Walberla: A Framework for Simulating Complex Flows on 10,000 Cores and Beyond

C. Feichtinger, J.Götz, K.Iglberger, U.Rüde

Chair for System Simulation, University of Erlangen-Nuremberg, Erlangen, Germany

PARNUM 2009 October 27-29, 2009, Smolenice

Motivation

Widely Applicable Lattice Boltzmann Solver from Erlangen

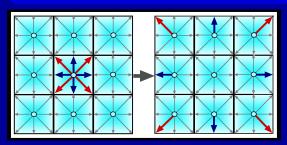
- Massively Parallel LB Framework
- Designed to
 - support a wide range of functionalities required by CFD applications
 - minimize the integration effort of new functionality

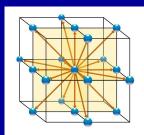
Outline

- Lattice Boltzmann Method
- Patch and Parallelization Concept
- Particulate Flows

Outline

- Lattice Boltzmann Method
- Patch and Parallelization Concept
- Particulate Flows

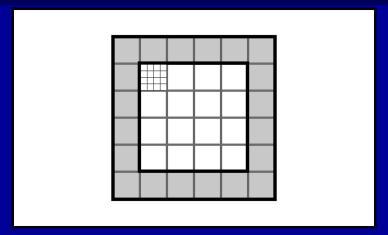

Lattice Boltzmann Method

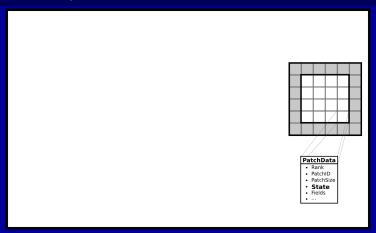

Brief Introduction

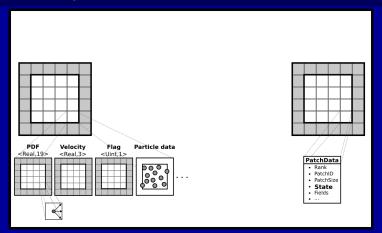
- Mesoscopic method for CFD simulations
- Equivalent to a finite difference Navier-Stokes scheme
- Two major steps: Stream step and collision step

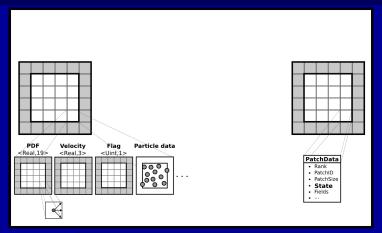
$$f_{\alpha}(x_{i} + e_{\alpha,i}\delta t, t + \delta t) - f_{\alpha}(x_{i}, t) = -\frac{\delta t}{\tau} \left[f_{\alpha}(x_{i}, t) - f_{\alpha}^{(eq)}(\rho(x_{i}, t), u_{i}(x_{i}, t)) \right]$$

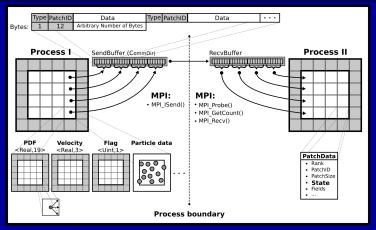
$$\rho u_{i} = \sum_{\alpha=0}^{18} e_{\alpha,i} \cdot f_{\alpha} \qquad \rho = \sum_{\alpha=0}^{18} f_{\alpha}$$






Outline


- Lattice Boltzmann Method
- Patch and Parallelization Concept
- Particulate Flows

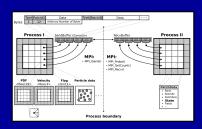

Parallelization Features

- Send/Recv of arbitrary grid data via MPI
- Support of messages with variable size
- Bundling of MPI messages to reduce start up times

155

C. Feichtinger

PARNUM 2009


Parallelization Features

- Send/Recv of arbitrary grid data via MPI
- Support of messages with variable size
- Bundling of MPI messages to reduce start up times

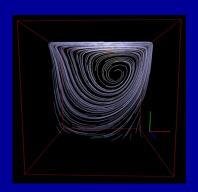
1155

C. Feichtinger

Parallelization

Utilization

- Various complex LBM applications
- Poisson and convection-diffusion problems
- Jacobi and Gauss-Seidel solvers
- Multigrid solver

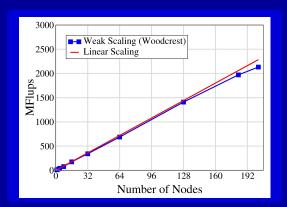

Weak Scaling Results

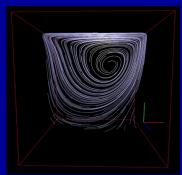
LBM

- D3Q19
- SRT
- Lid Driven Cavity

Node Performance on Woodcrest Cluster

- 217 Intel Xeon (Woodcrest) CPUs
- Duel-socket, duel-core
- Peak performance: 10.3 TFlops


Weak Scaling Results


LBM

- D3Q19
- SRT
- Lid Driven Cavity

Node Performance on Woodcrest Cluster

- 217 Intel Xeon (Woodcrest) CPUs
- Duel-socket, duel-core
- Peak performance: 10.3 TFlops

