
of x- and y-values were given, the function in the task could not be uniquely determined. Below is the
whole-class discussion after Shota drew the graph shown in Figure 2.

[DEFETETA ¥

Figure 2: Step function drew by Shota (the dotted vertical line was added later by the teacher)

138 Teacher: Well, in this case, what happens? This, this, well, what did you draw?

139 Shota: A step function.

140 Teacher: Oh, yes, thank you. Is this a linear function?

141 Students: No.

142 Teacher: Yeah. [...] In the case of 6, this 5, 6, the point in this case... [The teacher

added the dotted vertical line in Figure 2, and suggested a question asking the
y-value when x = 6.]

143 Nanami: Anything [would be] okay [meaning that the y-value can be any values].
144 Teacher: Can you predict [the value of y]?

145 Nanami: Anything [would be] okay.

146 Moe: Like quite suddenly [it is] changing.

147 Nanami: It could change suddenly, it is changing.

In the above interaction, the students stated that even if another point (4, 6) was added to the table
(Figure 1), the function could be a step function rather than linear, and that in this case, the y-value
when x = 6 could not be uniquely determined (lines 143, 145-147). The class thus realised that
increasing the number of points was not a viable option to address the ambiguity in the task. The
consideration of step functions motivated the class to seek another way to pin down the answer,
returning to the way that was represented earlier by Kenta (line 75), i.e., specifying the functional
relationship between x and y in the task. At the end, the teacher summarised the lesson as follows:
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194 Teacher: Making this clear [meaning to specify the functional relationship] is good. I
introduce this [pointing “in the case of a linear function” and “in the case of
an inverse proportion” written on the blackboard], this, the one shown at the
beginning is, [...] this is called an assumption, assumption. So, | believe you
see that the answer becomes definite by this assumption.

In this comment, the teacher introduced the term assumption and clarified that the conditions, such as
“y is a linear function of x”, were assumptions one could make based on the task’s phrasing. He also
mentioned that making the assumptions explicit was crucial for reaching a consensus answer. This is
relevant to Learning Goal 2, which was reached by the class as illustrated by students’ comments at
the end of the lesson when they summarised their learning. For example, Takumi said, “If there is no
assumption [made explicit], even if we know many points, the graph cannot be fixed into one
function’s graph”. Similarly, Yuka said, “If there is no assumption, different functions can be
considered. So, when we want to make the answer definite, we write the assumption”.

Discussion

In this paper, we described a classroom intervention involving ninth-grade students with a particular
mathematical task (Figure 1), designed based on two principles (Principles 1 and 2). Our analysis
showed that the task and its purposeful implementation were useful for stimulating the students to
recognise that the correctness of their answers was relative to their respective assumptions (Learning
Goal 1), and that it was necessary to make the assumption of the task explicit to reach a consensus
answer (Learning Goal 2). Hence, the principles can be regarded as helpful for designing tasks that
aim to help students appreciate the roles of assumptions in mathematical activity.

Although in this paper we focused on the role of task design in promoting particular learning goals,
the results of our intervention highlight also the important role that the teacher played for achieving
these goals. Prior to the intervention, we held meetings with the teacher to discuss the task, the two
design principles, and to explain the task’s intended purpose. The teacher well appreciated the
learning goals of the task and was able to devise a detailed lesson plan where he anticipated students’
responses to the task and planned some questions strategically, preparing himself to capitalise on
these responses during the lesson so as to effectively manage students’ contributions and steer class
progression towards the learning goals. The intervention played out in both classrooms as expected,
thereby limiting the need for teacher to improvise and make in-the-moment decisions; the lesson
naturally progressed towards the learning goals, while the students’ contributions were respected and
were integrated into the discussions (Sherin, 2002).

