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Batch Processing

The traditional approach is batch processing:

» Write simulation parameters into a config file or similar
start the simulation

wait and pray

post process output

visualize and maybe understand the results

change parameters in config file and start all over again
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A citation

Computer Graphics, Nov. 1987 von McCormick, DeFanti,
Brown:

"Scientists not only want to analyze data that
result from their supercomputations; they
also want to interpret what is happening
to the data during super-computations.
Researchers want to steer calculations in
close to realtime; they want to be able to
change parameters, resolution or presentation,
and see the effects. They want to drive the
scientific discovery process; they want
to interact with their data"
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Approaches

There are two simple and one more complex possibility for
Computational Steering:
» The simulation regularly writes data into a file, which can
be read from a client
» The simulation can react to signals from the operating
system, which can be specifically triggered by the client
(e.g with kill -s signalNumber)
» The client connects to the simulation (e.g. using sockets),
which sends the needed data to it.
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Classification |

Vetter and Schwan identified two types of computational
steering in 1996 :
» human-interactive steering:
a person monitors and manipulates parameters of the
computation while it is running
» algorithmic steering:
the computer makes decisions by monitoring runtime
statistics and other information sources such as history
files
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Another popular classification (e.g. by Steven Parker[SCIRun],
Jurriaan Mulder[CSE]):

» application steering:
the computational process can be modified through
parameter changes, mesh modifications or other changes
» algorithm refinement:
the underlying code can be modified or refined at runtime
» performance steering:
computational resources that affect the simulation
performance such as load balancing, 1/0O or cache
strategies



Steereo overview

» |Is developed at the HLRS for the German projects SFB
716 and SKALB

» Is a (lightweight) steering FRAMEWORK, not a complete
steering environment !

» main goal: simplify integrating and enabling steering
capabilities to obtain a "reactive" numerical simulation
server = "Qt / wxWidgets/ ... for computational steering"

» support for steering clients
» Should be usable for any kind of computational steering

» Written in C++ with a Binding for C / Fortran 90+
simulations.

» Available at http://steereo.hlrs.de



Steereo connectivity

» add "perception" to the simulation server:

» communication through POSIX sockets
» handling signals
» possibility to extend communication features (e.g. MPI)

» support of distributed, parallel systems

» simulation servers might accept connections of multiple
clients, as well as clients might connect to multiple servers

» possibility to connect, disconnect and reconnect any time

» data transfer is based on byte array stream to store
arbitrary data; with compression capabilities included



Steereo commands

By writing command classes, the steering capabilities of the
simulation are defined
» on the simulation side commands
can be statically linked or sourced out to a dynamic library
are parametrized and can be executed conditionally
can be automatically (periodically) re-executed
may optionally implement undo-functionality
» there are predefined commands to query registered
commands, to steer parameters...

» command execution is triggered by the simulation
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Steering client

The steering client

» can be a standalone program or a module for an existing
program (e.g. visualization tools)
» The steering client steers the simulation by
» sending requests to the simulation.
Requests consist of the commando name on the simulation
side and eventual parameters
» receiving the results (if there are any) of the requests and
processing them further, which may lead to new requests to
the simulation.



Steereo workflow
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Parameter Steering

» Parameter Steering is supported by a predefined command

» The variables or arrays, which should be steerable, just
have to be registered at SteerParameterCommand

» It is also possible to register getter and setter methods.

» For the client there are also functions available which
facilitate the requesting and setting of parameters
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Parameter Steering example

The registration of the steered variable on the simulation side:

1 SteerParameterCommand: :registerScalarParameter ("temp",
2 _domain, &Domain::getGlobalTemperature,
3 &Domain: :setGlobalTemperature) ;

setting can be done this way on the client side:

SteerParameterClient* spc = new SteerParameterClient ();
spc->registerScalarParameter ("temp", &myTemp) ;
spc—>requestSetParameter ("temp", 0);

// wait until the parameter is truly set

while (!spc—->isParameterUpdated("temp"))
{ 1
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Parallel Steering |
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This is the conventional method for paraIIeI steermg:
! requests |

<esults req. data

distribute received data
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forward requests, collect data
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Parallel Steering Il

Desirable is the following configuration:

» The simulation as well as the client run on multiple
processors

» One client node for at least one simulation node




Acknowledgments and Conclusion

This work is part of
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Conclusions:
» Steering functionality can be enhanced by writing own
commands and communicators.

» For most cases the predefined SteerParameterCommand
will suffice.

» Writing of client applications/modules is also supported

» Without connected steering client, the runtime of the
simulation doesn’t change noticeable.

» But with big parallel simulation runs a delay is quite
recognizable.
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