Preprints
- Logioti,A., Niethammer, N., Röger, M. and Velázquez, J.L.
Interface behavior for the solutions of a mass conserving free boundary problem modeling cell polarization.
Submitted (2023).
ArXiv e-prints (2023) arXiv:2402.03034 [math.AP]
Articles
Fuchs, J. and Röger, M.
Mathematical analysis of a mesoscale model for multiphase membranes.
GAMM-Mitteilungen (2024), Volume 47, Issue 4.
The original publication is available at [Wiley-VCH GmbH]
ArXiv e-prints (2024) arXiv:2402.05069 [math.AP]S.Olbermann, H. and Röger, M.
Phase separation on varying surfaces and convergence of diffuse interface approximations.
Calculus of Variations and Partial Differential Equations (2023), Vol 62.
The original publication is available at [ Springer Link]
ArXiv e-prints (2023) arXiv:2307.01865 [math.AP]Logioti,A., Niethammer, N., Röger, M. and Velázquez, J.L.
Qualitative properties of solutions to a non-local free boundary problem modeling cell polarization.
Communications in Partial Differential Equations (2023, online first).
The original publication is available at [ Taylor and Francis Online ]
ArXiv e-prints (2023) arXiv:2202.06289 [math.AP]Dabrock, N., Knüttel, S. and Röger, M.
Gradient-free diffuse approximations of the Willmore functional and Willmore flow.
Asymptotic Analysis (2023), vol. 133.
The original publication is available at [ IOS Press]
ArXiv e-prints (2022) arXiv:2210.06191 [math.AP]Bäcker,J.-P. and Röger, M.
Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type.
Communications on Pure & Applied Analysis (2022) Vol. 21.
The original publication is available at [ AIM Sciences]Rätz, A. and Röger, M.
A new Diffuse-interface approximation of the Willmore flow .
ESAIM: COCV (2021) Vol. 27.
The original publication is available at [ EDP Sciences]
ArXiv e-prints (2019) arXiv:1910.14373 [math.AP]Logioti, A., Niethammer, B., Röger, M. and Velázquez, J.J.L.
A parabolic free boundary problem arising in a model of cell polarization.
Siam J. Math. Anal. (2021) Vol. 53.
The original publication is available at [http://epubs.siam.org/]
ArXiv e-prints (2020) arXiv:2006.16155 [math.AP]Dabrock, N., Hofmanová, M. and Röger, M.,
Existence of martingale solutions and large-time behavior for a stochastic mean curvature flow of graphs.
Probab. Theory Relat. Fields (2020).
The original publication is available at [SpringerLink.]
ArXiv e-prints (2019) arXiv:1903.04785 [math.PR]Röger, M. and Schweizer, B.
Relaxation analysis in a data driven problem with a single outlier.
Calc. Var. Partial Differential Equations 59 (2020).
The original publication is available at [SpringerLink.]
Preprint (2019) TU DortmundNiethammer, B., Röger, M. and Velázquez, J.J.L.,
A bulk-surface reaction-diffusion system for cell polarization.
Interfaces Free Bound. 22 (2020).
The original publication is available at [EMS Publishing House.]
ArXiv e-prints (2019) arXiv:1902.05842 [math.AP]Voss, S., Li, F., Rätz, A., Röger, M. and Wu, Y.-W.,
Spatial Cycling of Rab GTPase, Driven by the GTPase Cycle, Controls Rab’s Subcellular Distribution.
Biochemistry 58 (4), 276-285 (2019).Goldman, M., Novaga M. and Röger, M.,
Quantitative estimates for bending energies and applications to non-local variational problems.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2019).
The original publication is available at [Royal Society of Edinburgh Scotland Foundation]
ArXiv e-prints (2018) arXiv:1801.01418 [math.AP]Hausberg, S. and Röger, M.,
Well-posedness and fast-diffusion limit for a bulk-surface reaction-diffusion system.
Nonlinear Differential Equations and Applications 25 (3), (2018).
The original publication is available at [SpringerLink]
Author's manuscriptRöger, M. and Schweizer, B.,
Strain gradient visco-plasticity with dislocation densities contributing to the energy.
Mathematical Models and Methods in Applied Sciences (M3AS) 27 (14) pp. 2595-2629 (2017).
The original publication is available at [World Scientific Publishing]
ArXiv e-prints (2017). arXiv:1704.05326 [math.AP]Deckelnick, K., Grunau, H.-C. and Röger, M.,
Minimising a relaxed Willmore functional for graphs subject to boundary conditions,
Interfaces and Free Boundaries 19 (1), pp. 109-140, (2017).