A significant aspect of the teacher’s role was asking probing questions. For example, in response to
students’ different answers (y = 6 and — 6), the teacher asked, “What are the reasons for the answer to
be ambiguous? What can we do to address the ambiguity?” These questions triggered students’
interest in exploring ways to obtain a consensus answer, and created an “intellectual need” (Harel,
1998) for the class to be introduced to the notion of assumptions. Another important aspect of the
teacher’s role was orchestrating whole-class discussions (Stein, Engle, Smith, & Hughes, 2008).
When planning the intervention, the teacher had predicted that some students would come up with
responses similar to Kenta’s (line 75) and Shun’s (line 88). When implementing the intervention, the
teacher “filtered’ and ‘sequenced’ the students’ responses (Sherin, 2002; Stein et al., 2008) so that
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Shun’s and Kenta’s ideas were examined, one at a time, in the whole-class discussion. When the
students understood that Shun’s idea was not viable, he helped students recognize the advantage of
Kenta’s idea (line 75) to make explicit the functional relationship in the task.
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Fostering students’ competencies of reasoning and argumentation is an overarching goal of the math-
ematics classroom with relevance also for statistical contents. However, students’ argumentation
based on statistical data appears to have received less attention so far. In particular primary stu-
dents’ abilities concerning evaluating and generating their own data-based arguments have hardly
been investigated. Our analysis of N=167 answers of primary students addresses this need for re-
search and gives insights into students’ abilities in generating data-based arguments and students’
possible difficulties. The results, therefore, provide an evidence base that can inform subsequent in-
tervention studies.
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Introduction

Statistical data are often used as evidence for decision making in various domains of modern societies
so that data plays a key role in decision-related argumentation. It thus can be seen as an important
goal for the mathematics classroom to encourage primary students to enter into data-based argumen-
tation. With the term data-based argumentation we refer to the process by which students critically
evaluate data-related statements, and develop arguments, based on statistical data. In a prior study
with N=385 fourth-graders (Krummenauer & Kuntze, 2018) we found that about one-third of the
sample was able to develop at least one data-based argument. Consequently, as there is evidence that
primary students can be able to develop data-based arguments, our earlier findings opened up the way
to investigating now more closely students’ abilities and the obstacles students encounter when they
develop data-based arguments in different task-related contexts. For this reason, we newly designed
a set of tasks adapted to the target group in order to further explore primary students’ data-based
argumentation. In this paper, we report on our analysis of an exemplary task of our newly developed
test. In the following section, we first describe the theoretical background on key aspects of data-
based argumentation and requirements students have to deal with when they develop data-based ar-
guments. After having specified the research interest, we will report on sample and methods for a
coding that afforded the analysis of students’ answers. Finally, we present the results which will be
discussed in a concluding section.

Theoretical Background

One of the core aims of argumentation in general is ‘to convince others that a statement is true or
false’ (Stylianides, Bieda, & Morselli, 2016, p. 316). Data-based argumentation can be seen as a
specific case of argumentation in which statistical data is used to convince someone that a statement
is true or false. In comparison to other argumentation situations such as mathematical proving (e.g.
Boero, 1999; Hanna, 2000), data-based argumentation differs in nature, mainly due to the empirical
methods used in the data gathering process. Moreover, dealing with phenomena related to statistical
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variation (e.g. Watson & Callingham, 2003) leads to specific forms of data-based reasoning and ar-
gumentation; even seemingly contradictory statistical interpretations of data can be justified on the
base of the same data set. A well-known example for this is the Simpson’s paradox (e.g. Blyth, 1972).

However, there are also commonalities of data-based argumentation with generating mathematical
proofs. In Toulmin’s (2003) approach of analysing arguments, two basic elements of an argument are
distinguished: the datum and the conclusion. The conclusion is a statement that should be substanti-
ated by the argument. The datum is a set of facts which are taken to be true (p. 89-92). So, a core-
structure characteristic of arguments is the distinction between available evidence on the one side and
the statement that is being supported by the argument on the other side. Inspired by Toulmin’s ap-
proach, we can structure data-based arguments in a similar way. In data-based arguments, the state-
ment being supported by the argument is often an interpretation of data, or an evaluation of a given
statement. The statement then is supported by statistical data, which takes the function of Toulmin’s
datum. Thus, a consistent connection of a statement with supporting statistical data is the core element
of a data-based argument. Additional elements in Toulmin’s framework, such as the warrant and the
backing, which can be used to clarify why the conclusion results from the datum, can be assigned to
analogous structures of data-based arguments.