Outline

- Lattice Boltzmann Method
- Patch and Parallelization Concept

PARNUM 2009

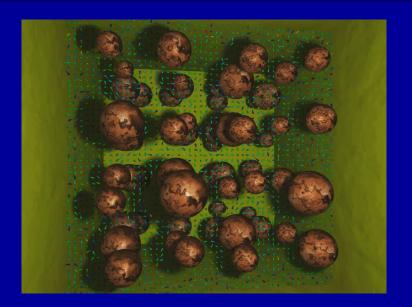
Particulate Flows

C. Feichtinger

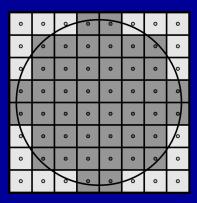
Motivation

Fluidization Processes

- Solid particles will behave like fluid
- Important in chemical engineering
- Limited understanding of fluidization behavior
- ullet Number of particles for a representative setup > 100 K 1 M

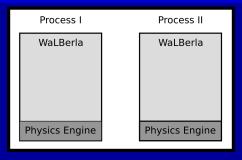

Objective

Simulate the motion of up to one million fully resolved particles to gain a deeper understanding of the fluidization behavior



LBM Scheme for Particulate Flows

- Fully resolved particles
- Using "LB in fluid" for the particle treatment
- Second order velocity bounce back boundary conditions applied at the particle surface
- Calculation of hydrodynamic forces with the momentum exchange method
- Single relaxation time operator, D3Q19

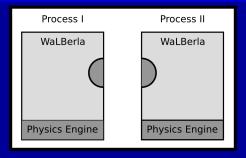

Time Loop

Mapping of the particles and application of the boundary conditions

LBM stream and collide (Communicate PDFs)

Determine hydrodynamic forces (Synchronize forces)

Move and collide particles (Communicate contacts, positions and velocities)

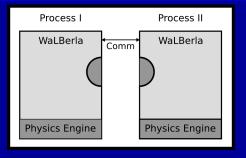

Time Loop

• Mapping of the particles and application of the boundary conditions

LBM stream and collide (Communicate PDFs)

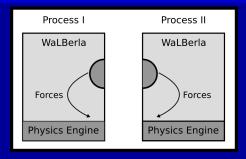
Determine hydrodynamic forces (Synchronize forces)

Move and collide particles (Communicate contacts, positions and velocities)



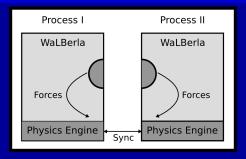
Time Loop

Mapping of the particles and application of the boundary conditions


LBM stream and collide (Communicate PDFs)
 Determine hydrodynamic forces (Synchronize forces)
 Move and collide particles (Communicate contacts, positions and velocities)

Time Loop

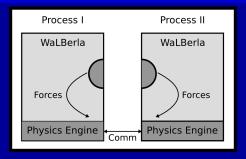
- Mapping of the particles and application of the boundary conditions
- LBM stream and collide (Communicate PDFs)
- Determine hydrodynamic forces (Synchronize forces)
 Move and collide particles (Communicate contacts, positions and velocities)



Time Loop

Mapping of the particles and application of the boundary conditions

- LBM stream and collide (Communicate PDFs)
- Determine hydrodynamic forces (Synchronize forces)
 Move and collide particles (Communicate contacts, positions and velocities)


Time Loop

Mapping of the particles and application of the boundary conditions

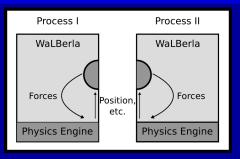
LBM stream and collide (Communicate PDFs)

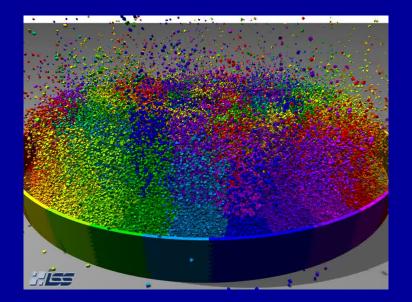
Determine hydrodynamic forces (Synchronize forces)

Move and collide particles (Communicate contacts, positions and velocities)

PARNUM 2009

C. Feichtinger

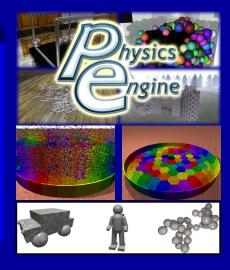

Time Loop


Mapping of the particles and application of the boundary conditions

LBM stream and collide (Communicate PDFs)

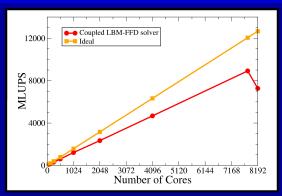
Determine hydrodynamic forces (Synchronize forces)

• Move and collide particles (Communicate contacts, positions and velocities)



The Pe Physics Engine - Features

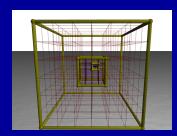
- Massively parallel framework for multi body simulations
- Several predefined primitive geometries
- Volumetric objects, not point masses
- Compound geometries
- Frictional collision response:

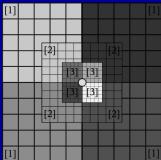

Parallel fast frictional dynamics

- Strictly local collision response calculation
- Perfectly suited for parallelization
- Largest multi body simulation:
 - 1.1 billion rigid bodies

Weak Scaling Results

- Measurements conducted on HLRB-2, Leibniz Supercomputing Center, Garching, Germany, 9728 cores, Itanium 2 (Montecito)
- 8 M lattice nodes and 2100 spherical particles per process
- Serial performance of 1.5 MLUPS
- We can simulate: $3.7 \cdot 10^7$ bodies, $6.6 \cdot 10^{10}$ nodes on 8192 cores




Outlook

Further Improvements of Walberla

- Adaptive grid refinement
- Load balancing
- Hybrid parallelization
- New architectures and systems

Acknowledgments

THANK YOU FOR YOUR ATTENTION!

