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Abstract
High performance on current supercomputers is mainly obtained by highly optimized

kernels, which handle one specific problem with given restrictions. waLBerla in contrast
is a large C++ software framework and aims at high performance . It is our extensible
implementation of a parallel fluid solver, and supports various applications. In this report
we evaluate the perfomance of the fluid solver on current supercompute platforms and
test its suitability for these machines. The single node performance and weak scaling
is discussed and compared between the computers. Influences of the data layout, the
compiler and different kernel routines are investigated.

1 Introduction

In the era of multicore CPUs, single processor and single node optimization is especially
important to exploit modern supercomputers. This is a well explored task in our group
[WZDH05, DIW+08, STR08]. While utilizing processors efficiently for numerical kernel rou-
tines is complex and time-consuming, this is even more difficult and time consuming for
large software frameworks, like the waLBerla project. waLBerla is our implementation of a
massively parallel lattice Boltzmann fluid solver with various add-on applications. It will be
covered in Chapter 3 of this report. For many applications like blood flow or the fluid structure
interaction with moving objects incorporated in the flow, the fluid solver is the bottleneck in
performance and should be optimized first. In this report the single node performance of the
fluid solver is evaluated on current supercomputing platforms like the Woodcrest cluster at
RRZE Erlangen, the hlrb 2 at LRZ Garching and the JuRoPA at FZ Jülich (see Chapter
4). Improvements of the data layout and optimization are discussed. Furthermore, parallel
weak scaling on the architectures is presented on up to 4096 compute cores.

2 Numerical Method

2.1 Lattice Boltzmann Method

The lattice Boltzmann method (lbm) is an alternative to classical Navier–Stokes solvers for
fluid flow. It uses an equidistant grid of lattice cells, which interact in each time step only



with their direct neighbors. In this study we use the common three dimensional D3Q19
model originally developed by Qian, d’Humiéres and Lallemand [QDL92] with N = 19 particle
distribution functions (pdfs) fα : Ω×T 7→ [0; 1), where Ω ⊂ R3 and T ⊂ R are the physical and
time domain, respectively. The corresponding dimensionless discrete velocity set is denoted by
{eα|α = 0, . . . , N − 1}. This model has been shown to be both stable and efficient [MSYL02].
For the work presented in this paper, we adopt a lattice Boltzmann collision scheme proposed
by Bhatnagar, Gross and Krook (lbgk) [BGK54, QDL92]

fα(xi + eα∆t, t+ ∆t) = fα(xi, t)−
1
τ

[fα(xi, t)− f (eq)
α (xi, t)] , (1)

where xi is a cell in the discretized simulation domain, τ is the relaxation time, t is the
current time step whereas t + ∆t is the next time step, and f

(eq)
α represents the equilibrium

distribution. For an incompressible lbgk scheme this leads to [HL97]

f (eq)
α (xi, t) = wα

[
ρ(xi, t) + ρ0

(
3eαu(xi, t) +

9
2

(eαu(xi, t))2 − 3
2
u(xi, t)2

)]
. (2)

Here, we choose ρ0 = 1. The weighting factors wα are depending on the discretization scheme
and are chosen as in Succi et al. [Suc01]. The macroscopic fluid density ρ and velocity u is
calculated from the first two moments of the distributions as

ρ(xi, t) = ρ0 + δρ(xi, t) =
∑
α

fα(xi, t) (3)

and
u(xi, t) =

1
ρ0

∑
α

eαfα(xi, t) . (4)

Equation (1) is separated into two steps, known as the collision step and the streaming step,
respectively

f̃α(xi, t) = fα(xi, t)−
1
τ

[fα(xi, t)− f (eq)
α (xi, t)] , (5)

fα(xi + eα∆t, t+ ∆t) = f̃α(xi, t) , (6)

where f̃α denotes the post-collision state of the distribution function. The collision step
is a local single time relaxation towards equilibrium. While this is compute intensive, the
streaming step advects all pdfs except f0 to their neighboring lattice site depending on the
velocity, which is a memory intensive operation.