These thoughts about the structure of arguments already point to a set of requirements for generating
data-based arguments, which can be developed further. As laid out in Krummenauer & Kuntze
(2018), requirements of data-based argumentation can be described under a scientific reasoning per-
spective (e.g. Bullock & Ziegler, 1999; Klahr & Dunbar, 1989; Kuhn, Amsel & O’Loughlin, 1988;
Zimmermann, 2007). When students have to generate a data-based argument for evaluating a given
statement (as is required in the task in Figure 1, for example), they have to consider the statement as
separate from the statistical evidence contained in the available data. According to scientific reason-
ing, the statement has to be treated as a hypothesis which has to be rejected in case of contradiction
with the data. For evaluating the statement on the basis of the statistical evidence the students also
have to find out whether the evidence is confirming, contradicting, or irrelevant to the statement (cf.
Sodian, Zaitchik & Carey, 1991). In case of relevance, if the data provide evidence contradicting the
statement, the statement has to be rejected.

At first sight, these requirements appear as very complex. In particular, it might be expected that
younger children lack the necessary skills for mastering such requirements. However, prior empirical
research has shown that even primary students already have prerequisites for scientific reasoning and
that fostering such skills is possible in primary school (cf. Bullock & Ziegler, 1999; Kuhn, 1989;
Sodian et al., 2006; Zimmerman, 2007). On the other hand, these and other studies also show that
children often use deficient strategies, such as a positive test strategy, which means that they may
seek only for evidence which confirms their prior assumptions. It also has been observed that children
tend to accept hypotheses too hastily (e.g. Kuhn et al., 1988; Bullock & Ziegler, 1999; Klahr & Dun-
bar, 1989) and that they are influenced by their prior views, knowledge and preferences when they
evaluate a statement. In contrast, an important strategy for dealing with data-based statements is to
challenge them actively by searching for aspects in the data which contradict the statement (Kuntze
etal., 2013).
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Against the background of such findings it appears as a feasible endeavour to foster primary students
in their data-based argumentation, so that the above-mentioned goals can be considered as realistic.
Still, the successful development of learning environments requires a fundamentally sound empirical
knowledge base about students’ abilities and their answering patterns when having to develop data-
based arguments.

Research aim

Our analysis consequently addresses this research need. The core aim is to investigate primary stu-
dents’ abilities with respect to data-based argumentation and the obstacles that might prevent them
from developing consistent data-based arguments. This leads to the following research questions:

(1) To what extent do primary students generate consistent data-based arguments?
(2) Is it possible to assign those answers, which do not fulfil the requirements, to categories which
represent different types of answers?

Design and Sample

The analysed task, shown in Figure 1, is part of a newly designed test instrument used in a test with
N=167 students from southern Germany at the end of the fourth grade (91 female, 76 male; average
age M=10.4, SD=0.57). The task requires to evaluate whether the headline matches the diagram. As
a justification is asked (‘Justify your answer’), the students have to develop at least one consistent
argument based on the data, as these are the only appropriate source of evidence for the required

Task 2.3 evaluation. The meaning of the word ‘justify’ was

Hendrik found this diagram 'n the newspapsr: . . . . .
e o explained in a standardised instruction before the
Gasoline prices always have been rising since 1950!

