Seminar Partielle Differentialgleichungen WS2015/16
Vortragsthemen
- Das Mullins-Sekerka Problem als Gradientenfluss. Formulierung von Mullins-Sekerka als freies Randwertproblem, Einführung des $H^{-1}$-Skalarprodukts und Interpretation von MS als Gradientenfluss. [Pego05],[DaPe05],[Dai05] p.45-62
- Motion by Mean Curvature as the Singular Limit of Ginzburg-Landau Dynamics. [BrKo91]
- Variational Models for Phase Transitions, an Approach via Gamma-Convergence. [Albe98]
- Some aspects of the variational nature of mean curvature flow. [BeMu08] Abschnitt 2 zur Wärmeleitungsgleichung. Verbindung zur Theorie großer Abweichungen.
- On an Isoperimetric Problem with a Competing Nonlocal Term I: The Planar Case. [KnMu12]
- Singular perturbations as a selection criterion for periodic minimizing sequences. [Muel93]
- Mountain pass Theorem. Existenz kritischer Punkte von Funktionalen. [Evan10] p.501
- Kohn-Otto Technik für Vergröberungsraten, und Anwendungen. _[Pego05] Sec. 4.1 -4.3
- Weitere Themen auf Anfrage.
Termine
- 29. September: Stephan Hausberg, Nils Dabrock, Keith Anguige, Carsten Zwilling
- 28. Januar: Tim Czerwonka, Till Koch, Sebastian Sewarte
Literatur
- [[Albe98]] Alberti, G., Variational Models for Phase Transitions, an Approach via Gamma-Convergence., (1998)
- [AtBM14] Attouch, H., Buttazzo, G. and Michaille, Gé.,
Variational analysis in Sobolev and BV spaces,(2014).
- [BrKo91] Bronsard, L., Kohn, R., Motion by Mean Curvature as the Singular Limit of Ginzburg-Landau Dynanamics., Journal of Differential Equations 90, 211-237 (1991).
- [[Dai05]] Dai, S., Universal bounds on coarsening rates for some models of phase transitions. PhD thesis.
- [DaPe05] Dai, S. and Pego, R.,
Universal Bounds on Coarsening Rates for Mean-Field Models of Phase Transitions,
SIAM Journal on Mathematical Analysis 37 (2) pp. 347-371, (2005).
- [Evan10] Evans, L. C.,
Partial differential equations,
Providence, RI, (1998).
- [KnMu13] Knüpfer, H. & Muratov, C. B., On an Isoperimetric Problem with a Competing Nonlocal Term I: The Planar Case, Communications on Pure and Applied Mathematics, Wiley Online Library, (2013).
- [Muel93] Müller, S., Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. PDE 1, 169-204 (1993)
- [[Pego05]] Pego, B., Lectures on dynamics in models of coarsening and coagulation.