The original publication is available at [EMS Publishing House]
ArXiv e-prints (2015). arXiv:1503.01275[math.AP]Anguige, K. and Röger, M.,
Global existence for a bulk/surface model for active-transport-induced polarisation in biological cells ,
Journal of Mathematical Analysis and Applications 448 (1) pp. 213 - 244, (2017).
The original publication is available at [http://www.sciencedirect.com].
ArXiv e-print arXiv:1605.09765 [math.AP]Bonacini, M., Knüpfer, H. and Röger, M.,
Optimal distribution of oppositely charged phases: perfect screening and other properties,
SIAM J. Math. Anal. 48 (2) pp. 1128-1154, (2016).
The original publication is available at [http://epubs.siam.org/].
ArXiv e-print arXiv:1506.02831 [math.AP]Garcke, H., Kampmann, J., Rätz, A. and Röger, M.,
A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes,
Math. Models Methods Appl. Sci. 26 (6) pp. 1149-1189, (2016).
The original publication is available at [http://www.worldscientific.com].
ArXiv e-print arXiv:1509.03655 [math.AP]Heida, M. and Röger, M.,
Large deviation principle for a stochastic Allen--Cahn equation,
Journal of Theoretical Probability pp. 1-38, (2016).
The original publication is available at [http://link.springer.com].
Hofmanová, M., Röger, M. and von Renesse, M.,
Weak solutions for a stochastic mean curvature flow of two-dimensional graphs,
Probability Theory and Related Fields pp. 1-36, (2016).
The original publication is available at [http://link.springer.com].
ArXiv e-print arXiv:1412.5863 [math.AP]Lussardi, L. and Röger, M.,
Gamma convergence of a family of surface-director bending energies with small tilt,
Arch. Ration. Mech. Anal. 219 (3) pp. 985-1016, (2016).
The original publication is available at [http://link.springer.com].
ArXiv e-print arXiv:1501.02600 [math.AP]Lussardi, L., Peletier, M., Röger, M.
Variational analysis of a mesoscale model for bilayer membranes
J. Fixed Point Theory Appl., 2014, Vol. 15, No. 1, pp. 217-240
The original publication is available at http://link.springer.com
arXiv:1402.6600 [math.AP]Rätz, A., Röger, M.
Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks.
IOPscience, 2014, Nonlinearity, Vol. 27, No. 8 1805 DOI:10.1088/0951-7715/27/8/1805
The original publication is available at IOPscience
arXiv:1305.6172 [math.AP]Magni, A., Röger, M.
Variational analysis of a mean curvature flow action functional
Calc. Var. Partial Differential Equations 52 (2015), pp. 609–639, Springer-Verlag Berlin Heidelberg
The original publication is available at Springer Berlin Heidelberg
arxiv:1304.2012 [math.AP]Müller, S., Röger, M.
Confined structures of least bending energy
J. Differential Geom., 2014, Vol. 97(1), pp. 109-139 The original publication is available at projecteuclid
arXiv:1308.2530 [math.AP]Dondl, P., Mugnai, L. and Röger, M.
A Phase Field Model for the Optimization of the Willmore Energy in the Class of Connected Surfaces
SIAM Journal on Mathematical Analysis, 2014, Vol. 46(2), pp. 1610-1632
The original publication is available at http://epubs.siam.org/
arXiv:1305.5054 [math.AP]
-
S. Esedoḡlu, A. Rätz, M. RögerColliding Interfaces in Old and New Diffuse-interface Approximations of Willmore-flow.Communications in Mathematical Sciences. 12:1 (2014), pp. 125-147.The original publication is available at www.http://intlpress.com/
-
M. Röger, H. WeberTightness for a stochastic Allen–Cahn equationStochastic Partial Differential Equations: Analysis and Computations, Springer-Verlag, 2013, Vol. 1(1), pp. 175-203The original publication is available at www.springerlink.comM. Röger, R. SchätzleControl of the isoperimetric deficit by the Willmore deficit.Analysis, Vol. 32, Issue 1 (2012), 32(1):1–7, 2012The original publication is available at www.oldenbourg-link.comS. Aland, A. Rätz, M. Röger, A. Voigt.Buckling instability of viral capsides - a continuum approach.Multiscale Modeling & Simulation, 10(1):82–110, 2012,The original publication is available at http://epubs.siam.orgA. Rätz, M. Röger.Turing Instabilities in a Mathematical Model for Signaling Networks.Journal of Mathematical Biology, Vol. 65, Issue 6-7, 1215-1244 (2012)DOI: 10.1007/s00285-011-0495-4The original publication