LEot test.
1,60€ f )
a0t W The analysis of the students’ answers to the task
a0 A combines a top-down coding (double coded, inter-
L [ rater reliability: ¥=.91), which is derived from a
0B oo ! . . .
ot Y inay YL R coding we had already successfully applied in a
0,408 = S p prior study (cf. Krummenauer & Kuntze, 2018),
0308 with a bottom-up analysis for exploring possible
“ e sw  wm sw  ww 2w 2w difficulties of the participants. To answer the first
research question, we analysed in a first step

whether the students’ answers comply with the re-
quirements of the task. Therefore, we analysed the

Figure 1: Analysed task (translated) structure of the arguments in the answers with a
scheme inspired by Toulmin’s (2003) approach. A successful answer was expected to contain, at a
minimum, one data-based argument consisting of a conclusion expressing a negative evaluation (e.g.
‘no’, or ‘the headline does not match the diagram’) as well as a datum in the form of a consistent
reference to aspects of the data which are appropriate to substantiate the conclusion. Additional ele-
ments like a warrant or a backing are not required if a consistent connection between the datum and
the conclusion can be clearly reconstructed in the context of the task. In a second step, all answers
which did not fulfill these requirements were subjected to an interpretive bottom-up analysis to pro-
vide answers to the second research question. For developing a set of distinct categories we followed
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Mayring’s (2015) approach of inductive category formation; again, taking into account the key ele-
ments of Toulmin’s (2003) approach.

Results

The top-down coding shows that 40% of the participants gave an answer which completely met the
requirements of a successful answer described in the prior section. Figure 2 shows an answer from
this category:

: " 1015 1 AT 11 R Translation:
an we \ OW UJH5 g 19 - dey 3PW2im-  No, because from 1948 until
ave . hloch wi 1957 the gasoline price was the
A same’.

Figure 2: Example of a successful answer (1)

The answer starts with the statement ‘no’ which is to be taken as a direct response to the question in
the task. Following the key elements of Toulmin’s terminology, the statement ‘no’ functions as a
conclusion and signalizes that the headline in the task has to be rejected. The second part of the answer
(“from 1948 until 1957 the gasoline price was the same”) contains a statement which refers to aspects
of the given diagram. With the conjunction “because’ the student connects the conclusion with the
reference to the datum and indicates that the reference substantiates the student’s conclusion. There-
fore, the reference to the data functions as a datum to substantiate the conclusion.

Figure 3 shows another example of an answer rated as successful. It also starts with a conclusion ‘no’
and also gives a reference to the given data set (‘the prices also decreased from time to time”). In spite
of the fact that there are no concrete points of data mentioned, in consideration of the given diagram
the analysis yields that the student refers to several points of the data set where the trend line de-
creases. In contrast to the answer in Figure 2, there is no conjunction which links the conclusion with
the reference to the data, but the function of the reference as a datum appears as it was asked for a
justification in the task.

- iy Translation:
,No! The prices also de-
Uil .. e creased from time to time.’

Figure 3: Example of a successful answer (2)

In both cases shown above, the reason why the datum substantiates the conclusion remains partly
implicit. For example, to understand the argument in Figure 3, the contradiction between the state-
ment (“‘gasoline prices always have been rising’) and the temporary decline of the prices found in the
data has to be considered.

In this context, we would like to note that it is not always necessary to give a warrant or a backing
for all connections with data, and that in cases of an evident contradiction between given statement
and data the justification required for an argument can be rated as successful. Following Jahnke &
Ufer (2015) it is neither helpful nor even possible to refer to all single necessary steps of inference
within an argument (cf. p. 332-333). Therefore, the appropriateness of an argument is not only a
question of consistency of the argument, but also a question of social convention on what level of
justification an argument can be accepted as evident (ibid.). As stated in the previous section, an

Proceedings of CERME11 244



Thematic Working Group 01

argument was rated as successful if it contains at least: 1) a conclusion; 2) a consistent reference to
the data; and, 3) if the logical connection of conclusion and datum in the context of the task can be
reconstructed.

