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Students’ difficulties with fractional numbers have been treated in many empirical 
studies with different theoretical frameworks for explaining them. Among them, the 
theory of conceptual change has met an increasing interest, focussing on necessary 
discontinuities in the learning process. This article proposes an integrating model 
with different levels in which continuities and discontinuities between natural and 
fractional numbers can be found, including the often neglected level of meaning. The 
model proves to be useful for explaining phenomena found in the presented empirical 
study and for structuring the current state of research.  

 

1. DIFFICULTIES WITH FRACTIONS AS AN ISSUE OF RESEARCH 
In many different countries, empirical studies on students’ competencies and 
conceptions in the domain of fractions have shown enormous difficulties. Whereas 
algorithmic competencies are usually fairly developed, understanding is usually 
weaker, as well as the competencies to solve word or realistic problems including 
fractions (e.g. Hasemann 1981, Barash/Klein 1996, Aksu 1997).  
One common aspect of several approaches for explaining the difficulties is the 
emphasis on discontinuities between natural and fractional numbers; Streefland 
(1984) for example spoke of “N-distractors”, Hartnett / Gelman (1998) described 
early understandings of natural numbers as barriers to the construction of new 
understanding and pointed out that students see continuities where discontinuities in 
the dealing with numbers should appear. Brousseau (1980) classified these hidden 
discontinuities as epistemological obstacles. The discontinuities have been 
systematized by different authors, e.g. Stafylidou/Vosniadou (2004), their lists 
comprise for example the fact that the uniqueness in the symbolic representation of 
natural numbers does not hold for fractions (since several fractions can represent the 
same fractional number). Other famous discontinuities are the density of numbers and 
the order-property of multiplication: Whereas multiplication always makes bigger for 
natural numbers (apart from 0 and 1), this cannot be applied to fractions.  
Among different theoretical approaches to explain students’ difficulties with these 
discontinuities, the conceptual change approach (Posner et al. 1982) has gained a 
growing influence in mathematics education research (e.g. Lehtinen/ Merenluoto/ 
Kasanen 1997, Stafylidou/Vosniadou 2004, Lehtinen 2006). On the basis of a 
constructivist theory of learning and inspired by Piaget’s notion of accommodation, 



the conceptual change approach has emphasized that learning is rarely cumulative in 
the sense that new knowledge is only added to the prior (as a process of enrichment). 
Instead, learning often necessitates the discontinuous reconstruction of prior 
knowledge when confronted with new experiences and challenges. Problems of 
conceptual change can appear, when the learners’ prior knowledge is incompatible 
with the new necessary conceptualisations. The key point in the conceptual change 
approach adopted here is that discrepancies between the intended mathematical 
conceptions and the real individual conceptions are not seen as individual deficits but 
as necessary stages of transition in the process of reconstructing knowledge.  
Other authors have emphasized the importance of underlying mental models 
(Fischbein et al. 1985, Greer 1994) or ‘Grundvorstellungen’ (GVs, see vom Hofe et 
al. 2005) for explaining students’ difficulties. This paper goes beyond the current 
state of research by integrating the so far competing approaches for explaining 
students difficulties.  
 
2. PROPOSAL FOR AN INTEGRATING LEVEL MODEL  
The purpose of the here presented integrating model (see Fig. 1) is to provide a 
conceptual tool for describing the precise locations of students’ difficulties with 
discontinuities, i.e. the quality of the obstacles hindering students to master the 
necessary changes in the process of conceptual change.  
Following Fischbein et al. (1985), the model differentiates between algorithmic, 
intuitive and formal understanding. The formal level includes the definitions of 
concepts and of operations, structures, and theorems relevant to a specific content 
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    Figure 1:  Obstacles can lie deeper – Different levels of students’ difficulties  