is available at http://www.springerlink.comP. Dondl, L. Mugnai, M. RögerConfined elastic curves.SIAM Journal on Applied Mathematics, Vol.71, No.6, 2205-2226 (2011)DOI: 10.1137/100805339The original publication is available at http://epubs.siam.orgL. Mugnai, M. RögerConvergence of perturbed Allen-Cahn equations to forced mean curvature flow.Indiana Univ. Math. J. 59 (2010)DOI: 10.1512/iumj.2011.60.3949The original publication is available at http://www.iumj.indiana.edu/IUMJ/Preprint arXiv:0902.1816v1 [math.AP]H. Abels, M. RögerExistence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids.Ann. I. H. Poincaré, Volume 26 (2009), 2403–2424,DOI: 10.1016/j.anihpc.2009.06.002The original publication is available at http://www.journals.elsevier.com/annales-de-linstitut-henri-poincare-c-analyse-non-lineaire/Preprint arXiv:0810.3987v1 [math.AP]M. A. Peletier, M. RögerPartial Localization, Lipid Bilayers, and the Elastica Functional.Archive for Rational Mechanics and Analysis, Volume 193 (2009), 475-537,DOI: 10.1007/s00205-008-0150-4The original publication is available at http://www.springerlink.comPreprint arXiv:math-ph/0607024L. Mugnai, M. RögerThe Allen-Cahn action functional in higher space dimensions.Interfaces and Free Boundaries 10 (2008), 45-78.The original publication is available at http://www.ems-ph.org/Preprint arXiv:0704.1954v1 [math.AP].M. A. Peletier, Robert Planqué, M. RögerSobolev regularity and an enhanced Jensen inequality.Annali della Scuola Normale - Classe di Scienze 6 (2008), 499-510.Preprint arXiv:math.FA/0701412.M. Röger, Y. TonegawaConvergence of phase-field approximations to the Gibbs-Thomson law.Calc. Var. Partial Differ. Equat. 32 (2008). 111-136doi: 10.1007/s00526-007-0133-6The original publication is available at http://www.springerlink.com/Preprint arXiv:math.AP/0703689 (2007).T.L. van Noorden, I.S. Pop, M. RögerCrystal dissolution and precipitation in porous media: L1-contraction and uniqueness.DCDS Supplements (2007), 1013--1020The original publication is available at http://aimsciences.orgPreprint CASA report 06/32D. Hilhorst, J. R. King, M. RögerTravelling-wave analysis of a model describing tissue degradation by bacteria.EJAM 18 (2007), no. 5, 583-605doi: 10.1017/S0956792507007139The original publication is available at http://journals.cambridge.org/Preprint arXiv:math.AP/0702886 (2007).D. Hilhorst, J. R. King, M. RögerMathematical analysis of a model describing the invasion of bacteria in burn wounds.Nonlinear Analysis (TMA) 66 (2007), no. 6, 1118-1140.The original publication is available at http://www.sciencedirect.comPreprint CASA report No. 21M. Röger, R. SchätzleOn a modified conjecture of De Giorgi,Math. Z. 254 (2006), no. 4, 675--714,DOI: 10.1007/s00209-006-0002-6.The original publication is available at http://www.springerlink.comPreprint CASA report No. 33M. RögerExistence of weak solutions for the Mullins-Sekerka flow.Siam J. Math. Anal. 37 (2005), 291-301,DOI: 10.1137/S0036141004439647.The original publication is available at http://epubs.siam.org/M. RögerSolutions for the Stefan problem with Gibbs-Thomson law by a local minimisation.Interfaces and Free Boundaries 6 (2004), 105-133,The original publication is available at http://www.ems-ph.org/Preprint.
Conference proceedings
- M. Röger,Existence of weak solutions for the Mullins-Sekerka flow,(download preprint)Free Boundary Problems Theory and Applications, International Series of Numerical Mathematics, Vol. 154, Birkhäuser Verlag, (2007)
- M. Röger,On a modified conjecture of De GiorgiOberwolfach report 33/2005, Partielle Differentialgleichungen
- M. A. Peletier, M. Röger,Cell membranes, Lipid Bilayers, and the Elastica FunctionalPAMM 6 (2006), no. 1, 11--14,GAMM Jahrestagung 2006, BerlinR. H. Bisseling, J. Byrka, S. Cerav-Erbas, N. Gvozdenovic, M. Lorenz, R. Pendavingh, C. Reeves, M. Röger and Arie VerhoevenPartitioning a Call Graph (preprint)Study Group Mathematics with Industry, Amsterdam 2005.
Dissertations
- PhD thesisLöungen für das Stefan Problem mit Gibbs-Thomson bei einer lokalen Minimierung,
- Diploma thesisExistenz schwacher Lösungen für ein Model reaktiver Flüsse in porösen Medien.