Besides such answers rated as successful we were able to identify several sub-categories within the
answers which did not fulfil the requirements of the task. 5.4% of the sample gave no answer at all;
9.0% were assigned to the category of non-codable answers, which means that the answer was un-
readable or the content of the student’s answer could not be reconstructed in the context of the task.
Further, 9.6% gave an evaluation whether the statement in the headline matches the diagram, but
without any justification of their answer; 5.4% gave a context-based answer which means that their
answers are based on considerations concerning the context without a reference to the given data.
Further, 0.6% developed a mixed data-based and context-based argumentation; 22.8% of the analysed
answers were assigned to the category confirmatory argumentation with selective use of data. This
category includes all answers in which selective aspects of the data are used to generate a confirma-
tory argument supporting the statement in the headline. In a further 3.6% of the answers, aspects of
the data were mentioned in a consistent way, but an inconsistent conclusion is drawn. Another 1.2%
of the answers also contained a consistent mentioning of the data, but no clear implication for the
evaluation of the statement in the headline is provided. 2.4% of the students’ based their argumenta-
tion on an inconsistent interpretation of the data set. For example, one of the students who committed
this error interpreted the scale on the ordinate axis as the development of the prices. Figure 4 gives
an overview of the composition of all analysed answers. In the following we give more detailed in-
sights into examples of students’” answers for the most frequent categories developed in the bottom-
up analysis.

0% 10% 20% 30% 40% 50%

Successful answer (example in Figure 2 and 3) _
Confirmatory argumentation with selective use of the data (ex. in Figure 7) _
Evaluation without justification (ex. in Figure 5) _
Non-codable answer _
No answer -

Context-based answer (ex. in Figure 8) -

Correct mentioning of data, but wrong conclusion is drawn (ex. in Figure 6) -
Inconsistent interpretation of the data set is used for argumentation .
Correct mentioning of data without a clear implication I

Mixed data-based and context-based argumentation I

Figure 4: Combined results of the top-down coding and bottom-up coding (N=167)

Figure 5 shows an example of the category ‘Evaluation without justification’. In Toulmin’s terminol-
ogy, the answer only contains a conclusion (“Yes the headline is ok’) but no other element of an
argument. The student does not justify his evaluation of the given headline in any way.

Translation:
,Yes the headline is ok.’

g

Figure 5: Evaluation of the statement without substantiating by argumentation
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Figure 6 shows an example of a category of answers in which correct data is mentioned but a false
conclusion regarding the evaluation of the statement is drawn. In the first part of the answer (‘some-
times, they went down but they also went up often’) a reference to the data is given. The conjunction
‘so’ indicates that the student draws a conclusion (‘the headline is correct’) based on the mentioned
data. However, this conclusion is not consistent with the given reference to the data as the observation
that the prices sometimes ‘went down’ contradicts the statement that the gasollne prices always have
been raising. Thus, the criterion of a consistent /,»“[ A 1 Lt separiren ol

connection of the data and the evaluationofthe o .00 , ., i sty G

statement in the headline is not met. Sy 17

Figure 7 shows an answer, in which a student  Translation:

connects her conclusion with particular aspects  ,Sometimes, they went down but they also went up often,
of the data-set, providing confirming evidence SO yes, the headline is correct.”

for the conclusion given by the student. How- Figure 6: Correct mentioning of data, but wrong
ever, the student’s analysis of the data remains incomplete, as the word “always” in the given state-
ment shown in the headline implies that all the data in the diagram needs to be considered. This
student mentions two values of the data set which support the statement of the headline. The fact that
the mentioned data is correct (30ct and 1.70€) suggests that the student was able to read data from
the diagram and to understand this data in the context. At the same time, the student appears to neglect
other data which would have been necessary to consider in order to generate a consistent argumenta-
tion. In this case, the argumentation attempt does not fit to the meaning of the statement presented in
the headline (“always”), which makes it inconsistent with what had to be justified. The student might
not fully have understood the statement given in the headline. Other possible interpretations are that
the student has not searched for counter-evidence in the data but for confirming evidence only or that
she might have ignored the counter-evidence as it contradicted her own view.

sk -_.;-_—”jb% Y Translation:

