WaLBerla: Massively Parallel Lattice Boltzmann Simulations

C. Feichtinger, J.Götz, K. Iglberger, T. Preclik,
P. Neumann, F. Aristizabal, U.Rüde

Chair for System Simulation, University of Erlangen-Nuremberg, Erlangen, Germany

Sixth International Conference for Mesoscopic Methods in Engineering and Science July 13-17, 2009, Guangzhou City, Guangdong (Canton) Province, China

Motivation

Widely Applicable Lattice Boltzmann Solver from Erlangen

- Massively Parallel LB Framework
- Designed to
 - support a wide range of functionalities required by CFD applications
 - minimize the integration effort of new functionality

Outline

Requirements

- Fluidization processes
- Nanofluids

Outline

Requirements

- Fluidization processes
- Nanofluids

C. Feichtinger

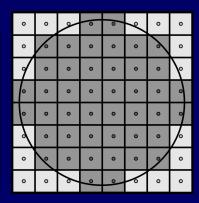
Motivation

Fluidization Processes

- Solid particles will behave like fluid
- Important in chemical engineering
- Limited understanding of fluidization behavior
- Number of particles for a representative setup > 100K 1M

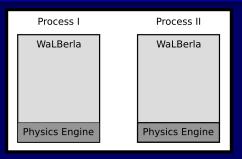
Objective

Simulate the motion of up to one million fully resolved particles to gain a deeper understanding of the fluidization behavior



LBM Scheme for Particulate Flows

- Fully resolved particles
- Using "LB in fluid" for the particle treatment
- Second order velocity bounce back boundary conditions applied at the particle surface
- Calculation of hydrodynamic forces with the momentum exchange method
- Single relaxation time operator, D3Q19

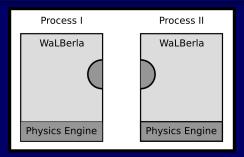

Time Loop

Mapping of the particles and application of the boundary conditions

LBM stream and collide (Communicate PDFs)

Determine hydrodynamic forces (Synchronize forces)

Move and collide particles (Communicate contacts, positions and velocities)

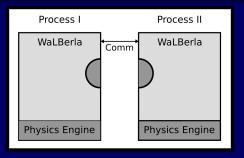

Time Loop

• Mapping of the particles and application of the boundary conditions

LBM stream and collide (Communicate PDFs)

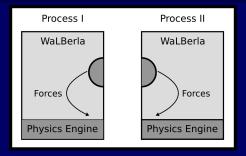
Determine hydrodynamic forces (Synchronize forces)

Move and collide particles (Communicate contacts, positions and velocities)



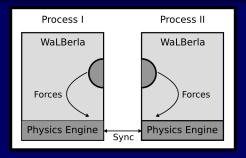
Time Loop

Mapping of the particles and application of the boundary conditions


LBM stream and collide (Communicate PDFs)
 Determine hydrodynamic forces (Synchronize forces)
 Move and collide particles (Communicate contacts, positions and velocities)

Time Loop

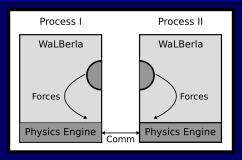
Mapping of the particles and application of the boundary conditions LBM stream and collide (Communicate PDFs)


Determine hydrodynamic forces (Synchronize forces)
 Move and collide particles (Communicate contacts, positions and velocities)

Time Loop

Mapping of the particles and application of the boundary conditions LBM stream and collide (Communicate PDFs)

Determine hydrodynamic forces (Synchronize forces)
 Move and collide particles (Communicate contacts, positions and velocities)

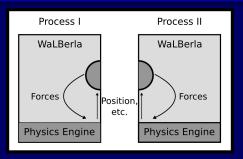

Time Loop

Mapping of the particles and application of the boundary conditions

LBM stream and collide (Communicate PDFs)

Determine hydrodynamic forces (Synchronize forces)

• Move and collide particles (Communicate contacts, positions and velocities)


Time Loop

Mapping of the particles and application of the boundary conditions

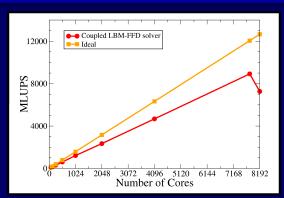
LBM stream and collide (Communicate PDFs)

Determine hydrodynamic forces (Synchronize forces)

• Move and collide particles (Communicate contacts, positions and velocities)

The Pe Physics Engine - Features

- Massively parallel framework for multi body simulations
- Several predefined primitive geometries
- Volumetric objects, not point masses
- Compound geometries
- Frictional collision response:


Parallel fast frictional dynamics

- Strictly local collision response calculation
- Perfectly suited for parallelization
- Largest multi body simulation:
 - 1.1 billion rigid bodies

Weak Scaling Results

- Measurements conducted on HLRB-2, Leibniz Supercomputing Center, Garching, Germany, 9728 cores, Itanium 2 (Montecito)
- 8 M lattice nodes and 2100 spherical particles per process
- Serial performance of 1.5 MLUPS
- We can simulate: $3.7 \cdot 10^7$ bodies, $6.6 \cdot 10^{10}$ nodes on 8192 cores

Outline

Requirements

• Fluidization processes

ICMMES 2009

Nanofluids

C. Feichtinger

Motivation

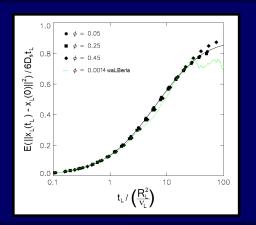
Nanofluids

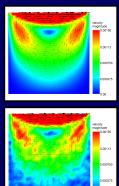
- Colloidal suspensions of particles in the nanometer range [1 100 nm]
- Interesting properties: enhanced energy transfer, reduced sedimentation, reduced erosion in flow systems, etc.

Reference	System	$oldsymbol{\phi}$	Size nm	$\Delta k_{ ext{eff}}$
Eastman et al. (1997)	CuO-Water	5.0%	36	60%
Eastman et al. (2001)	Cu-EG	0.3%	< 10	40%
Patel et al. (2003)	Au-Water	0.00026%	15	21%

Temperature and particle size dependence

Objective

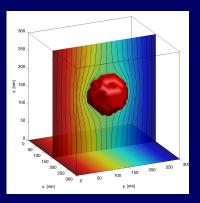

Determine the contribution of **Brownian motion** on nanofluid transport properties



Nanofluids

Fluctuating LBM

- Introduction of thermal fluctuations to the fluid
- Method based on work reported by Dünweg et al., Phys. Rev. E., 2007
- MRT scheme with additional statistical noise
- Self-diffusion results published by Ladd, Phys. Rev. L., 1992



Nanofluids

Temperature

- Hybrid approach:
 - Fluid and Particle motion: Fluctuating Lattice Boltzmann Method
 - Energy Transport: Implicit Finite Volume

Acknowledgments

THANK YOU FOR YOUR ATTENTION!