As a first order no-slip boundary condition often a simple bounce-back scheme is used,
where distribution functions pointing to a neighboring wall are just reflected such that both
normal and tangential velocities vanish

fᾱ(xf , t) = f̃α(xf , t) , (7)

with ᾱ representing the index of the opposite direction of α, eᾱ = −eα, and xf explicitly
denoting the fluid cell. More details on the lattice Boltzmann algorithm and its derivation
can be found in Succi et al. [Suc01] or Chen et al. [CD98].

2.2 Parallelization of the LBM Solver

Our parallelization is based on a subdomain partitioning for the LBM flow solver. Optimizing
and parallelizing the lbm has been studied intensively see e.g. [PTD+04, WZDH05, KPR+05,
WCO+08] and for cache and memory performance in particular [PKW+03, FS07, DIW+08].
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However, the implementation of a flexible parallelization required by a high performance multi
purpose simulation framework raises additional problems.

In the waLBerla framework we rely on a patch data structure described in [FGD+07] in
combination with generic mpi communication. Generally, the flow domain is subdivided into
patches of equal size, but several patches can be assigned to each process. The patches are
surrounded by a ghost layer which is updated before each time step. The message sent from
one process to another is composed from several smaller messages. To reduce the startup
time overhead, data is accumulated in buffers before being sent to neighboring processes. The
buffers store raw bytes in order to be able to communicate floating point data as well as integer
values at the same time.

Each patch may contain structured data like the data for the pdfs, velocities and cell state
data (Flags), as well as unstructured data like the moving objects, which is communicated to
the neighboring processes in each time step. However, for the unstructured data messages of
variable size have to be send. The resulting variable size of messages is supported by sending
the data of one process via MPI_ISend() and by probing the message for its actual size with
a MPI_Probe() on the receiving process. Finally, the data is received using MPI_Receive().

3 Software

3.1 waLBerla

waLBerla (widely applicable lattice Boltzmann from Erlangen) is our C++ implementation of
a lattice Boltzmann fluid solver for various applications like blood flow, moving objects, free
surfaces and mixtures. It is incorporated in a flexible environment which supports extensions
of the functionallity by using existing routines for data access, IO, visualization, etc. waLBerla
is implemented to support different standard compute platforms and current supercomputers.
An efficient parallelization based on a domain partitioning is embedded, which is described in
detatil in [FGD+07].

3.2 Data Layouts

The choice of the data layout is important for the performance of the solver. For lattice
Boltzmann we need four-dimensional arrays, three dimensions for the 3D coordinate system
and one for the PDFs. Since the PDFs of the last time step are needed to calculate the current
time step, either two data fields, or a compressed-grid storage [Igl03] are needed. In waLBerla
two independent data fields are stored and two different data layouts are currently supported:

• The structure of arrays (SoA) layout, where the first dimension is used to store the PDFs
and the remaining dimensions for the 3D coordinate directions.

• The array of structures layout (AoS), where the first three dimensions are used for the
3D coordinate system, followed by the PDFs.

The AoS layout provides spatial locality for the PDFs, which improves the performance of the
part in the lattice Boltzmann kernel that performs local operations for one cell, that is the
collision step. The SoA layout is optimized for streaming [WZDH05], but is more prone to
cache thrashing effects.

3.3 Variable Length Arrays

Accessing one-dimensional arrays in C is simple, but getting more complicated for multi-
dimensional arrays. In waLBerla the data class (i.e the DataLayout) is holding the data in
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a one dimensional array and simplifies the access for the user by operator functions. These
operator functions allow to vary between the different data layouts and calculate the index
of the data entry depending on the sizes in each dimension. This involves expensive integer
computations. The DataLayout class also hides the currently used data layout from the user.
In the kernel routines the data is accessed via intermediate field classes, which additionally
hinders the compiler to optimize the code efficiently.
In C99, the bounds of an array can be a run-time expression. Such arrays are called variable
length arrays or VLAs for short [Mey01b] . The VLAs allow to use the classical array con-
vention (i.e. array[i][j][k]) even when the sizes are not known at compile time. In waLBerla
we added a VLA version of the fluid solver kernel routine, which accesses the data via VLA
pointers, but is still using the common DataLayout class for holding the data. The rou-
tines are declared as external C functions in the C++ framework and compiled with a C99
compiler. With this approach the index calculation of array elements can be efficiently op-
timized by the compiler. For a performance comparison of the original code and the VLA
code see Chapter 4. For more information on VLAs see the users journal of Randy Meyers
[Mey01b, Mey01a, Mey02].