domain. This type of knowledge is formally represented by axioms, definitions, 
theorems and their proofs. It is not within the main scope of this paper. The 
algorithmic level of knowledge is basically procedural in nature and involves 
students’ capability to explain the successive steps included in various, standard 
procedural operations. Although solving of word problems also has procedural 
aspects, it is assigned to the intuitive level since, as will be shown in the next 
sections, it is directly connected with other aspects of the intuitive level.  
Intuitive understanding is characterized as the type of mostly implicit knowledge that 
we tend to accept directly and confidently as being obvious. On the intuitive level, we 
distinguish between conceptions about mathematical laws or properties called 
intuitive rules (like “multiplication makes bigger”) from those about the meanings of 
concepts (like the interpretation “multiplication means repeated addition”).  
Nearly all studies dealing with conceptual change in the field of fractions have 
treated intuitive knowledge, but they have mainly focused on the level of intuitive 
rules. In contrast, they have neglected the level of meanings (modelled by the cons-
tructs of ‘Grundvorstellungen’ by vom Hofe et al. 2005 and mental models by Fisch-
bein et al. 1985). The following sections will show why both levels must be con-
sidered integratively for understanding processes of conceptual change adequately. 
The next section sketches how this model can help to structure the current state of 
research. Furthermore, the presented empirical study about the multiplication of frac-
tions gives evidence for the fact that the difficulties on different levels are highly con-
nected, each level giving reasons for obstacles on the level above.  
 
3. RESEARCH QUESTION FOR THE EMPIRICAL STUDY 
This paper presents results of an empirical study dealing with students’ competencies, 
content knowledge and conceptions of fractions and their operations as well as the 
connections between different conceptions (Prediger 2004). The report is here restric-
ted to the specific part of the study which is related to multiplication. 
This part of the study started from a phenomenon which has been shown by many 
empirical studies (cf. e.g. Brousseau 1980, Streefland 1984, Fischbein et al. 1985, 
Barash/Klein 1996): Although most students’ show relatively good algorithmic skills 
in multiplying fractions, many of them work with the intuitive rule that 
‘multiplication makes bigger’, which is mostly inherited from dealing with natural 
numbers. This phenomenon is also often cited within the framework of conceptual 
change and was hence an interesting case for being elaborated.  
The survey of existing literature showed that the conception “multiplication makes 
bigger” and its generalization from natural to fractional numbers offers an obstacle 
for activating the multiplicative operation when mathematizing word problems from 
which they know that the result must be smaller than the factors (cf. Bell et al. 1981, 
vom Hofe et al. 2005). This is a first example for the fact that the problems on one 



level (translating word problems) can be influenced by a problem on the level 
underneath (the intuitive rule concerning the order property).  
Fischbein et al (1985) gave empirical evidence for the thesis that the pertinacity of 
the intuitive rule “multiplication makes bigger” is often connected with the 
continuing maintenance of the interpretation of multiplication in the repeated 
addition model (which does not work for fractions). Whereas the influence of the 
repeated addition model is well studied, the great variety of other individual models 
for the multiplication of fractions and naturals must be explored more systematically.  
That is why our study was guided by the following research questions: Which 
individual models for the multiplication do our students activate, and how do these 
models influence the intuitive rules about the order property and the use of 
multiplication? Where are the most crucial obstacles? 
 
4. DESIGN OF THE STUDY 
Our study was designed in a two step format, in which the written test of the first step 
was complemented by a qualitative clinical interview study. For the second step, 38 
students in grade 7 to 10 (age 11 to 16) of different German schools have been asked 
in semi-structured pair interviews. 12 of the 19 interviews have been transcribed and 
analysed with respect to the interviewees’ conceptions about multiplication of 
fractions and their connections on the different levels. The interviews have been 
videotaped or tape-recorded and transcribed. In a qualitative data analysis, the 
transcripts were interpreted on the basis of the individual conceptions derived from 
the written test and by careful comparison of cases (cf. Flick 1999).  
The first step consisted of a 80 minutes paper and pencil test, written in all four 
Grade 7 classes of a German grammar school. 81 tests could be analysed, in total 44 
boys and 37 girls (about 12 years old). The students’ answers have been evaluated 
quantitatively in a points rationing scheme. Where appropriate, the answers have also 
been analysed qualitatively by categorizing the manifested conceptions about 
fractions and their operations in a data-driven, not theory-driven way (cf. Flick 1999). 
Among the 11 test items, four concerned the multiplication on the different levels 
(see Fig. 1). Item 1 requested algorithmic knowledge, namely the skill to conduct the 
basic operations like 5 2

6 3⋅ . Item 3 posed a word problem that could be treated with 
multiplication when students knew the part-of-interpretation for the multiplication 
( 3

4 60of  as 3
4 60⋅ ). Item 2 operated on the level of intuitive rules, asking in a multiple 

choice format whether multiplication of fractions makes bigger or smaller or 
sometimes bigger, sometimes smaller. Item 6 (“Find a word problem that can be 
solved by means of the following equation: 3 1 1

4 43⋅ = ”) operated exploratively on the 
level of meaning. It was given in an open item format in order not to impose a 
presupposed mental model but to gain a wide choice of impressions of the really 
existing individual mental models. 