,Yes it [the headline] fits because the

9 g?’*é'mﬁf.m wom A0t his XY prices increased from 30ct to 1.70€

Figure 7: Selective use of aspects of data to confirm the statement

An important aspect in (data-based) argumentation is the choice of a source of evidence. Figure 8
shows an example of a category of answers in which the students do not use the given data as evidence
but their own considerations about the context. The answer in Figure 8 starts with a conclusion (‘yes’)
which is connected by the word ‘because’ with a context related statement ‘today cars consume more
fuel than in the past’. The conjunction ‘because’ indicates that the statement may be intended to
function as a datum. However, the task is designed in such a way that the given data needs to be used
as the source of evidence: The task does not require the student to evaluate the statement in the head-
line in general, but to evaluate whether the statement matches the diagram. Therefore, the given con-
text-related explanation is not an appropriate datum to substantiate the required evaluation. However,
the student apparently had the opinion that his context-based explanation is relevant to justify his
evaluation. It is to assume that the given conclusion might not refer to the asked question, but to an
evaluation of the statement in the headline in general. The given context-based explanation, from a
scientific reasoning perspective, also can be seen as a hypothesis which was too hastily accepted.
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_ p o Translation:
N ' — Urm o ee . Yes, because today cars consume more fuel than in
Lo lidnd  thepast’

Figure 8: Context-based argumentation
Discussion and Conclusions

The results show that 40% of the sample were able to evaluate a statement by generating a data-based
argument. This shows that these students were not only able to apply basic activities such as reading
data from a diagram but that they were able to use statistical evidence for evaluating a statement by
developing a data-based argument. Against the background that the data of this study were gathered
without a preceding intervention, it appears as a feasible endeavour to further foster primary students
in their data-based argumentation. For this, the results from the bottom-up analysis provide a starting
point to inform prospective interventions for fostering primary students with this concern.

The analysis revealed that about a quarter of the sample used selective aspects of the data to confirm
the statement given in the headline despite the fact that there is pertinent counter-evidence against the
statement. The answers of these students show that they are principally able to understand the given
statement, to read data from the diagram, and to draw the logical conclusion that the aspects of data
they quote confirm the statement. The difficulty of these students might be located on a meta-
knowledge level: We assume that they did not challenge the given statement actively and did not
search for counter-evidence in the given data. Answers containing context-based argumentation and
those with an inadequate conclusion drawn on the basis of adequately mentioned data also indicate
difficulties which can be explained from the scientific reasoning perspective as described in the the-
oretical background section. As we found indications for similar answering patterns already in our
prior study (Krummenauer & Kuntze, 2018), fostering students’ meta-knowledge related to scientific
reasoning appears to be a promising approach which will be investigated in an intervention study.

As the participants of our study were tested at the end of year four of primary school, the question
arises how their abilities might differ from those of students from lower grades. To this, we already
started a follow-up study with a sample of 42 third-graders which solved the same task as the fourth-
graders. A first top-down coding of the answers shows that a similar percentage of the sample were
able to develop data-based arguments as required in the task. Further in-depth analysis of the students’
answers is in progress. Beyond this, an interview study with first graders at the time of their entry in
school is in preparation to investigate to what extent students at the beginning of their first year in
primary school are already able to develop arguments based on statistical data.
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Questions and answers ... but no reasoning!
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Statistical reasoning has often been used synonymously with statistical thinking. In this paper, we
focus on the reasoning part and we analyse mathematic lessons about statistics in a primary school
class, using a construct from the Anthropological Theory of Didactics approach, called Study and
Research Paths. By comparing the a priori tree-diagram of the course with the a posteriori tree-
diagram of the observed teaching, it becomes clear that the teacher’s questions never make the
students engage in statistical reasoning and the students’ questions are more concerned with
practical and organizational issues than with obtaining a greater understanding of statistical
reasoning.

Keywords: Mathematical reasoning, statistical reasoning, study and research path.
Introduction

Teaching reasoning and justification requires more than just asking students to explain their answers
or to pose open problems (Ball & Bass, 2003). Teachers’ and students’ questions and answers are
crucial. This paper contributes further insight into teaching reasoning in elementary mathematics
classrooms by analysing a teacher and students’ questions and answers during a statistics course. We
aim to contribute to a more systematic methodology to study what actually takes place in the
classroom and to determine if it is possible to do this by looking at the questions and answers of
students and teachers during their lessons.

