Nächste Seite: Ziele und Arbeitsprogramm
Aufwärts: fgwww
Vorherige Seite: Eigene Vorarbeiten / Arbeitsbericht
- Ai96
-
M. Ainsworth: The influence and selection of subspaces for a
posteriori error estimators, Numer. Math. 73, No. 4, 399-418 (1996)
- Ai97
-
M. Ainsworth, B. Senior, D. Andrews: Preconditioners for the adaptive
version finite element method, in: Whiteman, J.R.: The
mathematics of finite elements and applications. Highlights 1996.
Proceedings of the 9th conference, MAFELAP 1996, Uxbridge, GB, June
25-28, 1996, Chichester: Wiley, 81-96 (1997).
- Ba78
-
I. Babuska, W. Rheinboldt: Error estimates for adaptive finite
element computations, SIAM J. Numer. Anal. 15, 736-754 (1978)
- Ba94
-
I. Babuska, M. Suri: The p- and h-p-versions of the finite element
method, basic principles and properties, SIAM Review, Vol. 36, No. 4,
pp. 578-632, 1994
- Ba85
-
R.E. Bank, A. Weiser: Some a posteriori error estimators for elliptic
partial differential equations, Math. Comp. 44, 283-301 (1985)
- Be96
-
R. Becker, R. Rannacher: A feed-back approach to error control in
finite element methods: Basic analysis and examples, East-West J. Numer.
Math. 4, 237-264 (1996).
- Bl88
-
H. Blum: Numerical treatment of corner and crack singularities, in:
E.Stein, W.L. Wendland (Hrsg.): FEM and BEM Techniques from
Mathematical and Engineering Point of View, CISM Courses and Lectures
No. 301, Springer-Verlag, Wien-New-York, 1988
- Bl92
-
H. Blum, J. Harig, S. Müller, S. Turek:FEAT2D. Finite element analysis tools. User manual.
Release 1.3.
Preprint 1992-18, Universität Heidelberg, 1992.
- Bl97
-
H. Blum, A. Langer, A. Schröder: LiMA -
An Object Oriented Approach to Mesh Representation in 2D/3D,
Universität Dortmund,
Ergebnisberichte Angewandte Mathematik Nr. 155-T, 1997.
- Bl98
- H. Blum, A. Langer, A. Schröder: LiMA -
A Generic Class Library for Mesh Representation in 2D/3D,
erscheint in ,,Notes on Numerical Fluid Mechanics``,
Proceedings of
the 14th GAMM Seminar Kiel on Concepts of Numerical Software, Kiel
1998.
- Bl99
- H. Blum, St. Wilkes:
Semiimplicit Galerkin methods for initial value problems,
in Vorbereitung
- Ca98
-
C. Carstensen, O. Scherf, P. Wriggers: Adaptive finite elements
for elastic bodies in contact, Preprint, Univ. Kiel (1998)
- Do92
-
M. Dobrowolski, T. Staib: On finite element approximation of a
second order unilateral variational inequality,
Numer. Funct. Anal. and Optimiz. 13, 243-247 (1992)
- Ek76
-
I. Ekeland, R. Temam: Convex analysis and variational problems,
North Holland 1976
- Er95
-
K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Introduction to
adaptive methods for partial differential equations, Acta Numerica,
105-159 (1995)
- Er96
-
K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Computational
Differential Equations, Studentlitteratur, Lund (Schweden) 1996
- Gl80
-
R. Glowinski: Lectures on numerical methods for non-linear variational
problems, Tata Lectures 1980
- Gl83
-
R. Glowinski: Numerical methods for nonlinear variational problems,
Springer Series in Comp. Physics, Springer 1983
- Ha84
-
W. Hackbusch: Local defect correction method and domain decomposition
techniques, Computing Suppl. 5, 89-113 (1984)
- Ha94
-
J. Harig, P. Schreiber, S. Turek:
FEAT3D - Finite Element Analysis Tools in 3 Dimensions.
User Manual. Release 1.2.