4 Performance Results

In this chapter we present performance and scalability results for the Woodcrest cluster of
the Regional Computing Center of Erlangen (RRZE) [Woo], the hlrb 2, an sgi Altix system
located at the Leibniz Supercomputing Centre in Garching [HLR], and the JuRoPA [Jur]
computer located at Jülich Supercomputing Centre. For the simulations, on Woodcrest the
Intel ICC compiler version 11.1.056 and GNU compiler version 4.3.3 were used. On the hlrb 2
the same version of ICC, but version 4.2.0 of GNU were used and on JuRoPA only ICC in
version 11.0.74 was available. To compare the performance values, the results are given in
terms of million fluid lattice updates per second (MFlups) [ZGS08]. This allows for an estimate
of the runtime for a given problem size. Following the methodology of Zeiser et al. [ZGS08] we
compare the LBM solver to the STREAM vector-triad benchmark [McC08]. Here the maximal
achievable bandwidth of a parallel system is evaluated using the STREAM values obtained per
node. The aggregated application memory performance is evaluated relative to the STREAM
performance which is considered as a realistic achievable optimum. On architectures that
perform a read for ownership before a write, waLBerla transfers 524 Bytes per cell update
(see [FGD+07]) neglecting cache effects.

4.1 Machines

4.1.1 Woodcrest

The Woodcrest cluster at RRZE is IA32-based. It consists of 217 2-socket nodes (HP
DL140G3) with dual-core 64-bit enabled Intel Xeon 5160 CPUs (codename Woodcrest) and
Infiniband interconnection organized in a fat-tree topology. The rough overall peak perfor-
mance of the system is about 10.3 TFlops. Each dual core processor on a two socket node is
attached to 4 GB of main memory and 4 MB shared L2 cache and delivers 48 GFlop/s.

4.1.2 HLRB 2

This computer features an overall main memory size of 39 TB and a peak performance of
62.3 TFlops, delivered by 4864 dual-core 1.6 GHz Itanium 2 CPUs of Montecito type. The
system is organized in 5 partitions with so-called high-density blades (4 cores per memory
channel) and 13 partitions with so-called high-bandwidth blades (2 cores per memory channel).
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The CPUs are interconnected by a NUMAlink 4 network with a hierarchical topology and
a nominal bandwidth of 6.4 GB/s per CPU. Each processor is attached to 4 GB of local
main memory, 512 kB of L1 data cache and 18 MB of L2 cache. One processor has a peak
performance of 12.8 GFlops/s.

4.1.3 JuRoPA

The JuRoPA system at FZ Jülich consists of 2208 compute nodes, each with two Intel Xeon
X5570 (Nehalem-EP) quad-core processors running at 2.93 GHz and 8 MB Intel Smart Cache.
One node has a peak performance of 93.76 GFlops and is attached to 24GB of main memory.
The system is connected via Infiniband QDR with non-blocking fat tree topology and has a
peak performance of 207 TFlops.

4.2 Serial Performance of the LBM Code

When using the Intel compiler on hlrb 2, which is the common one on this system, a straight
forward implementation of the LBM in waLBerla shows a relatively low serial performance of
up to 0.98 MFlups on one core using array of structures layout, which can be seen from Table 1.
To reduce main memory access, streaming and collision steps are merged into a single loop,
which results in a performance of 1.42 MFlups. Rewriting the LBM stream collide core in C99
using variable length arrays simplifies the analysis of data dependencies and data streams for
the compiler and reduces the number of integer calculations. This is crucial for achieving high
performance on the IA-64 architecture, as shown in [STR08]. Changing the data layout of
the LBM from AoS to SoA further improved the performance up to 5.8 MFlups on one single
core. Additionally incorporating the boundary treatment in the stream collide loop enhances
the performance to a maximum of 6.03 MFlups. Overall these tuning techniques have led to
an improvement of the performance by more than a factor of 6.

Type of optimization MFlups with AoS layout MFlups with SoA layout
unfused 0.98 0.84

original (fused) 1.42 1.28
VLA 3.5 5.8

VLA opt BC 3.5 6.03

Table 1: Performance of serial LBM solver on hlrb 2 compiled with ICC with different data layouts
and different type of optimizations.