To analyse the students’ reasoning processes in the classroom, we will use a tool from the
Anthropological Theory of Didactics (ATD), namely, Study and Research Paths (SRP). SRP provides
to model mathematical knowledge from a didactical perspective (Chevallard, 2006). The analysis
needs detailed information about context, contents, order of questions and answers. In the last decade
several studies has focused on the potentials of SRP; Winslgw, Matheron, and Mercier (2013)
examine how SRP and a new diagrammatic representations can be used to analyse didactic processes;
Barquero, Bosch, and Romo (2015) illustrate how SRP can be used in professional programs for
teachers; and (Jessen, 2017) studies how SRP can support the development of knowledge in
bidisciplinary settings.

We investigate whether the teacher and the students ask questions and answer questions in a way that
allows the students to engage in mathematical reasoning related to statistics; we also reflect on the
potentials and limitations we found when using SRP as an analytical tool. More precisely, we ask the
following research question: What is the content of the students’ and teachers’ questions and answers
in the “Youngsters and ICTs” intervention, and does it support the students’ opportunities to produce
statistical reasoning?
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Theoretical considerations: mathematical and statistical reasoning

Researchers and educators around the world have advocated that a primary goal of mathematics
education for all grades should be the development of mathematical reasoning (Ball & Bass, 2003).
Nevertheless, there is no consensus about the definition of mathematical reasoning in the research
literature (Jeannotte & Kieran, 2017; Mariotti, Durand-Guerrier, & Stylianides, 2018). Reasoning in
statistics can be seen as a particular form of reasoning in mathematics. del Mas (2004) argues that
mathematical and statistical reasoning should place similar demands on a student and should display
similar characteristics when the students are asked to reason with highly abstract concepts. At first,
mathematical and statistical reasoning appear to be similar, but the nature of the tasks in statistics and
mathematics are somewhat different. In mathematical reasoning, context may not play a large role,
but in the practice of statistics, the inquiry will always be dependent on data and typically grounded
within a context (del Mas, 2004). Statistical reasoning is often used to define the same capabilities as
statistical thinking, but Ben-Zvi and Garfield (2004) try to separate the two concepts. They define
statistical reasoning as “understanding and being able to explain statistical processes and being able
to fully interpret statistical results” (p. 7). Statistical thinking, on the other hand, involves an
understanding of why and how statistical investigations are conducted, and also when to use
appropriate methods of data and analysis. Both statistical thinking and reasoning can be involved
when working on the same task, so the two types of activities cannot necessarily be separated. del
Mas (2004), however, writes that it is possible to distinguish them through the nature of the task: “For
example, a person who knows when and how to apply statistical knowledge and procedures
demonstrates statistical thinking. By contrast, a person who can explain, why a conclusion is justified
demonstrates statistical reasoning.” (p. 85). Brousseau and Gibel (2005) argue that the teaching of
reasoning used to be conceived as a presentation of model proofs, which then had to be faithfully
reproduced by the students. Teachers today see reasoning as an activity, which cannot be learned as
a simple recitation of a memorized proof; instead, it is necessary to confront students with problems,
where they naturally engage in reasoning. If students are presented with model-proofs today, they are
meant to serve as a model of others’ reasoning, which students then can use to produce their own
original or creative forms of reasoning. However, as Brousseau and Gibel (2005, p. 14) noted, “There
is always the risk of reducing problem solving to an application of recipes and algorithms, which
eliminates the possibility of actual reasoning”. When it comes to statistical reasoning, most teachers
tend to teach concepts and procedures and hope that reasoning will develop as a result (Cobb &
McClain, 2004). Cobb and McClain (2004) argue that, in statistical reasoning, students must reason
about data rather than attempt to recall procedures for manipulating numerical values.