5. MOST IMPORTANT RESULTS 
68 of 81 students, i.e. 84%, could calculate the multiplication item 1b correctly. The 
item’s result 5/9 (which is bigger than both factors) could not prevent most of the 
students from approving the property “multiplication makes bigger” in Item 2. 29 of 
the 68 students with correct results in Item 1b chose an intuitive rule about the 
multiplication of fractions which is only true for natural numbers, hence, the known 
findings (see above) about this intuitive rule could be replicated in our sample. 
Compared to the results given by Fischbein et al. (1985), the explorative item format 
for Item 6 facilitated a more detailed and multi-faceted impression of the students’ 
individual models. The individual models for multiplication expressed by the 
probands were very heterogeneous and quite distant from the mathematically 
sustainable models. By coding and categorizing, the following individual models 
could be specified:  

• No answers concerning meaning: 38 of 81 students could not show any individual 
interpretation of multiplication in Item 6. 12 students did not give any answer. 26 
answers were only related to calculations (e.g. by explaining the way of calculation).  

• Adequate individual models: Only 12 students formulated interpretations being 
coherent with the mathematical perspectives. 4 students formulated a story of a 
diminution lens and showed their individual model of scaling up and down. Two 
students used multiplicative comparison. Six students made explicit their part-of-
interpretation for the multiplication (cf. Figure 3 for the different models). 

• Traces of sustainable models: 14 students disposed of interesting traces of 
sustainable individual models. Two students translated the multiplication with 1

3  by a 
division by 3 and formulate a word problem of sharing. Twelve other students 
worked with the part-of-interpretation but formulated them in an incomplete way, 
e.g. “Peter has 3

4  of a cake. He gives away 1
3  of it. How much does he keep?” 

• Non-sustainable models: 17 students expressed non-sustainable individual models of 
the multiplication of fractions, the most dominant being additive (e.g. “ 3

4  cake and 
then 1

3 .”)  

Although the sample size does not allow statistical significance for the dependencies 
between the order conceptions and the quality of manifested individual models, the 
results show a distinct tendency. Whereas 75% of those students who could not 
express a sustainable individual model have expressed an order conception which is 
only fruitful for natural numbers, there were only 50% among those with traces of a 
sustainable model and only around a third of those who expressed a sustainable 
individual model for the multiplication.  That means that the formation of adequate 
individual models proves to be the major obstacle for overcoming the over-
generalized intuitive rule “multiplication makes bigger”. Not yet stable individual 
models like an incomplete part-of-interpretation can only partially suffice for the 
formation of adequate order conceptions.  



These quantitative results could be strengthened by the interview study in the second 
step. This can be illustrated by this prototypical passage:  

Tim:  That is clear, multiplication makes it bigger [...] 
Interviewer:  What does that mean when you multiply two numbers?  
Tim:  Well, this and this times plus itself! 
Interviewer:  Okay, but what does 5/6 times 2/3 

plus itself mean, then?  
Tim:  How? [hesitates 3 sec] no idea! 
Interviewer:  Could you think about it in another 

way?  
Tim:  (draws a picture) 5/6 pizza and 2/3 

pizza, how can I multiply them?  

When in situations like this one, the interviewer headed for a part-of-interpretation by 
giving hints, an interesting new obstacle appeared. As Tim in this passage, many 
interviewees clang to the interpretation of a fraction as a part of a whole. This basic 
model for fractions is extensively taught in Germany. Tim’s problem is represented 
in a pointed way by the individual representation in Figure 2, drawn similarly by 
several other interviewees. The inseparable link between fractions and their circle 
(“pizza”)-representations makes it impossible for some interviewees to interpret the 
second factors in another way, for example like proportion or part of the first.  
 