Preprint1994-19, Universität Heidelberg, 1994.
- Ki88
- N. Kikuchi, J.T. Oden:
Contact Problems in Elasticity: A Study of Variational
Inequalities and Finite Element Methods, SIAM Studies in
Applied Mathematics 8
- Ki80
-
D. Kinderlehrer, G. Stampacchia: An introduction to variational
inequalities and their applications, Academic Press 1980
- Os97
- M. Ostermann: Numerische Behandlung von
Eckensingularitäten mit
Gebietszerlegungstechniken, Juni 1997, Diplomarbeit, Fachbereich Mathematik
der Universität Dortmund,
1997
- Ra95
-
E. Rank, R. Krause: A multiscale finite-element-method, Comp.
and Structures, 1995
- Ra97-1
- R. Rannacher and F.T. Suttmeier:
A feed-back approach to error control in finite element
methods: Application to linear elasticity,
Comp. Mech. 19, 434-446 (1997).
- Ra97-2
- R. Rannacher and F.T. Suttmeier:
A posteriori error control and mesh adaptation in elasticity and
elasto-plasticity, Preprint 97-36, SFB 359,
Universität Heidelberg, 1997,
Proc. Workshop ``On New Advances
in Adaptive Computational Methods in Mechanics``,
Cachan, Sept. 17-19, 1997, Elsevier, to appear.
- Ra98
- R. Rannacher and F.T. Suttmeier:
A Posteriori Error Control in Finite
Element Methods via Duality Techniques:
Application to Perfect Plasticity,
Comp. Mech. 21/2, 123-133 (1998).
- Ra98-2
- R. Rannacher:
Error Control in Finite Element Computations,
Preprint 98 - 54 (SFB 359) der Universität Heidelberg.
- Ra99
- R. Rannacher:
A posteriori error estimation
in least-squares stabilized finite element schemes,
Special issue on Advances in Stabilized Methods
in Computational Mechanics, Comp. Meth. in Appl. Mech. and Eng.,
to appear.
- Su96
- F.-T. Suttmeier:
Adaptive Finite Element Approximation of Problems in Elasto-Plasticity Theory,
Dissertation, Institut für Angewandte Mathematik,
Universität Heidelberg, 1996.
- Su98-1
- F.T. Suttmeier:
On FE-discretisations with least-squares stabilisation:
A posteriori error control for the membrane-problem,
EAST-WEST J. Numer. Math., Vol.6, No.2, pp.155-165 (1998).
- Su98-2
- F.T. Suttmeier:
An adaptive displacement/pressure finite element scheme
for treating incompressibility effects in elasto-plastic
materials,
Preprint, Inst. f. Angewandte Mathematik, Universität Heidelberg,
Juni 1998, eingereicht bei: Numerical Methods for Partial Differential
Equations.
- Uh98
- I. Uhlenbruch: Lokale Defektkorrektur bei singulären
Daten, Diplomarbeit, Fachbereich Mathematik der Universität Dortmund,
1998
- We94
-
W.L. Wendland, e.a.: Arbeiten im Rahmen des DFG-Paketantrags ,,
Adaptive Finite-Element-Verfahren in der Angewandten Mechanik``,
1994-1999
- Wi98
- St. Wilkes: Semiimplizite Galerkin-Diskretisierungen
für
Anfangswertaufgaben,
Diplomarbeit, Fachbereich Mathematik der Universität Dortmund, April 1998
- Ve94
-
R. Verfürth: A posteriori error estimation and adaptive
mesh-refinement techniques, J. Comp. Appl. Math. 50, 67-83 (1994)
- Ve96
-
R. Verfürth: A review of a posteriori error estimation and adaptive
mesh-refinement techniques, Teubner Skripten zur Numerik, B.G.
Wiley-Teubner, Stuttgart, 1996.
- Zi87
-
O.C. Zienkiewicz, J.Z. Zhu: A simple error estimator and adaptive procedure
for practical engineering analysis, Int. J. Numer. Meth. Eng. 24 (1987)
sutti
2000-04-17