Study and Research Paths

Study and Research Paths (SRP) is a recent construct in the Anthropological Theory of Didactics
(ATD) (Chevallard, 2006). Within ATD SRP were introduced as a design tool for teaching within the
paradigm of “Questioning the world” (Chevallard, 2006). The aim is to focus on important and
meaningful “big” questions and not just “visit monuments”, meaning a set of rules prescribing, what
is to be studied with no place to raise “What for?” or “So What?” questions (Chevallard, 2006).
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The fundamental dialectics between questions and answers are at the root of the idea of SRP
(Winslaw, 2011). A group or an individual develops knowledge as a result of working with an overall
question, Q. Students identify the “official” knowledge that can help them answer Q; the students use
this “studying” to justify their answers to Q by engaging in reasoning, which is the “research” about
Q. Elaborating on Q generates the “path” (Winslgw et al., 2013). SRP is normally used to design
lesson plans but Winslgw et al. (2013) introduce SRP as a modelling tool to analyse didactic
processes. Jessen (2014) argues that a tree-diagram of the SRP is a strong tool for analysing didactical
processes. We will use a tree-diagram (an example can be seen in figure 1) to make a SRP analysis
in an elementary mathematics classroom. Conducting a SRP a priori
analysis entails exploring what questions and answers could occur from
one particular overall question (the generating question, called Q0). The
tree-diagram refers to the possible path the students could follow after
generating Q0. The QO must be so strong that students can derive new
questions, Qi, from it. The answers to the derived questions add up to an
answer to the original question, Q0. The QO must be of real interest to  Figure 1: An example
the students. This continues with more questions and more answers and ~ ©f & SRP tree-diagram
could leads to a tree-diagram of pairs of questions and answers (Jessen, 2014). The questions in black
are ask by the teachers, and the questions in white are made by the students. The grey-coloured
questions are those that are created in collaboration between the teacher and the students. The
numbers next to the questions and answers indicate the order of the questions. In the SRP-process the
media-milieus dialectics must be taken seriously: the information the teacher brings into the class;
the answers available through different books, articles, videos or online resources; and the classroom
milieu where the teacher and students manage to establish meaningful actions.

Q0:Generating Question

“Youngsters and ICTs”

“Youngsters and ITCs” is a 15-lesson statistics course, which is taught over 3 weeks and intended for
grade 6 students; it was designed by C. K. Skott and the second author of this paper, (Skott &
@stergaard, 2016)*. Before teaching the course, the teacher participated in a professional development
workshop (6 lessons) that focused on statistical reasoning and digital technologies. The purpose of
the course is to improve students’ reasoning in statistics. The course frames and proposes ways that
teachers can engage students in statistical investigations; formulate statistical problems; generate,
analyse, and reason about data; interpret results; and disseminate them both inside and outside of a
school context. The emphasis of the course is to create new habits of classrooms interactions, in which
the students raise questions and explore the context with their teacher, who challenges them to come
up with new questions and reflect further on possible answers. This approach breaks away from
teaching a succession of more or less independent “chapters” where only “small”” questions are raised.

! The lesson plan (in Danish) is available at:
http://auuc.demonstrationsskoler.dk/materialer/innovation/forloeb3/faser/hvordan-bruges-statistik-i-hverdagen.
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Methodological approach

We employ a micro ethnographic design; this kind of approach is well-suited for describing,
analysing, and interpreting a specific aspect of a group’s shared behaviour (Garcez, 1997). We use a
case study research design to obtain a thick description of the observed teaching and to understand,
how all the questions and answers in the classroom operate together in this context, which is part of
a complex system (Stake, 1995).

Within a two-year period, we observed a teacher in 31 classroom lessons; 16 observations from the
course and 15 from before or after the course. All the observed lessons were video-recorded. Four
audio-recorded semi-structured interviews with the teacher were conducted. The choice of semi-
structured interviews was chosen to get a deep understanding of the background of the classroom
context. All the interviews were transcribed, and 15 lessons selected from the observations were
transcribed.

""Children and young people spend too much time on media ... or?"

“Youngsters and ITCs