4.3 Single Node Performance of the LBM Code

On the Woodcrest, the Intel and the GNU compiler produce nearly equivalently fast code
and thus the differences in performance are quite low (see Figures 1 and 2 ). On this machine,
the SoA data layout is preferable and results in better performance. But for domain sizes
of 30, 70, 110 and 150 cells per direction the performance decreases, which could result from
cache thrashing effects. When running in cache for a domain size of 103, the code delivers
up to 23.87 MFlups on one node. When running out of cache, waLBerla obtains a maximum
of 12.17 MFlups for a domain size of 1603 cells with the Intel compiler and the SoA layout,
which corresponds to a bandwidth usage of 6.38 GB/s. On the Woodcrest, the theoretical
memory bandwidth of one node is 21.3 GB/s. However, the maximum achievable bandwidth
is approximately 6.4 GB/s for the STREAM triad per node. Compared to the STREAM triad
this results in 99.6% of the maximum achievable memory bandwidth for the waLBerla code
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neglecting cache effects.
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Figure 1: Single node performance on Wood-
crest with structure of arrays layout and GNU
and Intel compilers for different domain sizes.
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Figure 2: Single node performance on Wood-
crest with array of structures layout and GNU
and Intel compilers for different domain sizes.
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Figure 3: Single node performance on hlrb 2
with structure of arrays layout and GNU and Intel
compilers for different domain sizes.
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Figure 4: Single node performance on hlrb 2
with array of structures layout and GNU and Intel
compilers for different domain sizes.

On the hlrb 2, the Intel compiler outperforms the GNU compiler using the variable length
arrays by around 50% with the structure of arrays layout (see Figure 3). When running in
cache, the maximum performance is 7.69 MFlups. The original code is comparatively slow
with both compilers. The performance can be improved by holding the data in an array
of structures, which is shown in Figure 4. Here the maximum performance of around 9.5
MFlups is reached when running domain sizes of 703 to 1003 cells. Measurements of the
hardware counters using the performance monitoring interface Perfmon [Per] show a high
number of integer loads and integer operations for the original code with both compilers and
data layouts. These result from index calculations, which are necessary for accessing the data
in the data holding classes. As an example, on one core of the hlrb 2, the number of total
loads and stores for the original code is around three times higher as the code using VLA.
The number of floating point loads are nearly the same, but the number of integer loads are
around five times higher. Additionally, the Itanium architecture is not optimized for integer
arithmetics. All integer operations have explicitly be executed on the floating point unit, which
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is costly. Using the VLA constructs, the compiler can reduce the integer loads and integer
operations significantly, which pays off by a factor of three in the performance comparing the
most efficient original code with the best VLA variant. To reduce the overhead of integer
operations in the original version, the basis index of the current cells can be precalculated and
reused. Thereby the performance can be improved.

Measurements have shown a maximum achievable bandwidth of approximately 6.8 GB/s
for the STREAM triad per node [Joh]. Comparing the highest LBM performance (which is
9.64 MFlups for a domain size of 803 and the VLA version with the AoS layout compiled with
Intel) in terms of aggregate memory bandwidth to the STREAM triad, we maintain close to
75% of the peak STREAM triad bandwidth. In terms of peak GFlops our simulations achieve
a still respectable 16%, considering that the LBM performance is typically limited by memory
bandwidth.
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Figure 5: Single node performance on JuRoPA
with structure of arrays layout and Intel compiler
for different domain sizes.
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Figure 6: Single node performance on JuRoPA
with array of structures layout and Intel compiler
for different domain sizes.

On the JuRoPA again the SoA data layout is more efficient when running long loops,
which can be seen from Figures 5 and 6. As on the Woodcrest, for domain sizes of 30, 70,
110 and 150 cells per direction, the performance decreases, which again could result from cache
thrashing effects. For the SoA layout the VLA version is around 60% faster than the original
version. Measurements of the hardware counters with the Likwid tool [Lik] again show many
more integer operations for the original version compared to the VLA version, that come from
address calculations. As on the hlrb 2 this decreases the performance significantly, but the
problem can be adressed and reduced by precalculating and reusing the basis index of the
current cell. The maximum achievable performance per node on this system is 59.98 MFlups
when using SoA layout and the VLA version. This corresponds to 93.3% of the bandwidth
compared to the STREAM triad.

