HLR|S

The Computational Steering Framework
Steereo

Dipl.-Inf. Domenic Jenz, Dr.-Ing. Martin Bernreuther

High Performance Computing Center Stuttgart (HLRS)
June 812010




HLR|S

Outline

Introduction
Before Computational Steering
Approaches
Classification

Steereo - A steering framework
Overview
Parallel Steering



HLR|S

Batch Processing

The traditional approach is batch processing:

» Write simulation parameters into a config file or similar
start the simulation

wait and pray

post process output

visualize and maybe understand the results

change parameters in config file and start all over again

vV vVv.v.v Yy



HLR|S

A citation

Computer Graphics, Nov. 1987 von McCormick, DeFanti,
Brown:

"Scientists not only want to analyze data that
result from their supercomputations; they
also want to interpret what is happening
to the data during super-computations.
Researchers want to steer calculations in
close to realtime; they want to be able to
change parameters, resolution or presentation,
and see the effects. They want to drive the
scientific discovery process; they want
to interact with their data"



HLR|S

Approaches

There are two simple and one more complex possibility for
Computational Steering:
» The simulation regularly writes data into a file, which can
be read from a client
» The simulation can react to signals from the operating
system, which can be specifically triggered by the client
(e.g with kill -s signalNumber)
» The client connects to the simulation (e.g. using sockets),
which sends the needed data to it.



HLR|S

Classification |

Vetter and Schwan identified two types of computational
steering in 1996 :
» human-interactive steering:
a person monitors and manipulates parameters of the
computation while it is running
» algorithmic steering:
the computer makes decisions by monitoring runtime
statistics and other information sources such as history
files



Classification Il

Another popular classification (e.g. by Steven Parker[SCIRun],
Jurriaan Mulder[CSE]):

» application steering:
the computational process can be modified through
parameter changes, mesh modifications or other changes
» algorithm refinement:
the underlying code can be modified or refined at runtime
» performance steering:
computational resources that affect the simulation
performance such as load balancing, 1/0O or cache
strategies



Steereo overview

» |Is developed at the HLRS for the German projects SFB
716 and SKALB

» Is a (lightweight) steering FRAMEWORK, not a complete
steering environment !

» main goal: simplify integrating and enabling steering
capabilities to obtain a "reactive" numerical simulation
server = "Qt / wxWidgets/ ... for computational steering"

» support for steering clients
» Should be usable for any kind of computational steering

» Written in C++ with a Binding for C / Fortran 90+
simulations.

» Available at http://steereo.hlrs.de



Steereo connectivity

» add "perception" to the simulation server:

» communication through POSIX sockets
» handling signals
» possibility to extend communication features (e.g. MPI)

» support of distributed, parallel systems

» simulation servers might accept connections of multiple
clients, as well as clients might connect to multiple servers

» possibility to connect, disconnect and reconnect any time

» data transfer is based on byte array stream to store
arbitrary data; with compression capabilities included



Steereo commands

By writing command classes, the steering capabilities of the
simulation are defined
» on the simulation side commands
can be statically linked or sourced out to a dynamic library
are parametrized and can be executed conditionally
can be automatically (periodically) re-executed
may optionally implement undo-functionality
» there are predefined commands to query registered
commands, to steer parameters...

» command execution is triggered by the simulation

v vy VvYy



HLR|S

Steering client

The steering client

» can be a standalone program or a module for an existing
program (e.g. visualization tools)
» The steering client steers the simulation by
» sending requests to the simulation.
Requests consist of the commando name on the simulation
side and eventual parameters
» receiving the results (if there are any) of the requests and
processing them further, which may lead to new requests to
the simulation.



Steereo workflow

HLRIE

Client

request

oA



HLR|S

Parameter Steering

» Parameter Steering is supported by a predefined command

» The variables or arrays, which should be steerable, just
have to be registered at SteerParameterCommand

» It is also possible to register getter and setter methods.

» For the client there are also functions available which
facilitate the requesting and setting of parameters



HLR|S

Parameter Steering example

The registration of the steered variable on the simulation side:

1 SteerParameterCommand: :registerScalarParameter ("temp",
2 _domain, &Domain::getGlobalTemperature,
3 &Domain: :setGlobalTemperature) ;

setting can be done this way on the client side:

SteerParameterClient* spc = new SteerParameterClient ();
spc->registerScalarParameter ("temp", &myTemp) ;
spc—>requestSetParameter ("temp", 0);

// wait until the parameter is truly set

while (!spc—->isParameterUpdated("temp"))
{ 1

N o o A W N =



Parallel Steering |

HLR|S

This is the conventional method for paraIIeI steermg:
! requests |

<esults req. data

distribute received data

A N
EE -

forward requests, collect data




Measurement | - 40000 Molecules

Timeins

Number of processes

HLR|S

& without Steereo

¢ with Stesreo, no client
connected

®-client connected, 1875
kB every step




Measurement Il - 1000000 Molecules

time in s

HLR|S

B without Steareo

& with Steereo, no clent
conneclad

“Fclient

T 1
2 4 B 18 az B4 128
number of processes

4BB75 kB every slap




HLR|S

Parallel Steering Il

Desirable is the following configuration:

» The simulation as well as the client run on multiple
processors

» One client node for at least one simulation node




Acknowledgments and Conclusion

This work is part of
» the SFB 716 at Universitat Stuttgart, funded by DFG,
» SKALB, funded by the BMBF
Conclusions:
» Steering functionality can be enhanced by writing own
commands and communicators.

» For most cases the predefined SteerParameterCommand
will suffice.

» Writing of client applications/modules is also supported

» Without connected steering client, the runtime of the
simulation doesn’t change noticeable.

» But with big parallel simulation runs a delay is quite
recognizable.



	Introduction
	Before Computational Steering
	Approaches
	Classification

	Steereo - A steering framework
	Overview
	Parallel Steering