6. DISCUSSION: STRUCTURING EMPIRICAL FINDINGS  
The findings of our and previous empirical studies about multiplication of fractions 
can be resumed to four connected findings that describe the learners’ thinking in 
deeper and deeper levels in the model of Figure 1. Formal knowledge was not within 
the scope of the study, hence, it does not appear.  
1. Finding:  Algorithmic competencies for the multiplication of fractions alone do 

not qualify students to utilize their competencies in reality-oriented situations or 
word problems (Barash/Klein 1996, p. 35f.). In general, students’ competencies to 
solve real problems or word problems are low (Hasemann 1981, Aksu 1997). 

2.  Finding: One important (but not the only) reason for the first finding is the 
intuitive rule “multiplication makes bigger”. This intuitive rule incapacitates lear-
ners from choosing the multiplication for translating problems from which they 
know that the result must be smaller than the factors (cf. Bell et al. 1981, vom 
Hofe et al. 2005). This finding could be reproduced within the current study. 

3.  Finding: The pertinacity of the intuitive rule “multiplication makes bigger” 
(second finding) is linked to non-sustainable individual models for multiplication 
of fractions (the finding is supported by Greer 1994 and Fischbein et al. 1985). 

Figure 2: Individual represen- 
tation of the multiplication 



Our written test and even more the interviews have shown the strong connection 
between both levels.  

4.  Finding:  One possible reason for the incomplete formation of sustainable 
individual models of multiplication of fractions (third finding) could be found by 
the interviews in the limited conceptions of fractions, being only interpreted as 
parts of a whole.  

In total, these findings give evidence for the thesis that the difficulties on the different 
levels are highly connected, each level giving reasons for obstacles in the upper level.  
Additionally, the level model helps us to re-locate the exact place of the 
epistemological obstacles in the process of conceptual change from natural to 
fractional numbers. As sketched in the first section, most researchers in conceptual 
change locate the problem on the level of laws and rules. In this level, the transfer of 
rules from natural numbers to fractions simply appears to be a problem of hasty 
generalization. In contrast, our study could elaborate Fischbein et al.’s (1985) 
emphasis on the importance of the underlying level of meaning, namely the mental 
models. Whereas Fischbein et al. focused on the most important model ‘repeated 
addition’, our study could explore the factual variety of individual models for 
multiplication by using explorative data collection strategies (open item format and 
semi-structured interviews). By these means, we can enlarge Fischbein’s findings 
considering all possible models of multiplication.  
We can now complement the list of discontinuities on the level of laws about 
properties of fractions and their operations (given by Stafylidou/Vosniadou 2004) by 
another table: Figure 3 amends the list of discontinuities in the deeper level of mental 
models, i.e. in the level of meaning (cf. Greer 1994).  
 

   Natural numbers  Fractions 

repeated addition (3x5 means 5+5+5,  
i.e. 3 wands of 5m length in a row) 

 ??? 

area of a rectangle (3x5 is the area of a 
3cmx5cm rectangle)  

 area of a rectangle (2/3 x5/4 is the 
area of a 2/3 cm x 5/4 cm rectangle) 

????  part-of-interpretation  
(2/3 x 5/2 means 2/3 of 5/2) 

multiplicative comparison  
(twice as much) 

 multiplicative comparison  
(half as much) 

scaling up (3x5 means 5cm is  
stretched three times as much) 

 scaling up and down (2/3 x 5/2 means 
5/2 cm compressed on 2/3 of it) 

combinatorial interpretation (3x5 as 
number of combining 3 shirts +  5 trousers) 

 ???? 

Figure 3: (Dis-)Continuities of mental models for multiplication  
in the transition from natural to fractional numbers 



This compilation makes clear that not all mental models have to be changed, e.g. the 
interpretations as an area of a rectangle or as scaling up can be continued for fractions 
as well as the multiplicative comparison. In contrast, the basic model ‘repeated 
addition’ is not sustainable for fractions, neither the combinatorial interpretation. 
Vice versa, the basic model of multiplication, the part-of-interpretation, has no direct 
correspondence for the natural numbers. By this analysis of the mathematical 
structures behind, we can now specify the exact location of obstacles: Not the 
intuitive rules are the problem, but the necessary changes of mental models. 
Metaphorically speaking, the obstacles can be located in the flashes of Figure 3.  
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