A summary of all characteristics of the most efficient variant of the code on each machine is
shown in Table 2. On the Woodcrest and the JuRoPA we maintain close to the maximum
available memory bandwidth. Note that the Itanium node and the Nehalem node are well
balanced in terms of usable memory bandwidth to peak performance. The Woodcrest proces-
sor on the other hand is not well balanced, which results in a low ratio of LBM performance
to node peak performance.
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Woodcrest HLRB 2 JuRoPA

Domain size 1603 803 1803

Compiler Intel Intel Intel
Data layout SoA AoS SoA

STREAM memory bandwidth (GB/s) 6.4 6.8 33.67
LBM memory bandwidth (GB/s) 6.38 5.05 31.43

LBM bandwidth to STREAM bandwidth (in %) 99.6 74.3 93.3
Node peak (GFlop/s) 48 12.8 93.76

Performance LBM (GFlop/s) 2.59 2.05 12.78
LBM performance to node peak

performance (in %) 5.4 16.04 13.63
STREAM bandwidth to node peak

performance (GB/GFlop) 0.133 0.53 0.36

Table 2: Characteristics of most efficient version of the code on one node of the three different compute
platforms.

4.4 Weak Scaling of the LBM Code

Figures 7 and 8 show the weak scaling of waLBerla on the three architectures each with the
most efficient optimization and data layout with domain sizes of 1003 and 1403 per core re-
spectively. A good scaling on all machines up to the maximum available number of nodes in
the local queueing is achieved.

On the Woodcrest the SoA layout was the most efficient one. The maximum available
number of cores is 256 in the standard queueing. Up to this number, the efficiency is still
greater than 90% for both domain sizes.
For the hlrb 2 the simulations were performed with the AoS layout and the scaling is nearly
linear up to 128 nodes, which are located in one rack and connected with 1.6 GB/s. For the
jobs with 256 nodes, the slowest connection is 0.8 GB/s, which shows off in a decrease of effi-
ciency in the graph. The simulations with 512 and 1024 nodes only have a network bandwidth
of 0.4 GB/s and 0.2 GB/s respectively due to the fat tree topology, which again decreases the
overall performance. But for 2048 MPI processes, the efficiency is still respectable 90% for
the domain size of 1403.

On the JuRoPA the SoA layout was used and the scaling is nearly linear up to 64 nodes,
which correspond to 512 cores. Then the efficiency decreases statically, which indicates a lower
network bandwidth beyond 512 cores. Using 4096 cores (512 nodes), the efficiency is 68%.
Note that the simulation on 512 nodes with a domain size of 1403 is missing. This is due to
memory problems when using many MPI processes. On this machine the MPI system allocates
at runtime an amount of memory for each connection. This results in lack of memory for the
user data and the program aborts. It can be fixed by switching off the automatic allocation
of the MPI system. This will be investigated in the future.

5 Conclusion

This report shows that high performance can be obtained on current supercomputing platform
from a huge C++ software framework like waLBerla, which is built to supply various applica-
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Figure 7: Weak scaling on Woodcrest, hlrb 2 and JuRoPA with 1003 cells per core using the
most efficient data layout and the Intel compiler.
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Figure 8: Weak scaling on Woodcrest, hlrb 2 and JuRoPA with 1403 cells per core using the
most efficient data layout and the Intel compiler.
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tions. However, optimizations of the kernel routine can improve the performance tremendously,
which especially holds for the Itanium architecture where a reduction of integer calculations
improves the efficiency by a factor of three. But also the latest processors from Intel with
Nehalem core suffer from the overhead of index calculations and benefit from using the vari-
able length array optimization. Here the performance improvements are still in the order of
50%. Using the appropriate data layout can additionally enhance the speed of the simulations.
waLBerla supports both, choosing the most efficient data layout and kernel optimizations.
The weak scaling on all platforms show good results up to 4096 cores, which illustrates the
ability of the software to run large parallel simulations on current supercomputers.

In a next step, the performance and scaling of waLBerla on other platforms, like the Cray
XT4 and the BlueGene, will be evaluated and the code will be optimized to support these
machines efficiently.
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